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Abstract—Cross-language code retrieval is necessary in many
real-world scenarios. A major application is program translation,
e.g., porting codebases from an obsolete or deprecated language
to a modern one or re-implementing existing projects in one’s
preferred programming language. Existing approaches based on
the translation model require large amounts of training data
and extra information or neglects significant characteristics of
programs. Leveraging cross-language code retrieval to assist
automatic program translation can make use of Big Code.
However, existing code retrieval systems have the barrier to
finding the translation with only the features of the input program
as the query. In this paper, we present BIGPT for interactive
cross-language retrieval from Big Code only based on raw code
and reusing the retrieved code to assist program translation. We
build on existing work on cross-language code representation
and propose a novel predictive transformation model based on
auto-encoders. The model is trained on Big Code to generate a
target-language representation, which will be used as the query
to retrieve the most relevant translations for a given program.
Our query representation enables the user to easily update and
correct the returned results to improve the retrieval process.
Our experiments show that BIGPT outperforms state-of-the-art
baselines in terms of program accuracy. Using our novel querying
and retrieving mechanism, BIGPT can be scaled to the large
dataset and efficiently retrieve the translation.

I. INTRODUCTION

The number of open-source program resources on the

internet is constantly growing. The most well-known are open

source code repository hosts, such as GitHub and Bitbucket.

The GitHub database, i.e., the Public Git Archive [5], contains

more than 260,000 GitHub repositories, which are written in

455 different programming languages and include more than

16 billion lines of code, in the HEAD files alone. Further,

community question answering sites, such as Stack Overflow,

contain a large number of executable binaries that amount

to billions of code snippets. These and similar resources

are referred to as “Big Code” [37], which are created and

modified by programmers with much effort and time. Reuse

of code from these abundant databases provides opportuni-

ties for new applications, such as workflow generation [16],

data preparation [44], programming assistance [25], database

management [20], and transformation retrieval [43]. Another

application that has recently emerged in this context is program

translation [11], [39].

A useful technique that can support several of the afore-

mentioned applications is code retrieval. In particular, cross-

language retrieval is becoming more prominent for use cases,

such as program translation and code-clone detection. Numer-

ous programs are being developed and require corresponding

versions in different languages. In cases when the developers

do not make the translation efforts themselves, users have

to manually rewrite the software in the needed language.

For example, there are plenty of open-source prototypes

developed in academia, especially in the current booming

field of big data. To port codebases written in obsolete or

deprecated languages to a modern one [39], or further study,

reproduce, or apply them on various platforms, researchers

usually need to rewrite these programs in their preferred

programming languages. Manually rewriting software is time-

consuming and error-prone. For instance, the Commonwealth

Bank of Australia spent around $750 million and 5 years to

translate its platform from COBOL to Java [39]. Therefore,

new approaches for automated program translation and code

migration are emerging [33]. The traditional methods are

hardwired, rule-based compilers or cross-language interpreters,

which require heavy human intervention for adaptation and are

limited to a small set of programming languages [3]. However,

if we leverage a cross-language retrieval system, we can make

the most of the existing Big Code resources to support the

program translation use case. In this paper, we discuss the

potentials of an effective cross-language retrieval system in

assisting program translation.

State of the art. Our work is inspired by two lines of research,

code retrieval and supervised program translation.

Most existing code retrieval systems, such as Sourcerer [26],

lack the proper capabilities for code-to-code search

and/or cross-language retrieval. The cross-language system

YOGO [35] requires users to provide pre-defined handwritten

pattern queries or feedback on several preset metrics and

questions as many other code search systems [18], [28], [40],

[41], which increase the workload of users. Our recently

proposed system RPT [11] aims to retrieve the translation

only with the feature of the source code and ignores the

language-specific differences to the target language. All

of the aforementioned techniques exclude users from the

retrieval/translation loop.

Similar to natural language translation, the mainstream

data-driven program translation approaches train a transla-
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tion model from large amounts of code data either in a

supervised [12], [31], [32] or weakly-supervised fashion [39].

Supervised approaches require a parallel dataset to train the

translation model. In parallel datasets, programs in differ-

ent languages are considered to be “semantically aligned”.

Obtaining the parallel datasets in programming languages is

hard because the translations have to be handwritten most of

the time. A recent weakly-supervised method by Facebook

AI [39] pretrains the translation model on the task of denois-

ing randomly corrupted programs and optimizes the model

through back-translation. However, this method still relies on

high-quality training data and directly reuses natural language

processing (NLP) approaches that neglect the special features

of programming languages, such as code syntax. All these

approaches require human efforts on the input, or additional

information for training and evaluation, such as annotations,

program descriptions, API usages, and use cases, which can-

not always be provided. Furthermore, compared to retrieval

methods, these machine-generated program translations suffer

from grammar mistakes because of the rigor of programming

languages.

Our methodology is to reuse existing Big Code resources

and developing cross-language retrieval techniques to assist

translation with retrieved similar code in target language.

Note that such a method might fail to find the translation

for very specific long and complex programs because the

achievable performance is directly depending on the richness

of the given repository. Nevertheless, due to the modular

nature of programs and the huge data volume of the big code,

it should be possible to retrieve the translation for smaller

fragments of an input program, such as methods and functions.

The user then can use these building blocks to assemble the

complete translation. We improve and extend our preliminary

attempt [11] on supporting code translation through Big Code

by addressing the following open challenges and requirements:

• Big Code resources are typically imperfect and disordered.

Thus, it is hard to obtain correct translations in absence of

sufficient information, such as training data, hand-crafted

patterns, and semantic annotations.

• Because of the different syntax structures and naming mech-

anisms in different programming languages, it is hard to

capture program features in a unified way. Ideally one has to

resort to an intermediate representation that is automatically

extractable from raw code. With this, it would be possible

to use similarity metrics already in place for code clone de-

tection. But generating such an intermediate representation

is yet an open task.

• Representation techniques that are in place for natural

language are not designed to deal with the special syntax

and grammatical rigor of code.

• The feature representation has to be incrementally updatable

to enable user interaction.

In this paper, we present BIGPT, an interactive cross-

language code retrieval system that reusing Big Code resources

to assist the program translation task. Given a raw piece

of code in the source language, BIGPT uses a novel query

transformation approach based on auto-encoders to retrieve

the most similar piece of code in the selected target language

from the existing Big Code resources. We propose a query

transformation model, which can be trained in an unsuper-

vised manner on Big Code to transform the input program

representation to a representation that is closer to properties

of the target language. Due to the succinct form of the program

representation, the user can interact with BIGPT and the

query can be automatically adapted to user annotations in the

target code. As BIGPT is a heuristic methodology based on

retrieving real programs, it is less prone to grammar mistakes

than approaches based on code generation. Our experiments

show that our approach outperforms existing cross-language

retrieval techniques and statistical translation models that

require a large amount of training data. To this end, we make

the following main contributions:

• We present a program feature representation for effective

retrieval of possible translations in imperative programming

languages. With the help of Big Code, we propose a novel

auto-encoder-based query transformation model, which can

transform the input code into the representation of its

translation.

• We design the feature representation in a way that it can

be incrementally updated based on user corrections to effi-

ciently retrieve the translation from Big Code.

• We further expand our feature representation with a weight-

ing scheme to enable user feedback that accelerates BIGPT’s

ability to improve its retrieval results.

II. RELATED WORK

Our work is related to code search, data-drive program

translation, and program representation. We also discuss re-

lated work in cross-language code clone detection and natural

language retrieval to show the originality of our work.

General code search. Most of the existing methods cannot

find translations with only raw code as input. Krugle and

Codase are commercial engines that apply the capabilities

of web search engines for code search [2], [4]. Lucene is a

famous conventional code search engine behind many existing

tools such as Sourcerer [26]. It retrieves code based on text

and code properties, such as fully qualified name and code

popularity. S6 retrieves code based on the user’s specifica-

tions and modifies it through a set of transformations [38].

CodeHow is a text-based code search engine that incorpo-

rates an extended boolean model and API matching [27].

DEEPCS trains a neural network model for code snippets

and their natural language description, which are used as

queries [19]. FaCoY is a code-to-code search engine that

requires Q&A posts from Stack Overflow as query addition to

the code snippets [23]. YOGO provides a cross-language graph

representation, which however requires handwritten semantic

rules and patterns written in a domain-specific language for

each query [35]. All these works require users or additional

resources to provide keywords, specifications, rules, or natural

language descriptions. Recently, we proposed RPT, which

uses cross-language retrieval for translations [11]. In this
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preliminary work, we used the features of the input program

to retrieve the translation and did not support user interaction

although retrieval-based methods cannot always provide off-

the-shelf translations. Except YOGO and RPT, all of the

aforementioned systems are designed for the mono-language

setting. In contrast to these systems, BIGPT only takes raw

code as the query and aims to perform cross-language retrieval.

Interactive code search. Wang et al. refine a query based on

user’s feedback on each result and reorder the ranking list [41].

Nie et al. extract relevant feedback from StackOverflow for the

initial query and reformulate it using Rocchio expansion [34].

Dietrich et al. utilize a novel form of association rule mining

to learn a set of query transformation rules from user feed-

back to improve the search queries. CodeExchange leverages

the context from previous retrieval results to reformulate a

given query and breaks it into several parts for the user to

feedback [28]. Sivar et al. propose an active learning system

ALICE to iteratively refine a query based on positive or

negative labels [40]. All of the aforementioned methods are

only applicable to mono-language scenarios and work with

natural language queries. As for interaction, these methods ask

the user to give feedback on preset metrics based on Likert

scale or questions, e.g., StackOverflow Q&A pairs. Thus,

the performance mainly depends on the developer’s ability

to formulate queries. BIGPT directly uses user’s corrections

to the retrieved results as feedback and integrates an active

learning-based query transformation model to refine the query.

Data-Driven program translation. Existing work mainly

focuses on building a translation model. Nguyen et al. applied

the phrase-based statistical machine translation (SMT) model

on the lexemes of source code to translate Java code to

C# [31]. In their follow-up work, they develop a multi-

phase, phrase-based SMT method that infers and applies both

structure and API mapping rules [32]. But they are limited

to languages that are similar on either structural or textual

level, such as Java/C#. Chen et al. binarize the code tree

of a piece of code and translate the code with an LSTM-

based encoder-decoder model [12]. All the above methods

require a large parallel dataset for training. In contrast to them,

the weakly-supervised system TransCoder [39] first trains a

cross-language model through the task of predicting randomly

masked words, then acquires a pre-trained translation model

from denoising randomly corrupted program task. Finally,

they improve this model through back-translation. Although

TransCoder does not need parallel translation data, this transfer

learning method highly relies on the similarity of the data

for pre-training. Their approach processes code like natural

language, which might leave out some programming-specific

language features. We propose a system that can assist pro-

gram translation without parallel datasets and additional infor-

mation. By reusing Big Code, it can comply with the rigorous

grammar without machine-generated translation. Further, our

system outperforms the aforementioned techniques with a

novel program representation that captures the most crucial

features of programs.

Program representation. By constructing program represen-

tations, one can enable the application of data processing to a

wide range of programming-language tasks including program

translation and code search. Kamiya et al. and Allamanis et

al. treat a program as plain text and use the sequence of

tokens as representation to detect code clones and summa-

rize code [8], [22]. Allamanis et al. present a Gated Graph

Neural Network in which program elements are represented

by graph nodes and their semantic relations are edges in the

graph to predict variable name and select correct variable [7].

These methods rely on semantic knowledge, which requires

expert analysis and is not generalizable across programming

languages. A recent approach uses paths in the program’s

abstract syntax trees (AST) as code representation to predict

program properties such as names or expression types [9].

And they further propose Code2vec that leverages a tree-

based neural network to encode these paths and generate

more abstract representations [10]. Yin et al. employ neural

networks to express source code edits [45]. However, these

methods are only designed to represent the features in one

programming language and do not capture the commonalities

of multiple languages. And some methods are too abstract so

that important information for effective retrieval is missing,

such as low-level program syntax or token type [8], [22]. The

program representation we use as the query is inspired by

the work in [9] and [11]. In addition to AST, we consider

features of concrete syntax trees (CST) and text to enrich the

information for cross-language search. And we train a query

transformation model on Big Code to transform the features

between different languages.

Cross-language code clone detection. This line of research

aims at identifying duplicates of a given piece of code.

However, this line of research has so far only focused on

languages with similar intermediate representation, such as

the .NET language family [6], [24]. Others only calculate

similarity on the textual level [13], [14] same as most code

search methods. They simply treat programs as plain text and

make certain assumptions that limit their usage in practice,

i.e., they try to identify different revisions of the same piece

of code. As our goal is to find program translations, our

requirements go beyond the state-of-the-art in clone detection.

Nevertheless, we still compare our program representation to

plain text representation used in code clone methods [13], [14]

in our benchmarks showing its superiority.

Cross-language text retrieval. There is a body of work on

cross-language retrieval for natural language [21], [36], [42].

They take plain text as input and generate feature representa-

tions based on natural language syntax. However, code has its

unique properties. Not only the code syntax can differ across

languages, but the text in code does not exactly follow the

same vocabulary and writing formats as in natural language.

Therefore, directly using these methods on code search can

lead to incorrect results or failures. We also evaluate using

natural language methods in our experiment by processing

code as plain text using bag-of-words and word2vec.
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Fig. 1: BIGPT overview

III. SYSTEM OVERVIEW

We propose BIGPT, an interactive cross-language code

retrieval system that assists program translation by reusing

Big Code. Given a piece of source program Ps written in

language Ls, a selected target language Lt, and a large

program repository Dp = {P1, P2, ..., Pn}, the goal is to find

the best possible translation Pt of Ps in Lt from Dp. The

essential problem is to design an effective program feature

representation that generalizes to many languages, can be

updated through user feedback, and enables efficient retrieval

in the scale of big code.

The workflow of BIGPT is shown in Figure 1. BIGPT first

constructs a feature representation for input programs to form

the query (Section IV-A). Since the target is to identify a simi-

lar program in the target language, BIGPT then applies a query

transformation model (QTM) to transform this representation

into an estimated feature representation of the translation (Sec-

tion IV). QTM is trained in an unsupervised manner on Big

Code but can also be updated dynamically through active

learning. This new representation will be used as a query to

retrieve potential translations from the database. For efficient

retrieval (Section V), BIGPT leverages an index structure that

captures key feature elements and is constructed in the offline

phase. As an interactive system, BIGPT allows the user to give

feedback on the retrieved translation (Section VI). The user

can either accept the result or make some corrections. Based on

our structured and informative feature representation, BIGPT

can easily and quickly adapt the query based on local user

corrections. Note that the user is not necessarily correcting

the whole program but only some local spots that they deem

wrong. With this partial correction, BIGPT may identify a

more appropriate translation candidate that can be accepted

by the user in the second retrieval attempt.

IV. QUERY CONSTRUCTION

As the user only inputs the raw source code, to retrieve a

relevant translation for it from a large code database, BIGPT

needs to automatically construct an effective cross-language

Fig. 2: Simplified syntax tree of a JavaScript program

Fig. 3: CST and AST of a fragment of the program in Figure 2

query. In this section, we will first introduce the fundamental

program feature representation, then discuss how our query

transformation model (QTM) generates the search query, and

how BIGPT further optimizes the model with active learning.

A. Program Representation

As already suggested by the recent cross-language code re-

trieval system RPT [11], BIGPT takes both structural features

and textual features as well as their dependencies into consid-

eration to capture special aspects of programming language

syntax and program semantics expressed in the text.

Structural Features. To capture the structural features of a

program, we resort to a representation based on the syntax

tree of a program. Each program can be represented by its

syntax tree where each tree node denotes a code construct.

The syntax tree depicts the structural dependencies of the code

constructs. One could also use control flow graph (CFG) that

captures the dependency between code blocks and procedures

to approximate the code behavior. However, our goal is to

assist program translation for any granularity of a program.

Code behavior is hard to measure when the code fragment is

not an independently executable code block. Considering that

constructing CFGs requires more complex analysis than syntax

trees, we pick syntax trees as the basis of our representation

to also capture the low-level syntactic structure within code

blocks. The syntax tree can be either a concrete syntax

tree (CST) or an abstract syntax tree (AST) [9], [10], [12].

A CST depicts nodes with complete structural information,

such as all the tokens in the code. As such the CST is

highly language-dependent. The AST on the other hand is

more abstract and misses information, such as the intermediate

syntax and the type of each token.

Therefore, the CST is quite verbose and the AST may

lose informative syntax and does not generalize to multiple

languages. To develop a compromise solution that keeps the

best of both worlds, and as previously suggested [11], we fall

back on the low-level CST as a basis and take the philosophy
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TABLE I: Paths extracted from the tree in Figure 2

Root-Node Leaf-Nodes Path-Type

ifStatement
identifier, identifier p1

identifier, literal p2
literal, identifier

literal, literal p3

equalityExpression identifier, literal p4

assignmentExpression identifier, literal p5

of AST as an inspiration. Specifically, we first take CST of the

program as the base structure. Then we simplify the CST by

only removing semantically repetitive nodes so that redundant

information can be removed and necessary information can

be retained. Figure 2 shows the generated syntax tree of a

JavaScript program. We use the same approach as proposed

for RPT [11]. Figure 3 shows the original CST and AST of a

fragment of this program. We can see that the new syntax tree

is more succinct than CST and more informative than AST.

However, this syntax tree is still complicated for representing

the code features and retrieving the translation. And because

of different control flow elements in different programming

languages, it is unlikely to find programs that share the exact

same syntax tree. Therefore, imitating the idea of AST, we

further abstract the tree. First, we simplify the representation

and transform the two-dimensional tree structure into a set

of one-dimensional paths that connect the program elements

inside the tree. BIGPT extracts abstract paths as follows: for

each pair of leaf-nodes in the CST, BIGPT keeps the nodes

themselves, their values, and the root-node of the statement

and drops all other intermediate nodes on this path. The root-

node is the summary of the whole path and the leaf-nodes

directly indicate the content on this path. These three nodes

enclose the most critical information on a path. Moreover,

we extract all paths between two leaf-nodes from the tree

to represent the features. In this way, all the intermediate

nodes have the chance to be the root-nodes, which facilitates

to capture more complete structural information. The paths

extracted from the trees in Figure 2 are shown in Table. Then

we classify these paths into different types and replace these

paths with their path-type as shown in Table. In this way,

we can further generalize and simplifies the features. Using

the same method in RPT [11], BIGPT considers two paths

are the same type if their root-nodes and leaf-nodes are the

same or have the same meaning, such as ifStatement and

if_stmt. Also, as the writing habit of programmers and the

coding conventions for a programming language might differ,

BIGPT ignores the order of left and right leaf-nodes, such as

p2. Thus, the structural feature of a program can be succinctly

represented by a set of path-types p1, p2, ..., pj extracted from

its syntax tree.

Textual Features. In contrast to existing work [13], [14] that

suggest to extract all the text from a program and do not con-

sider any context from the program structure, BIGPT considers

textual features only in strong dependency with the structural

features and leverages context from the structure [11]. To do

so, BIGPT only processes text that appears in the extracted

paths and marks the path-type where they belong. Because

the text appears on or connects to those removed semantically

repetitive nodes only brings in redundant information. And

considering the dependency can encode the text with the

features of the programming languages, not only the natural

languages. This methodology can also simplify the features

and improve system efficiency.

Similar to [11], first uses word tokenization and lemmatiza-

tion to tokenize and stem all the words in the text. In addition,

our tokenization process also considers camel case, spaces, and

underlines to accommodate code-specific language. However,

it does not remove and tokenize numeric values, such as hard-

coded floating points and integers, as they might be integral

to the purpose of a program. Then BIGPT vectorizes these

generated tokens based on the Bag-of-words model (BoW).

One could also resort to more sophisticated and complex

embeddings, such as word2vec (W2V) [30] and BERT [17].

However, in programming languages, the structural features

are more important than the textual ones and word order

can be ignored to accommodate different programming styles.

Besides, we only compare text for every single path-type,

significantly reducing the number of words for each similarity

calculation. BoW is sufficient for this process. In our ex-

periment, W2V does not show worthwhile improvements but

rather introduces extra training time for building the language

model. To avoid repeated computation for every new input

and to improve the efficiency, BIGPT precalculates the BoW

model in the offline phase. To build the BoW model, we need

to prepare a vocabulary of unique words in each program from

the repository. As we consider the dependency with structural

features, two textually identical tokens from different types of

paths are regarded as different tokens. To this end, we count

all the text tokens t1, t2, ..., tk of each program and store the

results during the offline phase. In the online phase, BIGPT

only needs to run word statistics on the input program and

build the BoW model.

Feature Representation. Unlike RPT that uses a list of path-

types and text collections as the final representation [11],

we construct a numerical feature vector to represent the

program. The final feature representation is thus more com-

pendious as one single vector, which can be directly used

to further train a learning model. Our final representation

is constructed as follows: we regard the tokens (textual)

together with different types of paths (structural) as fea-

ture elements e of a program and generate a feature vec-

tor consisting of the feature element frequencies. Let f be

the occurrence frequency of feature elements, then the fi-

nal vectorized feature representation of a program will be

[fe1 , fe2 , ..., fen ] = [fp1
, fp2

, ..., fpnp
, ft1 , ft2 , ..., ftnt

]. In our

experiments, the number of different path-types is about 5,000

on average for each language pair. In the subsequent retrieval

process, the potential translation in the target language can be

identified by calculating the similarity of feature vectors.
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Fig. 4: Query transformation model (QTM)

B. Query Transformation Model

One could directly use the feature representation described

in Section IV-A as a query to retrieve translation candidates.

However, the feature vector will fail to accommodate some

cross-language hurdles. For example, C# supports goto state-

ments while its Java translation has to use so-called labelled

statements with break or continue [1] instead of goto.

In this case, BIGPT cannot directly use the features of the

C# program to retrieve its Java translation. The result can

be improved if the retrieval can be conducted based on the

features of the translation. While the translation of a complete

program is our original problem and hard to solve without

large amounts of training data, we propose a QTM that solves

a smaller problem. QTM transforms the original query, i.e., the

feature vector of the input program, into an optimized query,

which will be the estimated feature vector of the translation.

Model Description. As shown on the left part of Figure 4,

in the online phase, BIGPT extracts the features as Fs of a

program from source language Ls and feeds it into the QTM

to translate the program features to features in language Lt.

The QTM first selects previously trained auto-encoders (see

the next paragraph for details) of Ls and Lt respectively, then

extracts the encoder of the former and the decoder of the latter

to compose a new encoder-decoder model. In this model, a

one-layer encoder (red in Figure 4) maps the original feature

vector to a low dimensional latent space and produces a shorter

hidden vector H . Then H is reconstructed to the estimated

translation feature vector Ft by a one-layer decoder (yellow

in Figure 4). Ft will be used as a query to retrieve potential

translation in target language Lt.

Since there is no available training data for QTM, we lever-

age an unsupervised method based on - auto-encoders (AE) to

train an encoder and a decoder. An AE is an encoder-decoder

system that aims to reproduce its input. That is, it encodes the

input to a hidden vector, then reconstructs the input from this

hidden vector. Therefore, no extra label for the training data

is needed. With this approach, BIGPT learns the weights of

the encoders and decoders separately. As shown in the right

part of Figure 4, in the offline phase, BIGPT trains a separate

AEi for each programming language Li in the database on

all programs that are written in Li. Thus it obtains a pair of

Encoderi and Decoderi for each programming language. For

the actual translation task, we combine the appropriate encoder

and decoder depending on the source and target language of

a translation task. In Figure 4, the QTM selects the encoder

Encoders of the source language Ls from AEs to transform

Fs into the hidden layer representation. And it picks the trained

decoder Decodert of the target language Lt from AEt to

estimate the Ft. This way, we can build a pre-trained model

with an encoder that learns significant information from the

feature vector of the input program and a decoder that can

generate features of its translation.

Active Learning Mode. To increase the accuracy of QTM,

we also provide an active learning mode to enable the user to

fine-tune the model. For each pair of languages, it is possible

to train the corresponding QTM via active learning. As shown

in Figure 1, during each translation retrieval, the most useful

input programs in the source language are selected with a

sampling strategy. Then BIGPT will retrieve its translation in

the target language. The user either accepts the retrieved result

or annotates the correct translation herself. Then with this

user-approved correct translation as the label of the input, we

can further train the QTM and update the weights. To choose

the appropriate input program, we propose an aggregation of

four sampling strategies that capture the informativeness of a

program as follows:

• Coverage sampling picks the programs that cover a wider

range of different feature elements, which may reveal more

information. We consider programs that cover more than

50% of the total amount of all feature elements as programs

with high coverage. In a database, if the average amount of

feature elements contained in a program A is λ and the

program contains more than λ/2 different feature elements,

it is a qualified sample.

• Rarity sampling considers programs with rare feature ele-

ments, i.e. programs that contain features that appear in at

most ε% of the program database. For example, if feature

element e1 from program A appears in x% (x < ε) of the

database programs, A is a qualified sample.

• Uncertainty sampling picks retrieved programs with low

certainty, i.e., lower similarity score than 75%. For example,

if program B is the top retrieved translation of program A,

but their similarity score is 50%, which is lower than 75%,

program A is a qualified sample.

• Random sampling randomly selects a program [46].

BIGPT employs the query-by-committee method to aggre-

gate the results of the four sampling methods [15]. With this

approach, we make sure to have incorporated a diverse set of

characteristics that might be relevant for sampling. The final

decision is made by selecting program data where the largest

disagreement occurs among those sampling strategies.The

level of disagreement of a program x is measured by vote

entropy V E [15]:

V E(x) = −V (x)

Ns
log

V (x)

Ns
− Ns − V (x)

Ns
log

Ns − V (x)

Ns
(1)

V (x) is the number of sampling strategies that select/vote x
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Fig. 5: Frequency histogram of path-types in one program

as a valuable sample. Ns is the total number of sampling

strategies, which equals 4 in our case. Programs with higher

vote entropy are returned as samples.

V. TRANSLATION RETRIEVAL

The output of the QTM is an approximate representation of

the translation. BIGPT uses this output as a query to retrieve

the candidate with the highest feature similarity. To avoid a

full scan while retrieving the most relevant translations, we use

a path-type-aware index and an efficient retrieval mechanism.

Index Structure. In the offline phase, BIGPT constructs repre-

sentations as described in Section IV-A for each program from

the code database and stores them inside a feature database.

To avoid a brute-force similarity computation, we need an

index structure. For two programs to be similar, they have

to share similar structure features, which are captured through

common path-types as described in Section IV-A. So we need

to first find all the programs that share at least one path-type

with the source program. A naive approach is to index each

path-type as the key. However, there are millions of programs

inside the database, and there are only about 5,000 types of

paths on average for each language pair, which makes this

index structure highly sparse and ineffective. Inspired by [11],

we design our index structure to also harbor the frequency of

each path-type inside a program as many programs share the

same path-type but differ in the frequency of such path-types.

Since the source program and its translation candidate may

not always share the amount of the same path-type, it would

be too strict to have an index entry for every combination of

path-type and frequency. Instead, we divide the frequency of

path-types into multiple buckets and use the bucket intervals

as indexes. We observed the frequency of each path-type in

each program roughly obeys exponential distribution as shown

in Figure 5. To ensure the size of each bucket is equal, we

fix a bucket size and create as many buckets as are needed.

Then, we sort the programs based on the frequency of the

corresponding path-type and add them gradually to the sorted

fix-sized buckets. In our experiments, a bucket size of 200

already shows a high-performance gain.

Example 1: p1 occurs [0, 1) times in 6 programs, [1, 2) times

in 3 programs, [2, 3) times in 2 programs, and [3, 4) times

in one program. If we evenly divide the interval, we will

have 9 programs in [0, 2) and 3 programs in [2, 4). But if we

Fig. 6: User feedback mechanism

divide the interval into [0, 1) and [1, 4) based on the frequency

distribution, each interval contains 6 programs. This interval

leads to a more balanced index structure.

Efficient Retrieval. For each pair of query program and

candidate program, BIGPT calculates the weighted sum of

structural similarity and textual similarity to measure the

overall similarity. To make the retrieval process as efficient

as possible, we first use the index that filters all programs that

do not contain a similar amount of the same path-types. The

number of candidates for the similarity calculation is typically

still quite high. Thus, BIGPT consecutively calculates the

independent similarity components - structural similarity and

textual similarity and drops candidates that fail to meet a

minimum threshold concerning any of the two. The thresholds

for both components are chosen based on the inflection points

of each score distribution, respectively. Similar to RPT [11],

BIGPT first calculates the structural similarity to each can-

didate, because the syntax structure of a program is more

discriminative than textual features. This will significantly

reduce the number of irrelevant programs and avoid the

unnecessary calculation of textual similarity with them. For

the remaining candidates, a textual similarity filter is employed

which uses a weighted Jaccard index that accommodates the

relevance of common textual features within the same path-

types. For all the final remaining programs, the weighted sum

of both previously calculated similarities will be generated to

obtain the final similarity score.

VI. QUERY ADAPTION WITH USER FEEDBACK

It can happen that the desired translation is not among

the top-k retrieved results. In this case, BIGPT can change

the query based on the user’s feedback. Existing interactive

code retrieval methods ask the user to give feedback on preset

metrics and questions as discussed in related work [34], [40],

[41]. As each feature element in our query directly maps to a

code fragment, BIGPT can directly pass the user’s corrections

on the code to adapt the query. The simplest form of using

the user corrections is to just update the feature vector of the

corrected program. However, we can also make use of the

fact that user corrections lead to manually curated features.

To reflect this in our feature representation, we extend it with

a weighting scheme. As shown in Figure 6, we obtain a new
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Fig. 7: An example of user feedback

feature representation R, where each element consists of a

feature element fei and its weight wi. The initial weights are

uniform. After the user makes one or several corrections to

the result, BIGPT featurizes each correction the same way and

compares it with the original code to generate the weights. We

classify corrections into three categories and the weights are

tuned accordingly:

• Emphasize. If the correction increases the number of a

feature element fei ∈ R, its weight will be increased.

• Add. If the correction adds a feature element fei /∈ R, fei
and its initial weight wi will be added to R.

• Delete. If the correction decreases feature element fei ∈ R,

its weight wi will also be decreased.

After a correction, the feature representation is updated

and used for a new round of retrieval. When calculating

the similarity between query and candidates in the database,

BIGPT prefers the candidate that has a higher similarity in

higher weighted features.

Example 2: Figure 7 is an example of the user feedback

module. The input is a greatest common divisor function in

JavaScript. The ground truth in Python is also shown in the fig-

ure. In the first round, BIGPT retrieved an Ackermann function

as its Python translation. The possible reasons are the variable

names are different in the ground truth and the weight of each

feature element is not assigned properly. After user corrects

the first wrong line (change return n+1 to return n),

BIGPT constructs feature representation for the corrected

code. Then BIGPT compares it with the feature representation

of the input code and summarizes user’s corrections. Based

on this, BIGPT updates the query: in Figure 7, the correc-

tions are deleting the path-type {additiveExpression,
{identifier, literal}} and token 1 on this path-type.

As a result, these two feature elements will be removed and the

weight of other feature elements will be increased accordingly.

Finally, with the updated query, BIGPT will run a new round

of retrieval. Without more precise features, the ground truth

will be more likely to be retrieved.

VII. EXPERIMENTS

To show the feasibility of our BIGPT and evaluate its

effectiveness and efficiency in assisting program translation,

we conducted a series of experiments:

A. We compare different variations of BIGPT with existing

work from program translation and code search;

B. We evaluate BIGPT on more languages;

C. We discuss the influence of user interaction;

D. We evaluate the scalability and efficiency of BIGPT.

All experiments have been carried out on a PC with an Intel

Xeon E5-2650 v2 2.60GHz CPU and an NVIDIA Tesla K40m

GPU.

Datasets. We have two different types of datasets:

1) Dataset for training the auto-encoders in QTM, Word2vec,

and Code2vec:

• Public Git Archive (PGA). We use this database with

more than 260,000 bookmarked repositories [5] to train

the AEs of QTM. We cleaned the dataset by gradu-

ally removing duplicates at files, and files that cannot

be successfully parsed due to format, errors, version

compatibility. We then collected data in four popular

languages (JavaScript, Python, Java, C++). Finally, we

obtain a dataset with a size of 260GB. We split all the

files into methods or functions.

2) Datasets for evaluation: Datasets with ground truth are

generally scarce. We run our experiments on two small

parallel datasets and one larger unlabeled dataset:

• Java-C# used in experiment A, C, D. It was used in

previous studies [11], [12], [31], [32]. We use the same

dump that was used for the cross-language retrieval en-

gine RPT [11], which contains 39,797 matched methods.

• GeekforGeeks used in experiment B. It was used in

TransCoder [39], which gathered and aligned 698 coding

problems and their solutions in Java, Python, and C++.

• PGAS used in experiment D. To save experiment equip-

ment and time, under the premise of ensuring the validity

of the experiment and the reproducibility of the data, we

randomly pick 1% files from PGA to obtain a dataset

including 2,023,546 methods/functions. As this dataset

has no labels, we manually judge the correctness.

Effectiveness metric. We use program accuracy (PA) as

proposed by prior work [12], [32]. PA is the percentage

of the predicted translation that is the same as the ground

truth. Note that, PA is an underestimation because it does not

account for programs that only differ in writing habits and

style. We use this standard to manually judge the correctness

for the dataset without ground truth. For our retrieval-based

method, we consider the top-1 retrieved result as the “predicted

translation” and report the percentages of search where the

correct translation was the top-ranked result. Note that PA is

an underestimation of computational accuracy which evaluates
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whether the translation generates the same outputs as the

source program when given the same inputs [39].

A. Comparison with Baselines

We compare BIGPT with one rule-based tool (J2C# [3]) and

four data-driven program translation baselines (1pSMT [31],

mppSMT [32], Tree2tree [12], TransCoder [39]), which use

a translation model to generate the results. The supervised

baselines use 90% matched method pairs as training data

to predict the translations for the rest of the programs. We

used the openly available implementation of Tree2tree. For

TransCoder, we follow their method to pre-train the cross-

language model on the Public Git Archive dataset (30GB

of Java and C# data). For the program translation baselines

1pSMT and mmpSMT, we report the results from their work

on the same dataset as their code and configurations are not

available. Finally, we report the results of two mono-language

code search systems (Sourcerer [26], CodeHow [27]) and one

cross-language system (RPT [11]).

We generate different versions of BIGPT with variations in

feature representation and interaction:

• Representations: We analyze BIGPTWORD2VEC and

BIGPTCODE2VEC as two feature representations variations of

BIGPT that retrieving translation based on Word2vec [29]

and Code2vec [10], respectively.

• Interactive versions: We discuss three different interactive

versions of BIGPT. All of which use the same feature

representation and the QTM module. BIGPTno AL uses the

original QTM that has not been improved by active learning.

BIGPT is the default setting of our system. BIGPT+FB is

the full-fledged interactive system when user feedback is

available as described in Table II.

Table II shows the results and the degree of supervision.

We observe that the full-fledged BIGPT with at most one

user correction per task and optimized QTM outperforms all

the baselines. The improvement in program accuracy ranges

from 19.5% to 65.5%. As expected, the mono-language code

search baselines perform poorly because they are designed

for retrieval with more accurate and detailed input than raw

code in another language. The cross-language code search

system RPT performs better than other baselines, which shows

the feasibility of the translation retrieval methodology. The

results of partial components of BIGPT are encouraging.

BIGPTno AL, which does not leverage any supervision, out-

performs the Tree2tree, which shows the effectiveness of

our program feature representation and QTM module. Our

feature representation equipped with QTM successfully im-

proves the result by 7.5% compared to RPT showing that

generating features in the target language is more promising

than using features of the source language. In our default

system (BIGPT), the QTM is further trained by active learning,

the accuracy can increase by 8.5%. The table also shows

that the Word2vec and Code2vec variants of BIGPT cannot

perform better. Word2vec is designed for natural languages so

that it can not capture the special features of programming

languages. Although Code2vec is designed specifically to

represent code, their model can only be trained within the

same programming language, which makes it less suitable for

cross-language similarity comparisons.

We further explored the supervision impact on BIGPT. In

this experiment, we let the user give at most one correction

to each retrieved task. With such limited user feedback,

BIGPT+FB can still slightly improves on BIGPT. Compared

to the fully supervised methods 1pSMT, mmpSMT, and

Tree2tree, BIGPT and BIGPT+FB leverage very limited human

supervision to achieve better results. In the first retrieval round,

where the user does not make corrections to any wrong results,

BIGPT achieves 87.1% accuracy with only 80 labels for QTM.

Also, the reproduced weakly-supervised approach TransCoder

does not achieve better results than BIGPT. We observed that

their model often generates invalid translations with regard

to grammar. For example, it often mistakes the input type

of a function. This phenomenon is also acknowledged in

their own paper and can be attributed to the fact that only

textual features have been used. BIGPT avoids this problem

by reusing existing code.

B. Evaluation on Multiple Programming Languages

We further evaluate BIGPT on more languages. We compare

BIGPT and the state-of-the-art methods TransCoder and RPT

on the GeeksforGeeks benchmark that contains ground truth

for Java, Python, and C++. Table III shows that the accuracy

of BIGPT is significantly higher than TransCoder on their

own datasets as reported in their own paper. Note that, for

TransCoder the authors report computational accuracy instead

of program accuracy. As the dataset has ground truth, the

reported program accuracy for our method, which is an under-

estimation of the possible computational accuracy for BIGPT.

We infer that TransCoder has two drawbacks: (1) TransCoder

outputs machine-generated translations while BIGPT directly

retrieves existing programs as translations, which makes

BIGPT always output syntactically correct programs. (2)

TransCoder generally considers programming languages as

plain text and aims to generate semantically similar programs.

The black-box neural network model may neglect some non-

trivial syntactical features of programming languages. BIGPT

also outperforms the cross-language retrieval system RPT

with over 10%. The reason is that BIGPT uses a query that

represents the features of the translation rather than the input

program. Also, the user-interaction mechanism can improve

the performance in most cases. This experiment further shows

that BIGPT is generalizable for multiple languages including

dynamic languages, such as Python.

C. Influence of User Interaction

In Table II, we showed the influence of a single user

correction on the result. We further investigate the required

number of user corrections to retrieve the correct translations.

We simulate the user correction with the ground truth in our

parallel dataset and for each returned result we fix the first

differing line between true result and returned result.
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TABLE II: Comparison of different methods on PA and supervision extent (Java-C#)

Genre Method Description PA Supervision Extent
Rule-based J2C# manually defined translation rules 16.8% fully supervised

Data-driven
program

translation

1pSMT Phrase-based SMT 24.1%
fully supervised

mmpSMT multi-phase phrase-based SMT 41.7%

Tree2tree tree-to-tree neural networks 70.1%

TransCoder weakly-supervised neural translation 49.9% weakly supervised

Code search
system

Sourcerer Lucene-based code search, free-text queries 13.5% no labels (directly
retrieve translation

with input)
CodeHow free-text queries 13.5%

RPT cross-language code search 71.1%

Variations
of BIGPT

BIGPTWORD2VEC word2vec as queries 67.7% no labels (directly
retrieve translation

with input)
BIGPTCODE2VEC code2vec as queries 63.4%

BIGPTno AL QTM without active learning 78.6%

BIGPT the default system 87.1% 80 labels for QTM

BIGPT+FB user feedback is available 89.6% 80 labels for QTM + at most 1 correction per task

TABLE III: Comparison of accuracy on GeeksforGeeks

C++ C++ Java Java Python Python
-Java -Python -C++ -Python -C++ -Java

TransCoder 60.9% 44.5% 80.9% 35.0% 32.2% 24.7%
RPT 69.2% 65.3% 70.9% 59.3% 55.4% 54.2%
BIGPTno AL 76.6% 74.2% 78.1% 68.1% 59.2% 59.6%
BIGPT 87.2% 79.5% 84.8% 72.5% 66.2% 68.8%
BIGPT+FB 84.8% 83.0% 90.5% 77.5% 67.8% 68.1%

Fig. 8: Required amount of user feedback

Figure 8 shows the number of required user corrections

to obtain the correct result for all 5,134 failed translation

tasks from the first retrieval round and the improvement in

the overall accuracy. We observe that in most cases, BIGPT

only requires a single user correction to successfully complete

the translation task. About 98% of the failed retrieval tasks

can succeed after 10 user corrections. Considering the average

length of an input program is 168 lines, we can conclude

that with a limited number of user corrections the accuracy

of BIGPT can be significantly improved. Note that, we might

even achieve better results if we do not restrict the users to

fix the first difference each time. A real user might fix more

significant errors that lead to faster convergence.

D. Evaluation of scalability and efficiency

To evaluate BIGPT on a larger dataset with multiple lan-

guages, we run it on the PGAS dataset. As we have to

manually judge the correctness, we carry out a sampling

inspection to make it feasible. We randomly pick 270 programs

and BIGPT retrieves the best possible translation from the

dataset for each of these programs. As we spent up to 15

Fig. 9: Relationship between the efficiency and database scale

minutes on each result to make the judgement as accurate

as possible, we had to limit the labeling process due to time

and human resources.To show the advantage of BIGPT, we

compare its results to BIGPTWORD2VEC and BIGPTCODE2VEC.

In Tables IV, we observe that BIGPT can successfully

retrieve the correct translation for 58.8% programs among four

languages. Considering BIGPT is positioned as a translation

assistant system, the accuracy is considerable. Translation

tasks that cannot be fully automated can still be assisted by the

results returned by BIGPT. This result shows that it is feasible

to scale BIGPT to more data volume. Compared to the other

program representations, our novel representation performs

significantly better. W2V does not contribute much to the

results and introduces extra model training time compared to

the simple BoW model. In BIGPT, we retain BoW to trade-off

response time for a slight decrease of accuracy. Code2vec also

considers the structure of programming languages. However,

their model can only be trained within the same language,

which limits its performance in the cross-language setting.

We also compare the average runtime of each translation

retrieval task between RPT and BIGPT. Table V shows that

both RPT and BIGPT can complete the translation task on

average in 0.2s on the small Java-C# dataset. On the larger

PGAS dataset, BIGPT can retrieve the translation within 2.57s.

We further investigate how the runtime increases with the scale

of the database. We randomly pick 20%, 40%, 60%, and 80%

of the PGAS dataset and run the retrieval process on these

subsets. For each subset, we retrieve translation candidates
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TABLE IV: Comparison of program accuracy on the PGAS dataset

Source language JS Python Java C++

Target language C++ Python Java JS C++ Java JS Python C++ JS Python Java

BIGPTCODE2VEC 51.0% 32.0% 40.2% 41.9% 43.4% 43.1 50.0% 38.6% 63.4% 58.9% 47.5% 64.4%
BIGPTWORD2VEC 61.4% 53.9% 60.2% 47.9% 54.7% 48.3% 59.1% 57.1% 67.7% 64.0% 63.6% 66.9%
BIGPT 61.4% 52.3% 59.8% 48.4% 54.2% 47.9% 60.6% 57.5% 69.1% 64.0% 63.5% 67.0%

TABLE V: Efficiency of BIGPT (runtime per retrieval)

Method Java-C# PGAS
(39,797 matched methods) (2,023,546 methods/functions)

RPT 0.20s 5.95s
BigPT 0.20s 2.57s

for 1,000 randomly picked input programs and calculate the

average runtime per retrieval task. Including the results on the

whole dataset, all the results are shown in Figure 9. BIGPT

is here significantly faster than RPT because it filters more

irrelevant programs due to its advanced QTM. And the runtime

is slowly growing with the database scale with an approximate

exponential pattern. In addition, we measured the efficiency

during user interaction. The average response time of BIGPT

to each intermediate user feedback is 9.4ms, which shows that

BIGPT can respond to corrections in real-time.

Scope of application. Theoretically, BIGPT can be applied to

all static and dynamic imperative languages. According to our

experiments, BIGPT is more effective in finding translation

candidates for grammatically similar programming languages,

such as C++ and Java. Furthermore, when the target language

is a low-level programming language, such as C++, the ac-

curacy is generally higher than Python, which is a high-level

dynamic programming language.

Failed cases. There are cases where our approach fails:

• Programs with special structures that do not exist in the

target language. For example, deterministic destruction and

pointer arithmetic in C++ cannot be translated to Java.

• Programs with APIs that do not exist in the target language

cannot be translated.

• Short programs, i.e., fewer than 3 lines, are highly ambigu-

ous and lead to more candidates with similar scores.

VIII. CONCLUSION

We presented a novel interactive cross-language code re-

trieval system that can assist program translation by reusing

Big Code. We propose a novel cross-language program repre-

sentation with a QTM that can learn a succinct but informative

feature vector to retrieve the possible translation of an input

raw program. Our querying and retrieving mechanism makes

the system scalable and efficient on Big Code. Further, this

succinct representation can be easily adapted to user correc-

tions for interactive retrieval improvements. Our experiments

show that BIGPT outperforms existing solutions and requires

no parallel training dataset and additional user input.

Limitations. Although BIGPT’s performance is promising, it

still has some limitations. A translation task cannot be assisted

if there is no potential translation for any subset of the input

code inside the database. Besides, the quality of the data can

affect the results. For large program inputs, a postprocessing

step for verification might be necessary. BIGPT cannot work

well on functional programming languages like Haskell and

Erlang because they typically do not contain control flow

elements.

Future work. First and foremost, there is a potential re-

search direction on creating more convenient and intuitive

user interfaces that allow users to make relevant corrections

to translation suggestions and enable the system to converge

faster to the desired result. Second, it might also be interesting

to look into other forms of user interaction that do not require

the user to provide corrections in the target language. Third,

there is still room to explore post-processing of cross-language

code retrieval and aggregation of retrieval results to obtain

translations for larger programs. Finally, developing a user

error model that can imitate user errors in code retrieval

seems like a promising research direction to better assess the

limitations of retrieval-assisted programming.
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