
Towards Data Augmentation for Supervised
Code Translation
Binger Chen1*, Jacek Golebiowski2, and Ziawasch Abedjan3

1 Technische Universität Berlin

2 Amazon AWS

3 Leibniz Universität Hannover & L3S Research Center

* chen@tu-berlin.de

Problem

Current Mehtods

Our Solution

Method 1: Rule-based data augmentation
Goal: Enhance code translation pairs through strategic transformations, ensuring functional and
semantic integrity.

Transformation Rules:

1. Reverse: Adjusting logic in conditional statements and making corresponding changes in the
target language code.

Example:

// original code
if (x == 5)

// transformed code
if (x != 5)

2. Merge: Combining code at the control structure or program level, using logical operators or
concatenation.

Example:

// original code
if (x > 5) { i ++; }
if (y < 10) { System.out.println("pass"); }

// transformed code
if (x > 5 && y < 10) {

i ++;
System.out.println("pass");

}

3. Split: Separating combined conditional statements.

4. All: A composite application of the above rules.

Application: These methods, derived from bug-fixing techniques, apply reversible changes and adapt
to a range of programming languages, preserving logical semantics between source and target codes.

Method 2: Retrieval-based data augmentation (CTAug)
Workflow of CTAug:

Goal: Discover new and unseen code pairs in Big Code repositories to augment training data for code
translation.
Method: Utilizes cross-language and mono-language retrieval methods for identifying potential
translations and similar code snippets.
Process Overview:

1. Mono-Language Search: Finds top-k code snippets similar to the given code.

2. Cross-Language Search: Identifies potential translations, creating a K ˆ K candidate set.

Optimization Method:
Proposes a sophisticated selection method ensuring similarity in multiple dimensions.

• Selection Criteria: Considering the original training pair pA,Bq and a sample pA1, B1q from the KˆK
candidate set:

1. ƒ1pA1, B1q “ SpA1, B1q: Similarity within new code pairs.

2. ƒ2pA1, B1q “ SpA1, Aq ` SpB1, Bq: Similarity between the new pair and original code context.

3. ƒ3pA1, B1q “ ´|SpA1, Aq ´ SpB1, Bq|: Balancing similarity measures to ensure relevance and
diversity.

• Optimization Goal: Formalizes task as a multi-objective optimization problem.

• Objective function to maximize selection criteria:

maxƒobj “ αmaxƒ1pA1, B1
q ` βmaxƒ2pA1, B1

q ` γmaxƒ3pA1, B1
q

Experiment
Datasets & Methodology:

• Utilized two key datasets: original Tree2tree translation datasets [1] and a “Big Code” database
from GitHub’s Public Git Archive.

Tree2tree Dataset Lucene POI IText JGit JTS ANTLR

of data pairs 5516 3153 3079 2780 2003 465

• We focused on translating Java to C#, comparing data-augmentation strategies against NLP
baselines using the Tree2tree model.

• We used RPT [2] as mono-language translation system and BigPT [3] as cross-language translation
system.

Baselines:

• Compared our data-augmentation strategies against NLP baselines due to the lack of existing
methods in supervised code translation.

• Baselines include Word Masking and Back-translation, implemented with adjustments for code
data.

Metrics:

• Program Accuracy (PA): Percentage of predicted translations matching the ground truth, emphasi-
zing semantic equivalence.

• Token Accuracy (TA): Matches the percentage of tokens to the ground truth, offering insights into
textual alignment.

• CodeBLEU: Adapts BLEU score for code translation, evaluating syntax and semantics through
n-gram, AST, and data-flow matching.

Results

Dataset w/o Aug CTAug NLP Methods Rule-based methods
WM BT Reverse Merge Split All

Metric: Program Accuracy

Lucene 72.8% 85.8% 63.1% 70.2% 72.7% 72.0% 72.8% 75.9%
POI 72.2% 86.1% 62.4% 69.9% 73.6% 70.3% 72.5% 75.1%
IText 67.5% 83.2% 61.5% 66.3% 68.9% 66.9% 67.8% 72.8%
JGit 68.7% 81.7% 59.3% 65.4% 70.3% 70.2% 69.1% 72.8%
JTS 68.2% 82.3% 61.2% 67.7% 70.9% 69.8% 69.6% 73.3%

ANTLR 31.9% 66.2% 25.3% 31.9% 33.6% 36.7% 32.7% 40.1%
Metric: Token Accuracy

Lucene 85.3% 92.3% 80.3% 87.7% 88.3% 87.1% 88.9% 90.1%
POI 84.8% 94.8% 81.1% 78.2% 87.2% 85.2% 87.3% 91.7%
IText 80.3% 93.3% 77.2% 83.1% 81.3% 79.8% 79.2% 85.6%
JGit 81.7% 88.9% 73.7% 82.3% 84.2% 82.5% 82.5% 88.2%
JTS 82.1% 90.2% 72.1% 82.8% 83.5% 81.2% 83.6% 89.7%

ANTLR 70.2% 80.1% 57.2% 69.2% 73.8% 75.7% 74.9% 78.3%
Metric: CodeBLEU

Lucene 87.6% 95.3% 84.4% 91.2% 92.8% 89.5% 92.6% 94.2%
POI 88.6% 96.7% 85.4% 81.7% 90.0% 88.9% 91.3% 94.5%
IText 84.8% 96.5% 81.3% 87.8% 85.6% 83.5% 84.3% 89.2%
JGit 85.1% 92.4% 78.9% 86.3% 88.7% 87.2% 85.9% 91.6%
JTS 86.7% 93.6% 75.7% 87.1% 88.0% 84.1% 85.8% 93.1%

ANTLR 75.2% 83.9% 62.2% 73.3% 78.1% 80.1% 77.6% 82.8%

• Retrieval-Based Method: Enhanced accuracy significantly, demonstrating robust improvement
over traditional methods.

• Rule-Based Augmentation: Showed modest enhancements, indicating limitations in diversifying
training data.

• NLP Baselines: Underperformed, highlighting the unique challenges of code translation.

• Metrics: Revealed the retrieval-based method’s superiority in semantic and syntactic alignment,
as evidenced by improved Program Accuracy and CodeBLEU scores.

Example of the results
Input: Java code snippet:

public class Example {
public static void main(String[] args) {

int x = 5;
System.out.println(x);

}
}

Output: C# translation of the input code snippet:

using System;

public class Example {
public static void Main() {

int y = 5;
Console.WriteLine(y);

}
}

Conclusion & Future work
1. Adapted rules for code translation,

2. A retrieval-based method with optimization strategy,

3. Retrieval-based method is effective and outperforms other methods.

Future work:

• Combine augmentation methods,

• Apply to more languages and models,

• Apply to more tasks, eg. stylization and summary.

References
[1] X Chen, C Liu, D Song: Tree-to-tree Neural Networks for Program Translation. NeurIPS 2018
[2] B Chen, Z Abedjan: RPT: Effective and Efficient Retrieval of Program Translations from Big Code.
ICSE (Companion Volume) 2021
[3] B Chen, Z Abedjan: Interactive Cross-language Code Retrieval with Auto-Encoders. ASE 2021

