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Abstract—Coding style has direct impact on code comprehen-
sion. Automatically transferring code style to user’s preference or
consistency can facilitate project cooperation and maintenance,
as well as maximize the value of open-source code. Existing work
on automating code stylization is either limited to code formatting
or requires human supervision in pre-defining style checking
and transformation rules. In this paper, we present unsupervised
methods to assist automatic code style transfer for arbitrary code
styles. The main idea is to leverage Big Code database to learn
style and content embedding separately to generate or retrieve a
piece of code with the same functionality and the desired target
style. We carefully encode style and content features, so that a
style embedding can be learned from arbitrary code. We explored
the capabilities of novel attention-based style generation models
and meta-learning and implemented our ideas in DUETCS. We
complement the learning-based approach with a retrieval mode,
which uses the same embeddings to directly search for the desired
piece of code in Big Code. Our experiments show that DUETCS
captures more style aspects than existing baselines.

I. INTRODUCTION

Code style refers to a set of rules on how code should be

organized and includes aspects, such as formatting, naming,

ordering of code blocks, comment usage, code constructs,

and modularization. Code style generally does not interfere

with the code semantics and executability, but it has a direct

impact on code comprehension. For example, the formatting

style highlights the control flow [18], naming style reflects the

connection between code and its problem domain [20], [32].

In general, the readability of code plays an important role in

software development [24], [6], [31] and code maintenance [5],

[31]. Developers spend about 80% of their time maintaining

code, half of which is spent on code comprehension [7]. The

Apple incident of SSL/TLS certificates shows the impact of

code style on codebase’s reliability [4], [3].

Different programmers have their own writing styles. When

multiple programmers work on the same projects and there is

fluctuation in developer teams, different code styles in code

artifacts becomes a practical hurdle in code comprehension.

Unifying the different styles can facilitate cooperation and

follow-up maintenance. Code comprehension becomes a more

general problem when considering the large amounts of open-

source code. A study shows that almost half of the Java

snippets on Stack Overflow are not self-explanatory [33]. To

improve code comprehension in open-source projects, reposi-

tory maintainers have to keep the repository style consistent.

This effort can be tedious when a repository receives many

pull requests from different contributors.

On a different note, with the rising demand for automa-

tion in coding, machine-generated code is becoming ubiqui-

tous [17], [29], [27]. Maintenance of code style and automated

adaptation of style in generated code becomes more and more

important. In this paper, we explore the potential of Big Code,

and leverage learning-based feature representing methods to

assist programmers in code stylization that works for arbitrary

code styles and programming languages.

State of the art. To the best of our knowledge, there is no

existing work that performs full stylization on an arbitrary
piece of code. The most common methods are rule-based

linters, formatters, which are limited to a few pre-defined

style rules. There has also been substantial work on using

machine learning to learn style features from code [8], [26].

However, these approaches are limited to formatting issues

and do not capture style aspects concerning naming and

structuring. Moreover, they usually require human intervention

to set the formats or parameters. The most recent work STYLE-

ANALYZER is fully unsupervised [23] but limited to extracting

formatting rules.

Our research question is whether it is possible to automat-

ically extract stylization signals and enforce them on a piece

of code. In particular, we have to distinguish style and content

elements so that we can obtain code that retains its original

functionality but is in the desired target style. For this purpose,

we explore techniques that benefit from large repositories of

code and employ novel representation learning techniques to

separately learn style and content features. Developing such an

approach requires us to overcome several technical challenges:

• There is no labeled dataset for code style transfer. It is not

upfront clear how style transfer can be automatically learned

and assessed.

• Style transfer comprises multiple tasks, such as detecting the

style differences, analyzing the code semantics, and generat-

ing code. Integrating these steps into an end-to-end process

requires a generalizable content and style representation. We

have to distinguish content and style features in raw code

and then encode them in a unified feature representation.

To this end, we study self-learning on Big Code and present

DUETCS that implements a novel code feature representation
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without any pre-defined stylization rules to assist the code

style transfer task of transferring a piece of code to an

arbitrary style. To achieve this, we separate style features from

content features. To capture comprehensive style features,

DUETCS generates a style embedding by encoding text style

and structure style features. To capture the content features, we

adapt code representation previously used for cross-language

code retrieval by stripping it from style information [16],

[15]. To train the feature embedding, we use a meta-learning-

based network that self-trains using the Big Code and its

meta-data. This way, we avoid human labeling efforts. We

further explore how our representation can be used in a a
retrieval mode that provides the option to directly search for

the potential result in the Big Code database. In this paper,

we analyze the advantages and disadvantages of these two

strategies. In a practical setting, DUETCS simultaneously runs

both generation and retrieval modes and evaluates their results

to return the best possible result to the user. In short, our main
contributions are:

• We explore how two different self-learning modes - retrieval

and generation - based on Big Code, can assist automatic

code style transfer without a labeled dataset.

• We propose a novel code feature learning approach based on

meta-learning that can separate style features from content

features. We construct a style feature representation that

captures both text and structure style. We design a novel

style generation model that encodes the source code and

pays more attention to the style features.

• We propose an LSTM-based model that directly generates

the raw transferred code by combining the style feature and

content feature embeddings.

• We conduct extensive experiments that show the strengths

and weaknesses of an unsupervised stylization approach. We

discuss the advantages and disadvantages of the two modes,

learning and retrieval. Our results show that with specific

safety mechanisms the proposed approaches generate useful

stilization recommendations.

II. RELATED WORK

Our work is related to automated code stylization and

program feature representation.

Code style transfer. There are rule-based tools, such as

code linters and formatters, which validate the compliance

of a codebase with a language’s style guide. They can be

included in IDEs, such as INTELLIJ or Eclipse. There are

also standalone tools, such as pylint, ESLINT, and Gnu Indent.

Those manually created rules are usually language specific and

too general to capture personalized style. There are learning-

based approaches that learn common coding styles observed

in codebases. They convert code into a representation, such

as one-hot token embeddings or parse trees. Then they learn

formatting conventions and generate either explicit [8], [23] or

abstract [26] rules from them. For example, NATURALIZE [8]

is a language-agnostic code formatting suggester, which uses

statistical natural language processing to learn the style of a

codebase and make revision suggestions. CODEBUFF [26] uses

Fig. 1: DUETCS Overview

the k-Nearest Neighbor model to predict style elements, such

as newlines and spaces. These methods require the user to

pre-define the formatting style or to set configurations. Recent

work STYLE-ANALYZER [23] is an unsupervised formatting

tool. It uses a language model to learn the underlying for-

matting style of a repository, then trains a decision tree forest

model to extract the formatting rules. STYLE-ANALYZER and

CODEBUFF only address formatting style. These approaches

focus on single token prediction, which does not address style

problems involving multiple tokens or the code structure. In

contrast, DUETCS automatically learns abstract style patterns

from code examples in target style and considers more com-

prehensive code style aspects and languages.

Program representation. Constructing a program feature

representation is an essential task for many applications.

Allamanis et al. propose a representation that treats a program

as a sequence of text tokens to summarize the code and

predict method names [10]. This approach is oblivious to code

specific features, such as program syntax and token types.

Their follow-up work includes data flow and type hierarchies

in the representation [9]. But it is language-specific. Alon et al.

propose a more general representation that uses linear paths in

the abstract syntax trees (AST) as features to predict program

properties [12]. To obtain task-independent representations,

they further propose Code2vec, which leverages a tree-based

neural network to encode these paths and generate more

abstract representations [13]. However, their model cannot

capture unseen data. To learn unseen paths, Code2seq rep-

resents the syntactic paths node-by-node using LSTMs [11].

Another representation is based on the natural language model

Transformers [34], which uses self-attention to encode context

information. For example, CODE TRANSFORMER combines

distances computed on structure and context in the self-

attention operation [36]. All these representations capture

general program features. However, to only transfer the code

style, we need to separate the content features from the

style features. Finally, approaches for cross-language program

retrieval [16], [15] use AST-based representations. Again,

these approaches do not aim to separate the style and content

features. While we reuse some of their ideas we develop

representations that are tailored to stilization.

III. OVERVIEW

The workflow of DUETCS is shown in Figure 1. The

user inputs a program Pin whose style is intended to be

transferred. We denote its content as Cin. Another input from

2363

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on February 13,2024 at 14:22:02 UTC from IEEE Xplore.  Restrictions apply. 



the user is a set of code examples {PS
1 , PS

2 , ...} written

in the desired target style S. Our system provides a large

program repository or database D that is originally crawled

from online big code resources. It can be further enriched by

an organization using it. The goal is to obtain a program Pout

that best matches the combination of content Cin and style S.

Pout is retrieved from D or either generated. The essential

requirement for both generation and retrieval is to obtain

two independent feature embeddings that represent content

and style, respectively. DUETCS first constructs a content

embedding from a syntax tree representation [16]. Then it

discovers and removes style information through a meta-

learning strategy based on Siamese networks. Meanwhile,

DUETCS constructs the approximate target style embedding

by averaging the style embedding of each code example PS
i

from target style S. The style embedding is constructed by

focusing on both text and structure style with a novel attention-

based style generation network (Section IV).

After generating content and style features for the desired

transferred code, DUETCS combines them for both modes.

In retrieval mode, DUETCS directly retrieves the best fitting

candidate piece of code in the target style from the big code

dataset (Section V). In generation mode, DUETCS generates

a piece of code by encoding both feature types into the

generation model, which is based on LSTM (Section VI).

Both modes work independently. DUETCS obtains the results

from both modes and calculates the content similarity of each

with the original input code and style similarity of each result

with the average target style. An overall score is calculated

by averaging these two similarities for each mode. The result

with the highest score will be checked for compilability and

returned. The compilability check can also be ignored because

our goal is to provide as much assistance as possible to user.

If there are some minor grammar mistakes, user can always

manually revise the code. And DUETCS can also return more

pieces of candidate code to help user to find the best-effort

style transfers.

IV. EMBEDDING STYLE AND CONTENT

To make transferring a given piece of code to the desired

style possible, the method proposed should be able to identify

and encode the target style features but also ensure that the

content of the source code is retained. In this section, we

discuss how to capture and separate style and content features.

A. Style Feature Embedding

Existing work restricts itself to one standard code style [8],

[26], [23], and does not capture the diverse project-and

programmer-dependent code styles. Approaches that can

handle multiple styles require manual generation of style

rules [28]. In our approach, the user provides a set of example

programs that defines the desired target style. Thus, DUETCS

has to learn an abstract style embedding that can be extracted

from arbitrary pieces of code. To create such an embedding,

we formulate a problem where code examples are classified

into latent styles based on their style features. To train this

classification model, we need a dataset where code pieces are

assigned to latent style specifiers as their labels. A proxy for

the style label can be the contributor to a specific source code.

1) Style aspects: DUETCS expands existing work by cap-

turing more style aspects concerning text and structure beyond

formatting.

Text style includes formatting and naming. Formatting
changes the appearance of the code. For example, indentation

makes code blocks distinguishable, spaces separate tokens,

and new lines break down long lines and separate concepts.

Naming style captures everything related to variable, method,

or function naming, all of which are typically person and/or

task specific. For example, some programmers prefer to use

short names for convenience and some prefer long names for

readability. Other differences are to use underlines, camel case,

or synonymous descriptions.

Structure style includes ordering of code blocks and control
structures. Different programmers might place the fields and

methods of the same class or program in different order.

For example, all the fields of a class can be put either at

the beginning or the end of the class definition. Similarly,

different programmers might implement different logic and

control structures, e.g., for- or a while-loop, for the same

purpose.

Our notion of latent code style refers to a closed subset

of rules that captures the aforementioned style aspects and

can be associated and labeled with a contributing entity, i.e.,

developer, guide, organization.

2) Encoding style-specific features.: The reason that previ-

ous work mainly focus on formatting is that it can be detected

locally and explicitly, for example, by just checking the tokens.

However, identifying a holistic latent style cannot be done with

focus on local parts of the code but requires an abstraction of

latent features. Our work aims to capture more global features.

One could resort to a neural network model, which au-

tomatically generates an applicable embedding. The network

will learn an abstract feature embedding from the input code

token sequence. However, this approach relies on large training

data without leveraging any knowledge of actual style-specific

features, such as the code structure or style-related tokens.

With such knowledge, the model could pay more attention

to the relevant parts of the input code. With the enhanced

features, the model also needs less training data and could

generalize better for unseen styles. Thus, we integrate an

initialization step to encode the style-specific knowledge on

text and structure into the embedding.

Text style embedding. To encode the text style features,

DUETCS first converts the code to a token stream that retains

all formatting elements [23]: whitespace, tabulation, newline,

whitespace indentation increase, whitespace indentation de-

crease, tabulation indentation increase, tabulation indentation

decrease, single quote, double quote, empty gaps between non-

label nodes. To simplify this process, all tokens are one-hot

encoded. When encoding variable names, we consider that

names are created by individuals. Names might be heavily
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Fig. 2: Vectorization of text and structure style features

heterogeneous and new names are continuously created. It

is difficult to learn and predict new or rare names with a

static vocabulary that only includes seen and frequently-used

tokens. To address the out-of-vocabulary problem, we adopt a

character-level embedding for the names, where we also retain

information of character positions. We label the character at

the beginning of the word with <B>, at the end with <E> and

all characters in the middle with <M>. For example, Tmp is

encoded as <B>T,<M>m,<E>p.

To put formatting and naming features together, we also

encode the context where they occur in the code snippet. For

this purpose, we consider for each token a fixed-size window

of tokens with an equal number of tokens before and after

this token. For each token, we encode its whole sequence

window. Consider the JS program in Figure 2. At the top right

is the encoded token sequences of size 7 for the second empty

formatting token and the name token dateEg. The variable

name dateEg is encoded at character level, and the reserved

words such as if are encoded at word level. We encode all

the tokens from the code the same way and create a set of

token windows Stxt.

Structure style embedding. Existing structure representa-

tions, such as the syntax tree or control flow graph [12],

[13], [17], contain all structure elements. They represent the

overall code structure rather than the style structure. To limit

the encoding only to style structure, we use the simplified

syntax tree (SST) [16]. The structure of SST is shown at

the bottom left of Figure 2. SST shows the complete syntax

structure of the code where nodes represent the construct

and edges represent the relation between each construct. But

it eliminates repeating and intermediate nodes that contain

redundant information, which enables it to extract simpler

features. We use SST because it conveys the style features

of the control structures and the ordering aspect as it creates

branches following the writing order of the program. To

traverse the tree and encode it into the model, we convert it

to a sequence. Specifically, we traverse the tree with breadth-

first search, i.e., from the top to the bottom, layer by layer,

and read the nodes from left to right. We use the name of

the visited node as the token in the sequence. To make the

encoded structure indicate the orders, we also insert special

Fig. 3: SGN for constructing initial style embedding

tokens: <layer> indicates the start of a new layer, and

<branch> indicates the start of a new branch. The bottom

right of Figure 2 shows the generated sequence that represents

the SST. This sequence of tokens Sstr is then encoded in

DUETCS as structure style features.

Style generation network. So far, we have obtained a set of

text and structure style features. When generating the style

embedding, we can use these features as prior knowledge

to guide the model where and how much to focus attention

on [30]. The encoding process is conducted by a style gen-

eration network (SGN) shown in Figure 3. We first use a

CNN to encode the entire token sequence {t1, t2, ..., tn} of the

program P into a vector T . Then we use two CNNs (CNNtxt

and CNNstr) to separately encode text style features Stxt and

structure style features Sstr that we introduced before. Each

component i of Stxt and Sstr will be converted to a vector

styi, which has the same dimensionality as T :

T = CNNprog({t1, t2, ..., tn}), (1)

styi = CNNX(SX), X ∈ {str, txt} (2)

To guide the embedding process with the extracted style

features, we compute the impact contributed by each com-

ponent of the style feature vector Stxt and Sstr on the style

of the whole program. We achieve this by taking the inner

product between the code vector T and each style vector styi
and feeding it to a softmax function. The result is used to
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calculate the weighted sum of all the style feature components

and produce a vector styw:

pi = softmax(TT styi), (3)

styw =
∑
i

pistyi (4)

This weighted vector and the input token vector T will be

aggregated by a dense layer to generate the style embedding,

this fully-connected layer connects all the preceding inputs

and produces a vector in the desired dimension:

S = dense(styw +T) (5)

3) Training the Classification Model: To build an en-

coder that can automatically generate the style embedding

of arbitrary code, we train the style embedding as a style

classification problem. Then we can take the encoder of

the classification model as our style embedding encoder. In

a big code repository, typically there are many different

styles (contributors), e.g., ˜85 million in GitHub, but relatively

few code pieces per style. The ratio of training instances to the

number of different labels is very low and unsuitable for deep

learning [35]. Thus, we transform the original classification

task to one with fewer categories and more data per category.

We leverage Siamese networks, which is a metric-spaced meta-

learning approach [14]. Instead of predicting the style label

of a program, this approach transforms the original task into

the task of predicting whether two programs are same style.

This way, we solve a binary classification problem with large

numbers of labeled training data as we can randomly pick

any code pair from the big code as one training instance.

Although in practice, it is possible that the coding style of

one contributor is not consistent. But under the condition of

lacking supervised training data, the approach can help us to

the greatest extent possible to build a relatively effective style

encoder due to the large scale of big code.

The structure of the Siamese network is shown in Figure 4.

The green color indicates the steps of style feature generation.

There are two identical neural networks with sharing weights.

For each input code pair, the neural network generates a

feature embedding for each code piece individually. Then their

similarity is calculated for prediction. The input of the network

is a pair of programs. We first use the SGN to construct the

initial style embeddings S1 and S2 for each input program,

respectively. Positive input samples with label 1 include two

programs from the same style. Negative samples with label

0 include two programs with different styles. The model

calculates the distance D between the style embeddings S1, S2

to measure their similarity. Then a dense layer transfers D to a

scalar to calculate the similarity score with a sigmoid function.

We use cross-entropy as the loss function. We can use the

trained SGN to generate an approximate style embedding for

any program.

4) Model fine tuning: Since Big Code contains large num-

bers of latent styles but relatively small numbers of samples

for each style, even the binary classification model might still

highly overfit. We further fine-tune the model to obtain more

Fig. 4: Siamese feature network

general and accurate style embeddings. To do this, We employ

the encoder from the classification task on a new task. We

generate a support set by randomly drawing several new style

categories that are not in the training set. Then we randomly

pick one program from the support set. The model needs to

figure out which style category it belongs to by comparing

its style embedding to other code samples. This way, we can

enhance and evaluate the model’s ability of learning to learn

by improving its performance on more data.

Specifically, we use the pre-trained model to generate the

style embedding for the samples in each category in support

set. We calculate a mean embedding of all samples as the

style feature μ for each category. We also generate the style

feature for the query (q). Assuming there are n categories in

the support set, to judge which category the query belongs to,

we use the softmax function:

p = softmax(Wq+ b) (6)

where W and b are vectors with m dimensions. Each com-

ponent of vector p represents the probability that the query

belongs to a specific category. To initialize the training, we

set the initial value of b to 0, and the initial value of W to the

cosine similarity of the style feature between query and each

category. Therefore, the probability vector p becomes:

p = softmax

⎛
⎜⎜⎝

⎡
⎢⎢⎣

simcos(w1,q) + b1
simcos(w2,q) + b2

...
simcos(wm,q) + bm

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (7)

We use wi to denote each component of W . The initial

value of wi is the style feature of each category - μi. We use

cross-entropy as loss to train the model on the support set

to fine-tune the parameters in CNN and the value of W and

b. This way, we obtain an improved encoder to create style

embeddings. Because the support set is usually small, we also

add entropy regularization H to the loss to avoid overfitting.

Let (xj , yj) be the labeled sample in the support set, the final

loss function L is:

L =
∑
j

CrossEntropy(yj,pj) +H(p) (8)

H(p) = −
∑
i

pi log pi (9)

B. Content Feature Embedding

Similar to the style embedding, we also explored how to

construct content embedding that excludes style information.
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To accomplish this, we leverage the program representation

used in recent work of cross-language retrieval [16], [15]. This

representation is used to retrieve code with similar functional-

ity in a different language. In the same spirit, it could be used

to distinguish code with similar functionality from the same

language with different styles. It is a feature vector including

structural and textual features. Each component in the vector

is either a structural or textual feature element. However, this

representation still includes some style aspects, such as naming

elements and control structures hidden in the syntax tree paths.

We aim to remove these style information to avoid interference

of content and style. To adapt the code representation used

in cross-language retrieval to the content embedding in our

work, we use convolutional neural networks (CNNc). Because

the initial feature representation is a large two-dimensional

vector, CNN can reduce the dimensionality while keeping the

significant information. The CNN used in DUETCS comprises

a convolutional layer and a max-pooling layer. The input is the

initial representation, the output is a one-dimensional content

embedding C.

To train the CNNc and make C contain as little style

information as possible, we again use the Siamese network

shown in Figure 4. In the figure, the purple color represents

the pipeline of content feature construction. The main idea is:

for different programs written in the same style, i.e. by the

same contributor, the similarity of their content embeddings

should be as low as possible. If the embeddings have more

similarities, it means there is more style information hidden

in them. To achieve this, we first use CNNc to generate the

content embedding. Every input program is processed by the

same CNN and shares the same weights. Then using the same

method in Section IV-A3, we calculate the similarity between

each pair of content embeddings from the same contributor.

The training target is to maximize the similarity between each

content embedding. CNNc and the dense layer in Siamese

network can be updated by training this whole network on

Big Code. We can use the trained CNNc to generate an

approximate content embedding for any new program.

V. RETRIEVAL MODE

Our approach for style transfer is to leverage the huge

amounts of well-maintained but redundant open-source pro-

grams online. In case the desired piece of code or similar

code already exists in the database, we want to find it. In the

retrieval mode, DUETCS uses the features to directly retrieve

the piece of code with similar style as the desired style from

the code database. Existing code retrieval tools [21], [15]

cannot be used to retrieve code with different target style.

Database Indexing. To apply code retrieval, we first need

to prepare and index the code database. For each program

in the database, we construct the style feature embedding S
and content feature embedding C using the feature extraction

methods introduced in Section IV. For each style - in reality

one can use the project or contributor to group code with the

same style-, we calculate and store the mean style embedding

as the style feature. This allows us to efficiently identify groups

of code that are relevant to a user-specified target style. For

content features, we use the index structure PBI from previous

work, which maps abstract paths from the syntax tree to enable

fast code retrieval [16], [15].

Retrieval Phase. The retrieval process consists of two steps.

Our search strategy first filters the database for the fitting style

and then for the content. In theory, we could also start with the

content features and then filter based on style. However, if we

first look for similar content, we might obtain too much noise,

i.e., programs with similar functionality in the retrieved list,

upon which checking the style will not serve as an effective

filter. Given the pieces of example code in the target style,

DUETCS generates the style embedding for each example

and calculates the average embedding St. Using St, DUETCS

identifies the codebase with the mean style embedding that

is most similar to St. It is possible to also consider top-

k similar codebases. Or the user might verify whether the

retrieved codebase has the appropriate style.

In the second step, DUETCS generates the content embed-

ding for the input program, which serves as the query to

retrieve the code piece with most similar content from the

codebases retrieved in step one. A ranked list of the most

similar code pieces will be the result of this step.

The retrieval mode and the generation mode produce results

independently and simultaneously. The result from which

mode will be chosen as the final output is based on the

aggregated content and style similarity with input and target,

respectively.

VI. GENERATION MODE

As there is no guarantee that the desired piece of code

exists in the database, we also need a generation mode to

automatically generate the code that approximates desired

style based on the given source code. Similar to the retrieval

mode, DUETCS first constructs the style embedding St for

the target style and content embedding Cin for the source

code. Then it uses a generation model to output a piece of

code based on Cin and St. As a program can be sequenced in

tokens, we leverage long short-term memory (LSTM) to build

this model [19]. Normally, LSTM is an end-to-end model that

generates the output sequence with the maximum probability

on the condition of the input sequence with the same type.

The input is the original code, and the output is the transferred

code. However, there are several problems in using this LSTM

architecture. First, when using Big Code, we cannot assume

to have a perfect mapping between different pieces of code in

different styles, which leads to a lack of training data. Second,

we need to train a different LSTM for each input-output style

pair, which brings computation overhead. Thus, we propose a

new LSTM architecture by changing its input. Because LSTM

encodes any length input into a fixed dimensional vector that

is then decoded to the output, its input does not have to be the

raw code. We use the combination of source content feature

and target style feature as input. We only need to encode them

into the same dimensional vector.
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This way, we transform the code-to-code generation to

generating code based on its style and content features. The

biggest advantage is that we do not need labeled training data

in form of code-to-code mappings. For each code piece in the

database, we construct its style and content embedding, and

encode them as the input of the generation model, then use

the code itself as the output (label) to train the model. During

the style transfer step, DUETCS constructs the target style

embedding St and source content embedding Cin. Then it uses

the trained model to generate the corresponding transferred

code. This time the code will be in a different style as given

by the input examples.

Specifically, the training goal is to maximize the probability

of the program y given its content feature Cin and style feature

St. y represents the token sequence of the program. The joint

probability can be described as

log p(y|St,Cin) =
n∑

i=0

log p(yi|St,Cin,y0, ...,yi−1) (10)

where n is the length of the token sequence, yi is the one-

hot encoding as described in section IV-A2. To improve the

compilability, the formatting tokens are also included. Each

LSTM cell takes a fixed length hidden state (memory) hi,

which will be updated in the next cell. In each step, the

LSTM cell takes the current token and memory as input, then

outputs the next token and updates the memory. The output

then becomes the input of the next cell. The update phase is

carried out as follows:

hi+1 = LSTM(hi,xi), xi = softmax(V hi) (11)

where xi is the embedding of each token yi, V is the weight

that will be updated during training. The initial input of the

generation model is the concatenated embedding of them:

x−1 = embin(WsSt +WcCin) (12)

where Ws and Wc are the weights for style embedding and

content embedding respectively. For the training process, we

use stochastic gradient descent to optimize the sum of the log

probabilities in equation 10. During the prediction phase, the

generation model outputs a complete program that captures

the most target style feature.

VII. EXPERIMENTS

We conducted extensive experiments to show the potential

of DUETCS and its variations for different languages (C++,

JavaScript, Java), different style-related tasks (code style trans-

fer, formatting, and method name prediction), and different

style aspects (formatting, naming, and structure style). As

there is no existing code style transfer system, we compare

DUETCS with existing work that is specialized for individual

style aspects, i.e., formatting style learning and code repre-

sentation models. Finally, we conduct a micro-benchmark to

gain an in-depth understanding of the system’s performance.

We published our code and model on our repository1.

Datasets. We have two different types of datasets. One is

for training all the models and serving as the database for

1https://github.com/LUH-DBS/Binger/tree/main/DuetCS

retrieval, another is testing datasets that are on small scale

and with testing labels. For the first dataset type, we use the

Public Git Archive (PGA) database, which covers more than

260,000 bookmarked GitHub repositories [22], [1]. We fetch

all projects written in three popular languages (JavaScript,

Java, C++) and clean them by removing duplicate and un-

parsable files. We split all files into functions as training sam-

ples and remove duplicates at this stage. We obtain a 239GB

dataset with 13,652 projects and around 2,490 functions for

each project. The average number of lines of code is 37. For

each language, we train the siamese feature network together

with SGN/CNNc end-to-end and train the generation model

independently. The following datasets are for testing. Since

there is no existing labeled dataset for code style transfer,

we create our own labeled dataset Codeforces based on

codeforces [2], a website that provides programming problems

with solutions submitted by different members. An arbitrary

pair of code samples solving the same problem is a pair

of labeled data.We only collect code from the top 20 rated

members for quality. We obtained 20,721 C++ code samples

in total. Jsformat is a JavaScript dataset used by a formatting

baseline [23], which includes 19 top-starred JS repositories on

GitHub. Java-small is a Java dataset used in baselines [10],

[12], [13], [11], [36]. It encompasses 11 Java projects with

about 700K code samples. Since most of our testing data are

also from GitHub, which is the same resource for the training

dataset/retrieval database, we removed all test data from the

PGA database to avoid data snooping. As it is difficult and

requires large human resources to label the style of all datasets,

we assume each project represents one unique formatting style.

Although it is a rough labeling strategy and will introduce

noise, it is the best effort solution to evaluate our system

considering both effectiveness and the available resources. In

real-world cases, users can freely choose their own labeling

strategy. For example, we also suggest contributor and repos-

itory as possible alternative labels.

A. Performance on code style transfer (C++)

We use the Codeforces dataset to evaluate DUETCS on

transferring code style. For each pair of styles, we randomly

pick 10 matched code sample pairs. From each pair, we pick

one member as input, another one as the code for the target

style. DUETCS constructs the style features based on all the

code samples in target style. Then we switch the roles in this

pair and repeat. This way, for each pair of styles, we generate

20 tasks.

Metrics. We explore the potential of DUETCS on assisting

style transfer with regard to four aspects:

• Reference accuracy (AR): the percentage of results that

match the ground truth. As semantically equivalent pro-

grams might have different text/structure, a low AR sys-

tem does not necessarily indicate poor performance. It is

possible to use the code fragments more accurately in a

contextualized setting in live coding even though the results

of the approach slightly diverge from the ground truth. To

measure this potential, we analyze the following metrics.
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TABLE I: Performance of variations on DUETCS

Method AT AS AC AR
Data

needed
Data
tested

Avg.
LOC

DUETCS
(G)

Style
features

S+A 59.6 60.4 21.3 2.3

524 3800 47

T+A 70.8 52.7 21.7 2.9
T+S 71.8 61.2 27.1 5.2

Content
features

C2S 38.6 34.4 3.3 0.3
CTrans 31.6 37.8 2.4 0.0

RPT 68.9 62.8 10.1 1.7
Default settings 72.9 66.9 31.6 7.0

DUETCS (R) 67.7 57.6 48.1 10.2
DUETCS 71.8 64.8 55.8 13.1

DUETCS (Ideal) 77.6 71.3 64.2 15.5

TABLE II: Value of results with regard to compilabilty

Compilation checking
DUETCS DUETCS (Ideal)

ON(default) OFF ON(default) OFF

Text accuracy 71.8 65.6 77.6 67.3
Structure accuracy 64.8 59.8 71.3 67.7

• Computational accuracy (AC) [29]: the percentage of

programs that can be compiled and produce the same output

as the ground truth reference when given the same input. We

can directly test AC on codeforces website.

• Text accuracy (AT ): we use BLEU [25] to measure the

text-level similarity with ground truth, and take the average

similarity of all test cases as the text accuracy.

• Structure accuracy (AS) [27]: we measure the similarity

of the ASTs between the prediction and the reference by

calculating their largest common tree prefix (LCP). Then

we take the F1 score as the accuracy on the structure level.

Baselines. In absence of direct competitors, we evaluate vari-
ations of DUETCS: only generation mode - DUETCS (G),
only retrieval mode - DUETCS (R), and the default DUETCS
containing both. For DUETCS (G), we test different feature

representations. For style features, the default DUETCS uses

both text style (T) and structure style (S) as prior-knowledge

to guide the generation of the attention-based embedding

in SGN (A). We further test variations by removing one

component at a time: only encode S in the SGN (S+A),

only encode T in the SGN (T+A), and simply encode T

and S without SGN (T+S). We also compare our content

representation to three code representations: AST-based model

C2S [11], Transformer-based model CTran [36], and the

representation for cross-language retrieval RPT [16]. We also

report DUETCS (Ideal), which always correctly chooses

between the result of the generation and the retrieval mode.

To simulate this ideal scenario, DUETCS directly compares

the results returned by both modes with the ground truth and

chooses the one that has the higher similarity with the ground

truth as the final output.

Runtime. We ran our experiments on a PC with an Intel Xeon

E5-2650 v2 2.60GHz CPU and an NVIDIA Tesla K40m GPU.

The total offline training time is around 3 days. During the

online phase, there will be an overhead in the order of one

minute to learn the target style from the examples. However,

this process happens only once per use case. The learned style

features are saved and can be reused in future style transfer

tasks. The final prediction step for a piece of code happens

within a second. Therefore, DUETCS is practical for real-

world use.

Results. The dataset statistics and the results are shown in

Table I. We inspect the text accuracy and structure accuracy

of all the outputs and found that DUETCS can produce results

that are around 70% similar to the ground truth at both text and

structure level. It shows that DUETCS can provide significant

assistance to user on the style transfer task. After inspecting

the compilation checking module, we found that DUETCS

achieves 55.8% computational accuracy, which is a practical

metric for a code generation system [29]. This result shows

that more than half of the output code are compilable and

implement the same function as the input code. The user can

use this check as an optional layer of the pipeline to guarantee

grammar correctness. We also inspect the AT and AS of the

outputs that are not compilable in Table II. We found that even

the non-compilable outputs display around 60% similarity to

the ground truth, which means even if DUETCS cannot always

produce grammar-correct code, it can still provide valuable

information to help user to transfer code style. We also further

checked if the output can be exactly the same as the ground

truth. Notice, that generally the task of generating the exact

same code as ground truth is very hard, especially when the

code length is rather long (˜47 lines). Reference accuracy

is not a solid indicator of performance. The default system

outperforms all other variations and outputs 13.1% results

that exactly match the ground truth on 3,800 samples. To

put this number in context, consider the performance of the

code generation system TransCoder, which achieves less than

10% AR on average for program translation [29]. In an ideal

scenario, DUETCS can achieve 2.4% higher AR and 8.4%

higher AC . All the aforementioned performance is achieved

fully unsupervised. For each prediction, we only need to take

all the raw code samples in the target style to construct the

style representation. There are no additional labels to these

code samples. Moreover, DUETCS only uses 524 samples

for each prediction on average, which is a small amount of

data compared to data needed for general supervised machine

learning.

The AR and AC of the retrieval mode are higher than

the generation mode, mainly because machine-generated code

cannot always conform to rigorous programming language

grammar. This is on par with results obtained for translation

discovery [16]. On the other hand, generation mode leads to

higher textual and structural accuracy, AT and AS , suggesting

that it can produce better approximations of the desired code

than retrieval mode. While the retrieval mode might find a

more accurate result from the database when the generation

mode failed to generate a proper transferred code, generation

mode can generate better approximations when the target code

does not exist in the database.

Next we analyze the influence of different feature rep-
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resentations on DUETCS’s performance. If we exclude text

style (S+A) or structure style (T+A), the performance is

generally worse than when excluding SGN (T+S). This shows

that it is reasonable to focus on the text style and struc-

ture style as they are more significant. Furthermore, features

without structure styles (T+A) perform better than without

text styles (S+A), which shows text style plays a more

significant role in identifying coding style. Comparing the

results between style features and content features, we can

also infer that content features are more important for code

generation. Another reason could be that the variations of

content features are dedicated to including all the content

features while the variations of style features only include part

of the style features. RPT, which we used as the basis of our

default content features, achieves the best results because it

represents mostly the content information to perform cross-

language search. CTrans performs the worst maybe because it

uses a pointer network that encodes the original naming style

information in the features.

B. Performance on JSformat (JavaScript)

We further evaluate DUETCS on the JSformat dataset.

Because we lack the ground truth for this dataset, we alter

the style transfer task to style recovery. Given an input code

with some inconsistent style features compared to other code

samples in this style, DUETCS reconstructs the input code

by fixing the style. We evaluate DUETCS’s performance with

regard to three style aspects: formatting, naming, and structure.

For formatting style, we perform the same task from STYLE-

ANALYZER [23], which is to predict all the formatting tokens

in a piece of code. For naming style, we mask the method

name as input and check whether the reconstructed code can

recover this name correctly. For structure style, we randomly

switch the order of two code blocks and check whether

DUETCS can reconstruct the original order.

Metrics. In this experiment, we are comparing to an approach

that is only able to predict formatting tokens. Thus, the metrics

we used in the last experiment, which measure the similarity

between the whole code snippets, cannot apply to this task.

We use two other metrics to measure the performance:

• Precision (Prec) is the percentage of correct predictions

of all the predictions, which indicates the performance on

inconsistent style correction.

• Prediction rate (PredR) [23] is the percentage of actual

predicted tokens of all formatting tokens that need to be

predicted. It indicates how often the system makes predic-

tions, i.e. the performance on inconsistent style detection.

Baseline. We compare DUETCS to the only unsupervised

formatting system STYLE-ANALYZER [23]. As proposed in

their paper, we split each repository’s files into two groups

that contain 80% and 20% of all files. The first group is used

for learning the style, the second group serves as test data.

Results. The upper part of Table III shows the results. In

terms of functionality, STYLE-ANALYZER can only learn

formatting style and is not comparable with DUETCS on

TABLE III: Performance on JSformat&Java-small dataset

Method Formatting Naming Structure (train/
test)Prec PredR Prec PredR Prec PredR

JS
fo

rm
at

DUETCS 89.2 71.9 48.7

100

91.9 87.3
1,269/
6028

DUETCS (G) 91.2 58.7 33.5 96.6 76.5
DUETCS (R) 97.2 43.6 21.1 90.6 63.2

DUETCS (Ideal) 93.1 75.4 54.6 94.7 91.2

STYLE-
ANALYZER

92.5 91.6 - -
139,615/
663,171

token seq.

Ja
v
a-

sm
al

l DUETCS 93.1 62.0 53.9

100

81.2 93.7
66,512/
721,280

DUETCS (G) 92.1 53.6 39.4 80.9 78.8
DUETCS (R) 89.1 31.5 20.3 97.8 45.7

DUETCS (Ideal) 94.5 68.3 59.7 86.3 94.2
ConVAttention

-

50.3

100 - 665,115/
56,165

Path+CRFs 8.4
C2V 18.5
C2S 50.7

CTrans 54.9

naming and structure style. Besides, it cannot generate the

whole code snippet. It takes the token sequence that centers

on each formatting token as input to predict this formatting

token. Thus, in the table, the amount of data used/trained

and the amount of data tested in STYLE-ANALYZER is at the

granularity of token sequences and tokens while in DUETCS is

at the granularity of code samples. For STYLE-ANALYZER, the

average line of code (LOC) in each case is less than one line

and the location of the tokens to be predicted is already known.

On the contrary, DUETCS can directly work at the whole code

level and address multiple styles in fully unsupervised way.

From these aspects, DUETCS is more functional.

In terms of performance, for both formatting and structure

style, DUETCS can recover around 90% of the original

style. Both generation and retrieval modes can achieve good

precision, while their ability to detect style inconsistency is

worse than the full system, which shows combining two modes

is a proper strategy. In the ideal scenario, when DUETCS

can correctly recommend the best result, its precision on

formatting style is slightly better than baseline (0.6%). Note

that, the ideal mode in some cases, such as the precision of

formatting, performs worse than other modes. The reason is

that ideal mode chooses the globally best solution with regard

to ground truth. Thus, its result might miss some aspects of

style not optimally and perform worse in that regard. On

the other hand, the PredR of DUETCS is about 20% lower

than STYLE-ANALYZER because the prediction locations are

unknown to DUETCS but known to STYLE-ANALYZER. Yet,

DUETCS can well generate the whole code snippet only based

on its features in 70% of the cases. For structure style, as

only the order is changed, DUETCS does not need to learn

other features except the order of code blocks, it can achieve

around 90% PredR. For naming style, because the location

of method name is fixed, the PredR is always 100%. The

Prec for recovering this style inconsistency is much lower than

other two styles as method names are more complicated than

formatting and code blocks order. Considering the code length

is relatively long (>86 lines), it is more difficult to generate the
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exact same code. However, in an ideal scenario of DUETCS, it

can still exactly recover more than half of the method names.

C. Performance on Java-small dataset (Java)

We further evaluate DUETCS on Java-small dataset. Same

to JSformat dataset, we perform original style recovery regard-

ing three aspects: formatting, naming, and structure.

Metrics. As the baselines in this experiment can only address

one style aspect, we use the same metrics as in Section VII-B.

Baselines. We compare DUETCS to existing code representa-

tions to evaluate the effectiveness of our feature representation.

The Java-small dataset is used with the following feature rep-

resentations for method name prediction: ConVAttention [10],

Path+CRFs [12], C2V [13], C2S [11], and CTrans [36].

We use them as the baselines. However, they ignore the

formatting tokens when constructing the features and they

cannot generate the whole piece of code, so they are unable

to perform formatting and structure style recovery. For name

prediction, they need training samples to supervised learn the

naming mechanism. The input is the method body and the

method name is the corresponding label.

According to the corresponding papers, each baseline takes

10 projects as training, and 1 project as test data. For each

test code sample, they predict the method name. DUETCS

only needs the code in the same style as examples and does

not need training data.

Results. Functionally, DUETCS is unsupervised and covers

more style aspects compared to baselines. On contrary, the

baselines can only address Naming style and require a large

amount of training data. The experiment results are shown

in the lower part of Table III. Similar to the experiments on

the JSformat dataset, DUETCS performs well on formatting

and structure style. For naming style, DUETCS is around 3%

better than the state-of-the-art non-transformer representation

C2S, and in ideal scenario 9% better. The possible reason

is DUETCS also encodes the writing style information into

the features, while other representations that are AST-based

neglect the writing style as it does not affect the semantics.

Considering DUETCS is more advanced than all the baselines

function-wise, the performance improvement on only naming

style is already significant. Compared to the transformer-based

method CTrans, DUETCS achieves similar result, and 4.8%

better ideally. We can infer that our representation can also

well learn the code context. Moreover, it shows our character-

level token encoding strategy can learn out-of-vocabulary well

compared to pointer network used in CTrans, but we do

not need any task-specific labeled dataset. These experiments

show that DUETCS applies to multiple types of programming

languages, such as static languages (C++, Java) and dynamic

languages (JavaScript). Besides, the performance on Java-

small dataset is slightly better than on JSformat dataset. From

Table III, we can see that the possible reason is that for Java-

small dataset, there are much less training data than Java-

small dataset. It means that Java-small dataset includes more

examples for the system to learn the specific style features.

TABLE IV: The contribution of each mode to the final result

Scenario Proportion of recommended results
from

Generation mode
from

Retrieval mode

Actual 75% 25%
Ideal 68% 32%

Fig. 5: Influence of the number of examples

We will further study how the number of examples can affect

the results in our micro-benchmark (Section VII-D).

D. Micro-Benchmark and limitations

To further explore the practical potential of our approach on

style transfer task, we analyze several components of DUETCS

and investigate its limitations.

Two modes mechanism. In our experiments, DUETCS auto-

matically chooses one result from the two modes. The returned

result is chosen based on its content similarity with the input

code and style similarity with the target style. We evaluate

the reliability of this result recommendation by comparing

the results with the ground truth. In Table IV, we show

the proportion of the actual final recommendations in the

experiment from Section VII-A compared to the choice of the

ideal system. Note that ideal always chooses the result that is

closest to the ground truth solution, while our default approach

chooses the solution that is similar in terms of content to the

input and similar in terms of style to the average target style. In

both scenarios, the generation mode produces up to three times

more suitable results than the retrieval mode. The generation

mode naturally produces code that is similar to the source

code, while the retrieval mode depends on the existing code

pieces in the database. 18% of the time, the choices differ and

as seen in Section VII-A the default system can fall behind.

Thus there is still room in improving the combined effort of

both modes.

Influence of the examples. DUETCS requires example code

in the target style to construct the style features. In Figure 5,

we show how the accuracy changes for different numbers of

randomly picked examples. First the accuracy significantly

increases with the number of examples. However, after a

certain number of examples (around 200 in this experiment),

the accuracy starts to gradually drop. A possible reason is that

more examples increase the chance of adding style inconsis-

tencies. Thus there is room for improving the performance by

ensuring consistency among the given examples.

Case study and limitations. To better understand the limi-

tations of self-learning and show how DUETCS can help in
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Fig. 6: Example of code style transfer and failed cases (arrows show the style differences between source and target, blue

color shows that output captured the desired style and orange shows what was missed by the output)

real-world cases, we consider the example in Figure 6 where

system failed to cover all style elements. The first column is

the input code in source style, the task is to transfer it to

the target style as shown in the second column. Comparing

their style, we annotate the differences in the target style in

the figure. The third column in Figure 6 shows the output

of DUETCS. We mark the mistakes in red color. We studied

further aligned examples from the two styles depicted in

Figure 6 and identified the following common cases of failure.

- Wrong variable names (count in Figure 6): The term

found is a rare name, which makes it hard to predict.

- Not counting backwards in loops: As this style has algorith-

mic features, it is not represented in our style feature.

- Does not use bool value operations: Also this type of style is

highly convoluted with algorithmic steps and is not captured.

- Not changing <<endl to \n: The target style is not con-

sistent. We found other examples in the target style that use

<<endl.

In summary, self-learning captures style information as long

as there is no strong convolution with algorithmic aspects and

the style aspects are not singletons among the given style

examples. Further, it is crucial that the provided style examples

are consistent with the desired target style. However, unlike

rule-based tools that require fixed pre-defined style rules, novel

representations learn arbitrary target style fully automatically

only from the code examples showing the significant potential

of learning-based tools for stylization assistance.

VIII. CONCLUSION

In this work, we explored the potential of learned rep-

resentations to stylize code and proposed a novel approach

that leverages code generation and retrieval, and explored its

potential on assisting code style transfer. For both modes, it

constructs two independent code representations - style and

content features. This way, DUETCS retains the content fea-

tures of the input, learns the target style features, and combines

them to produce the output. To the best of our knowledge, this

is the first attempt of implementing an unsupervised learning

approach for a holistic style transfer. DUETCS captures more

relevant style aspects compared to rule-based techniques. Self-

learning is applicable to multiple programming languages and

does not need human intervention. It can provide user with

more valuable information compared to existing baselines,

such as formatting systems and variations with state-of-the-

art code representation models. Although it cannot always

produce the perfect transferred code, the results show that the

output can still capture enough style information to assist the

user in stylization. We believe that if DUETCS can be included

within an IDE so that stylization suggestions are under the

control of the programmer, the results of this type of style

inference can be useful to the user.

There are several potential research directions in the future.

First, for learning the style features from the code examples,

it would be helpful to have a selection mechanism that

automatically selects the most representative, consistent, and

covering examples. Further, it would be interesting to explore

a more symbiotic combination of the two modes that trades

off accuracy and recall. Finally, it would be useful to explore

methods that filter out non-compilable code based on grammar

features to reduce the instrumentation overhead.
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