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ABSTRACT

Supervised learning is a robust strategy for data-driven program

translation. This work addresses the challenge of insufficient paral-

lel training data in code translation by exploring two innovative

data augmentation methods: a rule-based approach specifically de-

signed for code translation datasets and a retrieval-based method

leveraging unorganized code repositories.

1 INTRODUCTION

Translating software across different programming languages is a

practical application, such as the updates or migrations to modern

platforms, a process that is both time-intensive and costly [11]. Tra-

ditional rule-based compilers are limited and demand significant

human input. Supervised methods [5] show promise but heavily

rely on parallel datasets. Unsupervised methods, despite being

a potential solution, fall short in terms of accuracy compared to

supervised ones [11, 12]. Large Language Models (LLMs) [6] offer

new prospects but currently lack reliability in code translation [9].

The latter two challenges underscore the need for enhanced train-

ing data augmentation methods to improve supervised translation

techniques. Current training data for code translation is mostly

manually created. A promising approach to deal with training data

scarcity is to generate training data via data augmentation (DA),

which generates additional data from existing training data. There

are already many approaches in the realm of supervised natural

language translation [7, 13], which are not directly transferable

to code translation due to the strict grammar of code, evolving

vocabularies, and lack of mapping dictionaries across languages.

LLMs is a potential tool for DA, but face challenges like API misuses

and quality issues in generated code [8, 14]. There have been novel

augmentation methods in the realm of supervised bug fixing [1, 10].

However, these augmentation techniques do not account for the

fact that code is executable.

In this work, we focus on developing augmentation methods to

enhance supervised code translation. We explored three strategies:

applying rule-based and back-translation techniques from NLP di-

rectly to code, designing tailored rule-based approach for code

translation, and a new retrieval-based approach using Big Code.

The study found that rule-based methods lack diversification and
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Figure 1: Workflow of Ctaug

back-translation depends on model quality, whereas retrieval-based

augmentation with refined optimization functions, shows effec-

tiveness in finding new parallel code pairs and outperforms other

methods. While this abstract provides an overview of the challenges

and the outcomes, a detailed description of methods and analysis

can be found in the full publication [4]. All code and data can be

found on our GitHub repository
1
.

2 AUGMENTING VIA RULES AND RETRIEVAL

Training datasets for supervised code translation are so-called paral-

lel datasets, where code with the same functionality in two or more

languages has already been aligned. The main goal in augmenting

training data for supervised code translation is to introduce un-

seen source-target pairs. Promising approaches rooted in literature

include adapting rule-based methods from natural language trans-

lation to code and leveraging big code repositories for additional

snippet pairs, aiming to enrich the training dataset with novel, yet

relevant, relationships.

Rule-based DA. The main idea for rule-based data augmenta-

tion is to use code transformation rules that when applied to an

existing code pair generate a new pair of functionally and semanti-

cally correct pieces. These rules, adapted from bug detection strate-

gies [1, 10], focus on reversible changes and code structure modifi-

cations, ensuring logical consistency across languages. We create

the following rules:

(1) Reverse: Adjusting logic in conditional statements and making

corresponding changes in the target language code.

(2) Merge: Combining code at the control structure or program

level, using logical operators or concatenation.

(3) Split: Separating combined conditional statements.

(4) All: A composite application of the above rules.

These rules are specifically designed for programming languages,

but general enough to common imperative languages. Thus, they

can be applied to both the input code and its translation, maintain-

ing the logical semantics between source and target.

Retrieval-based DA. Our second approach searches for code pairs

in Big Code repositories. Using Big Code, we hope to find unseen

code pairs. In this process, an across-language retrieval method is

used to find potential translations of a piece of given code. In theory,
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Table 1: Performance (PA) comparison with the baselines

Dataset w/o

Aug

CTAug
NLP Methods Rule-based methods

WM BT Reverse Merge Split All
Lucene 72.8% 85.8% 63.1% 70.2% 72.7% 72.0% 72.8% 75.9%

POI 72.2% 86.1% 62.4% 69.9% 73.6% 70.3% 72.5% 75.1%

IText 67.5% 83.2% 61.5% 66.3% 68.9% 66.9% 67.8% 72.8%

JGit 68.7% 81.7% 59.3% 65.4% 70.3% 70.2% 69.1% 72.8%

JTS 68.2% 82.3% 61.2% 67.7% 70.9% 69.8% 69.6% 73.3%

ANTLR 31.9% 66.2% 25.3% 31.9% 33.6% 36.7% 32.7% 40.1%

one could pick random pieces of code and search for their trans-

lations. However, this approach might convolute existing training

data or lead to code pairs that are maximally dissimilar to the origi-

nal training data. Ideally, we want the augmented data points to be

explainable in terms of being close to data points that we already

have but with previously unseen inter-language relationships. Thus

we also use a mono-language retrieval technique to identify similar

input pieces. Combining the two retrieval methods, one has to make

a decision of which retrieval results to combine.

The simplest approach is greedy search, where the most similar

piece of code per input value and its best translation are composed

to a new data point. In our work, we propose an optimization

method that ensures the code pieces are similar in several ways.

Figure 1 shows the workflow, which retrieves top-K candidates us-

ing a mono-language code search tool, forming a candidate set. For

each candidate, we find top-K translations using a cross-language

tool, resulting in 𝐾 × 𝐾 candidate pairs. The value of K can be

adjusted based on computational resources and needs.

Our selection process for the optimal translation pair from the𝐾×𝐾
candidate space (𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ) involves matching each candidate 𝐴′

with a corresponding 𝐵′ that mirrors the similarities and differences

it has with the original 𝐴 and 𝐵. We use the similarity function

𝑆 implemented in the code search tools [2, 3], which evaluates

structural and textual aspects of code snippets. This function is

employed in three distinct ways to define independent optimization

criteria, ensuring each selected pair aligns closely with the original

code’s context and characteristics.

Considering the context (𝐴, 𝐵) ∈ 𝐷0 and a sample from a search

space (𝐴′, 𝐵′) ∈ 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 we consider

(1) 𝑓1 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐵′) as a similarity measure within the new

pair,

(2) 𝑓2 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐴) +𝑆 (𝐵′, 𝐵) as a similarity measure between

the new tuple and context and

(3) 𝑓3 (𝐴′, 𝐵′) = −|𝑆 (𝐴′, 𝐴) − 𝑆 (𝐵′, 𝐵) | as an alternative similar-

ity measure within the new pair. Intuitively, we aim to find

examples where 𝐴 is just as similar to 𝐴′
as 𝐵 is to 𝐵′.

Given the three objective functions that map the search space intoR,
we can formalize our task as a multi-objective optimization problem.

We rely on optimizing a scalarized objective 𝑓𝑜𝑏 𝑗 = 𝛼 𝑓1 + 𝛽 𝑓2 + 𝛾 𝑓3
where 𝛼 , 𝛽 and 𝛾 are set to 1 by default. The goal is to find a pair of

(𝐴′, 𝐵′) ∈ 𝐷𝑎𝑢𝑔 that satisfies

max𝑓𝑜𝑏 𝑗 = 𝛼max𝑓1 (𝐴′, 𝐵′) + 𝛽max𝑓2 (𝐴′, 𝐵′) + 𝛾max𝑓3 (𝐴′, 𝐵′)

3 EXPERIMENTS AND CONCLUSION

To pitch the promise of our approach, we present one experiment

on two datasets: one from previous work [5], comprising Java and

C# code pairs from open-source projects; another is a big code data-

base generated from GitHub repositories for code retrieval. The

evaluation metric is Program Accuracy (PA), which measures the

percentage of predicted translations matching the ground truth, fo-

cusing on semantic equivalence.We evaluate rule-based approaches

and the retrieval-based method CTAug (Data Augmentation for

Code Translation Model) for augmenting code translating training

data against NLP baselines (word masking and back-translation).

The augmentation ratio is 1 : 1. The results shown in Table 1 reveal

that while NLP techniques are less effective for code, CTAug signif-

icantly improves translation accuracy. Rule-based methods show

only marginal gains, with some causing overfitting. Overall, our

language-agnostic approach CTAug excels in program accuracy.

Detailed results including more metrics and mini-benchmarks can

be found in the longer version of this paper [4].

Conclusion. We proposed two data augmentation methods for su-

pervised code translation: rule-based and retrieval-based strategies.

The more effective retrieval-based approach leverages mono- and

cross-language code retrieval techniques to find translation pairs

that enhance data diversity while preserving distribution. Though

the rule-based method performs poorer, it surpasses basic NLP

augmentation adaptations. Future work could explore combining

these strategies and applying constrained retrieval in other super-

vised code-learning tasks like code stylization or summarization.
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