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INTRODUCTION

— Focus: important variational model with quadratic TIKHONOV and TOTAL
VARIATION regularization.

— Penalizing the (squared or absolut) differences of adjacent values on a graph.
— Property of the solution: values are close to each other ((un-)smoothly).
— Disadvantage: difficult nonconvex problem, due to the manifold /sphere constraint.

— Recall: the convex relaxed model of Condat [6] for circle-valued data and

TIKHONOV regularization.

— Aim 1): nicely simplified relaxed model without loosing any information, for the
TIKHONOV regularization.

— Aim 2): improvement for the TOTAL VARIATION regularization, w.r.t. geodesic
models, e.g. for the S;.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,

of Manifold Valued Data September 18,



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,
— with vertices V :={1,..., N}, i.e. N =|V],

of Manifold Valued Data September 1



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,

— with vertices V :={1,..., N}, i.e. N =|V],

— and edges E C {(n,m) € VxV :n < m},
define M = |E|.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION
— Let G = (V,E) be a connected, undirected @ @

graph,
— with vertices V := {1,..., N}, i.e. N :=|V|, (L4)eE
— and edges E C {(n,m) € VxV :n < m},

(1,
3) Sa

define M = |E|.
FIGURE 1: z; sphere or
— general denoising model, for instance G is the SO(3)-valued, identified by
line- or grid-graph. ieV.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,
— with vertices V :={1,..., N}, i.e. N =|V],

— and edges E C {(n,m) € VxV :n < m},

define M = |E|.
FIGURE 1: z; sphere or
— general denoising model, for instance G is the SO(3)-valued, identified by
line- or grid-graph. ieV.

— Former approach by Condat: denoise a disturbed circle-valued signal on G, i.e.

Y = (Yn)nev € CV using TIKHONOV regularization.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,

— with vertices V :={1,..., N}, i.e. N =|V],

— and edges E C {(n,m) € VxV :n < m},

define M = |E].
FIGURE 1: z; sphere or
— general denoising model, for instance G is the SO(3)-valued, identified by
line- or grid-graph. ieV.

— Former approach by Condat: denoise a disturbed circle-valued signal on G, i.e.
Y = (Yn)nev € CV using TIKHONOV regularization.

— First approach: circle can be embedded into R?, and simplified.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION

— Let G = (V,E) be a connected, undirected
graph,
— with vertices V :={1,..., N}, i.e. N =|V],

— and edges E C {(n,m) € VxV :n < m},

define M = |E].
FIGURE 1: z; sphere or
— general denoising model, for instance G is the SO(3)-valued, identified by
line- or grid-graph. ieV.

— Former approach by Condat: denoise a disturbed circle-valued signal on G, i.e.
Y = (Yn)nev € CV using TIKHONOV regularization.
— First approach: circle can be embedded into R?, and simplified.

— Second approach: theory can be generalized for sphere and SO(3)-valued data.

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



DEFINITION
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— with vertices V :={1,..., N}, i.e. N =|V],

— and edges E C {(n,m) € VxV :n < m},

define M = |E].
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— general denoising model, for instance G is the SO(3)-valued, identified by
line- or grid-graph. ieV.

— Former approach by Condat: denoise a disturbed circle-valued signal on G, i.e.
Y = (Yn)nev € CV using TIKHONOV regularization.

— First approach: circle can be embedded into R?, and simplified.

— Second approach: theory can be generalized for sphere and SO(3)-valued data.

— Third approach: application for TOTAL VARIATION regularization.
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C-VALUED MODEL I

— Let S¢ :=={z € C: |z| = 1} denote the (complex-valued) unit circle.
— Aim: recover an Sc-valued signal x :== (x,)ney € Sg on G from noisy measurements
Y= (yn)nEV € S(CN'
— Searching: minimizer of the TIKHONOV-like regularized functional (nonconvex)
. w Aln,
argmlnz 771 |xn—yn|2+z%|l‘n—l‘m|2, (1)
SN
ZESL  neV (n,m)€E

where w = (w,)nev € RY and A = (Anym)) (num)eE € R are positive weights.
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C-VALUED MODEL I

— Let S¢ :=={z € C: |z| = 1} denote the (complex-valued) unit circle.

— Aim: recover an Sc-valued signal x :== (x,)ney € Sg on G from noisy measurements
Y= (Yn)nev € ScV

— Searching: minimizer of the TIKHONOV-like regularized functional (nonconvex)

argmlnz — |z, — yn|2+2 |l‘n—l‘m|2 (1)
z€SY  pev (n, m)eE
where w = (w,)nev € RY and A = (Anym)) (num)eE € R are positive weights.
— simple equation: |z, — y|> = |2n|* — 2R[20Yn] + |yn|? for z,,y, € C.
— Exploiting: |z,| = 1, and rewriting the nonconvex problem as

(1) = argmin — Z wp, R[zngn] — Z Anm) R[Trmn]. (2)

zeSy nev (n,m)eE

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



C-VALUED MODEL II

— Introducing 7 := (7(nm)) (n,m)cE € CM | and rearranging last problem into

(1) = argmin J(z,7) s.t. T(nm) = TmTn ¥ (n,m) € E (3)
zeSY,reCM
with J(z,7) = — ZnEV (AR ME AT I Z )‘ (n,m) r(n,m)]'
(n,m)eE
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C-VALUED MODEL II

— Introducing 7 := (7(nm)) (n,m)cE € CM | and rearranging last problem into

(1) = argmin J(z,7) s.t. T(nm) = TmTn ¥ (n,m) € E (3)
zeSY,reCM
with j(l', T) = ZnEV w'n xnyn Z A (n,m) r(n,m)]'
(n,m)eE

— Core idea: Condat’s convex relaxation encodes (nonconvex) z € S¥ as follows:

LEMMA 1

Let n,m € V and (n,m) € E. Then Ty, Ty € Sc and 7(, m) = TmTn if and only if

N 3x3
P(n,m) - |:f:; T(nlm) T<"1m)} eC (4)

1s positive semi-definite and has rank one.
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— Aim: generalization of the convex relaxation via
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RELATED R2-VALUED MODEL I

— Aim: generalization of the convex relaxation via
R? < S;:={zcR?: |z|| = 1} ~ Sc.

— Now: recovering an S-valued signal @ = (z,,)necv € SY on G from noisy
measurements Y == (Y )ney € (S1)V

— We rewrite the nonconvex problem into the real-valued model

argmin Y " @, — gl + Y S5 “”” 2y — |- (5)

reSY pev (n,m) EE
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RELATED R2-VALUED MODEL I

— Aim: generalization of the convex relaxation via
R? < S;:={zcR?: |z|| = 1} ~ Sc.

— Now: recovering an S-valued signal @ = (z,,)necv € SY on G from noisy

measurements Y == (Y )ney € (S1)V

We rewrite the nonconvex problem into the real-valued model
rgmin 3 2 2, — g2+ 30 20, — 2 (5)
reSY pev (n, m)eE

— Realizing the complex multiplication using the matrix representation of z € C

M(z)=M(z) = [éﬁ‘:[z] _%[Zq = M(z)x = 2t = [\yzz]] (6)

Slz] R[z] Szx)
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RELATED R2-VALUED MODEL II

— Introducing: 7, ,,) = M ()T, € R?, yields the real of the complex-valued

version:
(7)= argmin J(z,7) st. T m) = M (z,) Tz, Y(n,m)ecE
zeSY ,re(R2)M

Wlth j(m’ Ir) = ZnEV wn <.’Bn, yn> - Z(n,m)eE >‘(n,m) %[r(n,m)]
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RELATED R2-VALUED MODEL II

— Introducing: 7, ,,) = M ()T, € R?, yields the real of the complex-valued
version:
(7)= argmin J(z,7) st. T m) = M (z,) Tz, Y(n,m)ecE
zeSY ,re(R2)M
Wlth j(m’ ’l") = ZnEV wn <.’Bn, yn> - Z(n,m)eE >‘(n,m) %[r(n,m)]
— Encoding: nonconvex constraint of last problem into a matrix expression.
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RELATED R2-VALUED MODEL II

— Introducing: 7, ,,) = M ()T, € R?, yields the real of the complex-valued
version:
(7)= argmin J(z,7) st. T m) = M (z,) Tz, Y(n,m)ecE
zeSY re(R2)M
with j(il:, ’l") = — ZnEV W, <Zl?n, yn> — Z(n,m)eE A(n,m) %[r(n,m)]
— Encoding: nonconvex constraint of last problem into a matrix expression.

LEMMA 2 (BEINERT, BRESCH, STEIDL [2])

Let n,m € V and (n,m) € E. Then Ty, Tm € S1 and 7(, ) = M (z,,) x,, if and only if

the block matriz

I M (xn) M (zm)
Pomy = | M@)" B Mrem)" | € RO (7)
’ M(zm)" M(r, ) Iz

1s positive semi-definite and has rank two.
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SIMPLIFIED R2-VALUED MODEL

— Note: second components of 7, ) = M () Tz, in the relaxed real model

originate form the complex-valued model.
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SIMPLIFIED R2-VALUED MODEL

— Note: second components of 7, ) = M () Tz, in the relaxed real model
originate form the complex-valued model.
— Claim: equivalent real-valued problem

argmin K(x,€) st. £y = (Tn,Tm) V(n,m)€FE (8)
zeSY LeRM

with K(x, £) = — > vy Wn (Tn, Yn) — Z(n,m)EE An,m) €(nm)-
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SIMPLIFIED R2-VALUED MODEL

— Note: second components of 7, ) = M () Tz, in the relaxed real model
originate form the complex-valued model.
— Claim: equivalent real-valued problem
argmin K(x,€) st. £y = (Tn,Tm) V(n,m)€FE (8)
zeSY LeRM

with lC(ac, E) = - ZnEV Wn, <xna yn> - Z(n,m)EE A(nvm) e(n,m)

— Encoding: nonconvex constraints and £, ) = (Zn, T, similarly to Lemma 1:

LEMMA 3 (BEINERT, BRESCH, STEIDL [2])

Let n,m € V and (n,m) € E. Then Ty, Tm € S1 and £, ) = (Tn, Tm) if and only if

I x, Tm

Qm) = 0 and 1k(Q(nm)) = 2, where Q) = [m;{ L £n,m)

.7331 ‘e(n,m) 1

e R4 (9)
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SIMPLIFIED R2-VALUED MODEL

— Again: neglect the rank-two constraint, we propose our simplified relaxed real

model: argmin  K(z,£) st. Qum =0 V(n,m) € E. (10)
ze(R2)N LeRM
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SIMPLIFIED R2-VALUED MODEL

— Again: neglect the rank-two constraint, we propose our simplified relaxed real

model: argmin  K(z,£) st. Qum =0 V(n,m) € E. (10)
ze(R2)N LeRM

— Our convex model is simpler w.r.t. to the dimension of the matrix representation

than argmin ~ J(x,7) st. Py, =0 V(n,m)e€E, (11)
ze(R2)N re(R2)M

THEOREM 4 (BEINERT, BRESCH, STEIDL [2])

Both models are equivalent in the following sense:
(i) If (z,7) solves (11), then (&, R[7]) solves (10).
(ii) If (2, €) solves (10), then (Z,7) with 7, my = (L m), SIM (Zm)T&,])T solves (11).
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SIMPLIFIED R2-VALUED MODEL

— Again: neglect the rank-two constraint, we propose our simplified relaxed real

model: argmin  K(z,£) st. Qum =0 V(n,m) € E. (10)
ze(R2)N LeRM

— Our convex model is simpler w.r.t. to the dimension of the matrix representation

than argmin ~ J(x,7) st. Py, =0 V(n,m)e€E, (11)
ze(R2)N re(R2)M

THEOREM 4 (BEINERT, BRESCH, STEIDL [2])

Both models are equivalent in the following sense:
(i) If (z,7) solves (11), then (&, R[7]) solves (10).
(ii) If (2, €) solves (10), then (Z,7) with 7, my = (L m), SIM (Zm)T&,])T solves (11).

COROLLARY 5

The simplified relaxed real model and the relared complex model are equivalent.
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— Main advantage: the simplified relaxed real model is simple to generalize to
(d — 1)-dimensions; let Sy_; = {x € R?: ||z| = 1}.
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— Main advantage: the simplified relaxed real model is simple to generalize to
(d — 1)-dimensions; let Sy_; = {x € R?: ||z| = 1}.
— The original nonconvex problem reads as

A
arg min Z |y — yul® + Z (n ™) |y — @0 ||? (12)
zeSY | pev (n, m)EE‘

s Bresch Denoising of Manifold Valued Data September 1



— Main advantage: the simplified relaxed real model is simple to generalize to
(d — 1)-dimensions; let Sy_; = {x € R?: ||z| = 1}.

— The original nonconvex problem reads as

>\ n,m
argmin Y "l = yul? + D 5 [l - @ (12)
zeS) | nev (n, m)eE‘
= argmin K(z,€) st. Ly, = (Tn, Tm) V(n,m) € E (13)

zeSY | LeRM
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— Main advantage: the simplified relaxed real model is simple to generalize to
(d — 1)-dimensions; let Sg_; = {x € R?: ||z| = 1}.

— The original nonconvex problem reads as

>\ n,m
argmin Y~ T [l — gl + 3 5 e — @ (12)
zeS) | nev (n, m)eE‘
= argmin K(z,€) st. Ly, = (Tn, Tm) V(n,m) € E (13)

zeSY | LeRM

LEMMA 6 (BEINERT, BRESCH, STEIDL [2])

Let n,m € V and (n,m) € E. Then T, Tm € Sq—1 and £, ;) = (Tn, Tim) if and only if

I, =, Tm

Q(n,m) = [mg T Lam)

m;Fn Z(n,m) 1

1s positive semi-definite and has rank d.
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PROOF OF THE CONCEPT I

1ol
I0 2(‘)0 460 660 860 10‘00
— synthetic, smooth signal (@,,),ecy on the line graph.

— noisy observation (yn)ney are generated using the von Mises—Fisher distribution by

Yn ~ Nomr(@n, k) for all n € V, where k > 0 is the capacity, here k = 10.

mean time iter. parameters reg. parameters
PMM on relaxed complex 107 210 201 7=0.1,0=41)""!
ADMM on relaxed real 1072 1.83 182 p=3 Wn = 1, An,m) = 25
ADMM on simp. relaxed real 107" 1.77 181 p=3
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PROOF OF THE CONCEPT II - TIKHONOV REGULARIZATION

mean time iter.

reg. parameters

PMM on relaxed complex
ADMM on relaxed real
ADMM on simp. relaxed real

107* 74718 5536 T=0.1,0 = (87)"!

107*  389.01 2457
10™*  301.08 1943

Wn = 1,)\(n,m) =1

Jonas Bresch
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PROOF OF THE CONCEPT III - TIKHONOV REGULARIZATION
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FIGURE 2: SO(3)-valued image graph: Ground truth (left), noisy observation with x; := 30 and
ko =5 (middle), and denoised version (right) The rotations are visualized by operating on a
colored 3d cone. The entire signal consists of 90 x 90 pixel, where only every third pixel from the
25th to the 75th pixel is visualized. The parameters have been w,, =1, A(,,m) = 1, and p = 3.
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INTRODUCTION & DEFINITION

— The Tikhonov regularization in the first part, is suitable for smooth signals.
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INTRODUCTION & DEFINITION

— The Tikhonov regularization in the first part, is suitable for smooth signals.
— We want to recover piecewise constant signals from noisy measurements.

— For this reason, we replace the squared 2-norm of the regularizer in the previous

part by the 1-norm

This yields the TOTAL VARIATION (TV) regularization:

1 .
argmin - E |Zn — ynl3 + ATV(x) with TV(x):= g |len — xml1. (15)
N
x€eS, nev (n,m)eE
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CONVEXIFICATION

— Using the property of the squared-Lo norm, we rewrite the objective

K(x) = — Z(wn, Yn) + ATV (x) with (15) = argmin K(x).

neV wESfiV_ 1
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CONVEXIFICATION

— Using the property of the squared-Lo norm, we rewrite the objective

K(x) = — Z(wn, Yn) + ATV (x) with (15) = argmin K(x).
nev zeS)
— Convexifying the sphere-valued domain Sfiv_l, we propose our relaxed convex

problem:

argmin  K(x) st. x,€By foral neV. (16)

xERIXN

where B, == {£ € R?: ||€]]2 < 1}.
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CONVEXIFICATION

— Using the property of the squared-Lo norm, we rewrite the objective
K(x) = — Z(wn, Yn) + ATV (x) with (15) = argmin K(x).
nev zeS)
— Convexifying the sphere-valued domain Sfiv_l, we propose our relaxed convex

problem:

argmin  K(x) st. x,€By foral neV. (16)

rcRIXN

where B, == {£ € R?: ||€]]2 < 1}.
— The convexification can be also obtained using the matrix representation via rank

and psd. constraints, from Lemma 6
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CONVEXIFICATION

Using the property of the squared-Lo norm, we rewrite the objective

K(x) = — Z(wn, Yn) + ATV (x) with (15) = argmin K(x).

N
neV zeS,_

Convexifying the sphere-valued domain Sflv_l, we propose our relaxed convex

problem:

argmin  K(x) st. x,€By foral neV. (16)

xERIXN

where B, == {£ € R?: ||€]]2 < 1}.
The convexification can be also obtained using the matrix representation via rank

and psd. constraints, from Lemma 6

Inserting €y, , = (Zn, Tr,) and a Schur complement argument, yields the assertion.
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TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original

nonconvex formulation.
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TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

— We introduce the characteristic x;, regarding the level n € [—1,1] of a signal
x = (Tp)nev € BY
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TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

— We introduce the characteristic x;, regarding the level n € [—1,1] of a signal
x = (Tp)nev € BY

) 1 if &, > n,
Xn(m) = (Xn(mn))neV with Xn(mn) = "

-1 ifx, <n.
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TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

— We introduce the characteristic x;, regarding the level n € [—1,1] of a signal
x = (Tp)nev € BY

) 1 if &, > n,
Xn(m) = (Xn(mn))neV with X?](mn) = "

-1 ifx, <n.

— Remark: For any x = (z,)nev € BY, the characteristic Xn() is a binary signal,
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TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

— We introduce the characteristic x;, regarding the level n € [—1,1] of a signal
x = (Tp)nev € BY

) 1 if &, > n,
Xn(m) = (Xn(mn))neV with X?](mn) = "

-1 ifx, <n.

— Remark: For any x = (z,)nev € BY, the characteristic Xn() is a binary signal,

LEMMA 7 (BEINERT, B. [1])

For @y, x,, € By, it holds |z, — x| = %f_ll Bl @) = 5@ 1

Jonas Bresch Denoising of Manifold Valued Data September 18, 2024



TIGHTNESS FOR THE BINARY CONVEXIFICATION

— If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

— We introduce the characteristic x;, regarding the level n € [—1,1] of a signal
x = (Tp)nev € BY

) 1 if &, > n,
Xn(x) = (Xﬂ(mn))neV with X?](mn) =

-1 ifx, <n.

— Remark: For any x = (z,)nev € BY, the characteristic Xn() is a binary signal,

LEMMA 7 (BEINERT, B. [1])

For @y, x,, € By, it holds |z, — x| = %f_ll Bl @) = 5@ 1
THEOREM 8 (BEINERT, B. [1])

Let x* € BY be a solution of (16) for d = 1. Then, x,(x*) is a solution of (15) for
almost all n € [-1,1].
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BINARY AND S;-SIGNAL DENOISING - TV REGULARIZATION

TABLE 1: Averages for 50 randomly generated QR TABLE 2: Averages for 20 randomly

codes for different noise levels. One specific generated noisy instances of the ground

instance is illustrated in Fig. 3 (fast-TV [5], truth in Fig. 4 for different noise levels. (fast

ANISO-TV [4]). TV [5], CPPA-TV [3])

S . signal errors time  distance signal error time  distance
Algorith A Algorith A

! SOTHI sk MIoU (sec.) to sphere | SO\ IsE (sec.) to sphere

o2 fast-TV 0.00036 0.99734 0.7 < 0.1 0.07879 CPPA-TV 0.00076 0.15 1282 —

g ANISO-TV  0.00112  0.97495 19 1.8 0.00122 B fast-TV 0.00056 0.25 < 0.1 0.00055
ADMM-TV 0.00036 0.99734 0.7 1.1 0.00000 ADMM-TV 0.00043 0.2 4.3 0.00000

S fast-TV 0.00069  0.99018 1.0 < 0.1 0.10021 CPPA-TV 0.00198 0.25 166.1 —

Q ANISO-TV  0.00190  0.92942 24 1.9 0.00732 & fast-TV 0.00199 0.25 < 0.1 0.00098
ADMM-TV 0.00069 0.99030 1.0 1.1 0.00000 ADMM-TV 0.00107 0.3 6.2 0.00000

=2 fast-TV 0.00106  0.97741 1.7 <0.1 0.12263 CPPA-TV 0.00409 0.55 191.7 —

@ ANISO-TV  0.00263  0.86956 2.9 2.1 0.01445 = fast-TV 0.00388 0.25 < 0.1 0.00155
ADMM-TV 0.00106 0.97753 1.7 1.2 0.00000 ADMM-TV  0.00218 0.45 10.5 0.00000
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COMPARISON OF BINARY IMAGES - TV REGULARIZATION

FIGURE 3: QR code denoising example: (i)
ground truth, (ii) noisy data (o = v/2-0.5),
(iii) ADMM-TV (A = 1.0, p = 0.1) without
projection, (iv) ANISO-TV (A = 1.6) with
projection xo, (v) fast-TV (A = 1.0) without
projection, (vi) fast-TV (A = 1.0) with

projection xgq.
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COMPARISON OF S;-IMAGES - TV REGULARIZATION

0 T — :

25 : _ : i

00 d .-
25 RS :
50 et FEAEY

75 100 125 150 175 25 50 75 100 125 150 175 75 100 125 150 175

FIGURE 4: Toy-data example following [7] for S;-image denoising (from left to right):
(i) ground truth, (ii) noisy measurement generated by the von Mises—Fisher distribution with
k =10, (iii) solution via ADMM-TV (A = 0.55, p = 10) without final projection.

Jonas Bresch Denoising of Manifold Valued Data September 1§




Thank you for your attention!
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