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ABSTRACT

Data-driven program translation has been recently the focus of

several lines of research. A common and robust strategy is super-

vised learning. However, there is typically a lack of parallel training

data, i.e., pairs of code snippets in the source and target language.

While many data augmentation techniques exist in the domain of

natural language processing, they cannot be easily adapted to tackle

code translation due to the unique restrictions of programming lan-

guages. In this paper, we develop a novel rule-based augmentation

approach tailored for code translation data, and a novel retrieval-

based approach that combines code samples from unorganized big

code repositories to obtain new training data. Both approaches are

language-independent. We perform an extensive empirical evalu-

ation on existing Java-C#-benchmarks showing that our method

improves the accuracy of state-of-the-art supervised translation

techniques by up to 35%.
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1 INTRODUCTION

Some programs or software systems require multiple versions in dif-

ferent languages. For example, open-source prototypes in academia

are often subject to translation into new programming languages.

Researchers who wish to port codebases from obsolete or depre-

cated languages to modern languages or platforms often need to

rewrite these programs [43]. In practice, software development

frequently requires program translation. Rewriting software in the

required language is both time-consuming and laborious. For exam-

ple, the Commonwealth Bank of Australia spent around $750million

and five years translating its platform from COBOL to Java [43].

1.1 Code translation methods

The traditional methods of rule-based compilers or cross-language

interpreters are hardwired and require extensive human adaptation
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Table 1: Comparison of supervised and unsupervised trans-

lation on Java-C# dataset [8, 30]

Genre Method Description

Program

Accuracy

Supervised

Translation

Tree2tree

tree-to-tree

neural networks

70.1%

Unsupervised

Translation

TransCoder

weakly-supervised

neural translation

49.9%

Large Language

Models

RoBERTa (code) Transformer

-based

56.1%

CodeBERT 59.0%

and are limited to a small set of programming languages [2]. Re-

cently, several automated program translation and code migration

approaches emerged [11, 36, 43].

Supervised learning has shown great promise in this regard [11,

36]. This approach requires a parallel dataset, which consists of pairs

of code snippets in the original language and their corresponding

translation in the target language.

In reality, parallel datasets for arbitrary language pairs are often

amiss making it difficult to apply supervised learning. One direction

to circumvent this problem is to resort to weakly-supervised or

unsupervised learning [43, 44]. Facebook AI proposed to pre-

train the translation model on the task of denoising randomly cor-

rupted programs and to optimize the model through back transla-

tion [43]. Yet, weak supervision does not provide the same level

of accuracy as strongly supervised methods [43]. In the experi-

ment that is shown in Table 1, one sees a rare comparison between

supervised and unsupervised methods. Here, the unsupervised

method performs worse than the state-of-the-art supervised model

Tree2tree that was trained on a parallel dataset of Java to C# trans-

lation pairs [8]. This is consistent with the experience from natural

language translation, where the supervised models are shown to

perform better than unsupervised models when the labeled training

data is sufficiently available [14, 24]. Further most unsupervised or

weakly-supervised machine translation methods heavily depend on

back-translation [43, 44], a technique initially developed for natural

language translation that involves training on noisy inputs. While

this method is attainable for natural languages, where minor inac-

curacies might not significantly impact the sentence’s meaning [44],

its noise-tolerance has heavier consequences on code translation.

Even a single token alteration can lead to compilation failures or

incorrect program outcomes.

Recently, the booming development of Large Language Mod-

els (LLMs) has brought new research directions to code translation,

such as transformer-based models BERT [15] and GPT [7]. These
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models leverage pre-trained contextual understanding models from

a large number of diverse datasets containing code snippets and nat-

ural language text. However, the performance of LLMs in real-world

code translation is not satisfactory. The experiment results by Lu et

al. shown in Table 1 reveal that the performance of RoBERTa (code)

and CodeBERT on the same dataset is worse than the supervised

method [30]. Pan et al. also evaluated code translation on recent

commercial LLM GPT-4 [40]. Results show that the performance

lacks reliability and stability with incorrect translations ranging

from 52.7% to 97.9%, involving 14 root causes for translation bugs af-

ter analysis. According to their experiment, even with adding more

natural language comments to the code and refining the prompt,

the performance of LLMs can only be improved by 5.5% [40].

With all the aforementioned limitations that still exist for unsuper-

vised and weakly-supervised techniques, we deem it worthwhile

to further explore the avenue of training data augmentation to

support supervised translation techniques.

1.2 Data augmentation for supervised code

translation (current state)

Existing training data for code translation is mainly created manu-

ally. Data augmentation aims at generating additional data points

based on the empirically observed training data without explic-

itly collecting new data [6, 16, 19, 48]. Our goal is to explore the

potential of supervised translation with the help of DA.

The two lines of research that are closely related to augmentation

for code translation are data augmentation for natural language

translation [17, 48], which is not directly applicable to code, and

data augmentation for bug fixing, which is not directly applica-

ble to the translation task [5, 39].

There have been significant advances towards augmentation of nat-

ural language data for translation [37, 45, 48]. However, one cannot

directly apply natural language augmentation techniques for code

translation. Natural language words are often fungible, allowing

us to comprehend the text even if one or more words are replaced.

This feature makes the text more manageable to maintain a set

of invariants. The commonly used approaches are word substitu-

tion [17, 48] and back-translation [37, 45]. Vanilla word substitution

can hardly be used for code because of the programming language’s

strict grammar and open vocabulary. A minor edit may alter pro-

gram semantics and syntax or cause code failure. Furthermore, the

freely and continuously evolving name vocabularies pose another

non-trivial challenge for regulating a code augmentation procedure.

Therefore, there is a need to find a customized method to augment

code data specific for code translation tasks. Furthermore, there

is also a lack of mapping dictionaries for programming languages

impeding a parallel substitution in a target language.

Only recently code augmentation has been explored for bug fix-

ing [5, 39]. These approaches are based on manual rule generation,

which is hard to generalize to more bug cases not to mention the

entirely different task of code translation, which requires parallel
training data, i.e., pieces of code and corresponding translations.

Large Language Models can also be considered for data augmen-

tation in supervised code translation models due to their ability to

generate additional code based on specified prompts. However, uti-

lizingmachine-generated code from LLMs for training data presents

significant challenges. First, a substantial portion of the code gener-

ated by LLMs contains API misuses, 62% with the latest models such

as GPT-4 [51]. Second, LLM-generated code frequently exhibits

issues, such as missing or irrelevant algorithmic steps [38], and

small, hard-to-detect bugs that are less frequent in human-written

code [21]. Parallel code with such quality issues can severely harm

the deep learning process [46, 50]. Finally, existing LLMs require

natural language descriptions or comments for fine-tuning [21, 40],

whereas, for data augmentation, only raw code data may be avail-

able, further complicating their suitability for this purpose. To avoid

the limitations of machine-generated code, we intend to pursue

approaches that do not rely on intractable code generation.

1.3 Research question and our methodology

We aim to solve the following Research question. Given a super-

vised code translation model and a corresponding training dataset,

we want to understand the efficacy of existing augmentation meth-

ods and develop an effective method that is tailored to the task of

supervised code translation.

Our methodology.We explored three directions to augment train-

ing data for code translation. First, we directly apply rule-based

and back-translation techniques from NLP to code. Second, by

modifying the rules for bug fixing [5, 39], we design our own rule-

based approach with rules that are tailored to the task of code

translation. In our experiments, we observe that rule-based ap-

proaches cannot yield diversification for the training data, and that

back-translation is highly dependent on the quality of the initial

model (Section 5.1). Thus, we explored a third fundamentally dif-

ferent approach - retrieval-based approach. We proposed this

methodology in our previous work [8, 9]. To make sure that the

augmented code is real and contains unseen code patterns, we use

code retrieval to find additional code and its potential translation

in Big Code. This approach circumvents the problem of syntax

and semantics tampering caused by artificial code generation. It

has already been used in other programming applications such

as code translation [8] and code summarization [28]. However, as

translation retrieval is on its own susceptible to inaccurate results,

which can cause noise, we developed optimization functions that

further constrain the retrieval process to maintain specific latent

code semantics. To this end, we make the following contributions:

• We analyze existing NLP methods for data augmentation and

their suitability for code translation.

• Building on augmentation for bug-fixing, we propose rules for

rule-based data augmentation in code translation.

• We explore the potential of the retrieval-based augmentation

method with our proposed objective function that considers the

translation retrieval accuracy and the consistency with the origi-

nal dataset to effectively find new parallel code pairs.

• We compared various baselines to all the aforementioned meth-

ods. Our results suggest that both the rule-adaptations and retrieval-

based methods are beneficial, but the latter outperforms the for-

mer significantly.

2 RELATEDWORK

There is no existing work dedicated to training data augmentation

for the supervised code translation task. Thus, we review related
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areas of program augmentation that are mainly used for the code re-

pair application. Then we investigate data augmentation techniques

that are prevalent in natural language translation.

2.1 Program data augmentation

The existing data augmentation methods for code mostly serve the

application of code repair [5, 39]. The methodology is to create bug-

fixing rules to generate more training data. Allamanis et al. created

a more diversified and challenging dataset for the BugLab code

repair model by augmenting their benchmark with mutated and

mutilated programs generated by human-written rules [5]. These

rules include changes to the original program’s syntax, such as

swapping the order of arguments in a function call, changing the

name of a variable, or introducing small, intentional errors into

the code, such as typos or incorrect indentation. The more recent

work on MultIPAs also uses rules to generate additional training

data for the learning task of grading introductory programming as-

signments [39]. They expand on the rules introduced by Allamanis

et al. [5] with six syntactic mutations that preserve the program’s

semantics and three semantic mutilations that introduce faults in

the introductory programming assignments. As code translation

aims at valid code fragments the methodology should avoid code

mutilation as done for augmenting code repairing datasets. To

apply data augmentation to other tasks, such as method naming,

code commenting, and code clone detection, Yu et al. leverage a

pre-defined set of syntax-based rules to perform several program

transformations to mutate programs written in Java [49]. All of

these approaches are language and task-specific and require human

expert efforts in generating rules. The performance heavily relies

on the quality and quantity of these rules. Instead of manually creat-

ing rules, Liu et al. extract Java code snippets from Stack Overflow,

and directly mine repair patterns from these code samples [29]. In

our work, we introduce two novel code augmentation approaches

tailored to the code translation task. One approach leverages spe-

cific rules for rule-based augmentation and inspired [29], and the

second approach leverages Big Code to mine translations.

2.2 Data augmentation for natural language

translation

There are two types of methods for generating training data for nat-

ural language translation. The first is back-translation [13, 37, 45]

and the second is word substitution [12, 20, 48]. Back-translation

methods translate a sequence into the target language and then back

into the original [45]. Specifically, they first use the current dataset

to train a neural machine translation model. Then it obtains more

mono-language data in the target language, which is usually a high-

resource language, and uses the trained model to back-translate the

data to the source language. Finally, these new pairs are added to the

original dataset as augmentation. Chinea-Rios et al. select valuable

target language instances from a large pool of source sentences,

using embedding representations for back-translation [13]. Li et

al. enhance back-translation with fuzzy string matches, improving

neural machine translation’s noise resistance while maintaining

compact models [26]. Vaibhav et al. introduce a heuristic model

for adding social media noise to text in labeled back-translation,

showing that the right amount of noise enhances model robustness

based on the dataset condition and model characteristics [47]. Li et

al. use back-translation and self-learning to generate augmented

training data [25]. Their method generates diverse synthetic paral-

lel data on both source and target sides using a restricted sampling

strategy during the decoding phase. Recently, Nguyen et al. pro-

posed a method that is similar to back-translation [37]. Instead of

using external mono-language data, they trained several forward

and backward models and merged the original training data with

the predictions of these models. While back-translation is the most

common method for data augmentation in natural language, it is

often vulnerable to errors in initial models. This is a common prob-

lem of self-training algorithms. Especially in code translation, this

problem aggravates as parallel data is much more scarce.

Word substitution is an augmentation technique that replaces words

in both source and target sentences with new vocabulary-matched

words. Wang et al. introduce a randomized approach [48], while

Fadaee et al. substitute low-frequency words in source sentences,

predicting new words using contextually generated contexts [18].

Gao et al. employ a contextual mixture of related words to create the

source sentence and randomly replace corresponding words [20].

Duan et al. propose a syntax-aware augmentation method, calcu-

lating word importance rather than random selection [17]. Cheng

et al. use an adversarial network to generate new source sentences

and implement interpolation with adversarial examples [12].

While the aforementioned methods work well for natural languages

where there is more wiggle room with regard to noise, their ap-

plication in programming languages is risky as tiny mistakes can

cause the program failure. In fact, code generated by these methods

is often faulty or cannot be effectively used as training data.

3 FOUNDATION

In this section, we lay the necessary foundations for augmenting

training data for supervised program translation. First, we give an

overview of existing program translation methods, and then we

introduce code retrieval and motivate the methods applied in our

work.

3.1 Program translation

The goal of program translation is to rewrite code in another desired

programming language without changing the semantics. Consider

the following small example of translating code from Java to C#:

This is a Java code snippet:

public class Example {

public static void main(String[] args) {

int x = 5;

System.out.println(x);

}

}

And this is the C# translation of the above snippet:

using System;

public class Example {

public static void Main() {

int y = 5;

Console.WriteLine(y);

}

}

Both snippets implement the same function, but in C#, the name of
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Figure 1: Workflow of code-to-code search engines

Main method is capitalized, while Java uses lowercase main. In C#,

Console.WriteLine() is used instead of System.out.println()
in Java to output text to the console. And in order to use Console.
WriteLine(), you need to include the using System;. The vari-
able names are different in both programs but do not affect the

semantics, and thus the translation is still valid.

3.2 Supervised program translation

There is plenty of work on supervised translation models, for ex-

ample, Nguyen et al. utilized the phrase-based statistical machine

translation (SMT) model to convert Java code to C# by applying it

to the lexemes of the source code [34]. They later proposed a multi-

phase, phrase-based SMT method that deduced and utilized both

structure and API mapping rules [35]. However, these methods are

restricted to languages that are either structurally or textually simi-

lar, such as Java and C#. To solve this problem, Chen et al. proposed

a tree2tree model, which binary-encodes the code tree of a code

fragment and translates it using an LSTM-based encoder-decoder

model [11]. This model can be applied to more flexible types of lan-

guages and achieves higher accuracy on similar benchmarks [11].

As we only perform changes on the training dataset, not on the

translation model, our methodology is model-independent. In our

experiment, we chose the tree2tree model as our base model to

test the augmentation as it is the state-of-the-art fully-supervised

model.

3.3 Code retrieval systems

Since one of our augmentation methodologies is retrieval-based, we

also give an overview of code retrieval techniques to set the context.

In our translation use-case, we have a code corpora at our disposal,

we need a code-to-code search system in contrast to description-

to-code approaches that require user annotations [27]. There are

mono-language and cross-language code-to-code retrieval systems.

An example of a mono-language search system is FaCoY [23]. Mono-

language systems aim at finding code that implements the same

functionality in the same language repository. For example, if the

input code is written in Java, the search engine will retrieve an-

other Java code with similar semantics (red path in Figure 1 is

the simplified workflow). In cross-language search, the goal is

to find code snippets that implement the same functionality in

a different language. For example, if the input code is written in

Java, the retrieved code should be written in another target lan-

guage such as C# (blue path in Figure 1). Examples of such systems

are YOGO [41],COSAL [33], and our previous work RPT [9] and

BigPT [8]. RPT can also be used as a mono-language system.

In our augmentation system, we leverage both, a mono-language

search engine to find similar code to the source code to limit the

dataset scope, and for the corresponding translation, we require a

cross-language search engine to retrieve the translation in the target

language. Since wewant to perform the augmentation with the least

human effort and make the most of the existing resources, we need

code-to-code search engines that are fully automatic and only need

Big Code resources as input. This eliminates FaCoY and YOGO from

our choices. FaCoY necessitates Q&A posts from Stack Overflow as

query supplements [23]. YOGO provides a cross-language graph

representation, but it necessitates handwritten semantic rules and

patterns in a domain-specific language for each query [41]. Recent

work COSAL proposes a cross-language technique that uses both

static and dynamic analyses to identify similar code and does not

require a machine learning model [33]. However, it cannot be easily

generalized to other languages except Java and Python, which have

been studied in their work. Our fully automatic search engines

RPT [9] and BigPT [8] both can serve our retrieval-based augmen-

tation methods, as they only require raw code as the search query.

They are both language-independent. Therefore, in our work, we

use RPT for mono-language retrieval and BigPT for cross-language

retrieval out of convenience. Both are treated as black boxes in our

approach.

4 METHODOLOGY

In this work, we address training data augmentation for supervised

code translation. The input to our approach is a parallel training

dataset for a code translation model. Each data point in the dataset

is a pair of code snippets such that one snippet is in the source

language and the other is its translation in the target language. Our

goal is to find new data points based on the training dataset to

augment it so that the performance of the code translation model

can be improved. To achieve this, we have to augment the parallel

dataset in a way that unseen relationships between source and

target language are introduced to the model, while the general

distribution of data points is not significantly shifted.

To address this problem we explored two different avenues inspired

by natural language translation: first, we investigate rule-based

methods (Section 4.1) and adapt standard word masking and back-

translation to code-specific tasks. We suggest a set of code trans-

formation rules specific to code translation by modifying other

existing ones that are used for code fixing [5, 39]. These rules make

slight changes to the tokens and structures of a program. Given

the fact that the rule-based method requires human interaction to

define rules and limits the type of augmentation, we further ex-

plore data augmentation through code retrieval (Section 4.2). Due

to the large quantity and scope of the online big code resources, we

propose to distill them for additional snippet pairs. This distillation

should lead to data points that enrich the original training set with

novel unseen relationships while preserving the distribution of the

original training set.

4.1 Rule-based data augmentation

The classic and straightforward way of augmenting data is to create

rules. Code transformation rules can be applied to any existing

data point to deterministically obtain new points from the current
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dataset. As no prior set of transformation rules has been created

specifically for the program translation task, we created them with

the following set of requirements:

(1) the rules have to be simple and automatically applicable to the

code avoiding manual inspection;

(2) the rules should be designed specifically for code translation.

Unlike existing classification tasks for code repair, code transla-

tion is a task that uses a parallel dataset where input and output

are both program data. The goal of a translation model is to

learn the mapping between two languages. There are already

some attempts on data augmentation for bug detection [5, 39].

Some of their rules are to randomly add bugs to the code, which

cannot be directly used in the code translation use case because

it creates non-functional code, which is also not easy to map in

a different language. Thus, the rules have to be designed in a

way so that they are transferrable from the source to the target

language or vice versa;

(3) the rule-generated code should be semantically functional. If

the code snippets do not semantically make sense, they cannot

be regarded as programming language text, which will not be

suitable for training a program translation model;

(4) the rules should bring variety to the original dataset so that the

model can learn new relationships between the two languages.

For example, some rules in the bug detection augmentation are

swapping the if-else branch and declaring dummy variables.

Both are unnecessary in the context of translation as the original

dataset typically already captures such relationships;

(5) the rules should not be language specific so that they can be ap-

plied in arbitrary language pair settings (imperative languages).

Thus, we avoid rules that involve specific grammar only in

certain languages.

Based on all the aforementioned requirements, we took an existing

rule set designed for augmenting training data for bug detection [5,

39] and adapted them to the use case of code translation. First, we

removed all rules that aim at introducing bugs, as in code translation

we want to ensure the model learns valid translations of functional

code. We further overtook and merged similar types of rules, such

as operator change and operator mirroring. Finally, we added novel

rules that deal with code block splitting and program-level merging.

All in all, we create the following four data augmentation rules for

the code translation task:

(1) Reverse: We reverse the logic of a conditional statement, e.g. >

to ⩽, == to ! =, true to false, etc. Then we change the corre-

sponding statement in the code snippet in the target languages.

We only make revisions on the conditional statements because

the parser tool can identify the corresponding statement more

easily and more accurately than going through the whole snip-

pet. We use the mutation operators to implement this rule in

the experiment [22].

Example1:

// original code
if (x == 5)

// transformed code
if (x != 5)

(2) Merge: We implement the merging rules on two levels:

• Control structure level: we merge the content for conditional

statements. When there are two conditional statements in

the code snippet, we merge them into one statement using

the && operator.

Example2:

// original code
if (x > 5) { i ++; }

if (y < 10) { System.out.println("pass"); }

// transformed code
if (x > 5 && y < 10) {

i ++;

System.out.println("pass");

}

• Program level: we merge two code snippets into one by sim-

ply concatenating them. We only implement this rule on the

code snippets that have fewer than 10 lines so that the com-

plexity of the code snippets is not increased significantly.

Then we concatenate the corresponding parts in the target

code snippet.

(3) Split: the reverse of structure level Merge rule, we split a condi-
tional statement if there are two conditions connected by &&,

then change the corresponding target code snippet.

(4) All: the combination of the above three rules. We collect the

code generated by any of the aforementioned rules.

These rules are specifically designed for programming languages,

but general to common imperative languages. Thus, they can be

applied to both the input code and its translation, maintaining the

logical semantics between source and target.

4.2 Retrieval-based data augmentation

In addition to the rule-based method, we explore the retrieval-based

data augmentation method that leverages Big Code and develop an

advanced approach. Our assumption is that the large code reposito-

ries contain sufficiently interesting code fragments that can comple-

ment existing training datasets. For retrieval-based augmentation,

we directly search for code pairs from the big code databases using

mono- and cross-language code search tools. The retrieved code

pairs will be added to the original dataset as augmented data. To

protect the distribution of the original dataset, we do not randomly

pick data points from the big code database. Instead, we aim to find

translation pairs that not only introduce new information to the

model but are also similar to data points of the original training

dataset. Thus, for each data point in the original training data, we

first search with a mono-language code-to-code retrieval engine for

a code snippet similar to the code fragment in the source language.

Then, we use a cross-language retrieval engine to find a potential

translation in the target language. The resulting pair will be used

to augment the original dataset. This way, no explicit rules need to

be created.

To implement such a data augmentation strategy, we first need code

retrieval tools that can perform both mono-language retrieval and

cross-language retrieval to search for potential translation. Further,

we need optimization criteria that select the most suitable candi-

dates among retrieved solutions. In this section, we first show the

workflow of a naive retrieval-based method without optimization
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criteria for selecting candidates. After that, we discuss our opti-

mization criteria and our improved retrieval-based methodology in

detail.

4.2.1 Workflow of the naive retrieval-based methodology. Our goal
is to find new snippets in source and target language from Big Code.

The input is the training dataset of a code translation model. The

dataset consists of a set of translation pairs: (𝐴1, 𝐵1), (𝐴2, 𝐵2), .... For
any pair (𝐴, 𝐵), 𝐴 is a code snippet written in the source language,

and 𝐵 is its translation in the target language.

Themain idea here is to choose the best translation locally and work

forward with that choice. In our implementation, we directly lever-

age our mono-language code search tool [9] and cross-language

code search tool [8] to formulate a retrieval-based augmentation

pipeline for the code translation model. In the naive workflow, we

greedily fetch the top result of these tools without any modification.

The workflow is shown as a red pipeline in Figure 2. The approach

consists of two steps. First, to preserve the original data distribution,

we use a mono-language code search tool to retrieve a code snippet

similar to source code𝐴 from the big code database. By default, this

process returns the top-1 similar code snippet 𝐴′
. Second, we find

a code snippet that can be regarded as the translation of 𝐴′
(but

written in the target language) using a cross-language search tool.

We denote it as 𝐵′ and consider it a translation of 𝐴′
. The result of

this process is a pair of code samples (𝐴′, 𝐵′) that is similar to the

original pair (𝐴, 𝐵). We add the new pair to the original dataset to

generate the augmented dataset.

To augment the dataset withmultiple code pairs (𝐴1, 𝐵1), (𝐴2, 𝐵2), ...,
we apply the aforementioned protocol to a random sample. The

amount of data points we pick depends on the augmentation ratio

we want to obtain, i.e. the ratio of the original data and the augmen-

tation data. For example, in the default setting of most scenarios,

the ratio is 1 : 1, i.e., one augmented point per existing training

data point.

Limitation of the naive workflow. In the naive workflow, we

only select the local optimum based on the existing retrieval sys-

tems. In Figure 3a, (𝐴′
1
, 𝐵′

1
) would be the solution of the naive

approach, i.e., 𝐴′
1
is most similar to 𝐴 and 𝐵′

1
is the best translation

for 𝐴′
1
. However, (𝐴′

1
, 𝐵′

1
) might not be the most suitable pair. 𝐵′

1

might be just by chance the best possible translation for 𝐴′
1
, but for

a different 𝐴′
𝑖
, we might be able to find a more accurate translation

𝐵′
𝑖
Further, the similarity of 𝐵′

1
might diverge more from 𝐵 than 𝐴′

1

does from𝐴. Such a point might shift the distribution of the training

dataset and introduce noise. In contrast considering (𝐴′
2
, 𝐵′

2
), while

𝐴′
2
is less similar to the original 𝐴 compared to 𝐴′

1
, the pair might

be more suitable because its similarity to𝐴 resembles the similarity

between 𝐵 and 𝐵′
2
and 𝐵′

2
is a more accurate translation for𝐴′

2
than

𝐵′
1
is for 𝐴′

1
.

Following the previous thoughts, there are two more heuristics to

consider to find the optimal pair. For example, in Figure 3b, (𝐴′
1
, 𝐵′

1
)

is the most accurate translation as the distance between 𝐴′
1
and 𝐵′

1

is smallest among all pairs. But it is too far away from the original

translation pair (𝐴, 𝐵). The translation pair (𝐴′
2
, 𝐵′

2
) could be an

alternative choice. Although the translation is not as accurate as

(𝐴′
1
, 𝐵′

1
), it better matches the characteristics of the original dataset.

Thus, we need to also capture this aspect when selecting the optimal

pair.

A simple way to account for this is to consider the similarity be-

tween 𝐴 and 𝐴′
, and the similarity between 𝐵 and 𝐵′. However,

in this approach, we would only consider the local similarity for

an individual 𝐴 and individual 𝐵, ignoring their fit as a pair. Theo-

retically, 𝐴′
and 𝐵′ could entirely diverge from each other. Thus,

we also need to make sure the code pair as a whole is similar to

the original pair. For example, in Figure 3c, 𝐴′
1
is most similar to

𝐴, 𝐵′
1
is the most similar to 𝐵. However, the similarity of 𝐴 and 𝐴′

1

is very distinct from the similarity between 𝐵 and 𝐵′
1
. While 𝐴′

2

and 𝐵′
2
are less similar to 𝐴 and 𝐵 respectively, the relative distance

between 𝐴 and 𝐴′
2
resembles the distance between 𝐵 and 𝐵′

2
. Thus,

it is more likely that (𝐴′
2
, 𝐵′

2
) can better align with the original data,

i.e., we can regard the (𝐴′
2
, 𝐵′

2
) as a pair that is more similar to

the original pair (𝐴, 𝐵). One can estimate this divergence by the

difference between the two similarity vectors.

To address the aforementioned cases, we introduce a new workflow

that considers this spectrum of candidates and uses an optimization

function to select the most promising data point for augmentation.

4.2.2 Workflow of the optimized retrieval-based methodology. We

consider a starting dataset 𝐷0 = (𝐴𝑖 , 𝐵𝑖 ) code samples 𝐴𝑖 in the

source language and 𝐵𝑖 in the target language. We aim to augment

this original dataset with appropriate tuples extracted from an

external dataset 𝐷𝑎𝑢𝑔 , which contain tuples in source and target

language, correspondingly.

Our approach has a two-stage workflow for generating an individ-

ual augmented tuple: (1) For a tuple (𝐴, 𝐵) ∈ 𝐷0, we generate the

set of potential candidates for augmentation obtained from 𝐷𝑎𝑢𝑔(2)

we solve an optimization objective to find one pair of optimal code

snippets for augmentation.

The blue pipeline in Figure 2 shows the workflow for generating the

initial set of candidates. In contrast to the greedy approach, which

only keeps the top-ranked output of a search as an augmentation

candidate, we use the mono-language code search tool to retrieve

top-𝐾 results𝐴′
1
, ..., 𝐴′

𝐾
to build the candidate set. Then for each𝐴′

𝑖
,

we use the cross-language code search tool to retrieve the top-𝐾

translations for it. In the end, we obtain 𝐾 × 𝐾 translation pairs

(𝐴′
1
, [𝐵′

1,1
, ..., 𝐵′

1,𝐾
]), ..., (𝐴′

𝐾
, [𝐵′

𝐾,1
, ..., 𝐵′

𝐾,𝐾
]) which we denote as

𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 . In our experiments, we set 𝐾 to 10, so we obtain 100

translation pairs as candidates for each sample (𝐴, 𝐵) taken from

the original dataset. Users can set the 𝐾 to their preferred value

based on their computation resources and their needs.

4.2.3 Objective functions for selecting the optimal translation pair.
Now, we discuss how we select the optimal translation pair from

the 𝐾 × 𝐾 candidate space 𝐷𝑚𝑎𝑡𝑐ℎ . Starting off with a code pair

(𝐴, 𝐵) ∈ 𝐷0 that defines the context for a new augmentation tu-

ple, our goal is to select a tuple (𝐴′, 𝐵′) from the candidate set

𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (generated as discussed in Section 4.2.2) such that the

two pieces of code 𝐴′
and 𝐵′ are very good translations of each

other, and each individual piece of code shares the same common-

alities with its counterpart from the original sample 𝐴 and 𝐵. In

other words, if 𝐴′
is different in some aspects from 𝐴, we want 𝐵′

to differ in the same manner and not completely diverge.

For this purpose, we need to assess the distance or similarity be-

tween each individual code snippet 𝐴, 𝐵, 𝐴′
, and 𝐵′ with a univer-

sally usable similarity function 𝑆 : 𝐷×𝐷 → R where 𝐷 = 𝐷0∪𝐷𝑎𝑢𝑔
for code pieces across languages. Here, we made a practical choice
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Figure 2: Workflow of retrieval-based augmentation for code translation

(a) Greedy successive

selection of source

and target.

(b) Pick the pair with

the most promising

translation

(c) Pick pairs where

source and target are

equidistant to the

original point

Figure 3: Identify the optimal augmentation data

by picking the similarity function implemented in BigPT [8], which

considers structural and textual aspects of code snippets for its

calculation. We use this similarity function, denoted as 𝑆 in three

different ways to define three independent optimization criteria

that fulfill our requirements.

Considering the context (𝐴, 𝐵) ∈ 𝐷0 and a sample from a search

space (𝐴′, 𝐵′) ∈ 𝐷𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 we consider
(1) 𝑓1 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐵′) as a measure of similarity within the new

pair,

(2) 𝑓2 (𝐴′, 𝐵′) = 𝑆 (𝐴′, 𝐴) + 𝑆 (𝐵′, 𝐵) as a measure of similarity be-

tween the new tuple and context and

(3) 𝑓3 (𝐴′, 𝐵′) = −|𝑆 (𝐴′, 𝐴) − 𝑆 (𝐵′, 𝐵) | as an alternative similar-

ity measure within the new pair. Intuitively, we aim to find

examples where 𝐴 is just as similar to 𝐴′
as 𝐵 is to 𝐵′.

Given the three objective functions that map the search space into

R, we can formalize our task as a multi-objective optimization

problem given by the following statement

max𝑓1 (𝐴′, 𝐵′),max𝑓2 (𝐴′, 𝐵′),max𝑓3 (𝐴′, 𝐵′),
𝐴′ ∈ 𝐷𝑎𝑢𝑔, 𝐵′ ∈ 𝐷𝑎𝑢𝑔

We rely on optimizing a scalarized objective 𝑓𝑜𝑏 𝑗 = 𝛼 𝑓1 + 𝛽 𝑓2 + 𝛾 𝑓3
where 𝛼 , 𝛽 and 𝛾 are set to 1 by default. We have tested different

methods for scalarization 𝛼, 𝛽,𝛾 ∈ {0, 1} to evaluate the benefits

from each component with the experiments discussed in Section 5.2.

Example 3: A translation pair from Java to C# in the training set:

//−−−Java code−−−
private void createTypedPrimitiveArray ( ItemArrays item ) {

item._typedPrimitiveArray = new int [ data.length ] ; }

//−−−C# translation−−−
private void CreateTypedPrimitiveArray (

IntHandlerUpdateTestCase.ItemArrays item ) {

item._typedPrimitiveArray = new int [ data.Length ] ; }

Based on this pair, our method retrieves a similar pair for augmen-

tation:

//−−−Java code−−−
private void createTypedPrimitiveArray ( ItemArrays item ) {

item._typedPrimitiveArray = new double [ data.length ] ; }

//−−−C# translation−−−
private void

CreateTypedPrimitiveArray(FloatHandlerUpdateTestCase.ItemArrays

item) {

item._typedPrimitiveArray = new float[item.data.Length]; }

This new pair is similar to the original data, yet it cannot be gener-

ated by any of the rules presented in Section 4.1 as it would require

knowledge of how different data types can be mapped across pro-

gramming languages without introducing errors. The model can

now learn the relationship between the types double and float, and

that float is more similar to double than integer. Mixing up floats

and integers is a common translation mistake in existing translation

models [35] and can be avoided with such additional data points.

5 EXPERIMENTS

We conducted several experiments to evaluate the effectiveness

of all the mentioned data-augmentation strategies for the super-

vised code translation task. As there are no existing data augmen-

tation methods for supervised code translation, we compare the

rule-based approaches and the optimized retrieval-based method-

ology CTAug (Data Augmentation for Code Translation Model)

to other NLP baselines. To explore more possible strategies to im-

plement the retrieval-based methodology, we also conducted sev-

eral micro-benchmarks by changing the objective functions of the

retrieval-based method, the augmentation modes, and the amount

of augmented data. In the end, we discuss the limitations. In our

experiments, we use the state-of-the-art model Tree2tree [11] as

the underlying code translation model. We published our code and

model on our repository
1
.

Datasets. For our experiments, we use two different types of

datasets. For training and testing the model, we directly use

the datasets from the tree-to-tree code translation work [11]. These

datasets are also used in other program translation papers [34, 35].

They were originally built based on several authoritative open-

source projects, which have both official Java and C# versions.

Similar to the related work we consider the task of translating Java

to C# in order to keep consistency to baseline. While, our method-

ology is language-independent, and the code retrieval systems we

implement in our experiment (RPT [9] and BigPT [8]) can also

1
https://github.com/LUH-DBS/Binger/tree/main/CTAug

https://github.com/LUH-DBS/Binger/tree/main/CTAug
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Table 2: Statistics of Java to C# dataset [11]

Dataset Lucene POI IText JGit JTS ANTLR

# of data pairs 5516 3153 3079 2780 2003 465

apply to multiple languages, we cannot provide evidence for other

language pairs. The statistics of these datasets are shown in Table 2.

The second dataset is the big code database that we use to retrieve

similar code in both the same and different languages. Similar to

our prior work [8], we generate the database from the Public Git

Archive (PGA) - a dataset with more than 260,000 top bookmarked

Git repositories from GitHub [3, 32]. We fetch the projects written

in Java and C# and clean them by removing duplicate and corrupted

files. In addition, we also remove the projects that occur in the Java-

C# dataset to avoid the information leak. Finally, we obtain a 68GB

dataset with 5,891 projects and around 2,691 functions for each

program. We generated the program representation for each code

snippet and indexed the data using BigPT [8].

Default setting of CTAug. In the default augmentation mode,

we implement the system in a straightforward way: CTAug first

retrieves similar source code from the big code database, then re-

trieves its translation (we also evaluated other modes in Section 5.3).

We use the multi-objective optimization function 𝑓𝑜𝑏 𝑗 mentioned

in Section 4.2.3 as the default objective because it addresses all

possible optimizations (we also evaluated other objective functions

in Section 5.2). By default the augmentation ratio is 1:1 as suggested

in prior work [20, 25, 48] (Section 5.4).

Metrics. We use the following metrics that have been traditionally

used for measuring the quality of program translation [11, 35]:

• Program accuracy (PA) is the percentage of the predicted trans-

lation that is the same as the ground truth. PA is an underesti-

mation of the true accuracy based on semantic equivalence. It

does not account for programs that only differ in writing habits

and style. This metric is more meaningful than other previously

proposed metrics, such as syntax-correctness and dependency-

graph-accuracy, which are not directly comparable to semantic

equivalence [8, 11, 35]. We could not use computational accu-

racy [43] because the ground truth data is not always executable

without its entire project context.

• Token accuracy refers to the percentage of the tokens that are

exactly the same as the ground truth [11]. We measure it as in

the Tree2tree work [11] to provide some additional insights into

the performance.

• CodeBLEU is the BLEU score adaption for code, which is widely

used in code synthesis [42]. It is the weighted combination of

four components: original BLEU, n-gram matching, syntactic

AST matching, and semantic data-flow matching.

To ensure the statistical significance of our results, for each test,

we did 10 experiment runs with different random seeds and the re-

ported numbers in this paper are the average results. Moreover, for

the results of our system CTAug, we also measured the standard
deviation of reported results.

5.1 Comparison with baselines

We evaluate the effectiveness of CTAug on the datasets fromTable 2.

For each code pair in the dataset, we retrieved an augmented pair

from the big code database and added the new pair to the original

dataset. Then we train the tree-to-tree code translation model on

the augmented dataset. For each experiment, we apply ten-fold

validation onmatched pairs. We compare CTAug to adapted natural

language augmentation methods and our rule-based approach.

5.1.1 Natural language augmentation methods. We implement the

following two mainstream methods as our baselines:

(1) Word masking (WM): word masking is one of the most used

basic word-level augmentation methods. It randomly removes

a word in a sentence to create a new sentence as the augmenta-

tion data. We implement this method on both source and target

code with the assistance of the text data augmentation tool

nlpaug [31] to generate new data as augmentation data. Consid-

ering the length of each line in the code snippet, we regard two

lines as a natural language sentence. Note that, it is different

from the word masking used in unsupervised translation, which

aims to recover the masked word in mono-language to improve

the language model for one specific language.

(2) Back-translation (BT): back-translation is the most widely-used

data augmentation method on natural language translation

tasks. Therefore, we attempt to implement it on code as a base-

line comparison. We train the tree-to-tree model on the original

Java to C# dataset in the reverse direction, i.e. C# code is the

input, and Java code is the output. Then we randomly pick

the C# code from the big code database PGA, then use this

trained model to back translate these C# code snippets to Java

code. We use these newly matched Java-C# code pairs as the

augmentation data to be added to the original dataset.

5.1.2 Rule-based baselines. As discussed in Section 4.1, we defined

four revision rules for code. For each code snippet, we tested the

application of each individual rule and generated a data point upon

success. We use ANTLR [1] to parse the generated code so that we

can remove those with incorrect grammar. Then we augment the

training dataset with the remaining ones. In our experiments, the

amount of generated augmented data by only Reverse rule is 46%.
We obtain 73% using bothMerge rules and 22% using the Split rules.
As a result, in the All augmented dataset, the ratio of original data

and augmented data is around 1:1.4.

Results. The performance of the baselines is shown in Table 3.

The first part of the table shows the average PA of each baseline.

CTAug significantly enhances the original model by increasing the

accuracy by ~15%. For the ANTLR dataset, the improvement even

reaches ~35% because the original dataset is very small and the data

augmentation contributes a large number of training data.

Both natural language baselines do not perform well for program-

ming language augmentation. The application even harms the re-

sults in some cases. Augmentation with word masking results in

5-10% performance loss. As previously discussed, simply masking

one word can harm the whole structure of the code and damage

the code. As a result, the model produces more wrong outputs. The

back-translation model performs better than word masking as it
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Table 3: Performance comparison with the baselines (In

brackets are the SD of the results)

Dataset w/o

Aug

CTAug
NLP Methods Rule-based methods

WM BT Reverse Merge Split All
Metric: Program Accuracy

Lucene 72.8%
85.8%

(1.8%) 63.1% 70.2% 72.7% 72.0% 72.8% 75.9%

POI 72.2%
86.1%

(2.6%) 62.4% 69.9% 73.6% 70.3% 72.5% 75.1%

IText 67.5%
83.2%

(0.9%) 61.5% 66.3% 68.9% 66.9% 67.8% 72.8%

JGit 68.7%
81.7%

(1.2%) 59.3% 65.4% 70.3% 70.2% 69.1% 72.8%

JTS 68.2%
82.3%

(2.2%) 61.2% 67.7% 70.9% 69.8% 69.6% 73.3%

ANTLR 31.9%
66.2%

(2.3%) 25.3% 31.9% 33.6% 36.7% 32.7% 40.1%

Metric: Token Accuracy

Lucene 85.3%
92.3%

(1.6%) 80.3% 87.7% 88.3% 87.1% 88.9% 90.1%

POI 84.8%
94.8%

(2.7%) 81.1% 78.2% 87.2% 85.2% 87.3% 91.7%

IText 80.3%
93.3%

(0.9%) 77.2% 83.1% 81.3% 79.8% 79.2% 85.6%

JGit 81.7%
88.9%

(1.1%) 73.7% 82.3% 84.2% 82.5% 82.5% 88.2%

JTS 82.1%
90.2%

(2.2%) 72.1% 82.8% 83.5% 81.2% 83.6% 89.7%

ANTLR 70.2%
80.1%

(2.6%) 57.2% 69.2% 73.8% 75.7% 74.9% 78.3%

Metric: CodeBLEU

Lucene 87.6%
95.3%

(2.1%) 84.4% 91.2% 92.8% 89.5% 92.6% 94.2%

POI 88.6%
96.7%

(2.8%) 85.4% 81.7% 90.0% 88.9% 91.3% 94.5%

IText 84.8%
96.5%

(1.0%) 81.3% 87.8% 85.6% 83.5% 84.3% 89.2%

JGit 85.1%
92.4%

(1.6%) 78.9% 86.3% 88.7% 87.2% 85.9% 91.6%

JTS 86.7%
93.6%

(2.1%) 75.7% 87.1% 88.0% 84.1% 85.8% 93.1%

ANTLR 75.2%
83.9%

(2.5%) 62.2% 73.3% 78.1% 80.1% 77.6% 82.8%

leverages real human-written C# code from the database. How-

ever, it still harms the results by up to 5%. We observed that the

code snippets that cannot be correctly translated by the original

model mostly cannot be correctly translated after augmentation

too. Therefore, the performance of the back-translation method

could be affected by the vulnerability to the quality of the original

model. Having a high-quality initial translation model is difficult

because of the rather small size of the initial training dataset [11].

In conclusion, straightforward adaptation of natural language data

augmentation methods on code data is not effective.

Augmentation with rules only slightly improves the performance

of the model. For Reverse, Merge, and Split rules, the performance

is similar to the original dataset. One possible reason is they do

not contribute additional new data. The Split rule generally only

contributes 22% more training points, which explains why it per-

forms the worst. Another reason might be that these rules do not

introduce new information into the model. The rules might already

have been learned by the model with the existing training data. In

some cases, these rule-based methods might even harm the results,

for example, Merge rule on the POI dataset. The possible reason

is that repetition of similar training instances causes overfitting

during training so the model cannot generalize well. Putting all

Table 4: Ablation study on objective functions

Dataset w/o Aug

Objective

Global_1
(default) Global_2 Global_3 Greedy

Lucene 72.8% 85.8% 77.1% 82.2% 75.6%

POI 72.2% 86.1% 79.8% 83.6% 78.3%

IText 67.5% 83.2% 74.3% 78.8% 71.2%

JGit 68.7% 81.7% 82.1% 76.9% 69.9%

JTS 68.2% 82.3% 75.0% 79.5% 72.8%

ANTLR 31.9% 66.2% 52.5% 60.3% 42.2%

rule-based results together ( All) there is a visible performance gain

which still is far below the retrieval-based method.

In the following parts of Table 3, we also show the token accuracy

and the CodeBLEU score of each method. We can see that although

the scores are different from program accuracy, the retrieval-based

augmentation method still outperforms all other methods. The to-

ken accuracy shows that the results are satisfactory with regard

to the textual similarity. The good performance on CodeBLEU fur-

ther shows the augmented model can also address the syntax and

semantics of the code.

As for the statistical significance of the CTAug results, we show the

standard deviation (SD) based on 10 test runs for each dataset and

metric in Table 3. We put the SD value under each result. We can

see all of our experiment results are within a standard deviation

under 3.0%. Considering the average performance distance to the

baselines and the maximum standard deviation, we can conclude

that the performance gains are significant.

5.2 Comparing different objective functions

As discussed in Section 4.2, we implement an objective 𝑓𝑜𝑏 𝑗 =

𝛼 𝑓1 + 𝛽 𝑓2 +𝛾 𝑓3 to select the globally optimal data pairs for augmen-

tation. We considered three objective functions together to ensure

translation quality, preservation of the original data distribution,

and data variety. To show the impact of each individual objective,

we conduct an ablation study by changing the scalarization param-

eters 𝛼 , 𝛽 , and 𝛾 . In the default CTAug, we set all parameters to 1.

Therefore, the default objective is:

• Global_1 (default): 𝑓𝑜𝑏 𝑗 = 𝑓1 + 𝑓2 + 𝑓3.
For the ablation study, we keep the first objective 𝑓1 (𝐴′, 𝐵′) =

𝑠𝑖𝑚(𝐴′, 𝐵′) since the accuracy of the translation is always essential.

As a result, we experiment with the following objectives:

• Global_2: 𝑓𝑜𝑏 𝑗 = 𝑓1+𝑓2 = 𝑠𝑖𝑚(𝐴′, 𝐵′)+𝑠𝑖𝑚(𝐴′, 𝐴)+𝑠𝑖𝑚(𝐵′, 𝐵) (𝛼 =

1, 𝛽 = 1, 𝛾 = 0).

In this objective, we only consider the quality of the translation of

the new pair, and the similarity between each new code snippet

and the original one. We abandon the third objective.

• Global_3: 𝑓𝑜𝑏 𝑗 = 𝑓1+𝑓3 = 𝑠𝑖𝑚(𝐴′, 𝐵′)−|𝑠𝑖𝑚(𝐴′, 𝐴)−𝑠𝑖𝑚(𝐵′, 𝐵) | (𝛼 =

1, 𝛽 = 0, 𝛾 = 1).

In this objective, we leave out the second objective

In addition, we also test the greedy strategy that does not use any

of these objectives.

Result. Table 4 shows that in all except one case, the default ob-

jective function outperforms all the other variations. The accuracy
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Table 5: Performance of different augmentation modes

Dataset

New similar source Existing source

𝐴 first 𝐵 first 𝐴′
first 𝐵′ first

Lucene 85.8% 87.1% 74.5% 75.6%

POI 86.1% 86.3% 68.1% 73.1%

IText 83.2% 84.5% 72.2% 68.9%

JGit 81.7% 80.2% 67.3% 66.7%

JTS 82.3% 83.7% 69.5% 68.2%

ANTLR 66.2% 69.9% 35.7% 37.1%

difference between the default objective and the Global_2 objec-

tive is within 10%. The accuracy difference between the default

objective and the Global_3 objective is within 5%. Thus 𝑓3 (𝐴′, 𝐵′) =
−|𝑠𝑖𝑚(𝐴′, 𝐴) − 𝑠𝑖𝑚(𝐵′, 𝐵) | has a higher impact than 𝑓2 (𝐴′, 𝐵′) =

𝑠𝑖𝑚(𝐴′, 𝐴) + 𝑠𝑖𝑚(𝐵′, 𝐵). The possible reason is that we already

performed pre-selection using the retrieval tools to select the top

100 translation pairs. The retrieval tools guarantee the similarity

between the 𝐴 and 𝐴′
and the similarity between the 𝐴′

and 𝐵′.
Therefore, 𝑠𝑖𝑚(𝐴′, 𝐴) is alreadymaximized during the pre-selection,

removing this component from the objective does not affect the

result dramatically. Since our results are not deterministic but prob-

abilistic, there could be some minor deviations. For example, on the

JGit dataset, the result of Global_2 is 0.4% higher than the default

objective.

Furthermore, we can also see that greedy performs in general worse

than any variation of global optimization. This result shows that it

is worthwhile to consider the similarity alignment of the translation

pairs from all three similarity perspectives. The optimal choice of

𝛼 , 𝛽 , and 𝛾 varies from case to case that is based on the supervised

model or the dataset properties. In practice, users can fine-tune

these hype-parameters using optimization strategies such as grid

search.

5.3 Different starting points for augmentation

We further conducted experiments to verify whether our approach

for the initial choice of 𝐴′
matters. Therefore, we implemented

different starting modes as explained in the following. Let 𝐷𝑜 be

the original training dataset and 𝐷𝑏𝑖𝑔 the big code database. Let

(𝐴, 𝐵) ∈ 𝐷𝑜 be an arbitrary pair. The four starting modes used in

our experiment are:

• Similar 𝑨′
. In our default system, we pick the code snipped in

the source language 𝐴 from the original dataset 𝐷𝑜 , then find a

new code snippet 𝐴′
similar to 𝐴 from 𝐷𝑏𝑖𝑔 . Then we use 𝐴′

as a

query to retrieve its translation 𝐵′, which is written in the target

language, also from 𝐷𝑏𝑖𝑔 .

• Similar 𝑩′
. We also implement the aforementioned approach

starting with 𝐵 first. Then, we find a new code snippet 𝐵′ sim-

ilar to 𝐵 from 𝐷𝑏𝑖𝑔 . Then we use 𝐵′ as a query to retrieve its

translation 𝐴′
from 𝐷𝑏𝑖𝑔 .

• 𝑨 = 𝑨′
. Here, we take 𝐴 and directly retrieve a translation 𝐵′

from 𝐷𝑏𝑖𝑔 , obtaining the pair (𝐴, 𝐵′).
• 𝑩 = 𝑩′

. Similar to the third mode, we take 𝐵 and directly retrieve

a translation 𝐴′
from 𝐷𝑏𝑖𝑔 , obtaining the pair (𝐴′, 𝐵).

All other parameters remain as defined for CTAug.

Table 6: Impact of the amount of augmentation data

Dataset

Original:Augmentation

1:0.5 1:1 1:1.5 1:2

Lucene 83.2% 85.8% 84.6% 80.6%

POI 83.1% 86.1% 84.8% 77.1%

IText 79.6% 83.2% 81.9% 72.3%

JGit 77.7% 81.7% 80.2% 74.9%

JTS 78.5% 82.3% 80.3% 74.5%

ANTLR 63.8% 66.2% 66.8% 60.2%

Results. The performance of different modes is shown in Table 5.

First, we can see the model trained with entirely new pairs (𝐴′, 𝐵′)
achieves the best result. And both directions 𝐴′

and 𝐵′ first im-

prove the performance, similarly. In most cases, retrieving similar

target code first leads to slightly better performance. The possible

reason is that the cross-language search method performs better

on the C# to Java case than the Java to C# case, as shown in our

BigPT paper [8]. When existing snippets 𝐴/𝐵 are directly used for

alternative translations 𝐵′/𝐴′
, we observe rather erratic results. In

some cases, they improve the results of the original model by up

to 6%. In other cases, they harm the performance by up to 5%. It is

possible that the one-to-many matches confuse the model.

5.4 Impact of the augmentation ratio

The ratio of the original data and the augmentation data can also

affect the augmentation performance. In our default setting, we use

the 1:1 ratio that is commonly used in existing work [19, 48]. To

find out the impact of the ratio, we also test the ratios, 1:0.5, 1:1.5,

and 1:2. For the ratio 1:0.5, we randomly pick half of the data from

the original dataset to retrieve the data points from the big code

as the augmentation data. For the ratio 1:2, we keep the second

best-retrieved result to double the number of augmentation data.

For the ratio 1:1.5, we randomly pick half of the data and also keep

the second-best result for each.

Results. Table 6 shows the results for each dataset and augmen-

tation ratio. Except for the Antlr dataset, the 1:1 ratio leads to the

best performance. From a ratio of 1:0.5 to 1:1, more augmentation

data introduces more information to the model and improves the

performance. However, further increasing the augmentation data

diminishes the performance. The first reason might be there are

not enough diverse data points introduced, i.e. there are too many

similar data points. Having an abundance of similar training exam-

ples can cause the model to become overly specialized in capturing

the specific variations and noise present in the training set. As a

result, the model might learn to memorize the training data rather

than learn the underlying patterns. The second reason might be the

fact that for each original data point, we resort to the second-best

point based on our scores and introduce more noise.

This experiment shows that there is an optimal ratio of augmen-

tation data when using our method. The optimal ratio can differ

between different datasets. For the datasets used in our experi-

ment, 1:1 in general is a good choice. With sufficient computation

resources, one can also use grid search to find the optimal ratio.
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5.5 Limitations

Generally, we have to acknowledge that our results only considered

a specific pair of languages and one particular model. We laid out

the reasons for our choices. With regard to the model choice, we

are rather confident that other models will benefit in a similar way.

Since our goal is to make the most of the existing resources without

making extra efforts, the augmentation performance relies on the

quality of the original dataset, the big code database, and the code

retrieval techniques. For example, here is one failed case of CTAug:

//−−−Input: Java code−−−
public class IndexWriter {

private final IndexWriterConfig config;

public IndexWriter(Directory directory, IndexWriterConfig config) {

this.config = config;

//...}
//...}

//−−−Ground truth: C# translation−−−
public class IndexWriter : IDisposable{

private readonly IndexWriterConfig _config;

public IndexWriter(Directory directory, IndexWriterConfig config)

{

_config = config ?? throw new

ArgumentNullException(nameof(config));

//...}
//...}

//−−−Output: Incorrect C# translation−−−
public class IndexWriter {

private IndexWriterConfig _config;

public IndexWriter(Directory directory, IndexWriterConfig config) {

_config = config;

//...}
//...}

The model failed to translate the use of readonly and the presence
of the IDisposable interface in the C# version because they do not

appear in the Java version and the model has limitations in learning

language-specific features and conventions. The model also failed

to check if the config argument passed to the constructor is null
because, in the Java version, the config argument is already a

required parameter and is not nullable. The model cannot address

the different contexts, and it cannot find augmentation data from

the Big Code database to complement this missing information

based on the existing training data. Furthermore, CTAug requires

hyper-parameter tuning, which can be time-consuming.

6 CONCLUSION

In this work, we explored the data augmentation methods for super-

vised code translation. We evaluated rule-based and retrieval-based

data augmentation strategies that are specifically designed for code

translation task. The latter, which is most effective, retrieves sim-

ilar translation pairs based on the original dataset by leveraging

mono-language and cross-language code retrieval techniques. To

select suitable data pairs for augmentation, we designed objective

functions to preserve the data distribution and increase the data

variety. Our ablation study on Jaca-C# translation tasks shows the

effectiveness of the selection mechanism. The task-specific rule-

based method performs worse than the retrieval-based method but

outperforms vanilla adaptations of natural language augmentation

methods. The experiments show that the retrieval-based method

can significantly improve data performance without much human

intervention.

Future work. First, one can combine different augmentation strate-

gies, such as rule-based and retrieval-based techniques, to maximize

the benefits. Second, we would like to improve the generalizability

of the method by adapting it to more code translation models and

programming languages. Further, we believe that code augmen-

tation through constrained retrieval can also be helpful in other

supervised code-learning tasks, such as code stylization [10] or code

summarization [4]. In code stylization, our approach could provide

diverse coding styles, aiding models to better adapt to and generate

different stylistic patterns, potentially improving the readability

and maintainability of code. For code summarization, integrating

our method could enrich the training datasets with varied code

contexts and structures, enhancing the model’s ability to generate

concise and accurate summaries.
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