
Towards Data Augmentation for Supervised Code Translation
Binger Chen

chen@tu-berlin.de

TU Berlin

Berlin, Germany

Jacek golebiowski

jacekgo@amazon.de

Amazon AWS

Berlin, Germany

Ziawasch Abedjan

abedjan@dbs.uni-hannover.de

Leibniz Universität Hannover & L3S

Research Center

Hannover, Germany

ABSTRACT

Supervised learning is a robust strategy for data-driven program

translation. This work addresses the challenge of insufficient paral-

lel training data in code translation by exploring two innovative

data augmentation methods: a rule-based approach specifically de-

signed for code translation datasets and a retrieval-based method

leveraging unorganized code repositories.

1 INTRODUCTION

Translating software across different programming languages is a

practical application, such as the updates or migrations to modern

platforms, a process that is both time-intensive and costly [11]. Tra-

ditional rule-based compilers are limited and demand significant

human input. Supervised methods [5] show promise but heavily

rely on parallel datasets. Unsupervised methods, despite being

a potential solution, fall short in terms of accuracy compared to

supervised ones [11, 12]. Large Language Models (LLMs) [6] offer

new prospects but currently lack reliability in code translation [9].

The latter two challenges underscore the need for enhanced train-

ing data augmentation methods to improve supervised translation

techniques. Current training data for code translation is mostly

manually created. A promising approach to deal with training data

scarcity is to generate training data via data augmentation (DA),

which generates additional data from existing training data. There

are already many approaches in the realm of supervised natural

language translation [7, 13], which are not directly transferable

to code translation due to the strict grammar of code, evolving

vocabularies, and lack of mapping dictionaries across languages.

LLMs is a potential tool for DA, but face challenges like API misuses

and quality issues in generated code [8, 14]. There have been novel

augmentation methods in the realm of supervised bug fixing [1, 10].

However, these augmentation techniques do not account for the

fact that code is executable.

In this work, we focus on developing augmentation methods to

enhance supervised code translation. We explored three strategies:

applying rule-based and back-translation techniques from NLP di-

rectly to code, designing tailored rule-based approach for code

translation, and a new retrieval-based approach using Big Code.

The study found that rule-based methods lack diversification and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0502-1/24/04

https://doi.org/10.1145/3639478.3643115

Figure 1: Workflow of Ctaug

back-translation depends on model quality, whereas retrieval-based

augmentation with refined optimization functions, shows effec-

tiveness in finding new parallel code pairs and outperforms other

methods. While this abstract provides an overview of the challenges

and the outcomes, a detailed description of methods and analysis

can be found in the full publication [4]. All code and data can be

found on our GitHub repository
1
.

2 AUGMENTING VIA RULES AND RETRIEVAL

Training datasets for supervised code translation are so-called paral-

lel datasets, where code with the same functionality in two or more

languages has already been aligned. The main goal in augmenting

training data for supervised code translation is to introduce un-

seen source-target pairs. Promising approaches rooted in literature

include adapting rule-based methods from natural language trans-

lation to code and leveraging big code repositories for additional

snippet pairs, aiming to enrich the training dataset with novel, yet

relevant, relationships.

Rule-based DA. The main idea for rule-based data augmenta-

tion is to use code transformation rules that when applied to an

existing code pair generate a new pair of functionally and semanti-

cally correct pieces. These rules, adapted from bug detection strate-

gies [1, 10], focus on reversible changes and code structure modifi-

cations, ensuring logical consistency across languages. We create

the following rules:

(1) Reverse: Adjusting logic in conditional statements and making

corresponding changes in the target language code.

(2) Merge: Combining code at the control structure or program

level, using logical operators or concatenation.

(3) Split: Separating combined conditional statements.

(4) All: A composite application of the above rules.

These rules are specifically designed for programming languages,

but general enough to common imperative languages. Thus, they

can be applied to both the input code and its translation, maintain-

ing the logical semantics between source and target.

Retrieval-based DA. Our second approach searches for code pairs

in Big Code repositories. Using Big Code, we hope to find unseen

code pairs. In this process, an across-language retrieval method is

used to find potential translations of a piece of given code. In theory,

1
https://github.com/LUH-DBS/Binger/tree/main/CTAug

https://doi.org/10.1145/3639478.3643115
https://github.com/LUH-DBS/Binger/tree/main/CTAug

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Binger Chen, Jacek golebiowski, and Ziawasch Abedjan

Table 1: Performance (PA) comparison with the baselines

Dataset w/o

Aug

CTAug
NLP Methods Rule-based methods

WM BT Reverse Merge Split All
Lucene 72.8% 85.8% 63.1% 70.2% 72.7% 72.0% 72.8% 75.9%

POI 72.2% 86.1% 62.4% 69.9% 73.6% 70.3% 72.5% 75.1%

IText 67.5% 83.2% 61.5% 66.3% 68.9% 66.9% 67.8% 72.8%

JGit 68.7% 81.7% 59.3% 65.4% 70.3% 70.2% 69.1% 72.8%

JTS 68.2% 82.3% 61.2% 67.7% 70.9% 69.8% 69.6% 73.3%

ANTLR 31.9% 66.2% 25.3% 31.9% 33.6% 36.7% 32.7% 40.1%

one could pick random pieces of code and search for their trans-

lations. However, this approach might convolute existing training

data or lead to code pairs that are maximally dissimilar to the origi-

nal training data. Ideally, we want the augmented data points to be

explainable in terms of being close to data points that we already

have but with previously unseen inter-language relationships. Thus

we also use a mono-language retrieval technique to identify similar

input pieces. Combining the two retrieval methods, one has to make

a decision of which retrieval results to combine.

The simplest approach is greedy search, where the most similar

piece of code per input value and its best translation are composed

to a new data point. In our work, we propose an optimization

method that ensures the code pieces are similar in several ways.

Figure 1 shows the workflow, which retrieves top-K candidates us-

ing a mono-language code search tool, forming a candidate set. For

each candidate, we find top-K translations using a cross-language

tool, resulting in 𝐾 × 𝐾 candidate pairs. The value of K can be

adjusted based on computational resources and needs.

Our selection process for the optimal translation pair from the𝐾×𝐾
candidate space (𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) involves matching each candidate 𝐴′

with a corresponding 𝐵′ that mirrors the similarities and differences

it has with the original 𝐴 and 𝐵. We use the similarity function

𝑆 implemented in the code search tools [2, 3], which evaluates

structural and textual aspects of code snippets. This function is

employed in three distinct ways to define independent optimization

criteria, ensuring each selected pair aligns closely with the original

code’s context and characteristics.

Considering the context (𝐴, 𝐵) ∈ 𝐷0 and a sample from a search

space (𝐴′, 𝐵′) ∈ 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 we consider

(1) 𝑓1 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐵′) as a similarity measure within the new

pair,

(2) 𝑓2 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐴) +𝑆 (𝐵′, 𝐵) as a similarity measure between

the new tuple and context and

(3) 𝑓3 (𝐴′, 𝐵′) = −|𝑆 (𝐴′, 𝐴) − 𝑆 (𝐵′, 𝐵) | as an alternative similar-

ity measure within the new pair. Intuitively, we aim to find

examples where 𝐴 is just as similar to 𝐴′
as 𝐵 is to 𝐵′.

Given the three objective functions that map the search space intoR,
we can formalize our task as a multi-objective optimization problem.

We rely on optimizing a scalarized objective 𝑓𝑜𝑏 𝑗 = 𝛼 𝑓1 + 𝛽 𝑓2 + 𝛾 𝑓3
where 𝛼 , 𝛽 and 𝛾 are set to 1 by default. The goal is to find a pair of

(𝐴′, 𝐵′) ∈ 𝐷𝑎𝑢𝑔 that satisfies

max𝑓𝑜𝑏 𝑗 = 𝛼max𝑓1 (𝐴′, 𝐵′) + 𝛽max𝑓2 (𝐴′, 𝐵′) + 𝛾max𝑓3 (𝐴′, 𝐵′)

3 EXPERIMENTS AND CONCLUSION

To pitch the promise of our approach, we present one experiment

on two datasets: one from previous work [5], comprising Java and

C# code pairs from open-source projects; another is a big code data-

base generated from GitHub repositories for code retrieval. The

evaluation metric is Program Accuracy (PA), which measures the

percentage of predicted translations matching the ground truth, fo-

cusing on semantic equivalence.We evaluate rule-based approaches

and the retrieval-based method CTAug (Data Augmentation for

Code Translation Model) for augmenting code translating training

data against NLP baselines (word masking and back-translation).

The augmentation ratio is 1 : 1. The results shown in Table 1 reveal

that while NLP techniques are less effective for code, CTAug signif-

icantly improves translation accuracy. Rule-based methods show

only marginal gains, with some causing overfitting. Overall, our

language-agnostic approach CTAug excels in program accuracy.

Detailed results including more metrics and mini-benchmarks can

be found in the longer version of this paper [4].

Conclusion. We proposed two data augmentation methods for su-

pervised code translation: rule-based and retrieval-based strategies.

The more effective retrieval-based approach leverages mono- and

cross-language code retrieval techniques to find translation pairs

that enhance data diversity while preserving distribution. Though

the rule-based method performs poorer, it surpasses basic NLP

augmentation adaptations. Future work could explore combining

these strategies and applying constrained retrieval in other super-

vised code-learning tasks like code stylization or summarization.

Acknowledgements. This work was funded by the German Fed-

eralMinistry of Education and Research under the grant BIFOLD24B.

REFERENCES

[1] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-

Supervised Bug Detection and Repair. InAnnual Conference on Neural Information
Processing Systems 2021 (NeurIPS).

[2] Binger Chen and Ziawasch Abedjan. 2021. Interactive Cross-language Code

Retrieval with Auto-Encoders. In 36th International Conference on Automated
Software Engineering (ASE).

[3] Binger Chen and Ziawasch Abedjan. 2021. RPT: Effective and Efficient Retrieval

of Program Translations from Big Code. In 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE).

[4] Binger Chen, Jacek golebiowski, and Ziawasch Abedjan. 2024. Data Augmenta-

tion for Supervised Code Translation Learning. In 21th International Conference
on Mining Software Repositories (MSR).

[5] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree neural networks

for program translation. In Advances in Neural Information Processing Systems
(NeurIPS).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT).

[7] Sufeng Duan, Hai Zhao, Dongdong Zhang, and Rui Wang. 2020. Syntax-aware

Data Augmentation for Neural Machine Translation. CoRR abs/2004.14200 (2020).

[8] Kevin Jesse, Toufique Ahmed, Premkumar T. Devanbu, and Emily Morgan. 2023.

Large Language Models and Simple, Stupid Bugs. In 20th IEEE/ACM International
Conference on Mining Software Repositories (MSR).

[9] Shuai Lu, Daya Guo, and Shuo Ren et al. 2021. CodeXGLUE: A Machine Learning

Benchmark Dataset for Code Understanding and Generation. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks 1.

[10] Pedro Orvalho, Mikolás Janota, and Vasco M. Manquinho. 2022. MultIPAs: ap-

plying program transformations to introductory programming assignments for

data augmentation. In The 30th Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE).

[11] Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lam-

ple. 2020. Unsupervised Translation of Programming Languages. In Annual
Conference on Neural Information Processing Systems (NeurIPS).

[12] Baptiste Rozière, Jie Zhang, and François Charton et al. 2022. Leveraging Auto-

mated Unit Tests for Unsupervised Code Translation. In The Tenth International
Conference on Learning Representations (ICLR).

[13] Xinyi Wang, Hieu Pham, and Zihang Dai et al. 2018. SwitchOut: an Efficient

Data Augmentation Algorithm for Neural Machine Translation. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP).

[14] Li Zhong and Zilong Wang. 2023. A Study on Robustness and Reliability of Large

Language Model Code Generation. CoRR abs/2308.10335 (2023).

	Abstract
	1 Introduction
	2 Augmenting Via Rules and Retrieval
	3 Experiments and Conclusion
	References

