
RPT: Effective and Efficient Retrieval of Program
Translations from Big Code

Binger Chen
TU Berlin

chen@tu-berlin.de

Ziawasch Abedjan
Leibniz Universität Hannover & L3S Research Center

abedjan@dbs.uni-hannover.de

Abstract—Program translation is a growing demand in soft-
ware engineering. Manual program translation requires pro-
gramming expertise in source and target language. One way to
automate this process is to make use of the big data of programs,
i.e., Big Code. In particular, one can search for program transla-
tions in Big Code. However, existing code retrieval techniques are
not designed for cross-language code retrieval. Other data-driven
approaches require human efforts in constructing cross-language
parallel datasets to train translation models. In this paper, we
present RPT, a novel code translation retrieval system. We
propose a lightweight but informative program representation,
which can be generalized to all imperative PLs. Furthermore, we
present our index structure and hierarchical filtering mechanism
for efficient code retrieval from a Big Code database.

I. INTRODUCTION

Nowadays, numerous programs are being developed that

require translations in other programming languages (PLs) to

be further studied, reproduced, or applied on heterogeneous

platforms. When the developers do not make the program

translation efforts themselves, users have to manually rewrite

the software in the needed PL, which is a time-consuming

and error-prone process. Since traditional methods based on

rule-based compilers or cross-language interpreters are hard-

wired and require heavy human intervention for adaptation,

the data-driven techniques are getting more traction. Reuse of

code from existing “Big Code” repositories, such as GitHub

and Bitbucket, has the potential to support many programming

tasks including program translation.

Existing data-driven techniques for program translation are

based on statistical models, such as 1pSMT [4], mppSMT [5]

and Tree2tree [1], which train a program translation model.

These approaches usually require a parallel dataset, in which

programs in different PLs are semantically aligned via manual

efforts, to supervised learn the translation model. To avoid

generating parallel datasets, recent work leverages a transfer

learning approach from NLP [6]. They first train a model that

denoises a randomly corrupted program and use it as a pre-

trained program translation model, which is then optimized by

back-translation method. However, by only relying on NLP

features their approach neglects the special features of PLs.

Furthermore, programs translated through the aforementioned

approaches suffer from grammar mistakes because they are

machine-generated programs. Therefore, they usually require

additional human-supervision. Also, they are often confined

to a few PLs because it is not trivial to extract general

features that apply to every PL. Another promising direction

is to retrieve similar code in target language directly from

Big Code as potential translations. However, existing retrieval

systems lack the proper capabilities for cross-language code

retrieval [2], [3]. And instead of raw program input, they rely

on queries consisting of semantically expressive keywords,

descriptions, or user specifications.

In this paper, we propose RPT, a novel program translation
retrieval system. Given a raw program in a given source PL

and a target PL, RPT efficiently retrieves similar programs as

potential translations from Big Code, using a generalizable
program representation, an appropriate index structure,
and a hierarchical filtering mechanism. Our approach does

not require training data but can compete with existing trans-

lation models.

Fig. 1: RPT overview

II. OUR APPROACH

We first discuss the necessary program representation and

then the employed retrieval process of RPT.

A. Program Representation

To identify cross-language code similarity, we need a

unified representation that can be efficiently extracted from

any given piece of code. Different from existing methods,

RPT considers both structural and textual features and their

dependencies. Structural features can be captured by either

a comprehensive concrete syntax tree (CST) or an abstract

syntax tree (AST). The CST retains all the details, making

it complicated and verbose with redundant information. The

AST has more abstract but less informative syntax. And the

abstraction strongly differs for different PLs. Thus, we fall

back on the low-level CST as a basis and take the philosophy

of AST to construct a unified abstract representation. As

shown in Figure 1, RPT first employs a left-to-right parser

to parse the source code and generate the original CST,

which contains all the nodes and branches of the program

structure. Then it is pruned to a simplified syntax tree to

252

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00117

20
21

 IE
EE

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 C
om

pa
ni

on
 P

ro
ce

ed
in

gs
 (I

C
SE

-C
om

pa
ni

on
) |

 9
78

-1
-6

65
4-

12
19

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-C

om
pa

ni
on

52
60

5.
20

21
.0

01
17

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on March 05,2024 at 09:24:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Simplified syntax tree & Paths

reduce the computation complexity. The simplified tree of

a JavaScript code example is shown in Figure 2. The 2-D

tree structure is further simplified to a set of 1-D paths that

connect the elements on the tree: RPT extracts abstract paths

by dropping all the intermediate nodes as the leaf-nodes and

root node enclose the most critical information. The root node

summarizes the whole path and the leaf-nodes directly indicate

the content on this path. As the writing habit of programmers

and the coding conventions for a PL might differ, RPT ignores

the order of left and right leaf-nodes. Figure 2 shows the

five extracted path types. Finally, RPT generalizes these path

types by matching all the node types across languages and

substituting them with their category labels. Our approach

leads to a more concise representation than CST but retains

the original structural framework that is dropped in AST.

Further, RPT only processes text that appears in the extracted

paths. RPT does not remove and tokenize numeric values, such

as hard-coded floating points and integers, as they might be

integral to the program. RPT vectorizes these generated tokens

through embeddings. The final comprehensive representa-
tion consists of three components: the list of path types that

appear in a program, the frequency of different path types in a

program, and the structure-dependent textual features based on

the information of the relative position of text and structure.

B. Translation Retrieval

To make our approach scalable on big code, we imple-

ment a hierarchical filtering mechanism and a novel index
structure for effective and efficient retrieval. The represen-

tation of each program is constructed offline and stored in a

feature database. Our index structure is customized based on

our representation. Two similar programs usually share some

common path types with similar frequencies. Thus, the index

harbors the frequencies of each path type per program. As

the frequencies may not be exactly the same, we divide the

frequency into multiple buckets and use the bucket intervals as

indexes. Because the frequency of each path in each program

roughly obeys exponential distribution, we uniformly fill out

fixed size buckets with different frequency intervals. We name

this as path-type-bucket-index (PBI). After using the index,

RPT filters candidates based on structural similarity first as it

is more discriminative than textual similarity for a program

TABLE I: Program accuracy & time cost per translation

Project RPT Baselines
TRANSCODER TREE2TREE MPPSMT 1PSMT

Lucene 68.8% 53.0% 72.8% 40.0% 21.6%
POI 70.0% 51.0% 72.2% 48.2% 34.6%
IText 73.3% 45.9% 67.5% 40.6% 24.4%
JGit 74.5% 49.4% 68.7% 48.5% 23.0%
JTS 69.1% 43.2% 68.2% 26.3% 18.5%

ANTLR 71.9% 54.9% 58.3% 49.1% 11.5%

Time cost 0.20s 0.36s 0.23s 0.24s 0.34s

and its translation. This can also facilitate the dependency

between features to influence the subsequent textual similarity

filter. Further, RPT runs textual similarity filter to determine

the final candidate. For the source program and each candidate,

RPT calculates the weighted sum of both similarities.

III. EXPERIMENTS AND CONCLUSION

Experiments. We apply our approach on a Java to C# parallel

dataset used in previous work [1], [4], [5]. We compare the

results of effectiveness and efficiency of RPT with state-of-the-

art baselines 1pSMT, mppSMT, Tree2tree ,and TransCoder.

Our metric is program accuracy [1]: the percentage of the

retrieved translations that are functionality the same as the

ground truth in the dataset. The results in Table I show that

RPT is competitive to all baselines despite the fact that RPT

is fully unsupervised and does not reuse existing data without

training any models. Moreover, we observe that for the failed

cases the translations tend to appear in the retrieved top 10

list. Further, the efficiency of our retrieval based system is

shown to be comparable to other baselines. We also compare

our index PBI to a simple path type index. PBI leads to a

runtime-improvement by two orders of magnitude at a scale

of 3.8GB database.

Conclusion. We proposed RPT, a code-retrieval approach to

support program translation with Big Code, which is com-

petitive with existing translation methods. In future work,
will augment the retrieval system with program generation to

overcome the limitations of the database.

Data Availability. We published our code on https://github.

com/BigDaMa/RPT.

Acknowledgements. This work was funded by the German

Ministry for Education and Research as BIFOLD - Berlin

Institute for the Foundations of Learning and Data (ref.

01IS18025A and ref. 01IS18037A).

REFERENCES

[1] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks
for program translation. In NeurIPS, pages 2547–2557, 2018.

[2] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In
ICSE, pages 933–944, 2018.

[3] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang,
and Jianjun Zhao. Codehow: Effective code search based on api
understanding and extended boolean model. In ASE, 2015.

[4] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Lexical
statistical machine translation for language migration. In ESEC/FSE,
pages 651–654, 2013.

[5] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-
and-conquer approach for multi-phase statistical migration for source
code (t). In ASE, pages 585–596, 2015.

[6] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume
Lample. Unsupervised translation of programming languages. In
NeurIPS, 2020.

253

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on March 05,2024 at 09:24:17 UTC from IEEE Xplore. Restrictions apply.

