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Introduction

− Focus: important variational model with quadratic Tikhonov and Total

Variation regularization.

→ Penalizing the (squared or absolut) differences of adjacent values on a graph.

− Property of the solution: values are close to each other ((un-)smoothly).

− Disadvantage: difficult nonconvex problem, due to the manifold/sphere constraint.

− Recall: the convex relaxed model of Condat [6] for circle-valued data and
Tikhonov regularization.

− Aim 1): nicely simplified relaxed model without loosing any information, for the
Tikhonov regularization.

− Aim 2): improvement for the Total Variation regularization, w.r.t. geodesic
models, e.g. for the S1.
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Definition

− Let G = (V,E) be a connected, undirected
graph,

− with vertices V := {1, . . . , N}, i.e. N := |V |,

− and edges E ⊂ {(n,m) ∈ V × V : n < m},
define M := |E|.

− general denoising model, for instance G is the
line- or grid-graph.

x1

x2 x3

x4

x5

(2, 4) ∈ E

(1, 5) ∈ E

(1, 4) ∈ E

Figure 1: xi sphere or
SO(3)-valued, identified by
i ∈ V .

− Former approach by Condat: denoise a disturbed circle-valued signal on G, i.e.
y = (yn)n∈V ∈ CN using Tikhonov regularization.

− First approach: circle can be embedded into R2, and simplified.
− Second approach: theory can be generalized for sphere and SO(3)-valued data.
− Third approach: application for Total Variation regularization.
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C-Valued Model I

− Let SC := {z ∈ C : |z| = 1} denote the (complex-valued) unit circle.

− Aim: recover an SC-valued signal x := (xn)n∈V ∈ SNC on G from noisy measurements
y := (yn)n∈V ∈ SCN .

− Searching: minimizer of the Tikhonov-like regularized functional (nonconvex)

argmin
x∈SNC

∑
n∈V

wn

2
|xn − yn|2 +

∑
(n,m)∈E

λ(n,m)

2
|xn − xm|2, (1)

where w := (wn)n∈V ∈ RN
+ and λ := (λ(n,m))(n,m)∈E ∈ RM

+ are positive weights.

− simple equation: |xn − yn|2 = |xn|2 − 2ℜ[xnȳn] + |yn|2 for xn, yn ∈ C.
− Exploiting: |xn| = 1, and rewriting the nonconvex problem as

(1) = argmin
x∈SNC

−
∑
n∈V

wnℜ[xnȳn] −
∑

(n,m)∈E

λ(n,m)ℜ[x̄mxn]. (2)
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− Exploiting: |xn| = 1, and rewriting the nonconvex problem as

(1) = argmin
x∈SNC

−
∑
n∈V

wnℜ[xnȳn] −
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C-Valued Model II

− Introducing r := (r(n,m))(n,m)∈E ∈ CM , and rearranging last problem into

(1) = argmin
x∈SNC ,r∈CM

J (x, r) s.t. r(n,m) = x̄mxn ∀ (n,m) ∈ E (3)

with J (x, r) := −
∑

n∈V wnℜ[xnȳn]−
∑

(n,m)∈E

λ(n,m)ℜ[r(n,m)].

− Core idea: Condat’s convex relaxation encodes (nonconvex) x ∈ SNC as follows:

Lemma 1

Let n,m ∈ V and (n,m) ∈ E. Then xn, xm ∈ SC and r(n,m) = x̄mxn if and only if

P(n,m) :=

[
1 xn xm
x̄n 1 r̄(n,m)

x̄m r(n,m) 1

]
∈ C3×3 (4)

is positive semi-definite and has rank one.
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Related R2-Valued Model I

− Aim: generalization of the convex relaxation via

R2 ←↩ S1 := {z ∈ R2 : ∥z∥ = 1} ≃ SC.

− Now: recovering an S1-valued signal x := (xn)n∈V ∈ SN1 on G from noisy
measurements y := (yn)n∈V ∈ (S1)N .

− We rewrite the nonconvex problem into the real-valued model

argmin
x∈SN1

∑
n∈V

wn

2
∥xn − yn∥2 +

∑
(n,m)∈E

λ(n,m)

2
∥xn − xm∥2. (5)

− Realizing the complex multiplication using the matrix representation of z ∈ C

M(z) := M(z) :=
[
ℜ[z] −ℑ[z]
ℑ[z] ℜ[z]

]
⇒M(z)x = −→zx =

[
ℜ[zx]
ℑ[zx]

]
. (6)
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Related R2-Valued Model II

− Introducing: r(n,m) = M(xm)Txn ∈ R2, yields the real of the complex-valued
version:

(7) = argmin
x∈SN1 ,r∈(R2)M

J (x, r) s.t. r(n,m) = M(xm)Txn ∀(n,m) ∈ E

with J (x, r) := −
∑

n∈V wn ⟨xn,yn⟩ −
∑

(n,m)∈E λ(n,m)ℜ[r(n,m)].

− Encoding: nonconvex constraint of last problem into a matrix expression.

Lemma 2 (Beinert, Bresch, Steidl [2])

Let n,m ∈ V and (n,m) ∈ E. Then xn,xm ∈ S1 and r(n,m) = M(xm)Txn if and only if
the block matrix

P(n,m) :=

[
I2 M(xn) M(xm)

M(xn)T I2 M(r(n,m))
T

M(xm)T M(r(n,m)) I2

]
∈ R6×6 (7)

is positive semi-definite and has rank two.
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Simplified R2-Valued Model

− Note: second components of r(n,m) = M(xm)Txn in the relaxed real model
originate form the complex-valued model.

− Claim: equivalent real-valued problem

argmin
x∈SN1 ,ℓ∈RM

K(x, ℓ) s.t. ℓ(n,m) = ⟨xn,xm⟩ ∀(n,m) ∈ E (8)

with K(x, ℓ) := −
∑

n∈V wn ⟨xn,yn⟩ −
∑

(n,m)∈E λ(n,m) ℓ(n,m).

− Encoding: nonconvex constraints and ℓ(n,m) = ⟨xn,xm⟩, similarly to Lemma 1:

Lemma 3 (Beinert, Bresch, Steidl [2])

Let n,m ∈ V and (n,m) ∈ E. Then xn,xm ∈ S1 and ℓ(n,m) = ⟨xn,xm⟩ if and only if

Q(n,m) ⪰ 0 and rk(Q(n,m)) = 2, where Q(n,m) :=

[
I2 xn xm

xT
n 1 ℓ(n,m)

xT
m ℓ(n,m) 1

]
∈ R4×4. (9)
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Simplified R2-Valued Model

− Again: neglect the rank-two constraint, we propose our simplified relaxed real
model: argmin

x∈(R2)N ,ℓ∈RM

K(x, ℓ) s.t. Q(n,m) ⪰ 0 ∀(n,m) ∈ E. (10)

− Our convex model is simpler w.r.t. to the dimension of the matrix representation
than argmin

x∈(R2)N ,r∈(R2)M
J (x, r) s.t. P(n,m) ⪰ 0 ∀(n,m) ∈ E, (11)

Theorem 4 (Beinert, Bresch, Steidl [2])

Both models are equivalent in the following sense:
(i) If (x̂, r̂) solves (11), then (x̂,ℜ[r̂]) solves (10).

(ii) If (x̃, ℓ̃) solves (10), then (x̃, r̃) with r̃(n,m) = (ℓ̃(n,m),ℑ[M(x̃m)Tx̃n])
T solves (11).

Corollary 5
The simplified relaxed real model and the relaxed complex model are equivalent.
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− Main advantage: the simplified relaxed real model is simple to generalize to
(d− 1)-dimensions; let Sd−1 := {x ∈ Rd : ∥x∥ = 1}.

− The original nonconvex problem reads as
argmin
x∈SNd−1

∑
n∈V

wn

2
∥xn − yn∥2 +

∑
(n,m)∈E

λ(n,m)

2
∥xn − xm∥2 (12)

= argmin
x∈SNd−1,ℓ∈RM

K(x, ℓ) s.t. ℓ(n,m) = ⟨xn,xm⟩ ∀(n,m) ∈ E (13)

Lemma 6 (Beinert, Bresch, Steidl [2])

Let n,m ∈ V and (n,m) ∈ E. Then xn,xm ∈ Sd−1 and ℓ(n,m) = ⟨xn,xm⟩ if and only if

Q(n,m) :=

[
Id xn xm

xT
n 1 ℓ(n,m)

xT
m ℓ(n,m) 1

]
∈ R(d+2)×(d+2) (14)

is positive semi-definite and has rank d.
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Proof of the Concept I

− synthetic, smooth signal (xn)n∈V on the line graph.
− noisy observation (yn)n∈V are generated using the von Mises–Fisher distribution by

yn ∼ NvMF(xn, κ) for all n ∈ V, where κ > 0 is the capacity, here κ = 10.

mean time iter. parameters reg. parameters

PMM on relaxed complex 10−9 2.10 201 τ = 0.1, σ = (4τ)−1

ADMM on relaxed real 10−12 1.83 182 ρ = 3 wn = 1, λ(n,m) = 25

ADMM on simp. relaxed real 10−13 1.77 181 ρ = 3
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Proof of the Concept II - Tikhonov Regularization

mean time iter. parameters reg. parameters

PMM on relaxed complex 10−4 747.18 5536 τ = 0.1, σ = (8τ)−1

ADMM on relaxed real 10−4 389.01 2457 ρ = 20 wn = 1, λ(n,m) = 1

ADMM on simp. relaxed real 10−4 301.08 1943 ρ = 20
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Proof of the Concept III - Tikhonov Regularization

Figure 2: SO(3)-valued image graph: Ground truth (left), noisy observation with κ1 := 30 and
κ2 := 5 (middle), and denoised version (right) The rotations are visualized by operating on a
colored 3d cone. The entire signal consists of 90× 90 pixel, where only every third pixel from the
25th to the 75th pixel is visualized. The parameters have been wn := 1, λ(n,m) := 1, and ρ := 3.
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Introduction & Definition

− The Tikhonov regularization in the first part, is suitable for smooth signals.

− We want to recover piecewise constant signals from noisy measurements.

− For this reason, we replace the squared 2-norm of the regularizer in the previous
part by the 1-norm

− This yields the Total Variation (TV) regularization:

argmin
x∈SNd−1

1

2

∑
n∈V
∥xn − yn∥22 + λTV(x) with TV(x) :=

∑
(n,m)∈E

∥xn − xm∥1. (15)
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Convexification

− Using the property of the squared-L2 norm, we rewrite the objective

K(x) := −
∑
n∈V
⟨xn,yn⟩+ λTV(x) with (15) = argmin

x∈SNd−1

K(x).

− Convexifying the sphere-valued domain SNd−1, we propose our relaxed convex
problem:

argmin
x∈Rd×N

K(x) s.t. xn ∈ Bd for all n ∈ V. (16)

where Bd := {ξ ∈ Rd : ∥ξ∥2 ≤ 1}.
− The convexification can be also obtained using the matrix representation via rank

and psd. constraints, from Lemma 6

− Inserting ℓn,m = ⟨xn,xm⟩ and a Schur complement argument, yields the assertion.
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problem:

argmin
x∈Rd×N

K(x) s.t. xn ∈ Bd for all n ∈ V. (16)

where Bd := {ξ ∈ Rd : ∥ξ∥2 ≤ 1}.
− The convexification can be also obtained using the matrix representation via rank

and psd. constraints, from Lemma 6

− Inserting ℓn,m = ⟨xn,xm⟩ and a Schur complement argument, yields the assertion.
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Tightness for the binary convexification

− If d = 1, the relaxed problem (16) becomes a tight convexification of the original
nonconvex formulation.

− We introduce the characteristic χη regarding the level η ∈ [−1, 1] of a signal
x := (xn)n∈V ∈ BN

1

χη(x) := (χη(xn))n∈V with χη(xn) :=

1 if xn > η,

−1 if xn ≤ η.

− Remark: For any x := (xn)n∈V ∈ BN
1 , the characteristic χη(x) is a binary signal,

Lemma 7 (Beinert, B. [1])

For xn,xm ∈ B1, it holds |xn − xm| = 1
2

∫ 1
−1 |χη(xn)− χη(xm)| dη.

Theorem 8 (Beinert, B. [1])

Let x∗ ∈ BN
1 be a solution of (16) for d = 1. Then, χη(x

∗) is a solution of (15) for
almost all η ∈ [−1, 1].
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Binary and S1-Signal Denoising - TV regularization

Table 1: Averages for 50 randomly generated QR
codes for different noise levels. One specific
instance is illustrated in Fig. 3 (fast-TV [5],
ANISO-TV [4]).

=
σ

Algorithm
signal errors

λ
time distance

MSE MIoU (sec.) to sphere

√
2

5 1
0 fast-TV 0.00036 0.99734 0.7 < 0.1 0.07879

ANISO-TV 0.00112 0.97495 1.9 1.8 0.00122
ADMM-TV 0.00036 0.99734 0.7 1.1 0.00000

√
2

7 1
0 fast-TV 0.00069 0.99018 1.0 < 0.1 0.10021

ANISO-TV 0.00190 0.92942 2.4 1.9 0.00732
ADMM-TV 0.00069 0.99030 1.0 1.1 0.00000

√
2

9 1
0 fast-TV 0.00106 0.97741 1.7 < 0.1 0.12263

ANISO-TV 0.00263 0.86956 2.9 2.1 0.01445
ADMM-TV 0.00106 0.97753 1.7 1.2 0.00000

Table 2: Averages for 20 randomly
generated noisy instances of the ground
truth in Fig. 4 for different noise levels. (fast
TV [5], CPPA-TV [3])

=
κ

Algorithm
signal error

λ
time distance

MSE (sec.) to sphere

50

CPPA-TV 0.00076 0.15 128.2 —
fast-TV 0.00056 0.25 < 0.1 0.00055
ADMM-TV 0.00043 0.2 4.3 0.00000

20

CPPA-TV 0.00198 0.25 166.1 —
fast-TV 0.00199 0.25 < 0.1 0.00098
ADMM-TV 0.00107 0.3 6.2 0.00000

10

CPPA-TV 0.00409 0.55 191.7 —
fast-TV 0.00388 0.25 < 0.1 0.00155
ADMM-TV 0.00218 0.45 10.5 0.00000
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Comparison of Binary Images - TV Regularization
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Figure 3: QR code denoising example: (i)
ground truth, (ii) noisy data (σ =

√
2 · 0.5),

(iii) ADMM-TV (λ = 1.0, ρ = 0.1) without
projection, (iv) ANISO-TV (λ = 1.6) with
projection χ0, (v) fast-TV (λ = 1.0) without
projection, (vi) fast-TV (λ = 1.0) with
projection χ0.
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Comparison of S1-Images - TV Regularization
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Figure 4: Toy-data example following [7] for S1-image denoising (from left to right):
(i) ground truth, (ii) noisy measurement generated by the von Mises–Fisher distribution with
κ = 10, (iii) solution via ADMM-TV (λ = 0.55, ρ = 10) without final projection.
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Thank you for your attention!
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