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Forewords

Abstraction and modelling are two fundamental conceptual cornerstones of
informatics. They are absolutely key to software engineering. Engineers need
abstraction to dominate complexity of software design, implementation, de-
ployment and operation. They need precise models to formalise abstractions
and reason about them. Graphs are a powerful and general notation that can
formally model software structures. They can express snapshots of complex
relations among entities of different kinds. Through graph rewriting rules, one
can formalise how complex structures evolve over time. By formally analysing
models, both statically and dynamically, engineers can verify that the system
under design behaves as expected, prior to implementing it and perhaps dis-
covering later that it does not, thus wasting huge investments.

This book fills a much needed gap in the literature. It is the first com-
prehensive and systematic presentation of graph-based modelling and appli-
cations to the practice of software engineering. It can be of use in teaching,
to present the foundations of software modelling and verification. It is also
a reference book for researchers who are active in software modelling. I have
personally often founded my research on graph transformation: in my early
years, to formalise data structures and formally analyse them through parsing;
more recently, to formalise and analyse spatio-temporal systems (like smart
buildings) and their dynamics. I fully share the authors’ point that graph
transformations are an extremely powerful and tremendously useful tool that
can empower software engineers and help them to develop better and higher
quality software. This book is a decisive step in this direction.

Carlo Ghezzi



VI

Modern software development is a complex and messy business. Require-
ments are often incomplete. New development uses complex existing libraries,
tools and components that can fail. Multiple development teams proceed on
different schedules, making it difficult to assure that their artefacts will “talk
to each other” as intended.

I believe that keys to building quality software systems are abstraction
and automation. A graph-based approach is a universally applicable and very
powerful approach to modelling software at the level of abstraction where its
key properties can be represented. Graph rewriting approaches can then sup-
port a variety of formal analyses, from requirements completion via property
verification to the analysis of product lines. They also support “what if” ana-
lysis, allowing developers to determine the impact of their proposed change
before investing in fully implementing it. Therefore, it comes as little surprise
that graph-based approaches form a basis for many model-driven modelling
and development techniques.

I strongly recommend this book to researchers who want to learn about
software modelling, and to any senior undergraduate and graduate students
who want to be equipped with foundational knowledge and tools to be able
to build high-quality, safe software systems.

Marsha Chechik
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This book is a pleasant and big surprise. The software engineering com-
munity needed such a book, but so far missed experts dedicating their effort
to writing it. Graphs and graph transformations play a key role in conceiving,
designing, and implementing complex software systems, but they work be-
hind the scenes, so their importance and that of their theoretical foundations
is often underestimated. Software engineering is full of models and graphical
notations that help experts to tackle very diverse problems, but oftentimes
they are defined only informally and lack rigour and precision. Most of these
models (can) have a graph-based (abstract) syntax and semantics: this is
where the foundations of graphs and graph transformations enter the scene,
and this is where a book like this is key.

While methodologies for software architecture design, configuration and
version management, and deployment employ diverse graph-based notations,
practitioners tend to underestimate the importance of formally defining these
models in order to manipulate and transform them in a systematic and sound
way. Practitioners and experts in foundations risk ignoring each other; ho-
wever they represent two sides of the same coin: sound engineering benefits
hugely from formal theories, and formal approaches find concrete applicati-
ons in software engineering. For example, the termination and confluence of
a graph transformation system can avoid some tedious problems, while con-
flicting rules can lead to non-deterministic transformations. These problems
can be understood and addressed based on formal foundations. There is a
big gap between problems and available theoretical solutions and this book
provides an excellent reference guide to help researchers, educators, students,
and practitioners to address and solve a large diversity of relevant problems.

Many different software engineering artefacts, including design models,
deployment topologies, and development processes, that can be rendered as
graphs and manipulated through graph transformations, could benefit from
the mature theory developed over the last thirty years. Many solutions have
been presented at conferences and workshops, but the necessary coherent col-
lection of their applications to software engineering problems was missing.
In the era of systematic literature reviews, this book moves a relevant step
ahead, and provides a unique entry point to the main theories and their ap-
plications in the context of software engineering, written by two key members
of the graph transformation community. Gabi and Reiko did a great job in
collecting, harmonising, and presenting all the different findings and solutions
in this book. We particularly appreciate the mix of rigour and formality along
with proper context and concrete examples.

We are sure that this book will quickly become an essential reference for
those interested in the formal underpinnings of graph-based software engi-
neering notations and artefacts, including those interested in exploiting the
results presented here to develop original solutions. This book also gives a
good overview of the body of work Gabi and Reiko have carried out over
recent decades, and we are happy they have decided to present it in this form.

Gregor Engels, Luciano Baresi and Mauro Pezzé
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I believe it was in 2010, during the International Conference on Graph
Transformation held at the University of Twente, that I expressed the view
that the field had matured enough to create both the need to consolidate the
state of affairs and the means to fulfil that need. The need, because so many
insights had been gained over the years, both about the modelling power
of graph transformation and how this can be used in software engineering;
insights, however, that were scattered over many papers and in danger of
being lost for being insufficiently visible. The means to fulfil the need existed,
because the body of knowledge was, by then, sufficiently extensive to merit a
monograph where all this could be written up in a unified way.

This is not to suggest that the step of consolidation had not been taken
before, successfully. In 1997, the “Handbook of Graph Grammars and Com-
puting by Graph Transformation” appeared, in three volumes, collecting the
views and achievements of a large cross-section of the research at the time,
doing full justice to its diversity. In 2006, the “Fundamentals of Algebraic
Graph Transformation” saw the light, presenting a thorough, unified over-
view of the theoretical underpinnings, taking into account the (then) most
recent advances. Neither of these, however, attempted to convey the message
to the software engineering community at large, that solution approaches for
some of the pervading problems can be found in graph transformation, while
also exposing enough of that field to give newcomers an entrance.

To my delight, I was approached immediately after ICGT 2010 by Gabriele
Taentzer and Reiko Heckel, who told me they had concrete plans for just such
a monograph as I had imagined. Now these are two scientists thoroughly
embedded in the field, who like hardly any others have both an excellent
grasp of the theory and an unsurpassed knack for applications in software
engineering. In other words, they were the perfect people for the job.

Time has passed since then. For scientists, it is really very hard to find
time to write a monograph with sufficient scope, when the day-to-day pres-
sure to also keep contributing to smaller, shorter-term, more urgent activities
almost always takes priority. I was very happy to be invited to the project, yet
eventually realised that I was unable to find the time to do my bit, and so had
to drop out as a co-author. As we all know, however, urgency does not equal
importance. I think it is supremely important that a book such as this one
has eventually been finished, and I applaud Reiko’s and Gabi’s perseverance.

The book that lies before you is everything one could wish it to be. Part
I presents the necessary background on a sufficiently formal level to be acces-
sible to anyone with a moderate knowledge of discrete mathematics, while at
the same time illustrating all presented concepts using recurring, small-scale
examples. More importantly still, Part II presents example after example of
how all this can indeed be used across the board in all phases of software
engineering, from requirements gathering through analysis, design and spe-
cification to testing. Not surprisingly, given the close proximity of graphs to
(UML-style) models, special attention is paid to concepts of model-driven
engineering.
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It is a sign of the broad experience of the authors that each and every
chapter of Part II is actually based on published research, and ends with
extensive pointers to the research literature. Though the book is not meant
as a survey, and makes no claims to completeness, it does provide a very good
entrance.

Given these many qualities, the potential target audience of the book is
diverse. It can be used in academic teaching as the basis for any of a number of
courses, complemented with projects to be carried out in any of the topics of
Part II; it can act as a great source of reference; but most importantly, it can
serve as a means by which researchers and (research-minded) practitioners in
software engineering can get to know graph transformation. You can read the
book either way: from the more theoretical end, by working your way through
Part I and then browsing Part II, or from the more practical side, delving
into one of the topics in Part II and where necessary looking up the formal
details in Part I. All in all, there is little doubt in my mind that in years to
come, this book will be seen to stand out as an authoritative, go-to source of
information, indispensable on any (physical or digital) bookshelf.

Arend Rensink





Preface

The digital transformation of society affects all aspects of human life, offering
new opportunities but also creating challenges and risks. More tasks will be
automated using software. Workflows and business processes are becoming
increasingly data driven. Engineering such systems correctly, efficiently and
fairly is one of the most critical problems facing us today.

Graphs are of great help when coping with the complexity of software
systems. They make explicit the designs of component architectures, process
flows and data structures, and provide visual and yet formal representations
to analyse them. In order to remain useful and relevant, many real-world
software systems are continuously adapted and improved. Their graph-based
models need to be transformed to plan or reflect this evolution.

In the Internet of Things, for example, mobile and embedded devices are
networked to enable new kinds of applications. We use terms such as “smart
home”, “smart grid”, or “smart city” to describe the highly complex, hete-
rogeneous and adaptive application networks that interact with both human
users and their physical environment. The topologies of such networks can be
represented by graphs consisting of nodes and edges, where each node repre-
sents a device or an application component and each edge models a logical or
physical network link. Smart applications are able to adapt their network’s to-
pology according to changing needs or context. Graph transformation systems
are uniquely suited to modelling such adaptations in a direct and visual way.
Based on a formal and executable semantics we can validate their operation
through simulations and formally analyse their properties.

Today’s real-world software systems, built using a variety of languages and
technologies and being often distributed, need to be able to evolve in order to
remain relevant while allowing integration with other systems. To deal with
the resulting heterogeneity and longevity, model-based software development
lifts essential software engineering tasks to a higher level of abstraction, where
we use models to represent the functionality and architecture of applications
in a technology-independent, domain-oriented way. This requires concepts and
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tools that can bridge the gap between models and implementations through
code generation, reverse engineering and automated testing.

At the same time, software is becoming more and more data centric, re-
lying on and manipulating structured and unstructured data from a variety of
sources. Graphs provide a simple and flexible model for integrating and linking
data across formats and applications. They are at the heart of high-level and
scalable data representations, such as graph databases designed to store large
heterogeneous data sets, using graph-based technologies for efficient querying
and transformation.

Model-based engineering employs a variety of modelling languages and
techniques targeting application domains, such as Web or mobile applicati-
ons and cyber-physical or embedded systems. Such domain-specific modelling
languages require tool support for editing, simulation, compilation, analysis,
and version management, which, in order to be produced efficiently and cor-
rectly, should be based on definitions of the languages’ syntax and semantics.
Graphs and graph transformations provide a general mechanism to define
and represent models and to specify their manipulation through editing ope-
rations, model refactoring, simulation, translation, consistency checking, and
synchronisation across languages. They provide a technical (solution) space
for domain-specific language engineering, to support the definition and imple-
mentation of modelling languages.

Purpose of This Book
Research on graph transformation dates back over 50 years. Yet there is a
lack of accessible texts suitable for explaining the most commonly used con-
cepts, notations, techniques and applications without focusing on one parti-
cular mathematical representation or implementation approach. To provide a
general, widely accessible introduction, the first part of this book will present
the foundations of the area in a precise but largely informal way, providing an
overview of popular graph transformation concepts, notations and techniques.
In the second part, a range of applications of both model-based software engi-
neering and domain-specific language engineering are presented. The variety
of applications presented demonstrates how broadly graphs and graph trans-
formations can be used to model, analyse and implement complex systems
and languages.

Readers of This Book
We expect this book to be useful and accessible to both current and potential
users of graph transformation in the area of software engineering. If you are
interested in the use of graph-based modelling and transformation in applica-
tions to your own field, this should be the book for you whether you are in
academia or industry, had prior exposure to the area or are a complete novice.
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While we hope to contribute to the standardisation of notation and pre-
sentation, the book is not intended to cover the current state of research.
Rather than being comprehensive, we aim to cover work that is both establis-
hed and stable, inevitably omitting important original results for the sake of
presentation.

Although not written as a course book, most parts are suitable for students
undertaking postgraduate study at either advanced MSc or PhD level.

Web Site

Further resources, including exercises (with solutions on request) and slides
of lectures based on the book, are available at

www.graph-transformation-for-software-engineers.org

with related links and information about updates and corrections.
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Part I

Foundations of Graph Transformation





3

Graphs represent a wide variety of structures in computer science and beyond.
In software engineering, it is common to use graphs to model system structures
such as software architectures, class and object structures, and control or
process flow. As software systems evolve over time, these graphs may also
change. If graphs are used to present object or data structures at run time,
for example, graph changes model system behaviour. Graph transformation
specifies graph changes in a rule-based way, using graph pattern matching to
determine where rules can be applied and then replacing the matched part of
the graph as specified by the rule.

This part gives a broad overview of the basic and advanced concepts for
modelling with graphs and graph transformations. We analyse the commo-
nalities and differences between these concepts and distill the results into
feature-based taxonomies providing a high-level orientation. These taxono-
mies are not meant to be normative, but should establish an overview of
available concepts and explain how they are related. In the selection of the
concepts considered we lean towards the gluing approach to graph transfor-
mation. This approach is defined comprehensively in [85] and supported by
tools such as AGG [98, 12], Groove [107], Henshin [139], eMoflon [18, 93]
and ViaTra [285]. The presentation of graph transformation concepts in this
book is largely informal, sometimes semi-formal, incorporating examples for
illustration. Part I of the book is organised as follows:

• Chapter 1 surveys different notions of graphs as they are used throughout
software engineering. While all graphs consist of vertices and edges, there
are many variations, such as simple graphs and multigraphs, with directed
or undirected edges, binary edges or hyper-edges, using vertex and edge
labels, types, or additional attributes at graph elements.

• Chapter 2 first introduces the basic ideas of graph transformation, con-
trasting the gluing and embedding approaches. Then, the gluing approach
is explained in more detail. An atomic graph change is specified by a trans-
formation rule in if–then form. Such a rule is applied to a graph by finding
an occurrence of its left-hand side and replacing that occurrence by a new
copy of its right-hand side. To control rule applications, application condi-
tions are presented. The chapter concludes by presenting advanced features
of graph transformation required by applications in software engineering.

• Chapter 3 considers graph transformations beyond individual rules. Af-
ter identifying three main use cases, explicit control mechanisms for rule
applications are presented, leading to transactional graph transformation
units.

• Chapter 4 gives an overview of useful analysis techniques for graph trans-
formation systems. Starting with the properties of interest, we map them
to the techniques and constructions available to check these properties.
Then, the most popular techniques are presented in detail and illustrated
with examples from applications in software engineering.

All chapters finish with a summary and pointers to further reading.
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Graphs for Modelling and Specification

Graphs are used to model entities and their relations in domains as diverse
as chemistry, biology, physics, the social sciences, linguistics and, in particu-
lar, computer science. For example, communication networks, data structures,
control and data flows of computations are represented by graphs. In software
engineering, graphs are used as notations and formal models supporting sy-
stematic approaches to key activities such as requirements capture, software
design, the modelling and analysis of software architectures, and the definition
and implementation of domain-specific languages.

For example, software architectures can be represented by graphs whose
nodes and edges model components and their dependencies. Such graphs are
useful for performing analysis and optimisation tasks, for example by investi-
gating graph properties such as connectedness to determine if each component
is reachable from every other one. Optimising an architecture modelled as a
graph, for example to remove redundant connections, involves changing the
graph. A systematic approach to changing graphs is their rule-based manipu-
lation. This is the subject of the field of graph transformation.

Below, we will discuss examples of graphs representing different kinds of
information. We start with a broad range of such examples before considering
structures in software engineering. This will help us to establish an intuitive
understanding of graphs and their use for modelling. In the rest of this chapter,
we introduce basic and advanced features of graphs and discuss them in the
context of these examples.

Example 1.1 (Euler walks). The first graph ever considered is shown in Fig. 1.1.
It was created by the mathematician Leonhard Euler as an abstraction of the
map of the city of Königsberg [42]. The graph shows as vertices the main
landmasses of the city and as edges the bridges spanning the arms of the river
running through it. The problem Euler was trying to solve was, whether or
not it was possible to walk through the city using each of the bridges exactly
once, arriving back at the origin of the walk.
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It turns out that such an Euler walk does not exist in this case, and Euler’s
theorem states that such a walk is possible if and only if every vertex in the
graph has an even number of edges attached to it.

Fig. 1.1. The seven bridges of Königsberg1

ut

Example 1.2 (chemical valence graphs). Another well-known example of graphs
comes from chemistry. Fig. 1.2 shows a valence graph of the dichlorine hep-
toxide molecule. The vertices stand for atoms of a certain chemical element, in
this example seven labelled “O” for oxygen and two labelled “Cl” for chlorine.
The edges represent bonding between atoms: essentially, each edge models a
single bond induced by a saturated valency.

Fig. 1.2. Valence graph of the dichlorine heptoxide molecule2

ut

Example 1.3 (food web). A mouse eats plants and is a delicacy for a snake,
which has to hide so as not to be caught by a kite. Such food chains occur
in all ecosystems. Since they are highly interconnected, they actually form a
food web. A sample food web graph is depicted in Fig. 1.3. It contains several
food chains, all starting with green plants and ending with some carnivore.

ut

Example 1.4 (London Tube map). When travelling by underground in Lon-
don, a Tube map helps us with finding out which line to take and where to
change lines. A section of the London Tube map is shown in Fig. 1.4. It can
be interpreted as a graph in which each station forms a vertex, and each con-
nection by each line forms an edge. As we see in the map, two stations may

1 From en.wikipedia.org/wiki/Eulerianpath.
2 From en.wikipedia.org/wiki/Valence_(chemistry).

en.wikipedia.org/wiki/Eulerian path
en.wikipedia.org/wiki/Valence_(chemistry)
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Fig. 1.3. A food web graph3

be connected by several lines: for instance, Earl’s Court and South Kensing-
ton (bottom left) are connected by two lines, coloured blue and green. In the
graph of stations and connections, Earl’s Court and South Kensington would
be vertices and the connections would become two parallel edges labelled by
different colours. Once we have represented the Tube map as a graph struc-
ture, it can be used to find the path with the least number of stops between
two given stations, maybe combined with the minimum number of changes.
Hence, it can be used to provide travel suggestions.

Fig. 1.4. Section of the London Tube map4

ut

Example 1.5 (Voice-over-IP network). To model a peer-to-peer architecture,
we can use graphs with peers represented by vertices and connections between
peers represented by edges. Originally, the Skype IP telephony application sto-
red user and connectivity information in decentralised form [117], i.e. without

3 See the food web graph at biology.tutorvista.com/ecology/food-web.html.
4 See the London Tube map at https://tfl.gov.uk/maps/track/tube.

biology.tutorvista.com/ecology/food-web.html
https://tfl.gov.uk/maps/track/tube
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the use of a central infrastructure. Skype allows registered users to make voice-
over-IP (VoIP) calls and send messages to other users. A small example of a
VoIP network is shown in Fig. 1.5. User activities cause frequent changes in
VoIP networks. Hence, this example deals with highly dynamic graphs that
are transformed to reflect ongoing network reconfiguration.

Gabi

Reiko

Peter

Fig. 1.5. A small voice-over-IP network

ut

Example 1.6 (visualisation of software package dependencies). Graphs are of-
ten used to represent dependency structures of software modules. The graph
in Fig. 1.6 shows dependencies between software packages of a Web appli-
cation written in Java. Vertices represent packages and edges show package
dependencies; each edge is labelled by a number which stands for the number
of references causing a dependency. The shading of a vertex also conveys in-
formation: internal, application-specific packages are shown in black, whereas
the grey boxes correspond to external packages that are referenced by the
internal ones.

To better understand the information illustrated, we shall explain the
graph in Fig. 1.6 in more detail. A dependency graph can be used to cal-
culate each package’s resilience to change by computing its instability metric
I. This is calculated as I = Ce/(Ce + Ca), with Ce and Ca being the effe-
rent and afferent couplings of the package. The afferent coupling of a package
denotes the number of classes in other packages that depend upon classes
within this package, while the efferent coupling is the number of classes in
other packages that the classes in this package depend upon. The instability
metric I ranges from 0 to 1, with I = 0 indicating a completely stable package
and I = 1 indicating a completely unstable package. For instance, the depen-
dency graph in Fig. 1.6 has two unstable packages, application and test,
with I = 1, and two rather stable packages, daos (I = 0.3) and entities
(I = 0.2). ut

Example 1.7 (visualisation of data structures). During the development of a
software system, the design of its data structures is a crucial task. The visu-
alisation of sample structures can help to get a clear idea of what to develop.
Fig. 1.7 (top) shows a list of tasks as a doubly linked list. Each list entry con-
tains two links: one to the previous and one to the next entry. If an entry is
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Fig. 1.6. Software package dependency graph

the first or last one, its predecessor or successor, respectively, is a specifically
designated entry not holding data and links, to terminate traversal. While
the adding and removing of list entries requires more change actions than in
singly linked lists, these actions can be realised in a more uniform way, since
the first and last entries do not have to be handled differently.

The bottom half of Fig. 1.7 shows a corresponding graph with type in-
formation. List entries are Tasks, storing task names in the attribute details.
Links are represented as edges, distinguished by types. The list itself is re-
presented by a List vertex pointing to its first and last entries by specifically
typed outgoing first and last edges. The list entries point to the next and previ-
ous elements using next and prev edges, except for the first and the last entry.
To complete this structure, the doubly linked list could be made circular by
inserting next and prev edges between the first and the last list entry as well.

: List

: Task
details = "read book"

: Task
details = "write letter"

: Task
details = "meet Peter"

first lasthas has has

next
prev

next
prev

Fig. 1.7. Schema (top) and graph representation (bottom) of a doubly linked list

Another graph representation of this sample list annotates edges with num-
bers to order tasks. Hence, edges are annotated by the indices of their adja-
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cent list elements. The corresponding graph representation of the sample list
is shown in Fig. 1.8. When changing such a list representation, we have to
ensure that the edge annotations remain consistent, i.e. their numbers still
represent indices of list elements. ut

: List

: Task
details = "read book"

: Task
details = "write letter"

: Task
details = "meet Peter"

1 2 3

Fig. 1.8. Graph representation of list using edge labels

Having considered a variety of examples, we will see that their graph re-
presentations can also differ considerably. Graph transformations have been
proposed for a range of graph models to cater for the requirements of diffe-
rent applications. In the following, we give an overview of the core features of
graphs and how they are related to each other. Thereafter, these features are
explained in detail.

1.1 Feature Model for Graphs

Following work on model transformation approaches by Czarnecki and Helsen
in [68], we present the results of a domain analysis [66] of the variabilities
and commonalities of graph models used in graph transformation. Figure 1.9
shows a feature diagram defining a taxonomy of the relevant notions of graphs.
Each vertex of the feature model shows a point of variation. The legend in
Fig. 1.9 explains which combinations of features are possible and which are
mandatory.

All graph variants have a basic graph structure, in which there are three
independent variation points. First of all, there is a choice between simple
graphs, which allow at most one edge between any pair of vertices, and mul-
tigraphs, which support any number of such edges. Furthermore, rather than
sticking to binary edges with source and target vertices only, one may opt
for hypergraphs, in which the edges have arbitrary (though fixed) numbers of
attachments. Finally, edges may also be undirected.

As the next feature group, graphs may be decorated. We distinguish three
levels of decoration. In the most basic case, one may use unstructured labels,
which are just atoms associated with vertices or edges that provide additional
information and may arbitrarily assigned. Types can be considered as more
elaborate forms of labels. Graph elements that are assigned types are expected
to keep them throughout their lifetime. Following the object-oriented para-
digm, types may be abstract, may have subtypes, may have multiplicities or
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Graph

BasicGraphStructure Decoration

Simple

Multiple

Hypergraph

Undirected Labels

Types

Attributes

VertexLabels EdgeLabels

SubTypes AbstractTypes Multiplicities Aggregation Ordering

VertexAttributes EdgeAttributes

Containment

Spanning
Mandatory Xor group

Optional Or group

Fig. 1.9. Feature model for graphs

may include aggregations, more specifically containments, often forming span-
ning trees for given graphs. Moreover, collection types may be ordered. Finally,
attributes can be used to equip vertices and edges with additional data values,
for instance integers or strings. Types and attributes play much the same role
as they do in object-oriented modelling.

In the rest of this chapter, the graph features mentioned are presented in
more detail and illustrated by examples in combination with selected variants.

1.2 Basic Graph Structures

In this section, we recall and discuss several different basic graph models as
they occur in the literature (e.g. [252, 204]). In all variants, a graph G is
defined by a pair G = (V,E) consisting of vertex set V and an edge set E.
We use variables v, w to denote typical elements of V . One difference between
the variants lies in how the edges in E are represented.

For a uniform representation, we need to introduce some notation:

• P(X) = {Y |Y ⊆ X} stands for the powerset of X, i.e. the set of all
subsets of X. So, if X = {1, 2} then P(X) consists of ∅, {1}, {2} and
{1, 2}. Furthermore, P2(X) denotes the subset of P(X) containing only
sets of size 2.

• M(X) stands for the set of multisets over X. A multiset (sometimes called
a bag) is a subset of X in which every element may occur an arbitrary
number of times. It can be considered as a function X → N. So, for
X = {1, 2} as above, M(X) is an infinite set containing, for instance,
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[], [1], [1, 1], [1, 1, 1], [1, 2], [1, 2, 2], . . . . Furthermore M2(X) denotes the
subset ofM(X) containing only multisets of size 2.

1.2.1 Simple Graphs

In a simple directed graph, the edge set E consists of pairs of vertices denoting
their start and end points. Considering, for example, the food web graph in
Fig. 1.3, each vertex represents an animal or a green plant producer, while an
edge (v, w) from v to w means that v is eaten by w. A food chain is represented
by a sequence of adjacent edges (v0, v1), (v1, v2), . . . or, more succinctly, by
the induced sequence of vertices v0, v1, v2, . . .; for example, GreenPlantProducer,
Rabbit, Jackal, Lion.

This kind of graph is often used for analysing graph-theoretic properties,
such as connectedness or shortest paths. It does not allow multiple edges in
the same direction between the same two vertices, since edges do not have
their own identities but are represented by pairs of vertices.

In undirected graphs, on the other hand, we do not designate one end
point of an edge as its source and the other as its target; instead, the two end
points are symmetric. Rather than pairs, we may use two-element multisets
[v, w] = [w, v] to represent edges of this kind. (Note that we need multisets
rather than ordinary sets to account for loops, i.e. edges that lead from a
vertex to itself. In graph theory [73], loops are very often disregarded, in
which case two-element sets {v, w} with v 6= w are sufficient.) Alternatively,
an undirected edge may be equated to a pair of oppositely directed edges
(hence, [v, w] = {(v, w), (w, v)}); again, loops are special because they are
their own opposites.

An example of a simple undirected graph was given in the voice-over-IP
telephony net in Fig. 1.5: here, edges represent connection lines between peers.
Considering the undirected edges as bidirected ones is also meaningful if edges
are thought of as bidirectional communication channels; for example, Gabi can
talk to Reiko and vice versa.

1.2.2 Multigraphs

In contrast to simple graphs, multigraphs allow parallel edges between the
same vertices. They also come in undirected and directed variants. An example
of a directed multigraph was given in Fig. 1.6, where every edge stands for a
separate dependency of its source package on its target package. (In the graph
as shown, the parallel edges have been combined for the sake of simplicity;
the numbers on the combined edges represent how many parallel edges have
been wrapped into them.) Examples of undirected multigraphs include the
map of Königsberg in Fig. 1.1 (which may alternatively be thought of as
a bidirected graph, where once more each undirected edge stands for two
oppositely directed ones), the valence graph in Fig. 1.2 and the London Tube
map in Fig. 1.4.
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Formally, the edge set E of a directed multigraph does not consist of
pairs of vertices; rather, it is a set of (otherwise unspecified) objects with
two functions src, tgt : E → V that connect them to their source and target
vertices. Alternatively, as shown by the package dependency graph in Fig. 1.6,
we may interpret E as a multiset inM(V ×V ), rather than a set in P(V ×V )
as for simple graphs. For the undirected variant, rather than two distinct
functions src, tgt one can use a single attachment function att : E →M2(V )
(again simplifying the codomain to P2(V ) if the graph has no loops).

Example 1.8 (VoIP net as multigraph). Every simple graph can also be con-
sidered as a multigraph but not vice versa, as parallel edges are possible in
multigraphs but not in simple graphs. The peer-to-peer net in Fig. 1.5 can
be represented as a directed multigraph with vertex and edge sets as fol-
lows: V = {Peter,Gabi,Reiko} and E = {ag, gr} with src(ag) = Peter, tgt(ag) =
Gabi, src(gr) = Gabi and tgt(gr) = Reiko. ut

1.2.3 Summary

To summarise our discussion of simple graphs and multigraphs, we present
Table 1.1 that shows the basic graph structure in two dimensions. The idea
is that graphs become more expressive (i.e. have more structure) as one goes
to the right and down in this table.

Table 1.1. Edge structure of graphs (M denotes a multiset, P denotes a powerset)

Undirected, no loops Undirected, with loops Directed
Simple graphs E ⊆ P2(V ) E ⊆M2(V ) E ⊆ V × V
Alternatively E ∈ P(P2(V )) E ∈ P(M2(V )) E ∈ P(V × V )
Multigraphs att : E → P2(V ) att : E →M2(V ) src, tar : E → V
Alternatively E ∈M(P2(V )) E ∈M(M2(V )) E ∈M(V × V )

The previous examples of formally defined graphs show that vertices and
edges have to be identified to formally refer to them. This is often done by
names. Some of the example names may suggest that they can be used to
store additional information. However, these names are not formally part of
the graph; they are just used to refer to its structure. The following note states
how vertex and edge identifiers should be understood throughout the book.

Note 1.1: Vertex and edge identifiers. It is essential to realise that,
whatever the graph model, for the purposes of graph transformation the
choice of vertex and edge sets V and E is considered to be irrelevant.
It is the structure of the graph (possibly supplemented with additional
information) that is important: whether graph elements are represented
by numbers, coordinates in a grid, database keys or any other encoding
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does not make any difference. Technically, we will always consider graphs
with the same structure and additional information to be equivalent. In
example graphs, it is often convenient to use strings as vertex and edge
identifiers so as to be able to refer to them. Such an identifier should not
be understood as the identity of a graph element. In other words, vertex
and edge identifiers are not actually parts of the graph: they are just there
for readability and ease of reference.

1.3 Decorations: Labels, Types and Attributes

Using graphs for modelling often requires their vertices and edges to be anno-
tated with additional information such as names, colours, numbers or truth
values. As pointed out above, vertex and edge identifiers are not the right
place to store additional information. Instead, such data can be represented
in the form of decorations. We recognise three kinds of decoration: simple
labels, types and attributes. Below, we introduce them and illustrate their
differences using the example graphs seen earlier in this chapter.

1.3.1 Labelled Graphs

The simplest way of equipping a graph with additional information is label-
ling. In their basic form, labels are just elements of a given set, which are
associated with the vertices and edges. Labels may change during the lifetime
of a graph, but no computations can be carried out over simple labels as they
come without any further structure or operations.

An example of a labelled graph is the food web graph in Fig. 1.3, where
vertices are labelled by species names and pictures. The London Tube map can
also be considered as a labelled graph, where vertices are labelled by station
names and other symbols, and edges are labelled by colours (representing
metro lines). The diagram in Fig. 1.6 can be formalised in two different ways:
Edge annotations describe how many dependencies exist between two software
packages. Hence, the chosen representation can be considered as a compact
form for a directed multigraph, and the edge annotations show numbers of
parallel edges. Edge labels are not really adequate here, however, since changes
in the graph could require computations, for example when increasing the
number of dependencies represented by a given edge by one.

Example 1.9 (VoIP network as labelled graph). We can see the VoIP network
shown in Fig. 1.5 as a labelled graph whose vertices are labelled while its
edges are not. Each network node is equipped with the name of its user. The
resulting labelled graph is shown in Fig. 1.10. ut
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Gabi

Reiko

Peter

Fig. 1.10. VoIP network as labelled graph

Vertex and edge labels are typically taken from different domains, as they
model different kinds of information. Essentially, labelling is added to the
graph model through (possibly partial) functions labV : V → LV and labE :
E → LE , where LV and LE are the sets of vertex and edge labels, respectively.
For some of the basic graph variants discussed above, this representation may
be simplified: for instance, if the edge-labelling function is total, then directed
simple graph edges may instead be taken directly from V × V × LE (rather
than from V ×V as before), in which case labE is implicitly given by projection
to the third component.

Labelling works best if there is no more than a single piece of information
per graph element. In principle, this can always be “faked” by letting the ele-
ments of LV or LE be records or sequences rather than single values; however,
such representations quickly become cumbersome to handle.

1.3.2 Typed Graphs

Types are useful for classifying individual elements. Typed graphs distinguish
different kinds of vertices and edges by associating them with predefined types.
In contrast to labels, the types of graph elements do not change throughout
their lifetime.

For example, if we want to use graphs as snapshots of a dynamic system,
all snapshot graphs should be typed over the same set of types. Similarly, a
number of graphs may show individual instances of a general concept, such
as different VoIP network graphs, all made up of peer nodes and connection
edges. Hence, we assume that the typing information can be encapsulated in a
separate graph, the so-called type graph, where each type is represented exactly
once. In the following, we consider VoIP nets as typed instance graphs. Type
and instance graphs form a pattern that is shared with many other domains,
such as classes and objects, database schemata and states, and XML schemata
and documents.

Compared with simple labels, the difference is twofold: (1) the vertex and
edge labels LV and LE (now called vertex and edge types) are combined into
a type graph, which imposes additional constraints on their usage, as we will
see below; and (2) in contrast to simple labels, the types of graph elements
are immutable. As will be shown below, an instance graph conforms to a type
graph if there is a mapping of the instance graph to the type graph that
preserves the graph structure.



16 1 Graphs for Modelling and Specification

In order to model the VoIP net in Fig. 1.5 as a typed graph, a simple choice
would be to consider a single vertex type for peers and a single edge type for
connections. However, from the study of VoIP networks in [117] we know that
peers are distinguished into client and super nodes. This is in response to
the fact that computers connected to the network provide different levels of
resources such as computational power, storage capabilities and connection
bandwidth. Peers equipped with sufficient resources can be super nodes, thus
assuming management functions, while simultaneously continuing to serve
as clients. Super nodes form an overlay network among themselves, while
clients can only connect to super nodes acting as their servers. The conceptual
abstraction introduced by this description, classifying individual objects into
Client and Super nodes, can be captured in the type graph. Moreover, we can
distinguish the users from the application components (client or server nodes)
they are interacting with.

Instead, at the object level, we could represent aspects of concrete network
states such as illustrated in Fig. 1.5. We indicate three nodes, serving users
Peter, Gabi and Reiko. Gabi’s application, running on a desktop, is modelled
as a Super node and is connected to both Peter’s and Reiko’s Client nodes,
running on laptops.

Example 1.10 (VoIP network as typed graph). The graph G in Fig. 1.11 (top)
represents our running example of a VoIP system as a typed graph. In this
graph, vertices s: Super, c1, c2: Client and peter, gabi, reiko: User represent parti-
cipants. Each vertex is represented by a name followed by the vertex type.

Note that such “user names” are used only to refer to User vertices in
diagrammatic representations and textual explanations; they do not represent
user names in the context of the VoIP application (see also Note 1.1). We will
represent application-level user names using attributes later.

Edges represent connections between network nodes and their relationships
with users: they are typed as link and usr edges, respectively. Hence, vertex and
edge types in this example represent the corresponding real-world concepts.
They are arranged in the type graph shown in the bottom of Fig. 1.11. ut

Summarising, the relation between concepts and their occurrences in
snapshots is formally captured by the notion of typed graphs: a fixed type
graph TG represents the type (concept) level and its instance graphs repre-
sent individual snapshots. In Section 1.5, we consider further typing concepts
that stem from object-oriented modelling; for example, subtyping and multi-
plicities.

1.3.3 Graphs with Attributes

Attributes can be used to decorate graph elements with further information,
typically from data sets with algebraic operations, for which values can be
computed by evaluating expressions. Attributes can have integer, string or
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Fig. 1.11. Type and instance graph of the VoIP network

Boolean values, for example, with all the usual operations such as addition
(for numbers), concatenation (for strings) or Boolean connectors. As the di-
agram in Fig. 1.9 shows, attributes are an optional feature that can be used
independently of label or type decorations; however, the combination of types
and attributes is by far the most common one, and the one mainly used in
the remainder of the book.

To allow more than one attribute per graph element, attributes are equip-
ped with names. In a typed setting, the type graph also specifies the attribute
names and value domains; i.e. each vertex type may be further specified by
a list of its attributes. This means that all instances of a given type are at-
tributed in the same way. A Super node in a VoIP net, for example, may be
further specified by a name, computational power, storage capabilities and
connection bandwidth. In some cases, attributes are used to uniquely define
vertices, essentially acting like database keys, such as in the case of user IDs
or registration numbers.

Example 1.11 (VoIP network as typed attributed graph). In Fig. 1.10, we used
simple labels to encode user names; in Example 1.9, user names only served
the presentation but where not formally part of the graph. The simple-label
solution means that every possible name has to be in the set of labels, and
that name changes, such as those which may happen in the case of marriage,
cannot be computed by concatenating two existing names. Instead, it is better
to keep names as separate from the graph structure; i.e. using attributes. We
also use an attribute at Super nodes to count the number of clients attached.



18 1 Graphs for Modelling and Specification

While the instance graph G holds concrete attribute values, the type graph
TG just specifies attribute names and types such as Integer and String. Edges
are not attributed at all. ut

G

s: Super
clients = 2

u3: User
name = ‘’Gabi’’

c1: Client

c2: Client

u1: User
name = ‘’Reiko’’

u2: User
name = ‘’Peter’’

usr

link

link

usr

usr

type

TG

Super
clients: Integer

User
name: String

Client

usr usr

link

Fig. 1.12. Type and instance graphs of the attributed VoIP model

Example 1.12 (data structures as typed attributed graphs). Figure 1.7 shows
a graph representing a doubly linked list. It can be considered as a typed
attributed graph. The type graph, depicted in Fig. 1.13, can be easily deduced
from the visual notation. It shows two vertex types List and Task, which are
connected by edge types first, last, next and prev. (Note that next and prev are
two edge types although only one arrow is shown in Fig. 1.7.) In addition,
the graph is attributed, meaning that a Task vertex has an attribute details of
type String. Edges are not attributed. ut

A straightforward way to encode attributes is to equip graphs with a set of
functions, one for each attribute name, assigning to every graph element of the
corresponding type a value from the appropriate data domain. (Compare, for
example, the definition of attributed graphs in [292].) To allow attribute values
to be undefined (which is sometimes useful), attribute functions may be chosen
to be partial. For VoIP networks, attribution functions clients : V → Integer
and name : V → String would be needed. However, these functions should only
be defined on vertices of the correct type (Super and User, respectively).
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TG

List Task
details: String

first
last

next
prev

Fig. 1.13. Type graph for doubly linked lists

Another approach to graph attribution, which supports typed graphs more
naturally, is to represent all data values from a required data domain D as
vertices of a special kind, so-called data vertices. Graph vertices are linked
to data vertices by attribute edges i.e. edges running from graph vertices to
data vertices. They come in addition to the “normal” graph edges running
between graph vertices. A graph element can change its attribute value by
redirecting the corresponding attribute edge accordingly (or replacing it by
a new one pointing to the new value). Note that, in contrast to the first
attribution concept, this representation allows several values for one and the
same attribute name at a chosen graph element. (See [136, 85] for more details
of this attribution concept.)

A consequence of the second approach is that instance graphs conceptually
have an infinite number of data vertices, in order to reflect the values of
data domains such as natural numbers and strings: each value becomes a
separate data vertex. But since the data domains remain static throughout
graph transformations, there is no need to explicitly represent all data vertices:
it suffices to include only those that are used as targets of data edges. 5

Example 1.13 (VoIP network as typed attributed graph with data vertices).
Following the second encoding discussed above, Fig. 1.14 shows an example of
an attributed graph with a detailed representation of the attribute edges and
the attribute values used. The typed attributed graph G in Fig. 1.12 is shown
in detail. Attribute edges of types clients and name are represented explicitly
and point to concrete data vertices (shown as ellipses). The (infinitely many)
unused attribute vertices of the data domains Integer and String are not shown.
ut

1.3.4 Summary

We have considered graph decorations that may be pure labels, types or attri-
butes. Table 1.2 shows the different forms of decoration that graph elements
can carry, and their properties. The multiplicity ∗ of attributes refers to the
number of attributes a graph element can carry, normally distinguished by

5 To represent edge attributes in the same way, we would need another type of data
edge, running from normal edges to data vertices. Though this is conceptually
unproblematic, we will not use edge attributes in this book.



20 1 Graphs for Modelling and Specification
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Fig. 1.14. Instance graph of the VoIP model with attributes as data vertices

names, and also refers to the fact that in some approaches a single attribute
can have multiple values.

Table 1.2. Decorations on graphs

Multiplicity Modifiable? Representation
Labels 0..1 Yes Functions V → LV and E → LE

Types 1 No Mapping from instance graph G
to type graph TG

Attributes ∗ (named) Yes Functions V → D
Alternatively Named edges from graph vertices of V

to data vertices of D

1.4 Hypergraphs

The edge sets of simple graphs define binary relations over vertices. Though
this is sufficient for most applications, there are cases which require n-ary
relations for any n ≥ 0. Interesting examples are visual diagram specifica-
tions [214], where visual objects may be strongly interconnected by spatial
relationships, and term rewriting, where operations with n parameters can
be considered as n + 1-ary relations [147]. This generalisation gives rise to
so-called hypergraphs.

Example 1.14 (Nassi–Shneiderman diagrams as hypergraphs). Diagrams may
be considered as assemblies of visual objects with spatial relationships such
as above and contains between them. This structure can be described by a
graph. Figure 1.15 shows an example of a so-called Nassi–Shneiderman dia-
gram. This kind of diagram was introduced to visually represent structured
programs. Since visual objects in Nassi–Shneiderman diagrams may have more
than two attachment points, with the actual number dependent on their type,
hypergraphs are well suited to representing their spatial relationships.
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Each visual object is represented by a hyperedge of type text, while or cond,
corresponding to, respectively, textual statements, while loops and if–then–
else conditions. Dependent on its type, each hyperedge may have four or even
six attachment points represented by untyped vertices. For instance, the left-
hand side of Fig. 1.15 shows a Nassi–Shneiderman diagram; the corresponding
hypergraph (without attributes) is shown to its right. ut

Fig. 1.15. Nassi–Shneiderman diagram with its hypergraph representation6

Thus, hyperedges can be used to model n-ary relations over vertices.
Instead of pairs E ⊆ V ×V as for simple graphs, hyperedges can be modelled
as lists of vertices, i.e. E ⊆ V ∗. The vertices in the list are called tentacles or
attachment points, based on the visual notation for hyperedges as illustrated
in Fig. 1.15. Regarding the possible range of attachments, hyperedges can be
defined with any number of attachment points, which may be zero, one, two
or more. Since the attachment points form a list, they are ordered and can
be distinguished, just like the source and target of (directed) binary edges.
Moreover, similarly to binary loops, hyperedges may be attached to the same
vertex more than once. However, there is also a variant where all attachments
points of a hyperedge are mutually distinct [74]. Like simple graphs or mul-
tigraphs, hypergraphs may be typed and attributed. Hyperedges of the same
type are assumed to have the same number of attachment points. The hyper-
graph in Fig. 1.15 is well typed: for instance, all text hyperedges have four
tentacles.

In the explanation above, hypergraphs were defined as an extension of
directed simple graphs. They may equally well be defined as an extension of
undirected graphs, or of multigraphs. Table 1.3 presents all the possible edge
structures for hypergraphs, where Pf (V ) denotes the set of all finite subsets
V , andMf (V ) the set of all finite multisets over V . This is entirely analogous
to (but more general than) Table 1.1 for binary edges, except that we have
left out the case of hyperedges without loop.

Yet another possible representation of multi-hypergraphs is obtained by
representing the hyperedges themselves as “relational” vertices, and the ten-

6 Figures taken from [11].
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Table 1.3. Edge structure of hypergraphs (M denotes a multiset, P denotes a
powerset)

Undirected Directed
Simple hypergraphs E ⊆Mf (V ) E ⊆ V ∗

Alternatively E ∈ P(Mf (V )) E ∈ Pf (V ∗)
Multi-hypergraphs att : E →Mf (V ) att : E → V ∗

Alternatively E ∈M(Mf (V )) E ∈M(V ∗)

tacles as directed binary edges from those new, relational vertices to the pre-
existing, ordinary vertices. This gives rise to a directed (binary) simple graph,
of a kind that is called bipartite, meaning that it has two classes of vertices
and all edges go from one class to the other. For the example in Fig. 1.15, for
instance, the grey labelled areas can be regarded as relational vertices, and the
black circles as ordinary vertices. Though this has the advantage of a simpler,
more regular structure, the typing discipline is weaker in this representation:
for instance, the type of a (relational) vertex no longer fixes its number of
attachment points.

Many of the concepts and constructions in this book are applicable across
a wide range of different graph models. We restrict ourselves to binary edges,
because they are the model most widely used.

1.5 Advanced Graph Features

Our considerations so far have made it clear that graphs are a general data
structure that can be used in many different ways. Looking more closely at
software engineering, graphs have been used especially to formally underpin
object-oriented artefacts. For this purpose, plain type graphs as seen so far are
often not enough. Therefore, we discuss here several kinds of advanced featu-
res: type inheritance, multiplicities, whole–part relationships and collections.

1.5.1 Inheritance and Multiplicities

Attributed type graphs form a basis to define object-oriented structures but
lack certain features, such as inheritance and multiplicities. To start with the
former, in object-oriented modelling, class inheritance is introduced to allow
a form of reuse of model parts. Similarly, vertex types may inherit edge and
attribute types from supertypes, leading to more compact type graphs and the
possibility of reuse (which will be exploited in the next chapter). Moreover, if
vertex types are introduced just to define a meaningful inheritance relation, it
could make sense to make some or all supertypes abstract, meaning that they
are not allowed to be instantiated.

If an edge types in a given type graph specifies a specific form of relati-
onship between, such as “has a” or “consists of”, it is worthwhile to consider
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additional concepts for type graphs to formulate further constraints on in-
stance graphs. Object-oriented concepts such as inheritance and multiplicities
can be integrated straightforwardly: inheritance can be modelled by additi-
onal edges of a certain type, and multiplicities can decorate the source and
target ends of edges. A multiplicity 0..1 at an edge type expresses that there is
at most one edge of that type, while a multiplicity 1..* demands a non-empty
set of edges. A multiplicity * is no actual constraint but clarifies the fact that
any number of instances is allowed. The following example shows the use of
inheritance, abstract vertex types and multiplicities.

Example 1.15 (advanced type graph for VoIP nets with instance graph). The
attributed type graph shown before in Fig. 1.12 can be further refined (as
in Fig. 1.16) by introducing an abstract supertype of Super and Client nodes,
called Node. As this node is abstract, its type name is depicted in italics.
Inheritance edges are depicted with hollow arrowheads. Both subtypes have
an outgoing usr edge to User which can be lifted to Node. Moreover, instance
graphs must not have vertices of type Node, so this type should be abstract.
Multiplicities determine that a Node always belongs to a User, who, vice versa,
does not need to be connected to some Node. While Super nodes may have
arbitrary many Clients, a Client always has to have a connection to one such
Super node. Moreover, Super nodes may be connected by overlay edges, labelled
ovl. ut

It should be noted that multiplicities can alternatively be expressed by
so-called graph constraints (introduced in the next chapter). We will see in
addition that whole–part relationships, which are introduced next, can also
be expressed by graph constraints.

1.5.2 Whole–Part Relationships and Spanning Trees

The feature model in Fig. 1.9 shows three levels of “whole–part relationships”:
aggregation, composition and spanning trees. While an aggregation merely
ensures that elements are not in a cyclic relationship, compositions are more
restrictive and require in addition that each element has to be in exactly one
container.

The strongest form of whole–part relationship is a spanning tree, which is a
designated subgraph in the form of a tree (an acyclic structure without vertex
sharing and with a single root) connecting all its vertices. A slightly weaker
form is a spanning forest, which is not restricted to a single root element. In the
following, we consider object-oriented models as used in the Eclipse Modeling
Framework (EMF) [92] more closely, as EMF is a widely used technology for
defining software models. An EMF model has a distinct containment structure
defining a spanning tree (or sometimes a spanning forest) of the underlying
graph structure. Two conditions have to be true for containment structures:
each node has to be contained in some other node, except for root nodes,
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Fig. 1.16. VoIP network with subtypes and multiplicities

and a node must not (transitively) contain itself. In [41], it was shown that
typed attributed graphs with inheritance and containment are able to formally
underpin EMF models.

Example 1.16 (graph structure of EMF models). The EMF model in Fig. 1.17
specifies a simplified variant of a statechart, a particular kind of model of
system behaviour based on hierarchical automata. A StateMachine consists of
state vertices which may be PseudoStates used to indicate initial states and
States that may be further refined to FinalStates. Since the behaviour of a State
may be specified by an automaton, it may contain vertices and Transitions.
Containment edges are indicated by black diamonds in Fig. 1.17. Together
with the requirement that a model must always contain a single StateMachine
vertex, this definition of containment relations allows and enforces spanning
trees with StateMachine instances as roots.

Figure 1.18 shows a simple statechart as an instance model in three diffe-
rent views. While the diagrammatic view on the right shows the statechart in
its concrete syntax, its containment structure is shown on the left in a tree-like
representation. This view shows that StateMachine contains a State “Phone”,
which contains some states and transitions. State “Active” is further refined
and contains again states and transitions. At the bottom right, a so-called

7 Figure taken from [41].
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Fig. 1.17. EMF model for defining simplified statecharts7

properties view is shown, depicting the details of the transition running from
State “DialTone” to State “Idle”. A section of the underlying graph structure
is shown in Fig. 1.19. This shows States “Active” and “Idle” contained in an
overall “StateMachine” container, as well as State “Dial Tone”, a substate
of “Active”, and a Transition “caller hangs up” running from “Dial Tone” to
“Idle”. Note that the complete underlying graph structure can be deduced
from the different EMF views. ut

Fig. 1.18. EMF instance model of a statechart modelling a simple phone8

Another example with a prominent spanning-tree structure are XML do-
cuments represented as graphs. In this case, XML elements are represented
as vertices and child elements are connected by containment edges forming a
spanning tree. In addition, cross-references (called IDREFs) are common in
XML: in a graph-based view, those correspond to additional edges. This graph

8 Figure taken from [41].
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Fig. 1.19. Partial graph structure of the statechart in Fig. 1.18

representation can simplify the navigation of XML structures in XSLT (used
to transform XML documents) or XQUERY (which supports querying XML
documents). In [272], a graph-based approach to transform XML documents
is presented, discussing the differences between XSLT and graph transforma-
tion.

Equipping a graph with a spanning tree enables the efficient implemen-
tation and traversal of vertices. Hence, the spanning tree can be used as a
kind of backbone for complex graph operations (see e.g. [288, 27]). But we
also have to take into account the fact that there is an additional structure
to be managed. In particular, when the graph is modified, we have to ensure
that the spanning tree is not destroyed. While the containment relation in the
statechart example above defines a very natural spanning tree, there is not
always such a natural candidate. In class diagrams, for example, the contain-
ment of classes in packages has to compete with other class relations, such as
all kinds of associations that are usually considered as more relevant.

Summary of whole–part relationships

Table 1.4 shows the different forms of whole–part relationships and their defi-
ning properties. The multiplicity refers to the number of containers elements
can be related to, for example, they can be aggregated into any number of
containers, but must be composed into exactly one. Considering the structure,
both kinds of relationships are locally acyclic, i.e. for a specific aggregation or
composition relation in the type graph, such as Vertices in the state machine
metamodel, the edges of this type in any instance graph form an acyclic graph.
A spanning tree uses composition, so is subject to the same constraints, but
requires the union of all composition edges to be acyclic and demands that
all vertices (except the root) have a container.

As already pointed out for multiplicities, structure constraints can also
be specified by graph constraints (which are introduced in the next chapter).
When graphs are modified, any constraints imposed on the graph structure
have to be preserved (by imposing restrictions on the transformations that are
allowed) or enforced (by manipulating the graph after the transformation).
As an example of the latter, composition relationships imply a dependency
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Table 1.4. Whole–part relationships in type graphs

Multiplicity Structure
Aggregation ∗ Acyclic
Composition 1 Acyclic, no sharing
Spanning tree 1 Acyclic, no sharing, single root

between the container and the contained element: if the container is removed,
the contained element is deleted as well.

1.5.3 Ordering and Collections

Although graphs are a very flexible data structure, they are not particularly
well suited to representing ordered structures such as lists. In a direct graph
representation, list elements could be represented by vertices that are se-
quenced by connecting edges. Although quite flexible with respect to adding
and removing elements, this solution does not support elements being shared
among lists. To circumvent this problem, “slot” vertices have to be introduced
defining available slots in lists that can be filled by elements. Besides yielding
a rather complex graph structure, this solution also requires additional con-
ditions to be checked as, for example, that slots are filled in a sensible way.
Another possibility is to attribute edges with indices. This solution is good in
the sense that it supports the sharing of elements between lists. But indices
require updating whenever list elements are added or removed. Therefore, so-
called list edges were proposed in [216]. A list edge generalises a simple edge
by allowing a sequence of vertices as a target.

Example 1.17 (representation of lists). Figure 1.20 shows a graph that repre-
sents three lists for sports events, more precisely, skating events (taken from
[216]). While the left two Event lists share three Participants, the third list is
empty. The order in a list corresponds to the starting order at the event. All
three Event vertices are sources of a list edge each named parts. The 1500 m
event has four participants, shown in order from top to bottom, while the
5 km event has three participants, namely Kramer, Tuitert and Davis (in that
order). ut

Ordering (of list elements) can also be seen in the context of collections.
Collections are ad hoc groups of elements; in graphs they are modelled by
outgoing edges of a given type, with multiplicity * or 1..*, from one and the
same vertex. The collection then consists of all vertices that the edges point
to. In the popular modelling languages UML and EMF, collections can vary in
two dimensions: they can, on the one hand, be singular or multiple, meaning
that the same element may occur just once or multiple times in the same
collection and, on the other hand, they can be ordered or unordered. All four

9 Figure taken from [216].
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Fig. 1.20. Representation of three lists using list edges9

combinations give rise to meaningful kinds of collections. Table 1.5 lists them,
as well as the graph features necessary to support them conveniently.

Table 1.5. Kinds of collection and their representation

Singular Multiple
Unordered Sets Bags (= multisets)

Graph structure Simple edges Multi-edges
Ordered Ordered sets Sequences (= lists)

Graph structure Simple list edges List multi-edges

1.6 Summary and Further Reading

In this chapter, we have given an overview of some basic and advanced features
of graphs, illustrated them by examples and pointed out the advantages of the
different variants. In most of the remainder of this book, we will concentrate
on a single variant only, which supports a combination of features.

Note 1.2: Graph choice. To represent and transform structures as
they occur in software engineering, we use typed attributed multigraphs
with inheritance, abstract types and multiplicities throughout this book.

1.6.1 Formal Definitions of Graphs

While we have considered the various kinds of graphs in a semi-formal way,
their formal definitions can be found in the literature. Simple graphs as they
are typically used to formulate graph algorithms, are defined in, for example,
[204, 73]. In [252], the main approaches to graph transformation are presented,
each coming with its definition of a graph. Node replacement grammars, for
example, are based on simple graphs with node labels. In hypergraph replace-
ment, hyperedges are labelled but nodes are not. The algebraic approaches to
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graph transformation commonly use multigraphs as transformation of multi-
graphs can be well defined in an algebraic way. Since multiple edges between
two nodes are allowed, the union of two graphs, for example, which is one
of the basic constructions, can be computed by the componentwise unions of
their sets of nodes and edges.

1.6.2 Formal Considerations of Graph Attribution

Attribute functions are especially suitable for untyped graphs, such as in the
graph optimisation problems considered in [292], including graph clustering.
In the context of graph transformation, attribution functions were used in
[234] in combination with graph labelling: essentially, vertex labels are semi-
structured entities that may be used to contain attribute values.

Note that, in contrast to attribute functions, attribute edges ending at
data vertices allow several values for one and the same attribute name at
a chosen graph element. This attribution concept is well suited to algebraic
graph transformation approaches. As with multigraphs, attributed graphs fol-
lowing this attribution concept allow the componentwise union of attribute
edges. See [136, 85] for more details of this attribution concept. Although we
restrict ourselves to node attributes throughout this book, this attribution
concept supports edge attributes as well.

Orejas [227] proposed symbolic graphs whose labels are variables which
come with a set of logical formulas that constrain their possible values.
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Graph Transformation Concepts

When software systems evolve, their model-level representations have to
evolve with them to maintain consistency. A program change, for example,
may induce a change to its control flow graph. The application of a design
pattern may result in a change to the class structure of a software component.
A new requirement may introduce a change to the associated analysis model.
Since these models are based on graphs, this raises the need for a systematic
specification, implementation and analysis of graph manipulations.

Graph changes in software engineering are mostly local, i.e. a small part of
the graph is changed while the rest remains the same. However, these changes
often extend beyond individual nodes or edges to involve more complex graph
patterns. The refactoring of a class structure, for example, may require several
classes, attributes, methods and references to be modified. This means that,
considering a class model before and after refactoring, a potentially complex
pattern may have been replaced. Hence, for specifying graph manipulations
we need the ability to specify the replacement of graph patterns.

The range of notations and techniques supporting the systematic manipu-
lation of graphs using pattern-based rules is collectively referred to as graph
transformation [252]. A change in a graph is achieved by the creation and
deletion (addition and removal) of graph elements. A graph transformation
rule specifies these changes with the context required to relate them to the
remainder of the graph and any additional conditions for the application. To
understand the basic ideas of rule-based graph transformation, let us start
with a simple example.

Example 2.1 (transformation, gluing approach). Figure 2.1 gives an example
of graph manipulation in the context of dynamic VoIP networks: the state
displayed at the bottom left changes as a result of Reiko shutting down his
laptop, thus disconnecting his client from Gabi’s super node. This change is
described more generally by the rule consisting of the connected graphs at the
top of the figure, which shows a generic super node and client disconnecting.
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The difference between the rule and the transformation is twofold. First,
the rule does not mention unnecessary context, but only those nodes that are
needed for the change to take place. In our case, Peter’s node was deemed
irrelevant to the disconnection of Reiko’s from Gabi’s node. Second, the rule
also abstracts from the concrete identity of the objects in the states. For
example, the same rule could now be used to disconnect Peter’s node. This
exemplifies the second basic idea of graph transformation: the use of rules to
specify state transformations. ut

u1
u2

Rule

u1
u2

Gabi

Reiko

Peter Gabi

Reiko

Peter

States
transformed

Types

Fig. 2.1. Gluing approach, rule and transformation

This example demonstrates the principles that hold true in all graph trans-
formation approaches:

• A graph rule specifies the conditions under which a graph transformation
can take place and the actions that should be performed in that transfor-
mation. In the above example, only an edge was deleted; it is assumed that
this edge runs between two network nodes that exist and are preserved.

• Each such rule consists of a left-hand side, specifying the situation before
the change, and a right-hand side, corresponding to the situation after the
change. Applying the rule, the context outside the area matched by the
rule’s left-hand side is not changed. In our example, Peter’s node and its
connection to Gabi’s node are not effected.

We distinguish two fundamentally different approaches to graph transfor-
mation, which we will refer to as gluing and embedding. They differ in the
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mechanism used to combine the right-hand side of the rule with the context
left over from the given graph after deletion of the matched left-hand side. In
the gluing approach, the new graph is formed by gluing the right-hand side
to the context along a common subgraph. This principle was illustrated in
Example 2.1 above. In the embedding approach, on the other hand, the new
graph is formed by a disjoint union, with new edges created to connect the
right-hand side with the rest of the graph. This is illustrated by the following
example.

Example 2.2 (example transformation, embedding approach). Figure 2.2 shows
an example transformation in the embedding approach. The rule in question
creates a new server node; it has an associated embedding relation which
states that this new server should be connected to all existing servers. Note
that the left-hand side of the rule is empty, meaning that this rule is always
applicable (there is nothing to be matched). ut

Rule

new

Gabi

Barbara

Peter Gabi

Barbara

Peter

new
States

transformed

Embedding relation:

Fig. 2.2. Embedding approach, rule and transformation

More abstractly, in the embedding approach, the transformation starts by
finding a match of the left-hand side L in the graph, as indicated by the left
graph in the bottom row of Fig. 2.3. The matched part is deleted from the
graph; adjacent edges of deleted vertices are deleted as well. This leaves the
so-called context graph (depicted by a grey ring), which is unchanged. Subse-
quently, a copy of the right-hand side R is added to that context graph. At this
point, the question is how to connect R with the context graph. Just putting
them side by side without any connections, in other words taking their disjoint
union, is usually not the intention of the developer. Therefore, the embedding
approach supports the definition of an embedding relation between vertices of
R and of the context graph. This relation is defined in the form “If a context
vertex with label x is present and connected by an e-edge to vertex y, then
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delete the e-edge and replace it by an f -edge to vertex z in R.” Hence, the ap-
plication of this relation results in additional edges connecting the two graphs,
as illustrated at the bottom right of Fig. 2.3. While a rule in the embedding

L R

RL

L R

RL

Fig. 2.3. Schematic view of the embedding approach to graph transformation

approach consists of two graphs L and R plus the embedding relation, the
gluing approach does not require an embedding relation but instead relies on
a so-called gluing graph shared between the left- and right-hand sides of a rule.
Figure 2.4 gives a schematic view of the gluing approach. Once more, the red
part (of the left-hand side) denotes the graph elements to be deleted while the
green part (at the right-hand side) denotes new graph elements to be inserted.
This time, however, the left- and right-hand sides contain a common gluing
graph, so that the developer can use it to specify exactly how the deleted and
created elements are connected to the context graph. After a match of the
left-hand side (including the gluing graph) has been found, all graph parts
matched by the left-hand side, but not by the gluing graph, are deleted, while
graph elements in the match of the gluing graph are preserved. They form the
required graph part that is needed to insert new graph elements as specified by
R. No additional embedding relation is needed here. An example was given in
Fig. 2.1. With this basic understanding of graph transformation at hand, we

L R

RL

L R

RL

Fig. 2.4. Schematic view of the gluing approach to graph transformation

now consider the relevant graph transformation concepts. We present another
feature model to get an overview of the core features of graph transformations
and to understand how they are related. Then the gluing approach to graph
transformation is explained in detail.
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2.1 Feature Model for Graph Transformation Concepts

As we did for the features of graphs, we analyse the domain of graph trans-
formation approaches according to the commonalities and variabilities of con-
cepts. Figure 2.5 shows a feature diagram defining a taxonomy for graph
transformation concepts. As before in Fig. 1.9, this feature model is not me-
ant to be normative but is intended to establish an overview of the available
graph transformation concepts and explain how they are interrelated.

GraphTransformation

BasicApproach TransformationRule AttributeLanguage TransformationSystem

Embedding Gluing Action ApplicationConditions MultiPatterns Parameters

Deleting Merging Copying Predefined User-defined

Any Identification Injective Gluing InjectiveGluing Atomic Nested

NACs PACs AttributeConditions PathExpression

Fig. 2.5. Feature model for graph transformation concepts

As stated at the beginning of this chapter, we understand graph transfor-
mation to be rule-based. Given a basic approach, i.e. gluing or embedding (see
above), the main point of variability is the concept of a transformation rule.
The structure of transformation rules and the way they are applied to graphs
can vary greatly. All rules have in common that they are able to check the
availability of certain patterns during the process of matching.

Note 2.1: Pattern-based rewriting. Graph transformation is pattern-
based: a rule is applied by checking for the existence (and non-existence,
in the case of negative conditions) of graph patterns specified in its left-
hand side, and replacing an occurrence of this pattern by a copy of the
right-hand side.

Replacing the left-hand side pattern by the right-hand side pattern can be
broken down into basic actions.
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Note 2.2: Basic actions. Two basic actions are used to change graphs:
the create action is able to add new graph elements; the delete action
can be seen as the inverse of creation. A combination of deletion and
creation can be used to specify replacement. In the case of attributed
graphs, attribute values can also be deleted, added and changed, just like
graph elements.

Creation is the one basic action that is shared by all graph transformation
approaches; therefore it is not a point of variability, and so does not occur in
Fig. 2.5. Deleting rules, however, are not always possible. Hence, this feature
occurs in this feature model. More advanced rule actions include merging and
copying of graph elements. These operations could be seen as inverse to each
other, but this is not entirely so: merging two vertices automatically unifies
their sets of adjacent edges, while copying a vertex copies all adjacent edges,
hence first merging and then copying will generally result in more edges.

In addition, rules can have parameters to exchange references to graph
elements and attribute values with each other and the environment. This is
analogous to the parameter lists of functions and procedures in programming
languages.

An important aspect of a rule are its application conditions, which deter-
mine exactly when and where the rule may be applied in a given host graph.
Some application conditions are predefined, meaning that they can be selected
from a set of standard conditions to hold for single rules or for the whole
transformation system; others are user-defined, meaning that they have to be
specified by the user on a rule-by-rule basis.

Predefined application conditions typically represent generic restrictions
on the way in which rules may be matched. A well-known restriction is injecti-
vity, meaning that the rule pattern must be structurally equal to the matched
subgraph. In contrast, non-injective matches can map distinct rule elements
to one and the same graph element. This can help to keep the rule set more
concise: if a rule performs an action involving two graph elements that may
be the same, in the case of injective matching we need two rules to cover
both cases, whereas with non-injective matching, they can be condensed into
one rule. For a more extensive discussion of injectivity and the other global
application conditions, see Section 2.3.

User-defined application conditions can be positive or negative (PACs and
NACs for short); these conditions test for the existence and non-existence,
respectively, of specific graph patterns. In addition, dedicated attribute condi-
tions may be used to further constrain attribute values in the matched part of
the graph. Furthermore, application conditions may contain path expressions
requiring or forbidding not only single edges but also paths of edges. These
so-called atomic conditions may be generalised into nested conditions, allowing
one to equip a condition with a condition again.
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Rules may include multipatterns that may be matched arbitrarily often,
including not at all. Multipatterns allow one to specify concisely the manipu-
lation of repetitive and/or optional graph structures.

Another point of variability is the way in which the manipulation of attri-
butes is integrated into the transformation rules. In Fig. 2.5 this is called the
attribute language. In the simplest case, the graphs being transformed have
no attributes at all; however, as seen in Section 1.3, it is common for a graph
formalism to offer at least basic data types as attributes. In that case, the
attribute language determines which attribute operations may be performed
and what attribute constraints can be formulated within rules.

Finally, the application of transformation rules may be restricted by exter-
nal control structures defined in transformation systems. These are discussed
in more detail in Chapter 3.

In the remainder of this chapter, we discuss most of the features of Fig. 2.5 in
more detail. With respect to the basic transformation approaches (embedding
versus gluing), we concentrate on the gluing approach. Though we recognise
the advantages of embedding, our choice is motivated by the simplicity of
gluing. We will show how we can emulate the embedding approach using
multipatterns.

2.2 Rules and Transformations

Focussing on the gluing approach to graph transformation, we will describe in
detail how a rule is specified and how it is applied to a given graph. We will
investigate simple rule applications first before progressing to more advanced
graph transformation concepts.

Following the idea that a rule generalises transformations, a rule’s left-
hand side has two roles. Firstly, it has to describe the graph elements directly
affected by the transformation with their immediate context such as, for ex-
ample, the source and target nodes of edges to be deleted. This means that
the left-hand-side is part of the rule’s specification of the effect of a transfor-
mation. Secondly, the left hand side has to restrict the rule’s applicability to
situations in which we want a transformation to happen, i.e. it is acting as a
precondition.

The difference between the left-hand side and the right-hand side of a rule
specifies the actions to be performed. All elements which occur in the left-
hand side only are deleted while elements that occur in the right-hand side
only have their copy added to the graph. The elements which are in both sides
of a rule have to be present in the given graph and are preserved. Differences
between the left- and right-hand sides in the values of corresponding attributes
indicate changes to these values. They are usually described by assignments to
the right-hand side occurrences of these attributes using attribute expressions
evaluated at the time of the application.
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Example 2.3 (introductory example of a graph transformation). Figure 2.6
shows a detailed graph representation of the transformation shown in Fig. 2.1.
The additional details concern the clients count in the Super node and the name
attributes in the User nodes. Note that all graphs, both in the rule and in the
concrete transformation, conform to the type graph of Fig. 1.16.

In the rule, generalisation is achieved by focusing on the relevant subgraph
of the given graph IN and observing its changes in the derived graph OUT.
The context graph (in terms of Fig. 2.4) is not shown explicitly but can be
deduced from the rule by identifying all elements that occur both in the left-
and the right-hand side. Since this particular rule does not add graph elements,
its gluing graph is equal to the right-hand side without the assignment to the
clients attribute whose update is realised by the deletion of the link to the old
value and the creation of a link to the new value. We abstract from concrete
attribute values, replacing, for example, clients = 2 in graph IN by clients = n,
and clients = 1 in OUT by clients = n-1. ut

LHS

s: Super
clients = n

u: Userc: Client usr

link endClient(c) = c

RHS

s: Super
clients := n-1

u: User

IN

s: Super
clients = 2

u3: User
name = “Gabi”

u1: User
name = “Peter”

u2: User
name = “Reiko”

c1: Client

usr

link

usr

c2: Client

link

usr

OUT

s: Super
clients = 1

u3: User
name = “Gabi”

u1: User
name = “Peter”

u2: User
name = “Reiko”

c1: Client

usr

link

usr

c2 = endClient(c2)

Fig. 2.6. From state transformations to rules: graph representation (LHS: left-hand
side, RHS: right-hand side

2.2.1 Elementary Rules

A rule combines a number of checks and actions that should be executed toget-
her. In this sense it is similar to an operation or a method in programming. To
be able to refer to these checks and actions abstractly, a rule has a signature
consisting of a rule name and a list of formal parameters. A formal parameter
name corresponds to either a node identity or an attribute value which is used
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in the left- or right-hand side. For instance, the parameter nm of endClient in
Fig. 2.6 corresponds to the value of the name attribute of the User node to
which the rule is applied. All input parameters are listed in the parentheses
following the rule name, in turn possibly followed by an output parameter.
If a parameter is both input and output parameter, it occurs twice. The rule
signature endClient(c2) = c2 defines c2 as input and output parameter. Note
that the types of parameters are usually not shown in rule signatures, as they
can be unambiguously deduced from the overall rule specification and/or the
type graph. Otherwise parameters are shown with their types.

We will now give a more precise definition of a rule in the setting of typed
graphs. We choose a type graph TG and assume all graphs and rules to be
typed by that graph.

An elementary graph transformation rule r(par) : L → R consists of a
name r, a list par of (formal) parameters (which may be input or output
parameters), a pair of instance graphs typed over TG and a partial mapping
from L to R. This mapping ensures that there exists a subgraph of L that
maps to a structurally identical subgraph of R. These subgraphs of L and R
form the gluing graph, intuitively given by the intersection L ∩ R and sche-
matically shown as a blue ring in Fig. 2.4. This gluing graph represents all
graph elements that have to exist to apply the rule and are preserved (rather
than deleted) by the application. The left-hand side L represents the precon-
ditions of the rule, while the right-hand side R describes the postconditions.
The left-hand side L may be the empty graph, in which case the precondition
is always satisfied, or R may equal L, in which case the application of the rule
is without effect. A rule without effect is useful to just check a condition on a
graph without modifying it.

Each parameter in par has a (distinct) name and a type; the latter may
be a data type or a node type from TG, and it may be omitted if it can
be deduced from the rule itself. A data type parameter can be used inside a
rule as part of an attribute expression or condition (see above); a node type
parameter can appear as a symbolic node name.

2.2.2 Attribute Handling

The rule in Fig. 2.6 shows a fragment of the attribute language we will use
throughout this book, for example, for updating the value of the clients counter
of the Super node. The update is specified through the assignment in the right-
hand side of the rule. Note that the Pascal-type assignment symbol := is used
to distinguish it from the equality sign used elsewhere in the rule, in particular
in the left-hand side. An expression such as clients = n in the left-hand side
specifies that, when a match is found, the variable n will be bound to the value
of the clients attribute, whereas an assignment such as clients := n-1 specifies
that, when the rule is applied, clients is set to the value of the expression n-1.

The attribute language is also used in attribute conditions. These are Bool-
ean expressions in the left-hand side of a rule delimited by { }. An example is
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the expression {clients < max} in rule linkClient of Fig. 2.7. Here max is a con-
stant that is globally defined for a set of rules. Such an expression constrains
the possible matches of the rule to those where it evaluates to true. Apart from
the assignment symbol, we will use Java-like syntax for expressions.

newSuper(u,s) = s1

LHS
u:User s: Super

: Node

usr

RHS
u:User s: Super

s1: Super
clients := 0

ovlusr

newClient(u) = c
LHS

u:User: Node usr
RHS
u:User c: Clientusr

linkClient(c,s)

LHS

c: Client
s:Super

clients = n
{clients < max}

: Super

link

RHS

c: Client
s:Super

clients := n + 1link

promoteClient(c) = c

LHS
u: User

s:Super
clients = max

c: Client usr

link

RHS
u: User

s:Super
clients := max - 1

: Super
clients := 0

ovl

usr

redirectClient(s,c,s2)

LHS
s: Super

clients = n

s2: Super
clients = m
{clients < max}

c: Clientlink
RHS

s: Super
clients := n-1

s2: Super
clients := m+1

c: Client

link

Fig. 2.7. Rules for joining the network and making connections

2.2.3 Example Rules

In our running example of a dynamic VoIP network, rules are used to model
basic service operations. Some of these operations are local, taking place on
only one network node, while others require the cooperation between several
nodes. Common to all service operations is that they behave as transactions,
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i.e. they are atomic. Such atomic behaviour is also in the nature of a rule ap-
plication. Hence a rule is at the right level of granularity to specify a service
operation. We will continue this discussion at the end of Section 2.4. Model-
ling a service-oriented system with graph transformation can help in reaso-
ning about the software architecture, especially when evaluating its quality-
of-service properties. We will consider this question in detail in Chapter 9.

Operations of the VoIP service are specified by the rules shown in Figs.
2.7 and 2.8. We first discuss the rules in Fig. 2.7:

• When a User requires the services of the network and is not already con-
nected to it, a Client or a Super node is created by newClient or newSuper,
respectively. In the latter case, the clients attribute of the new Super node
is set to 0, indicating that the node is not yet connected to a Client. The
new Super node is always connected to an existing node via an overlay link
ovl. Conceptually a bidirectional connection, this is visualised by a line
without an arrowhead and formalised by a symmetric pair of edges. The
fact that the user is not (yet) connected to the network is expressed by a
negative condition, shown in red. Negative conditions will be presented in
more detail in Section 2.4.2.

• Connections are made by rule linkClient in Fig. 2.7, provided that the num-
ber of clients has not reached the maximum number and the Client node is
not yet connected to a Super node. As a result of the rule’s application, a
new link edge is created and the value of the clients attribute is increased
by one.

• The rule promoteClient has the effect that one of a Super node’s clients can
be promoted if the number of clients connected to that Super node has
reached its maximum. This reduces the number of clients by one, while the
new Super node does not have any client connections yet, but is related to
its former Super node via an overlay link.

• The rule redirectClient changes the topology of the network by changing the
Super node to which a Client connects. Note that this can happen only if
the new Super node has not yet reached its maximum number of clients.

Figure 2.8 shows another batch of rules, dealing with the dual case where
clients and servers leave the network:

• The rule endSuper shows that Super nodes terminate in a selfish manner,
without notifying clients or other Super nodes of their departure. When a
node is deleted, all edges connected to it are deleted as well. Thus, if a Super
node is deleted, all its incident overlay edges with other Super nodes and
all links with Client nodes are implicitly deleted. We will consider different
deletion behaviours later in Section 2.3.

• The rule disconnectSuper just deletes the overlay link between two Super
nodes.

• The rule endClient specifies that when a linked Client is removed, its Super
node link is deleted and the corresponding counter is decreased by one.
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endSuper(s) = s
LHS
u:User s:Superusr

RHS
u:User

disconnectSuper(s, t)

LHS
s:Super

t:Super

ovl

RHS
s:Super

t:Super

endClient(c) = c

LHS
u:User

s:Super
clients = n

c:Client

link

usr
RHS

u:User

s:Super
clients := n-1

endUnlinkedClient(c) = c

LHS
u:User c:Clientusr

s:Super

link
RHS
u:User

Fig. 2.8. Rules for disconnecting and leaving

• The rule endUnlinkedClient deals with the removal of unlinked clients, in
which case no counter needs to be decreased. The restriction to unlin-
ked clients is ensured via another negative application condition; if this
condition were omitted, then (as with endSuper) the rule would also be ap-
plicable to clients that actually have a link edge, resulting in the incorrect
behaviour of removing a Client without decreasing the clients counter.

These example rules illustrate how a single rule can express a precondition
and effect of a complex process in a single, atomic step. Any implementation
of rule promoteClient in a real distributed system would require a collaborative
effort between the Super node s, which recognised that another Super node was
needed, and the Client selected for promotion. The fact that we can describe
this process by a single step raises significantly the level of abstraction of the
model. This means that the model is easier to understand and analyse. The
abstraction becomes possible by ignoring certain aspects of the implementa-
tion, such as the detailed interaction between the Super and Client nodes.

2.2.4 Rule-Based Graph Transformation

A rule is applied to a given graph G by replacing in G an occurrence of the
left-hand side with a new copy of the right-hand side. Every rule is invoked
with a sequence of actual parameters that is consistent with the rule signature.
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• An input parameter is bound to a value before the rule is applied. This
value is passed into the left-hand side or right-hand side by substituting it
for the formal parameter name. For instance, in Fig. 2.6, the formal para-
meter c is instantiated with ihe actual parameter c2. This constrains the
application of the rule to that part of the graph which actually contains
a Client node with the identifier c2. An input parameter can also repre-
sent data used in assigning or computing new attribute values, in which
case it will occur in the right-hand side of the rule. For example, a rule
newUser(nm: String) could be defined to create a new user and assign its
name attribute the actual value inserted for nm, so newUser("Gabi") would
create a new User node with name = "Gabi".

• An output parameter provides a value after the rule has been applied. For
instance, we can interpret the parameter of rule endClient in Fig. 2.6 as an
(input and) output parameter. The rule can match two different subgraphs,
corresponding to values c1 and c2 for c. Whichever way the rule is applied,
the corresponding value is provided as output. Considering c: Client as an
input and output parameter, the rule signature is endClient(c) = c, while
a rule invocation returning c2 would be written as c2 = endClient(c2). If
input or output parameters do not play a role in the context in which a
rule signature is mentioned, they may be omitted. If a parameter can be
set arbitrarily, this is indicated by an underscore “_” in an invocation. For
example, c = endClient(_) represents an invocation where we do not specify
the client to be terminated, but which returns the client selected by the
match via the output parameter c.

A graph transformation step is constructed in three substeps:

1. Find a match m of the left-hand side L in the given graph G. The pa-
rameter assignment may already be partially given before the matching
takes place. In that case, this assignment must be respected by m and will
steer (and thereby simplify) the search for the match. The match deter-
mines images in G for all elements in L, as well as values for all attribute
variables in L and all remaining (i.e. output) parameters that occur in L.
For convenience, when presenting examples, the rule’s object identifiers
are often named like the ones in the host graph, so that the parameter
assignment is an identical mapping. The same rule may also be shown
with different identifiers to distinguish different matches.

2. Delete from G all vertices and edges matched by L\R as well as all edges
in the resulting structure G \m(L \ R) that have lost a source or target
node and would be left dangling otherwise.1 Note that the deletion also
extends to attribute edges in m(L\R). Let us refer to the graph obtained
by deleting from G as D.

1 The implicit removal of dangling edges is one possible behaviour, which we refer
to as radical in Section 2.3. See there for a discussion of the different variants.
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3. Paste a new copy of R \ L into D at the match of L ∩ R, yielding the
derived graph H. For each modified attribute, the new value is computed
by evaluating the corresponding expression in R. Then a new attribute
edge is added, pointing to that value. As a consequence of this process,
the remaining parameters, namely those that occur only in R, are also
assigned a value.

Transformations that do not delete dangling edges are invertible by a kind
of undo step. In such an inverse transformation we apply the rule from right
to left, exchanging the roles of its left- and right-hand sides and considering
the derived graph as the given host graph. In that case, the co-match would
become the match and vice versa.

A transformation from a graph G to a graphH, also called rule application,
is denoted by

G =r(arg),m,f======⇒ H,

where r is the name of the rule, arg is a list of actual parameter values (in one-
to-one correspondence with the formal parameter list par), m is a match of r
and f is a partial function, called tracking function, mapping all vertices and
edges of G preserved by the transformation to their counterparts in H. A rule
name r together with a list arg of actual parameters is called a rule invocation
or call, written r(arg). The tracking function f and the target graph H are
determined (up to renaming their nodes and edges) by the other parts of the
transformation (G, r, arg and m). The tracking function f allows us to reason
about the evolution of graphs in graph transformation sequences.2

In many cases, knowing the match m and the tracking function is not
relevant; if this is the case, we may neglect them in the transformation label
and just write G =r(arg)===⇒ H. If, moreover, the rule has no parameters or the
argument values are not important, we may just write G =r⇒ H.

Example 2.4 (transformation step, detailed form). Figure 2.9 demonstrates an
application of promoteClient shown in Fig. 2.7. The match m of the rule’s left-
hand side in the host graph G is shown by listing explicitly the mapping of
L’s vertices to those of G. In the context of this application, the constant max
is taken to equal 2.

Node c1: Client in G and its two connecting edges are deleted because they
are matched by node c: Client and its edges in L, neither of which occur in R.
The clients attribute of node s1 is also deleted. Into the graph obtained after
deletion, we paste a new copy of node sn with new usr and ovl edges as specified
in R; the node copy is given a fresh identity, symbolically represented here by
the identifier s2. The match m tells us where the new edges of types usr and
ovl must point, i.e. to u1 and s1, respectively, in the resulting graph H. At
the same time, the value of max-1 = 1 is computed and assigned to the clients
attribute of node s1. The (partial) tracking function maps c2 in G to c2 in H,

2 We will use f in Chapter 3 to semantically interpret graph transformations.
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L

u: User

s: Super
clients = max

c: Client usr

link promoteClient(s,c) = sn

R

u: User

s: Super
clients := max-1

sn: Super
clients := 0

ovl

usr

s 7→s1
c 7→c1
u 7→u1

G

c2: Client

s1: Super
clients = 2

u3: User
name = “Gabi”

u2: User
name = “Reiko”

u1: User
name = “Peter”

usr

link

usr

c1: Client

link

usr

H

c2: Client

s1: Super
clients = 1

u3: User
name = “Gabi”

u2: User
name = “Reiko”

u1: User
name = “Peter”

usr

link

usr

s2:Super
clients = 0

ovl

usr

s2 = promoteClient(s1,c1)

s1 7→ s1
c2 7→ c2
u1 7→ u1
u2 7→ u2
u3 7→ u3

Fig. 2.9. Transformation step using rule promoteClient

s1 to s1, u2 to u2, u3 to u3 and u1 to u1, but is undefined for node c1 in G,
reflecting the fact that this is deleted by the transformation. ut

Generally, a rule can be applied in more than one way to a given graph.
For instance, in the example above, another option would be to map c to
c2, promoting the other client instead. Also, we could have chosen to apply
the endClient rule instead of promoteClient. Hence, there are two causes of non-
determinism in each rule-based graph transformation step.

Note 2.3: Non-determinism in graph transformation. There are
two causes of non-determinism in each rule-based graph transformation
step: choosing one out of a number of available rules, and choosing one
of several possible matches of its left-hand side when applying it.

Given a set R of rules, a graph transformation (sequence) G =R=⇒∗ H is a
sequence of zero to many graph transformation steps G = G0 =r1=⇒ G1... =rn=⇒
Gn = H for n ≥ 0 and ri ∈ R. A graph transformation system GTS = (TG,R)
consists of a typegraph TG and a set R of rules. Its semantics is the set of
all graph transformations starting at some graph that is typed over TG and
applying rules of R.

A consequence of the way graph transformations have been defined is that
a single rule can affect only a relatively small part of a graph: in principle,
the effects are restricted to the image of L under the match m, with the
proviso that incident edges of deleted nodes are also affected (viz., they are
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implicitly deleted) despite not necessarily being in m(L). Moreover, attribute
computations may yield values which are not explicitly in the match, but are
determined by the evaluation of attribute expressions. Even with this pro-
viso, the following principle holds, and helps in making graph transformation
tractable.

Note 2.4: Principle of locality. The application of a graph trans-
formation rule replaces a match of the left-hand side by a new copy of
the right-hand side and affects attribute values only within its match or
co-match. This means that a rule application has only local effects on the
given graph.

2.3 Global Application Conditions: Injectivity and
Gluing

The high-level description of the application of a rule given above (find a ma-
tch, delete the image of L \ R and paste a new copy of R \ L) ignores some
important choices in how the first and second of these steps are carried out
precisely. It is on these choices that a lot of the research on graph transfor-
mation has concentrated. To be precise, within the gluing approach, there are
certain conditions one can impose that restrict the allowed rule applications.
The more restrictions, the “better behaved” the allowed transformations are,
in the sense that one can predict their combined effect better and guarantee
the absence of some unexpected, and presumably unwanted, phenomena.

2.3.1 Mapping Distinct Rule Nodes to the Same Graph Node

The first of the restricting conditions is the so-called identification condition:

Identification condition: A node or edge that is deleted by a rule may not
be identified with (i.e. have the same image as) other nodes/edges of the
left-hand side.

The identification condition serves to avoid conflicts in the application of
a rule and to help guarantee invertibility of rule applications. To see this,
first consider the transformation shown in Fig. 2.10. This rule allows one to
identify its nodes by a match, i.e. the identification condition does not have
to hold as indicated by the supplement NIdC (No Identification Condition) in
the left-hand side. The rule specifies that ar2 should be deleted whereas ar1
should not, yet the two are identified by the match, i.e. both are mapped to
ag in the host graph. This is an example of a conflict: should ag be deleted
from the host graph or not? As the figure shows, the typical choice is to delete
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LHS [NIdC]
ar1: A ar2: A

del+pres
RHS
ar1: A

IN
ag: A

OUT
del+pres

Fig. 2.10. Violation of the identification condition, leading to conflict (resolved by
deleting the conflicted node)

host graph nodes for which a conflict of this type occurs; but another choice
is to avoid conflict altogether, by imposing the identification condition.

Another example where the identification condition is violated is shown in
Fig. 2.11. In this case, both ar1 and ar2 are deleted. Again they are identified

LHS [NIdC]
ar1: A ar2: A

del2
RHS

IN
ag: A

OUT
del2

Fig. 2.11. Violation of the identification condition, leading to lack of invertibility

by the match. Note that there is now no conflict: it is clear that ag should
be deleted from the host graph. In this case there is another, more subtle
objection. Sometimes it is desirable to be able to invert a rule, by swapping
its left- and right-hand sides and applying the inverted rule to the target
graph, and so reconstruct the original host graph. However, in Fig. 2.11 this
is clearly not going to work out: the application of the inverted rule, applied
to the (empty) target graph, would result in a graph with two distinct A-typed
nodes. Imposing the identification condition saves the day by forbidding this
particular match.

Where the identification condition forbids only particular elements of the
left-hand side from being matched by the same host graph elements, injectivity
is a more restrictive condition:

Injectivity condition: No two distinct nodes or edges of the left-hand side
may be identified.

Non-injective rule matching can be a useful feature, as it allows one to combine
several different cases into a single rule. An example is given in Fig. 2.12:
this shows an association between a B and an A node that swings around to
another A node. If the two A nodes are matched by one and the same node
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in the graph, however, no change ensues. If matching were required to be
injective, this special case would have to be modelled by a dedicated rule.

The fact that non-injective matches are allowed is indicated by the NInjC
(No Injectivity Condition) annotation in the left-hand side. In such a case, the
identification condition is still required by default.

LHS [NInjC]
br:Bar1:A ar2:A

swing RHS
br:Bar1:A ar2:A

IN
bg:B aa:A

OUT
bg:B aa:Aswing

Fig. 2.12. Non-injective rule matching, avoiding the need for a rule for a special
case

On the other hand, there are cases where injectivity is required. For in-
stance, the rule in Fig. 2.13 builds the transitive closure of the overlay relation
between Super nodes. If nodes s2 and s3 are mapped to the same node of the
host graph, then that node receives an ovl loop instead, which is not intended.
To avoid such problems, we consider injective matching the default, indicated
by the absence of any annotation.

shortcut(s1)

LHS
s1:Super s2:Super

s3:Super

ovl

ovl

RHS
s1:Super s2:Super

s3:Super

ovl

ovl ovl

Fig. 2.13. Transitive closure of ovl: injective matching is required

Another example showing the usefulness of injectively matched rules is if
one wants to guarantee the existence of a minimum number of nodes of a
particular kind; in other words, if one wants to count occurrences of a node.
The natural way to encode this is to put that many nodes in the left-hand
side; but if those nodes may be matched non-injectively, then no conclusion
can be drawn about the number of nodes in the host graph (except that there
must be at least one).

2.3.2 Gluing Conditions

Invertibility of rules can also be hampered by another effect, namely that in
which a node is deleted – naturally resulting in the deletion of all its incident
edges as well – but cannot be fully reconstructed by the inverted rule, i.e.



2.3 Global Application Conditions: Injectivity and Gluing 49

together with all its original edges. This occurs if more edges are deleted from
the host graph than the rule explicitly specifies; in other words, if some of the
incident edges in the host graph are not in the match of the left-hand side.
Such edges are said to be left dangling by the rule application (in which case
the only reasonable solution is to remove them, as otherwise we would be left
with something that is not a graph). The dangling condition precisely forbids
this situation. In practice, the dangling condition is always combined with the
identification condition; the combination is called the gluing condition:

Dangling condition: A node that is deleted by a rule must be matched to
a node of the host graph such that all its incident edges are in the match
as well.

Gluing condition: Both the identification condition and the dangling con-
dition hold.

An example is given in Fig. 2.14: the host graph edge from the A node to
the B node must be deleted by the rule application because the A node is, and
we cannot have a dangling edge; but this edge is not itself in the match of the
left hand side. If we were to invert the rule and apply it to the target graph,

LHS
ar: A del

RHS

IN
ag: A bg: B

OUT
bg: Bdel

Fig. 2.14. Violation of dangling condition, resolved by deleting the dangling edge

the result would not equal the original host graph, as the edge would not be
reconstructed.

Imposing the gluing condition avoids not only this case of non-invertibility
but guarantees full invertibility of rules. This is a very important advantage
if one wants to precisely analyse and predict the outcome of a graph transfor-
mation.

The strongest of the restrictions we will discuss here is the combination of
injectivity and the dangling condition:

Injective gluing condition: Both the injectivity and the dangling condi-
tion hold.

Because injectivity implies the identification condition, injective gluing implies
the gluing condition.
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2.3.3 Summary: From Conservative to Radical

Altogether, we have five different global application conditions, some of which
are strictly stronger than others. Fig. 2.15 shows them in relation to one
another. Transformations satisfying the source condition also satisfy the target
condition. The conditions shown in Fig. 2.15 can be described as follows:

InjectiveGluingCond GluingCond

InjectivityCond IdentificationCond

DanglingCond

NoInjectivityCond NoIdentificationCond Any

Co
ns

er
va

tiv
e

Radical

Fig. 2.15. Global application conditions, from conservative to radical

• Any: does not impose restrictions.
• IdentificationCond: no element in L \R is identified by m with any other

element from L, i.e., for x ∈ L \R, y ∈ L, m(x) = m(y) implies x = y.
• InjectivityCond: no two elements in L are identified bym with each other,

i.e., for x, y ∈ L, m(x) = m(y) implies x = y.
• DanglingCond: no edge in the context is attached to deleted nodes, i.e.

for node x ∈ m(L \ R) and edge y ∈ G, s(y) = x or t(y) = x implies
y ∈ m(L \R).

• GluingCond: Both IdentificationCond and DanglingCond are satisfied.
• InjectiveGluingCond: Both InjectivityCond and DanglingCond are sa-

tisfied.
• NoInjectivityCond: InjectivityCond may not be satisfied, but Identifica-

tionCondition is satisfied.
• NoIdentificationCond: IdentificationCond may not be satisfied.

The fewer restrictions one imposes, the more radical the effects of a rule
application can be; conversely, the stronger the restrictions, the more conser-
vative their effects. As explained above, conservatism is beneficial for analysa-
bility; on the other hand, a more radical approach results in a more compact
set of rules, since each rule may combine cases that under a conservative global
application condition require distinct rules.

We consider injectivity of matches as the default condition in the rest
of this book because developers tend to specify patterns as they occur in
practice. Considering the dangling condition, it depends on the application
whether or not the deletion of nodes should be allowed in unknown contexts.
We indicate the presence of the dangling condition by an annotation DC on the
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left-hand side, while the gluing condition is indicated by GC or, equivalently
NInjC, DC, since the default for matches that are not necessarily injective is
the identification condition.

2.4 Advanced Graph Transformation Features

In this section we introduce a number of features that extend the basic rule-
based approach, by

• more precise specification of the class of instance graphs by means of con-
straints and

• more expressive rules, allowing additional application conditions, univer-
sally quantified operations and the merging of graph elements.

2.4.1 Graph Constraints

When specifying transformations, it is desirable to have a precise understan-
ding of the class of graphs that may be encountered or are generated by the
rules. Type graphs, even with subtyping and multiplicities, are not expres-
sive enough to define more complex constraints on the structure of instance
graphs, especially when conditions on attributes are involved. For example, in
the peer-to-peer model above we use the attribute clients in Super nodes as a
counter for the number of clients attached. To make sure that, for example,
the rule in Fig. 2.20 in Section 2.4.4 is applicable if and only if no client is
linked to Super node s, we could add a constraint on Super such as

self.clients=0 iff self.link->isEmpty()

The same constraint can be expressed graphically, as shown in Fig. 2.16,
where it is broken down into two forbidden patterns, a Super node with
clients = 0, but linked to a client, and one with clients > 0 but no client linked.

NOT
:Super

clients = 0
:Clientlink

NOT
:Super

clients > 0
:Clientlink

Fig. 2.16. Two variants of a visual graph constraint

Constraints restrict the set of admissible instance graphs. Usually, the start
graph G0 is required to satisfy them and, for each rule r, we have to guarantee
that, if G =r⇒ H is a transformation and G satisfies the constraints, the same
is true for H. In that case it follows that all reachable graphs satisfy the
constraints. In our case, this means that we have to guarantee that whenever
a client link is created or deleted, the clients attribute is updated.

In an alternative operational interpretation, constraints can be used to
control the transformation process by ruling out transformations leading to
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non-admissible graphs. This is comparable to the integrity mechanism in a
database management system, which checks the validity of constraints after
each update, but before the new state is committed. In this case, constraints
become part of the operational specification of the system.

In addition to the simple forbidden patterns covered here, we will consider
required patterns and more complex constraints in Chapter 4.

2.4.2 Negative Application Conditions

The phenomenon of “dangling edges” is caused by the fact that a node in a
graph may, in general, have an unknown number of connections. This is in
contrast with, for example, the rewriting of strings where the linear structure
provides information about the connections of any substring. The more com-
plicated situation for graphs has led to extensions of the basic approach by
application conditions, which have already been used informally in the VoIP
network example in Figs. 2.7 and 2.8.

Generalising the default gluing conditions of the conservative approach,
user-defined application conditions specify constraints on the immediate con-
text of the match of the rule’s left-hand side.

Example 2.5 (forbidden patterns). Figure 2.17 shows a rule that detects weak-
nesses in the network’s topology. The termination of a Super node s1 may

shortcut(s1)

LHS
s1Super s2:Super

s3:Super

ovl

ovl

:Super

ovl

ovl

ovl

RHS
s1Super s2:Super

s3:Super

ovl

ovl ovl

Fig. 2.17. Creating redundant links

increase the distance between two other nodes s2, s3 currently using s1 as
an intermediary. Such a situation is detected by checking that s1 is actually
connected to s2 and s3, and also that there is neither a direct link between them
nor a two-step path via another Super node. These two forbidden patterns are
expressed by the red, crossed-out elements in the left-hand side of the rule. ut

Forbidden patterns restrict the applicability of a rule. They are interpre-
ted as negative application conditions (NACs), each an extension of the rule’s
left-hand side L by nodes and edges whose joint presence in the context should
prevent the application of the rule. Formally, we define an NAC as a graph N
extending L. The elements of N \ L, drawn in red, constitute the forbidden
pattern. A rule with an NAC is applicable to a given graph G if the occur-
rence of the left-hand side cannot be extended to include any of the forbidden
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patterns specified by the condition. Note that we map forbidden patterns in-
jectively. In particular, they are not allowed to overlap with occurrences of
positive parts of the left-hand side.

A rule may have a number of NACs, which means that each of the specified
forbidden patterns must not occur. Putting several forbidden patterns into one
NAC would express that at least one forbidden pattern does not occur. We
interpret each connected set of elements in N \L as separate forbidden pattern
to be put into a separate NAC. Hence, two NACs are integrated into the left-
hand side shown in Figure 2.17. Note that this drawing convention does not
allow to interpret two separate connected sets of forbidden elements as one
forbidden graph part. This represents a limitation with respect to the general
concept. If the modeller wants to express a condition like that, the condition
has to be drawn separately as done in the following example.
Example 2.6 (negative application conditions). The application conditions of
rule shortcut are depicted in Fig. 2.18 in more detail. Fig. 2.18 shows two NACs
N1 and N2 associated with rule shortcut. We need two NACs, since we have
two separate conditions to be checked: (1) there is no direct link (checked by
the upper NAC) and (2) there is not a two-step path (checked by the lower
NAC). The occurrence shown in the figure satisfies the conditions because

shortcut(s1)

L

s1Super s2:Super

s3:Super

ovl

ovl

R

s1Super s2:Super

s3:Super

ovl

ovl ovl

shortcut(s1)

G

s2:Super s4:Super

s1:Super s5:Super

s3:Super

ovl

ovl

ovl

ovl

ovl

ovl

H

s2:Super s4:Super

s1:Super s5:Super

s3:Super

ovl

ovl

ovl

ovl

ovl

ovl

ovl

m m∗

N1

s1:Super s2:Super

s3:Super

ovl

ovl ovl

N2

s1:Super s2:Super

s3:Super

ovl

ovl

:Super

ovl

ovl

n2

n1

q2

q1

Fig. 2.18. Rule application with negative application condition

there is neither another two-step path between s2 and s3, apart from the one
via s1, nor a direct ovl edge. The rule application depicted results in creating
such a direct link. ut

2.4.3 Path Expressions

The ability to specify the (non-)existence of certain paths in a graph can
support navigation and is generally useful for expressing non-local graph pro-
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perties. For two nodes n and m of a given graph, a path from n to m is a
sequence of edges e1e2 . . . ep such that the target of edge ei is the source of
edge ei+1 for all 1 ≤ i ≤ p− 1, the source of e1 is n and the target of ep is m.

A path expression is a regular expression over edge types. When an edge e
in the left-hand side of a rule is labelled by such an expression, this demands
the existence of a path e1 . . . ep between the corresponding nodes in G such
that the sequence of edge types t(e1) . . . t(ep) satisfies the regular expression,
where t : G → TG maps the elements of G to their types in the type graph
TG.

Example 2.7 (path expression). The expression ovl∗ specifies a path consisting
of a sequence of edges of type ovl. Because it occurs as part of a negative
condition, the rule connect in Fig. 2.19 detects situations where two Super
nodes are not connected by a path of ovl edges. When it is applied to two
such disconnected nodes s1 and s2, a new ovl edge is created between these
two nodes. ut

connect(s1,s2)
LHS
s1:Super s2:Superovl*

RHS
s1:Super s2:Superovl

Fig. 2.19. Rule with path expression

In Chapter 4, we will consider further kinds of application conditions requi-
ring, for example, the existence of a certain pattern, so-called positive applica-
tion conditions (PACs), and more complex ones, called conditional conditions,
which can be seen as nested positive and negative conditions.

2.4.4 Multipatterns

In the basic approach, each element in a rule’s left-hand side is matched to
exactly one node or edge in a graph the rule is applied to. In many cases,
however, we would like to express operations dealing with all elements of
a graph satisfying certain structural or attribute conditions. For example,
Fig. 2.20 shows the radical version of shutting down a Super node. The Super
node is deleted independently of the number of Super nodes still connected.

shutdownSuper(s)
LHS

u:User
s:Super

clients = 0
usr

RHS
u:User

Fig. 2.20. Super node exit, causing the implicit deletion of all adjacent connections
(radical solution)

If we wish to achieve the behaviour modelled by rule shutdownSuper in the
conservative approach, we have to be able to delete all ovl edges connected
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to the Super node in a single step. However, we do not know their number in
advance, so no rule with a fixed number of nodes and edges in its left-hand side
will be able to achieve this. Instead, for such universally quantified operations,
we adopt the concept of multiobjects familiar from UML object diagrams.

endSuperMulti(s)

LHS [DC]

u:User
s:Super

clients = 0
usr

S:SuperS:Super

ovl

RHS
u:User

S:SuperS:Super

Fig. 2.21. Super node exit, deleting connections with all other Super nodes (con-
servative, with multiobjects)

A multiobject such as S in the rule in Fig. 2.21 represents the set of all
objects with the specified connections to the fixed objects in the rule. In our
case, S would be matched by the set of all Super nodes related to Super node
s by an ovl edge. The universal quantification in the match carries over to the
action of the rule, i.e. the deletion of the matched ovl edges. Note that, by
the identification condition, the image of s cannot be an element of the set
matched by S, because the former is deleted while the latter is preserved.

Operationally, a rule r : L→ R with multiobjects is applied in two stages.
First, we find and fix a match m0 : L0 → G for all “normal” (existentially
quantified) elements, making up the kernel rule r0 : L0 → R0. Then, conside-
ring all multiobjects as normal elements, all possible extensions mi, 1 ≥ i ≥ n,
of m0 to L ⊇ L0 are found and a so-called amalgamated rule is created by
merging n copies of r to duplicate the multiobjects so that one copy exists for
each occurrence in the graph. This amalgamated rule is then applied as usual,
using the match assembled from m0 and all the mi. In our example, this crea-
tes a rule with as many copies of Super node S as there are ovl edges outgoing
from m(s) in G. Figure 2.22 illustrates the construction of the amalgamated
rule eSM for a host graph with two matches for the extended rule, leading to
two separate copies eSM1 and eSM2 that merge into one amalgamated rule,
overlapping in the kernel eSM0.

Multiobjects allow one to combine the main principles of both the gluing
and the embedding approach. While the application of normal rules reflects
the gluing approach (recall that L∩R specifies the overlap of L and R), mul-
tiobjects specify the embedding relation inherent in the embedding approach.
This relation is generally defined by statements of the following form: If a
context vertex with label x is present and connected by an e-edge to vertex y,
then delete the e-edge and replace it by an f -edge to vertex z in R. When
we specify the context vertex as a normal vertex in the kernel rule, it is in
the gluing part and therefore preserved. Vertex y is specified as a multivertex
in the left-hand side and z as a multivertex in the right-hand side. They are
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eSM0(s)
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s:Super
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usr
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Fig. 2.22. Amalgamated transformation of endSuperMulti (eSM) kernel and ex-
tension rules

connected to vertex x by the corresponding edges e and f , respectively.

We introduced multiobjects as means to express universally quantified
actions. This concept can be generalised to universal quantification over mul-
tipatterns. As with multiobjects, the use of a kernel rule localises the action to
one part of the graph. If the kernel rule is empty, the multipattern is applied
all over the graph. However, matches of multipatterns may overlap, leading
to conflicting transformations. In the following, an example of multipattern
use is presented exploring these issues.

Example 2.8 (optimisation of overlay network). To make our VoIP network
more resilient against loss of connectivity, we introduced a rule in Fig. 2.17
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that detects weaknesses in the network’s topology and repairs them by ad-
ding redundant connections between Super nodes that are connected neither
directly nor via an intermediate Super node. This strengthening of the topo-
logy should apply equally across the entire network. One way to achieve this
is to apply rule shortcut in Fig. 2.17 for as long as possible in a sequential way.
Another way is to define a rule consisting of a multipattern that is applied all
over the network. To achieve this, in contrast to the example rule in Fig. 2.21
above, we use a true multipattern here, consisting of more than one multi-
object. Furthermore, this rule has an empty kernel rule so the multipattern
matches are not restricted.

Consider graph G in Fig. 2.23 (which differs slightly from the graph in
Fig. 2.18). Rule parShortcut consists of a multipattern which allows the pa-
rallel optimisation of the network. (Note that this rule differs from the one
in Fig. 2.17 by having only one negative application condition, here in the
multi-pattern.) Intuitively this rule can be applied at four different matches.
The first match, for example, maps s1 to n1, s2 to n2 and s3 to n3, etc. If we
apply this rule to graph G in Fig. 2.23 at all four matches, the result should
be graph H with four new ovl edges, between n2 and n3, n2 and n4, n3 and n4,
and n1 and n5.

However, owing to the symmetry between s2 and s3, every one of these
four matches has a mirror image. For the first match listed in Fig. 2.23, for
example, we can also map s2 to n3 and s3 to n2. Applying the rule to all
eight matches would lead to the introduction of parallel edges in H, which
is clearly not desirable. More generally, matches may be in conflict in the
sense that, when applied, one inserts an edge that another one forbids. For
example, match s1,s2,s3 → n1,n2,n3 conflicts with s1,s2,s3 → n1,n3,n2 since
they both insert a new ovl edge between n2 and n3. To avoid such conflicting
rule applications, we can restrict the application of rule parShortcut to be safe,
i.e. all parallel steps can be transformed into equivalent sequences of steps
that apply the multipattern as a rule (i.e. the rule shortcut) at essentially the
same matches. The rule application is safe for all maximal sets of pairwise
independent matches. Matches are independent if they overlap in preserved
graph elements only. (For more details see Chapter 4.)

Note that the application of rule parShortcut is not equivalent to applying
the rule shortcut sequentially for as long as possible. (1) By creating new ovl
edges, new matches can be produced which give rise to subsequent applicati-
ons. By inserting, for example, an ovl edge between nodes n3 and n4, a new
match s1,s2,s3 → n4,n3,n5 is created. (2) In the parallel application, applica-
tion conditions for all matches are checked simultaneously for the given graph
G before the rules are applied. In the sequential case, instead, some conditi-
ons are checked after some applications have taken place. Thus, later steps
are potentially disabled because of the effects of earlier ones. If a parallel rule
application is safe, however, this effect does not occur [63].

By applying rule parShortcut to graph H, the network can be further op-
timised. Match s1,s2,s3 → n4,n2,n5, for example, would lead to a new edge



58 2 Graph Transformation Concepts

parShortcut()

L

s1:Supers1:Super s2:Supers2:Super

s3:Supers3:Super

ovl

ovl ovl
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s3:Supers3:Super

ovl

ovl ovl
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n2:Super n5:Super

n1:Super n4:Super

n3:Super

ovl

ovl

ovl

ovl
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n2:Super n5:Super

n1:Super n4:Super

n3:Super

ovl

ovl

ovl

ovl

ovl

ovlovl
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s1,s2,s3 → n1,n2,n3
s1,s2,s3 → n1,n2,n4
s1,s2,s3 → n1,n3,n4
s1,s2,s3 → n4,n1,n5

Fig. 2.23. Optimisation of overlay network using a multipattern

between n2 and n5. Assigning s1,s2,s3 → n4,n2,n3, however, would not yield a
match, since there is already an edge between n2 and n3 which is not allowed
by the NAC. ut

Multipatterns, as introduced so far, represent any number of patterns. If we
want to restrict the number of occurrences of a multipattern, multiplicities can
be specified. For example, if the application of rule endSuperMulti in Fig. 2.21
should be restricted in order to only delete Super node s if it is connected to
at most three other Super nodes, this can be expressed by a multiplicity “0..3”
at the multiobject end of the ovl link (Fig. 2.24). This means that the rule is
not applicable to a node s with more than three ovl links. If a multipattern
multiplicity occurs in an NAC, this rules out the existence of the specified
number of matches. For example, consider a rule like endSuperMultiCard but
with multiobject S: Super and the ovl multi-edge from s forming a negative
condition. In this case, the NAC would be satisfied only if there are more
than three ovl edges to Super nodes connected to s.

As discussed in Section 2.3, rule applications that share graph elements
to be deleted may lead to conflicts. Although giving priority to deletion can
resolve the situation, so that a deterministic result is computed, this solution
is not always desirable. The example above shows that the parallel application
of rules with negative conditions may not be equivalent to any sequential exe-
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endSuperMultiCard(s)

LHS [DC]

u:User
s:Super

clients = 0
usr

S:SuperS:Super

ovl0..3

RHS
u:User

S:SuperS:Super

Fig. 2.24. Super node exit, deleting connections with up to three Super nodes

cution, even if they do not share any deleted element. Chapter 4 will consider
conflicts and dependencies between rule applications in more detail.

2.4.5 Merging

Sometimes it is desirable to merge, for example, two existing nodes into one
as part of a rule application. This is useful, for example, if two user accounts
are combined into one. When two nodes are merged, we expect that their
adjacent edges will be joined.

Example 2.9 (merging). To discuss the merging of graph elements, we consider
the type graph in Fig. 1.16, where the multiplicity of usr edges is modified to
allow more than one Node to serve one User, as shown in the type graph in
Fig. 2.25. In such a model, it can happen that a user account may be used
on several nodes. To merge two User accounts, the rule in Fig. 2.26 combines

TG

Super
clients: Integer

Node
User

name: String

Client*link1

* usr 1

*
ovl

*

Fig. 2.25. Modified type graph with subtypes and multiplicities

nodes u1 and u2 on the left into one node on the right. The rule takes a user
name uid1 as an input parameter to serve as the user name of the merged
account, while the other name is discarded. Formally, merging is achieved

mergeAccounts(u1,u2,uid1)

LHS
u1:User

name = uid1

u2:User
name = uid2

RHS
u1,u2:User
name := uid1

Fig. 2.26. Merging two different user accounts
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by rules whose left- and right-hand sides are related by non-injective partial
mappings, i.e. where two or more elements on the left are mapped to one
element on the right. ut

2.4.6 Integrated Notation for Rules

For a more compact representation of rules, their various components r : L→
R, potentially equipped with negative conditions, can be combined within
a single rule graph, distinguishing rule parts by different colours and styles
of elements to representing readers, erasers, creators or embargoes. As an
example, the rules in Fig. 2.27 represent the integrated views of the rules of
the same name in Figs. 2.7, 2.8 and 2.21. Readers (in L ∩ R), represented
by thin black solid outlines, are required but not deleted, such as the User
node in newClient and the User and Super nodes in endClient. Erasers (in L\R),
represented by thin dashed blue outlines, are to be deleted by the rule, for
example, the Client node in endClient with its two edges. Creators (in R \ L),
represented by slightly wider dotted outlines in green, such as the Client node
in newClient, are to be created by the rule. Embargoes (in N \L) represented by
a red outline and crossed out, such as the node of type Node with its usr edge
in newClient, must be absent for the rule to be applicable. Attribute updates
are indicated by using :=. The representation of multinodes is just reused in
the integrated view.

newClient(u) = c

u:User c: Clientusr: Node usr

endSuperMulti(s)[D]

:User
s:Super

clients = 0
usr S:SuperS:Superovl

endClient(c) = c
:User

:Super
clients = cn
clients := cn - 1

c:Client

link

usr

Fig. 2.27. Rules newClient and endClient in integrated notation

This integrated notion for rules is especially helpful if the reader part is
large, since it needs to be drawn only once. It can become somewhat confusing
if several embargoes are used, attribute values are read and computed, and
larger parts are created. If a NAC refers to a node which is already in the left-
hand side of the rule forbidding a certain type refinement or attribute value,
the integrated notation contains two nodes with the same identifier but with
different types. The variant with the forbidden type forms the embargo and
thus, drawn in that way. When considering, for example, a variant of the rule
endSuper which deletes a node if it is not a Client-node, the type refinement to
Client is forbidden by a separate node with the same identifier n as shown in
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Fig. 2.28. There is a kind of embargoes where the separate notation of NACs
is superior: If one NAC contains more than one connected set of elements

endSuper(n) = n
u:User n:Nodeusr n:Client

Fig. 2.28. A variant of the rule endSuper in an integrated notation

in N \ LHS, this fact cannot be expressed as we have the convention each
conected part of forbidden elements forms a separate NAC. In that case, the
NAC is shown separately, also when using the integrated notation of rules.
An example for such a rule notation is given in Example 11.1 below.

2.4.7 Inverting Rules

Basic rules appear to be symmetrical, i.e. exchanging their erasers and creators
should result in an inverted rule that undoes the effect of the original one.
Embargoes (left-sided negative application conditions) can be translated to
the right-hand side to become NACs of the inverse rule. Inverting expressions
in assignments or conditions is more challenging. Here we have to assume that
all operators used have inverses as well. Moreover, input parameters become
output parameters, and vice versa.

The idea is that an inverse rule is applicable to the graphs that could
have resulted from applications of the original rule, and that it undoes the
effects of such an application. This means that for each application G =r,m==⇒ H,
there should be an application H =r−1,m′====⇒ G. This is indeed the case in the
conservative gluing approach, because it is free of side-effects, i.e. all changes
to the graph are explicitly specified in the original rule and can therefore be
undone by the inverse rule.

Example 2.10 (inverse rule). By inverting the rules in Fig. 2.27, we get a rule
for deleting a client and a rule for inserting and linking a client. Note that the
attribute computation in the Super node is inverted as well. The parameter
lists may be adapted, as it is done in rule insertAndLinkClient in Fig. 2.29. ut

deleteClient(c) = u
u:User c: Clientusr: Node usr

insertAndLinkClient(u,s) = c

u :User

s:Super
clients = cn
clients := cn+1

c:Client

link

usr

Fig. 2.29. Inverse rules for newClient and endClient in Fig. 2.27



62 2 Graph Transformation Concepts

2.4.8 Transactional Behaviour

Throughout this chapter, we have considered a range of actions that can be
specified by individual rules, including basic actions such as the creation and
deletion of graph elements, but also more advanced actions such as merging
and copying graph elements within their specific contexts. All actions specified
in one rule are executed within that rule’s application.

Note 2.5: Rule application as transactions. A rule can specify a
number of actions, and each (attempted) application will either perform
all those actions, or none of them. This means that a rule application
forms one atomic step. Besides combining semantically related actions,
this also ensures that the result of the application is again a consistent
graph; considering, for example, typed graphs, the result has to be well
typed again.
If several rules are applied in parallel, they are not allowed to interfere.
This means that the parallel step must be serialisable and that the result
graph of the parallel step must be the same as the one obtained from any
sequential application: the rule applications are isolated from each other.
In summary, rule applications can be seen as transactions on graphs.

Considering again our running example, it was our design decision to spe-
cify within single rules not only local operations but also complex cooperations
between network nodes. Instead, we could have designed our rules to be more
fine-grained, distinguishing between two kinds of rules: local ones which just
change the state of a node, and connection rules that consider exactly two
nodes and their relation. An operation such as redirectClient would then be
specified by two separate rules, one for deleting the client’s link to a Super
node and one for creating a link to a Super node. Note that in this case the
redirection is performed by two rule applications and might result in linking to
the original Super node again. We will detail our discussion of the transactional
behaviour of rule applications in Section 3.3.

2.5 Summary and Further Reading

In this chapter, we have presented the main concepts of graph transformation,
distinguishing between the embedding and gluing approaches. We focused on
the gluing approach and considered graph transformations following simple
rules before considering advanced concepts for rules. To establish which of the
many approaches in the literature follow the embedding or gluing philosophy,
we now give a high-level overview. Then we consider the relation of graph
transformation to other rewriting formalisms.
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2.5.1 Graph Transformation Approaches in the Literature

Fundamental approaches to graph transformation were surveyed in [252]. They
are often introduced from a theoretical point of view and include the alge-
braic double-pushout (DPO) [80] and single-pushout (SPO) [196] approaches,
node-label-controlled (NLC) [151] rewriting, and PROGRES [258, 259], the
first graph transformation language designed for applications in software en-
gineering [94]. Further surveys of graph transformation concepts and their
possible applications are given in the handbooks [77, 79] and the survey [17].

The basic graph transformation concepts introduced in Section 2.2 are
formally based on pushouts over graphs which can be considered as genera-
lised graph gluing. In the single-pushout approach [196], a rule r : L → R

is represented by a partial graph morphism and its application G =r(m)===⇒ H
can be described by a single pushout over partial graph morphisms, with the
total morphism m : L → G providing the match of its left-hand side into
the given graph. When we restrict ourselves to conservative transformations
as discussed in Section 2.3, we follow the double-pushout approach over total
graph morphisms. Here a rule is given by a span r : (L ← I → R) with the
intersection of L and R explicitly represented by I, and a step G =r⇒ H is des-
cribed by a pair of pushouts over total morphisms, one in the reverse direction
modelling deletion and a forward one modelling addition of graph structure.
To ensure that the structure obtained from the first step is again a graph (i.e.
no edges are left without source and target nodes), the gluing conditions are
imposed as discussed in Section 2.2. (Formally, the satisfaction of the gluing
condition is generalized to the existence of a pushout complement.)

In the algebraic approaches, the merging of graph elements is achieved by
rule morphisms I → R or L → R that are non-injective. Cloning or copying
of elements is not possible in DPO or SPO, but it can be realised by the
sesqui-pushout approach [64]. In particular, all edges adjacent to cloned ver-
tices are copied as well. Limited to rules without cloning, the sesqui-pushout
approach is a generalisation of DPO where the dangling condition does not
have to be satisfied. This means that its transformations are comparable to
SPO transformations satisfying the identification condition.

While both DPO and SPO are gluing approaches, this is not the case for
the NLC approach, where a transformation consists in removing the occur-
rence of the left-hand side, including all edges connecting it to the context,
and constructing the new graph by a disjoint union of the remainder with the
rule’s right-hand side. Then, new edges are created to connect the copy of
right-hand side with the remainder based on so-called embedding rules. This
powerful answer to the problem of replacing structures in an unknown context
is also available in PROGRES. As we have seen, a similar behaviour can be
realised by the gluing approach using set nodes or multiobjects.

Application conditions restricting the applicability of individual rules as
well as structural constraints over graphs comparable to invariants or integrity
constraints in databases, deal with the (non-)existence of certain patterns.
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They are expressed as multiplicities, in terms of first- or higher-order logic,
or as graphical conditions. The latter have been introduced for the algebraic
approach in [120] and have since been adapted for most other approaches.

2.5.2 Tool Support for Graph Transformations

Graph transformation concepts have been implemented in various tools, some
of which focus purely on graph transformation and its implementation, others
adapt graph transformation concepts to serve a specific purpose in the con-
text of a wider tool platform. We speak more widely of graph-transformation-
oriented tools and systems if they incorporate or implement significant graph
transformation concepts. The variety of graph-transformation-oriented tools
that have been developed includes AGG [98, 270, 12], Atom3 [189], eMof-
lon [93], GrGen [105], Groove [107], Henshin [22, 139], PROGRES [259], Ve-
rigraph [29] and ViaTra [283, 285]. They are used for editing and execu-
ting graph transformation-oriented systems, such as model transformations
or behavioural models based on graph transformation, and often also sup-
port debugging, testing and analysing such systems. Depending on the pur-
pose and platform, graph-transformation-oriented features are frequently in-
tegrated with further concepts such as metamodelling, constraint solving and
pattern mining. In the following, we focus on the implementation of graph
transformation features in these tools.

Any graph-transformation-oriented tool has to support the creation of a
graph transformation system consisting basically of a type graph and a set of
rules. Given the ingredients of graph transformation systems, the tool has to
support the editing of instance graphs, and potentially type graphs, graph ru-
les and rule control (presented in the next chapter). Although the underlying
concepts vary, editing of graphs and editing of rules are basic, universal featu-
res. Execution support for graph transformations is typically sequential and
often allows some forms of non-determinism with respect to the choice of rule
and match. The most time-consuming part of a graph transformation step is
rule matching. Tool developers have solved this problem in various ways, such
as converting the matching problem into a constraint satisfaction problem to
be able to apply fast constraint solvers (AGG), developing elaborate search
plans for rules (PROGRES), or implementing incremental pattern matching
(eMoflon, ViaTra).

To better understand graph transformation systems and find conceptual
flaws, methods analogous to those in programming environments are available,
including debugging and testing. Debugging a graph transformation system
means stepping through its rule applications. Since graph transformation sys-
tems are usually interpreted, there is often little difference between execution
and debugging. A central use case for debugging is the setting of breakpoints,
which may be specified in several ways: a breakpoint may be, for example,
a stop at some rule call potentially in some larger control flow, a condition
that is checked on all resulting graphs, the applicability of a selected rule,
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or a maximum number of rule applications. When stepping through a graph
transformation sequence, the developer might want to consider intermediate
graphs, rules applied and matches selected, as well as co-matches. Moreover,
information about the non-applicability of rules can be interesting.

Another way to detect flaws in graph transformation systems is to for-
mulate test cases for them. A basic form of test case is to specify an input
graph, let the transformation system be executed on this graph and check
the output graph. The test assertion can be an isomorphism check with some
expected output graph or a coarser check where only the size of the result
graph, important substructures or attribute values are tested.

Several analysis techniques, to be discussed in Chapter 4, can be app-
lied at specification time. They are concerned with the functional behaviour
of graph transformation systems as well as with checking properties of the
resulting graphs. Functional behaviour is ensured if a graph transformation
system terminates and is strictly confluent. For both properties, sufficient (but
not necessary) criteria are available (see Chapter 4). Graph-transformation-
oriented tools typically support analysis techniques for specific forms of graph
transformation systems, ruling out some advanced features and committing
to a given semantic interpretation.

Graph formats include tool-specific ones, such as those ones in AGG and
Groove, and standard ones, such as the Eclipse Modeling Framework. They
determine the technical space the tool operates in. Purely graph-based tools
may support either specific formats or the standard graph exchange language
GXL [289, 119].

2.5.3 Relations to Other Transformation Concepts

Graph transformation is only one of a range of approaches to the rewriting of
structures such as strings, trees or multisets. Relations to other approaches
have been considered in [34]. Here we discuss them from a software engineering
perspective.

Context-free Chomsky grammars are used to define the syntax of textual
languages, especially programming languages. The notion of graph grammars
is inspired by Chomsky grammars and actually generalises them [124]: a start
graph with a set of graph transformation rules forms a graph grammar which
defines a graph language. To find out if an instance graph is member of a the
language defined by a graph grammar, a graph parser can be derived from
a given graph grammar. (See Section 4.6 for more details.) Graph grammars
have been used to define visual modelling languages. (See Chapter 10 for more
details.)

Tree transformations are ubiquitous in software engineering, for example,
for manipulating or mapping data, and for analysing, interpreting, transla-
ting, optimising or refactoring programs. Prominent approaches to tree trans-
formations include XSLT [10] (for transforming XML documents), program
transformation languages and term rewriting. XML documents are ordered,
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node-labelled trees with cross-references represented as attributes. Transfor-
mations in XSLT match subtrees using the XPath language and use templates
to describe the construction of a new XML document based on the information
of the given document.

The underlying structure of a textual program is formed by its abstract
syntax tree (AST). Program transformation approaches can rewrite ASTs in
a rule-based way. Some approaches to program transformation are based on
term rewriting [168] such as Stratego/XT [48], while others are template-
based, such as of TXL [62]. Term graph rewriting [261, 233] generalises term
rewriting by using directed acyclic graphs. These allow a more efficient imple-
mentation of program transformations, since identical subterms can be shared,
and so only need to be transformed once.

Petri nets [242] are rewrite systems on sets or multisets. They are com-
monly used to specify the concurrent behaviour of systems, including software
and business processes. Place–transition Petri nets can be simulated by graph
transformation systems using typed graphs without edges. In this case, node
types represent places and tokens. For each transition, a rule is required that
deletes all the nodes representing tokens in the precondition and creates nodes
representing tokens in the postcondition.



3

Beyond Individual Rules: Usage Scenarios and
Control Structures

We have defined a graph transformation step as the application of a rule,
defined over a type graph and a rule signature, to a given instance graph and
producing a derived graph in a single, atomic action. In software modelling,
individual actions are often combined into processes describing, for example,
a business transaction or the implementation of a complex operation. The
problem of controlling the application of rules, for example to ensure that
certain actions happen in the right order, is the subject of this section.

Just like models in general, a graph-transformation system can describe a
system at different levels of detail:

• informally, for illustrating the behaviour of a system;
• as an executable requirements model, to simulate and animate a system;
• as a formal specification, to analyse or verify a system;
• programmatically, to derive an implementation of a system.

For all but the first option, it is important to have a precise understanding
of the operational behaviour of a graph transformation model, not just at
the level of individual rules and transformations but at the system level. How
do rules interact with each other? Can they be applied in any order, or in
parallel? Are we interested in every individual step, or only in the overall
effect of a complex transformation? What happens when two rules “compete”
for application in the same state? Can we express a preference, or control their
application to achieve a desired effect?

To answer such questions we present a notion of graph transformation
system and address both the semantics of such a system, depending on its
intended usages, and a range of control mechanisms that allow us to describe
which rules can be applied when and where.

One fundamental choice is the local/distributed or global/sequential na-
ture of control. In a distributed system, such as the VoIP network we have
modelled, different nodes may be active at the same time and controlling their
actions globally may be unrealistic. For example, several nodes deciding to le-
ave the network at the same time could complicate the problem of creating
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a fault-tolerant topology. In contrast, assuming global control, only one node
could be allowed to leave at a time, triggering high-priority repair actions to
add additional redundant links before the next node can leave.

A distributed scenario could still require control, such as a particular pro-
tocol in order to inform neighbouring nodes of the intention to leave, but the
impact of such control would be limited to the local context. In this chapter
we will encounter both interpretations. It is worth stressing that the main dif-
ference is not in the language used, but in our understanding of which control
mechanisms are appropriate in a given setting, reflecting the operation of a
real system or what is implementable under certain assumptions.

It is important to recognise that graph transformation systems can be
used in a variety of contexts and for different purposes. We distinguish three
main usage scenarios. Firstly, graph transformation systems can be used to
define or characterise a set of graphs, or graph language, such as, for instance,
the set of abstract syntax graphs of UML state machines. In Chapter 10 we
show how the language of well-structured activity diagrams can be described
by a graph grammar. Interpreting a graph transformation system as a graph
grammar, we fix a start graph in addition. All graphs that can be generated
from that start graph by grammar rules are considered as members of the
graph language. This is in analogy to the formal definition of textual langua-
ges by means of string grammars. Graph grammars are often equipped with
non-terminals as a means of control. They work by distinguishing, among the
derived graphs, those that contain non-terminals (and are therefore seen as
intermediate results) from terminal graphs (which are part of the language).
Defining a graph grammar without non-terminals is possible as well. In this
case, each derived graph is considered to be already an element of the corre-
sponding graph language.

Secondly, graph transformation systems can be used to transform input
graphs into output graphs; in other words, to program a graph relation. Typi-
cal examples are translations between modelling languages, for example, from
activity diagrams to Petri nets, and also computations on graphs, such as the
transitive closure of edges. Relations can be composed to reflect the sequential
composition of computations. The use of graph transformation systems in this
scenario often requires the introduction of control structures over rules ana-
logous to those in programming languages, process calculi or flow diagrams.
Rule signatures, used like operation signatures in programming, provide an
interface between rules and control structures.

Thirdly, graph transformation systems can be used to describe the detailed
dynamic behaviour of a system. Here, individual rule applications represent
actions that can be observed through their parametrised rule names. An ex-
ample of this scenario is the VoIP network model used as a running example
in this book. The semantics is typically captured by a labelled transition
system, in which the states are graphs and transitions correspond to trans-
formation steps, labelled by rule calls. Models of this kind are often used to
describe the operational semantics of modelling or programming languages,
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or for verification tasks such as reachability analysis or model checking (as
considered in Chapter 4). In the VoIP network model, for example, we may
be interested in the question of whether a configuration is reachable in which
the network is not connected. Another question is, whether from every discon-
nected configuration, a connected one is reachable. In this type of scenario,
control structures can help to reduce the size of the model, for example, by
restricting it to desirable behaviours or by hiding internal states and transi-
tions through procedural and transactional constructs, thus making a model
more amenable to analysis.

With this basic understanding of usage scenarios for graph transformation,
we first give an overview of control mechanisms for rule application, then
present the usage scenarios introduced above in more detail and finally, present
some control mechanisms for rule application as they are used for programmed
graph transformation.

3.1 Feature Model for Rule Control Mechanisms

The feature diagram in Fig. 3.1 extends the one in Fig. 2.5 by refining the
feature TransformationSystem. Depending on the purpose of the transforma-
tion system, the right semantic model has to be chosen, as discussed above:
graph languages, graph relations or graph transition systems. One special form
of transition systems is a stochastic one; stochastic graph transformation sy-
stems where each rule is equipped with a number specifying the delay of its
application are presented in Chapter 9.

To control which rules are applied and in which order, a variety of control
mechanisms are available. A classical form of language definition, already men-
tioned above, is to use non-terminal symbols to indicate parts that have to be
further developed. Some classical forms of control constructs are conditional,
choice, sequence and priority and loops applied as long as possible. Combinati-
ons of these forms of control expression can be encapsulated into procedures,
hence procedural abstraction allows one to encapsulate control expressions. If
a control expression is executed in an atomic way, it has to be applicable as
a whole, otherwise it is not executed at all, i.e. the atomicity of transactions
is required. Finally, rule applications can also be controlled by using integrity
constraints to specify allowed input and output graph classes for graph compu-
tations. Given an integrity constraint, rules are applied only if the constraint
is not violated for the resulting graph. Integrity constraints may also be used
to ensure that all rule applications preserve formulated invariants.

3.2 A Matter of Semantics

We continue this chapter with an overview of the semantic models available for
graph transformation systems and proceed to discuss control structures and
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TransformationSystem

SemanticModel Control

Language Relation TransitionSystem

Stochastic

Non-terminals ControlExp IntegrityConstraints ProceduralAbstr

Conditional Choice Sequence AsLongAsPossible Atomic

Ordered

Fig. 3.1. Feature model for rule control mechanisms in graph transformation sys-
tems

their possible interpretations based on these models. The semantic interpre-
tation of a graph transformation system GTS = (TG,R) with type graph TG
and set of rules R depends on its purpose. Certain control concepts originate
from specific interpretations (such as non-terminals increasing the expressive-
ness of grammars for specifying graph languages) but may also be applied in
different contexts. We will therefore defer the discussion of control constructs
to Section 3.3 and first elaborate on the three different usage scenarios for
graph transformations as introduced above.

The typical interpretation of a system described by a set of graph trans-
formation rules, such as the VoIP network model discussed in the previous
chapter, is based on states and non-deterministic transformations between
states by means of rules. Recall that a rule call and the tracking function
between the elements of the given graph G and the transformed graph H are
captured in the notation G =r(arg),f====⇒ H. More generally, the set of transforma-
tions in a graph transformation system represents a labelled transition system
(as, for example, defined in [32]), where each state contains a graph, and the
graphs of two successive states are related by a tracking function.

Given a graph transformation system GTS = (TG,R) over a type graph
TG and a set of rules R, a graph transition system

LTS(GTS) = (S,Lab,→, I, F )



3.2 A Matter of Semantics 71

is defined by

• a set of states S representing graphs, i.e. for each state s ∈ S, there is a
graph Gs ∈ L(TG) (with L(TG) being the set of all graphs that conform
to the type graph TG);

• a set of labels Labmade up of triples r(arg), f where r is the name of a rule
of R, arg is a list of graph elements or data values used as arguments in r
and, for any TG-typed graphs G and H, f is a partial tracking function
between G and H (for an illustration of the tracking function, see Fig. 2.9
in the previous chapter);

• a labelled transition relation _ −_→ _ ⊆ S × Lab× S;
• a set of initial states I ⊆ S (the set I is often a singleton);
• a set of final (or accepting) states F ⊆ S.

The states in F allow us to distinguish successful from unsuccessful (i.e. in-
complete or deadlocked) transformation sequences. A state s without outgoing
transitions is called terminal. A transformation sequence is terminal if it ends
in a terminal state. A transformation sequence (whether terminal or not) is
successful if it ends in a final state s ∈ F . A terminal transformation sequence
not ending in a final state is deadlocked. (Examples of graph transition sys-
tems can be found below; see, for example, Fig. 3.6.) The graphs associated
with initial and final states are themselves called initial and final graphs,
respectively.

For a given graph transformation system GTS and a graph G0, we define
an uncontrolled graph transition system LTS(GTS,G0) = (S,Lab,→, I, F ) as
follows:

• S = L(GTS,G0) is the set of graphs reachable from G0 along a sequence
of transformations (note that in this particular case we equate states and
graphs);

• Lab is the set of labels as above;
• G −r(arg),f−−−−−→ H iff G ∈ S and G =r(arg),f=====⇒ H is a transformation in GTS;
• I = {G0} is the singleton initial graph;
• F = S is the set of all states.

The uncontrolled graph transition system is the most general interpre-
tation of a graph transformation system, unrestricted by additional control
structures and without hiding any of the states or transitions. Since the set of
final states is defined to contain all states, they do not impose any conditions,
i.e. in an uncontrolled graph transition system, all sequences are successful.
Note that the level of detail represented can be controlled to a certain extent
by choosing rule parameters that expose more or less information about the
match.

At this stage, we do not fix a particular way to define the class F of final
graphs. However, we will consider different options in the following subsecti-
ons, where this general notion of a graphical labelled transition system will
help us to derive simpler, more restricted semantic models.
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3.2.1 Graph Languages

The simplest way of defining a set of graphs, or graph language L, is to use
a type graph TG such that the language L = L(TG) is formed by TG’s
instance graphs. For example, all well-structured activity diagrams can be
represented as instance graphs over the UML metamodel of activities. Howe-
ver, this language contains many graphs that are not valid activity diagram
representations, for instance because they violate constraints such as “every
merge node has exactly one outgoing flow edge” or “every activity diagram
has a start and an end node”. Such additional requirements, which induce
a subset of L(TG), can be expressed declaratively by graph constraints, or
constructively by graph transformation rules. In this section, we illustrate
the constructive technique; the combined usage of both techniques within a
language-engineering process is presented in Chapter 10 of this book.

If a graph transformation systemGTS is used to define a graph language, it
is equipped with a start graph G0 from which all other graphs in the language
are derived by graph transformations. Therefore, in the context of graph lan-
guages, a graph transformation sequence is also called a derivation. GTS and
G0 are referred to jointly as a graph grammar . We will use a graph grammar
to describe the abstract syntax of activity diagrams in Chapter 10.

If we are not interested in controlling derivations externally, or observing
the rules applied in a derivation, no rule names or parameters are requi-
red. Therefore, at the most basic level, a graph grammar GG = (TG,R,G0)
consists of a type graph TG, a set of rules R typed over TG, and an in-
stance graph G0 of TG as the start graph. The semantics of GG is defined by
L(GG) = {H|G0 =∗⇒ H}, the set of all graphs derivable from G0 using rules of
R (which is, by construction, a subset of L(TG)): a graph Gn is derivable from
G0 if there is a derivation G0 =r1=⇒ · · · =rn=⇒ Gn with n ≥ 0 and ri ∈ R. The
possibility of the empty sequence (of length 0) makes graph G0 an element of
the language.

Example 3.1 (language of VoIP networks). A grammar GG = (TG,R,G0)
describing the set of all VoIP network graphs with at least one Super node is
given by

• the type graph TG in Fig. 2.25;
• the set of rules R, consisting of newSuper, newClient and linkClient in Fig. 2.7,

together with two additional rules newUser for creating new users and
connectToSuper for connecting a user to an existing Super node, as shown
in Fig. 3.2;

• a graph consisting of one Super node (without clients) as start graph G0.

The parameter uid of type String is instantiated non-deterministically from the
set of values of the data type, i.e. the set of all strings. ut

Often, not all reachable graphs are desirable members of the language
L. In such cases, a specification of final states can be used to restrict L. In
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newUser(uid)

:User
name := uid

connectToSuper(u,s)
u:User

name = uid
s: Super

: User

usr

: Node

usr

usr
usr

Fig. 3.2. Rules for inserting a new User and connecting to an existing Super node

graph grammars, the most common approach is to identify certain node or
edge types as non-terminal types and consider a graph as final if it does not
contain instances of such non-terminal types.

3.2.2 Graph Relations

Computations on graphs or mappings from one set of graphs into another can
be described by graph relations. A binary relation over graphs can be specified
or implemented using a graph transformation system. More precisely, a pair
of graphs (G,H) is in the graph relation gr(GTS) iff there exists a sequence of
transitions s0 −∗→ s1 in the corresponding graph transition system LTS from an
initial state s0 ∈ I to a final state s1 ∈ F , such that G = Gs0 is the underlying
graph of s0 and H = Gs1 is the underlying graph of s1. More concisely, G is
an initial graph and H is a final graph reachable from G. As an example of the
use of a graph transformation system to define a graph relation we consider
the computation of a spanning tree of Super nodes.

Example 3.2 (identifying a spanning tree of Super nodes). Let us assume that
we have an arbitrary VoIP network graph, and the task is to identify the
skeleton of the Super nodes in that graph, in the form of a spanning tree of ovl-
labelled edges. In other words, we want to define a relation in which the initial
graphs are VoIP network graphs, conforming to the type graph in Fig. 2.25,
and the final graphs are the same graphs with additional structure showing
which ovl edges are part of the spanning tree. To represent that additional
structure, we will use TNode vertices and child edges according to the type
graph shown in Fig. 3.3. A graph will be final if every Super node is marked
by an incoming edge from a TNode.

The relation we are looking for is encoded by the rules in Figs. 3.4 and 3.5.
Rule markRoot in Fig. 3.4 takes an arbitrary Super node and marks it as the
root by adding a pointer of type TNode, if there is not already a TNode in the
graph. The computation is continued by applying rule markChild Fig. 3.5. This
rule becomes applicable only after markRoot has been applied; it selects a Super
node as the next child if this node has not been included in the spanning tree
already. This rule remains applicable as long as there are Super nodes outside
the spanning tree (assuming that the input is connected).

The spanning tree computation is non-deterministic: the root and all child-
ren are selected non-deterministically by selecting an available match. Thus,
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Fig. 3.3. Type graph for spanning-tree computation

markRoot(s)
LHS
s: Super : TNode

RHS
s: Super : TNodeelem

Fig. 3.4. Initiating the computation of a spanning tree by marking the root

markChild(s) = c

LHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

RHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

child

Fig. 3.5. Marking a child non-deterministically

the graph transition system truly defines a relation between any VoIP net-
work graph and every corresponding spanning tree. In practice, if one actually
wants to compute a spanning tree, probably one that is optimal with respect
to some specific characteristic such as balance or cost, some control has to be
imposed on the non-deterministic relation to turn it into a deterministic algo-
rithm; for instance, a heuristic function to select the “best” rule application
at every junction. ut

3.2.3 Graph Transition Systems and Other Small-Step Models

If we are interested in observing the detailed behaviour of a graph transfor-
mation system, which rules are applied where and when, and which can be
applied in parallel or sequentially, neither language nor relational semantics
are appropriate. So-called small-step models of semantics have been proposed
to record such information, either in the form of interleaving models relying
on a global notion of state or as partial-order models where states are impli-
cit. Graph transition systems (as defined at the start of this section) represent
the most common choice of small-step models, making explicit both the state-
based nature and the non-determinism of graph transformations, but not their
parallelism and concurrency. Before we discuss this aspect in more detail, let
us see how normal graph transition systems are used to provide a comprehen-
sive system-level semantics.
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Example 3.3 (graph transition system). In order to represent the behaviour
reachable from a given graph, we need a graph transition system where that
graph is initial. For instance, starting from a VoIP network graph G0 of two
users and one Super node, the transition system is formed by iteratively ap-
plying the rules of Figs. 2.7 and 2.8 to G0 and all successor graphs. Each
rule application gives rise to a transition, labelled with the corresponding rule
name, arguments and tracking function.

Fig. 3.6 shows a small section of this transition system, starting with the
application of rule newSuper to each of the users in the start graph, resulting in
state graphs State 1–State 4, shown as vertices of the transition system, with
transitions shown as edges labelled by the corresponding rule invocations. The
tracking function is implicitly given by the overlapping node identifiers of the
source and target vertices. The inverse operation of newSuper is divided into
two steps, first disconnecting the Super node using disconnectSuper(s2) and then
removing it via endSuper(s2), as illustrated for Super node s2. This gives rise
to the additional intermediate State 5.

Although considerably larger than the part shown in Fig. 3.6, the full
transition system with State 1 as the start graph is still finite. For instance, an
additional state is reached by applying rule shortcut to Super nodes s2 and s3.
The new ovl edge gives rise to further states when a Super node is terminated.
If, for one or both users, Client nodes are inserted instead of Super nodes, this
also results in further states. Altogether, we get 27 possible different states,
specifying all possible networks with two users, clients and super nodes in all
possible stages of construction and termination. ut

It is easy to see that the representation of the behaviour of a graph trans-
formation system as a labelled transition system expresses branching and ter-
mination explicitly: a branching state is one with two or more outgoing tran-
sitions; a terminating state does not have any outgoing transitions. Although
the level of detail represented can be controlled by choosing rule parameters
that expose more or less information about the match, there is no facility for
hiding intermediate graphs or steps.

Labelled transition systems are a prerequisite for model checking: given a
temporal formula, a graph transformation system can be checked for counter-
examples, based on its labelled transition system. Section 4.5 discusses model
checking in more detail. By associating a (random, exponentially distributed)
application delay with each rule, stochastic graph transformation systems can
be used for analysing non-functional quantitative properties. This is elabora-
ted on in Chapter 9.

In Section 2.2.3, we discussed the atomicity of individual rule applications
and pointed out that this provides a powerful abstraction mechanism allowing
us to summarise the precondition and effect of a complex process while hiding
their individual actions. In a model representing a distributed system, such
as our VoIP network, it is possible for complex processes to interleave their
individual actions. If these actions are encapsulated into rules, this is no longer
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State 1
u:User

uid = "Gabi"
s1:Super
clients = 0

u2:User
uid="Reiko"

State 2
u:User

uid = "Gabi"
s1:Super
clients = 0

u2:User
uid="Reiko"

s2:Super
clients = 0

usr ovl

State 3
u:User

uid = "Gabi"
s1:Super
clients = 0

u2:User
uid="Reiko"

s3:Super
clients = 0

usr

ovl

State 4
u:User

uid = "Gabi"
s1:Super
clients = 0

u2:User
uid="Reiko"

s2:Super
clients = 0

s3:Super
clients = 0

usr ovl

usr

ovl

State 5
u:User

uid = "Gabi"
s1:Super
clients = 0

u2:User
uid="Reiko"

s2:Super
clients = 0

s3:Super
clients = 0

usr

usr

ovl

s1 = newSuper(u)

s1 = newSuper(u2) s1 = newSuper(u2)

s1 = newSuper(u)

disconnectSuper(s2)

s2 = endSuper(s2)

Fig. 3.6. Section of a labelled transition system

possible. This means that, for an implementation to faithfully capture the
behaviour of the model, these processes have to be prevented from interfering
with each other. In the case of the promoteClient operation, this would mean
that Client, Super and User nodes are locked while the promotion is being
executed so that no other operations are applicable to these nodes.

This changes when we consider operations specified by control structures
as considered in the following section. In this case, it may take several rule
applications to perform an operation. Two such complex operations consisting
of several steps could be allowed to interleave, which may be appropriate in
a distributed system where global control is hard to achieve, while in other
cases a non-interleaving, isolated execution may be required. This choice is
discussed in more detail in Section 3.3.4 below.
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3.3 Taking Control

All the examples shown up to this point have been based on uncontrolled rule
application only, meaning that the applicability of rules is implicitly deter-
mined by their preconditions and (mutual) effects. For example, if a rule p
creates a vertex, this can enable a subsequent application of a rule q whose
precondition requires such a vertex to exist. Analogously, if p deletes a graph
element or changes an attribute value, any rule q that has a corresponding
negative application condition or attribute constraint may become applicable.
We will now discuss a range of constructs by which rule application can be
controlled explicitly.

3.3.1 Motivating Example

We start with a motivating example, again based on VoIP network graphs
conforming to the type graph in Fig. 2.25 and satisfying the constraints in
Fig. 2.16. A Super node in a VoIP network graph may have a user, a certain
number of clients, and ovl edges to any number of other Super nodes. This
variability of context makes the deletion of such a node a potentially complex
operation. The solution presented in the previous chapter does not allow for
this complexity: the rule endSuper in Fig. 2.8 radically removes, in addition
to the Super node itself, all its adjacent edges to other network nodes. This
could lead to undesirable effects, such as leaving dependent clients without a
connection.

Example 3.4 (regulated shutdown with implicit control). The rules in Fig. 3.7
model a regulated shutdown of a Super node, where clients are handed over
to other Super nodes before the Super node leaves the network. We introduce
a Boolean attribute shutdown which is set to true to start this process. The
shutdown process ends if there is no Super node left with shutdown = true. The
sets I and F of initial and final states are defined as those states not containing
such Super nodes. Thus, this set of rules defines a relation between instance
graphs without Super nodes with shutdown = true. ut

A different solution, using a combination of implicit and explicit control,
is shown in Fig. 3.8. This involves a so-called transformation unit, which is
essentially a named procedure with a control expression as its body specifying
in what order and, to some degree, on what graph nodes certain rules should
be applied.

Example 3.5 (regulated shutdown with explicit control). Instead of the implicit
control encoded by an attribute, we can use explicit control structures, thus
avoiding a mix of control and graph structures. Programmed graph transfor-
mation provides imperative control constructs suitable for rule-based systems,
as shown in Fig. 3.8. To execute endSuper(s1) on a given Super node s, we first
apply disconnectSuper(s1) of Fig. 2.8 and then redirectClient(s1,c,s2) of Fig. 2.7,
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startShutdown(s)
LHS

s:Super
shutdown = false

RHS
s:Super

shutdown := true

disconnectSuperSd(s)

LHS
s:Super

shutdown = true

s1:Super

ovl

RHS
s:Super

s1:Super

redirectClientSd(s,c,s2)

LHS
s:Super

clients = n
{clients > 0}
shutdown = true

s2:Super
clients = m
{clients < max}
shutdown = false

c:Clientlink
RHS

s:Super
clients := n-1

s2:Super
clients := m+1

c:Client

link

shutdownSuperSd(s)

LHS

u:User
s:Super

clients = 0
shutdown = true

usr

s2:Super

ovl

RHS
u:User

Fig. 3.7. Shutdown of Super node with implicit control

1 unit endSuper(s1: Super) { // definition of transformation unit
2 atomic { // all−or−nothing semantics
3 alap { // execute for as long as possible
4 disconnectSuper(s1,_) // invocation of rule by name + args
5 }
6 alap { // execute for as long as possible
7 redirectClient (s1,_ ,_) // invocation of rule by name + args
8 }
9 shutdownSuper(s1) // invocation of rule by name + args

10 }
11 }

Fig. 3.8. Transformation unit explicitly shutting down Super node s1
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both as long as possible, followed by a single application of shutdownSuper(s1)
of Fig. 2.20. Note that we do not rely on an additional attribute here as in the
previous example; instead, we use the original rules introduced in Chapter 2.
This means that we target the shutdown process at a specific node s rather
than all nodes satisfying a certain property such as shutdown = true.

The keyword atomic specifies that the effect of these applications is com-
mitted only once they have been performed completely, i.e. the Super node
s1 is fully disconnected and deleted after executing the transformation unit
endSuper(s1). ut

3.3.2 Procedural Abstraction and Parameter Passing

Parameterised rules have been used in our VoIP example in order to indicate
in the label of a transformation to which elements the rule is applied, such as
in disconnectSuper(s2) in Fig. 3.6. As introduced in Section 2.2, rule parameters
are declared as part of the rule signature, so that it is statically known that
disconnectSuper requires a parameter and that the type of that parameter is
known to be a Super node. We have already seen that parameters serve to
observe part of the match of the transformation in the label and to deter-
mine part of that match. If, in a rule sequence, some input parameters are
instantiated by output parameters of previous steps, we call this a sequence of
rule invocations. Although some previously free parameters are already bound
now, these parameter bindings generally lead to partial matches only. A se-
quence where all parameters are bound to concrete values is called a rule call
sequence.

A controlled application of parametrised rules can be abstracted into a
transformation unit. Each unit has a signature consisting of a name and a list
of parameters and contains a control expression over a set of parametrised
rules. If a unit parameter is bound, this usually leads to further parameter
bindings. For example, if the transformation unit in Fig. 3.8 is invoked in
such a way that s1 is bound to some node n in the given graph, this restricts
possible applications of disconnectSuper(s1) to those matches that map node s
of the rule to n. To understand the use of parameters within a transformation
unit, it is important to realise that, apart from the graph currently being
transformed, every state also has an associated mapping of the local variables
of the transformation unit under execution to concrete values (either node
identities of the graph under transformation or attribute values). Moreover,
in the case of nested unit invocations, there is such a mapping for every
transformation unit in the call stack.
Example 3.6 (parameter passing). In an execution of the transformation unit
endSuper(s1) defined in Fig. 3.8, s1 may be bound to a node n of the graph
under transformation. This binding partially determines the match of rule
disconnectSuper(s1, _) (invoked in line 4 of Fig. 3.8 and defined in Fig. 2.8):
Vertex s in that rule must be matched by n, whereas the match of the rule’s
second parameter t (which is anonymous in the invocation) remains open.
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Similarly, in the invocation of redirectClient(s1, _, _) (line 7 of Fig. 3.8,
defined in Fig. 2.7), s1 is bound to n, whereas the other parameters are can
be bound freely by the chosen match of the rule.

Another example of a transformation unit is given in Fig. 3.9, which com-
putes a spanning tree for a given network graph. In the absence of explicit
control, the rules markRoot and markChild (presented in Figs. 3.4 and 3.5) may
be applied in any order in which they are applicable. This solution can lead to
a large number of unnecessary applicability checks for rules. In this example,
the applicability of rule markRoot may be checked again and again, although it
is easy to see that it can only be applied at the start. The solution in Fig. 3.9
is therefore more performant.

1 unit spanningTree(root: Super) {
2 markRoot(root);
3 markChildren(root)
4 }
5
6 unit markChildren(parent: Super) {
7 alap {
8 child := markChild(parent);
9 markChildren(child )
10 }
11 }

Fig. 3.9. Transformation unit marking a spanning tree among Super nodes

When spanningTree is invoked with an argument n, root is bound to n and
this is the node to which markRoot is applied, followed by a nested invocation of
markChildren where n is also assigned to parent. The rule markChild in Line 3 then
non-deterministically selects a neighbour of n to be marked, say m, and assigns
it to the node variable child. In the recursive invocation of markChildren(child),
parent is bound to m, again restricting its match to ensure that the creation
of the spanning tree continues at m. ut

3.3.3 Scheduling Expressions

Scheduling constructs explicitly restrict the order of rule applications; they
include sequential composition and as-long-as-possible iterations, denoted by
; and alap, respectively, and conditionals, choices and priorities. The form
and semantics of rule scheduling constructs may deviate from those in impe-
rative languages in order to account for the non-deterministic and rule-based
nature of graph transformation. The as-long-as-possible statement alap repre-
sents an iteration that uses a test for applicability of its internal action as a
guard. In a transactional setting sequential composition ; can be used with
an all-or-nothing semantics, only succeeding if both its arguments succeed,
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otherwise failing without affecting the current state. A one statement, arbi-
trarily selecting one out of several executable actions, represents a form of
non-deterministic guarded choice.

Layered graph transformation systems [84] provide a simple control me-
chanism for rule application, where a given rule set is partitioned into n > 0
subsets such that each rule is equipped with a layer number. Layering means
that rules are applied for as long as possible in the order of their layers. Only
when rules of layer i are no longer applicable does control pass on to layer
i+1. Using the control constructs introduced above, layering can be expressed
by creating an alap loop for each layer and composing them in sequence.

As a variant of the common if−then−else statement, try−else combines an
if condition and a then branch into a single try action that performs that
branch if its precondition is satisfied. Priorities determine a selection in cases
where more than one rule is applicable. Scheduling mechanisms may be nested,
allowing more complex programs.

A graphical notation for scheduling rules is provided by UML activity
diagrams. In graph transformations, this has been proposed in the form of
story diagrams, as presented in [102] and implemented in the Fujaba language
and tool [6]. The basic idea is to represent control flow by an activity graph,
where each node contains a graph transformation rule describing the action.

If control diagrams are well structured, i.e. they define a hierarchical block
structure of nested controls, their use in scheduling transformations is equi-
valent to the textual representation discussed above. Freely connected control
flow diagrams admitting “spaghetti” code correspond to the use of a goto con-
struct in a textual language, which can lead to control flow that is hard to
understand and maintain. In traditional programming languages, this obser-
vation has limited the adoption of graphical control flow specifications that
are not well structured, but they are still useful, for example in representing
real-life business processes that are not well structured.

Example 3.7 (controlled shutdown of Super nodes continued). Figure 3.10 shows
an example diagram of the controlled shutdown of Super nodes. Besides start
and end nodes, it has three activity nodes containing rules, connected by three
kinds of activity edge: those labelled alap denote loops that apply the inner
rule for as long as possible, exit edges represent exits from such loops, taken
when the internal rule fails, and unlabelled edges represent sequential appli-
cation. In the activity diagram in Fig. 3.10 they occur only from and two the
start and end nodes.

We see in this example that edges can be defined between arbitrary actions
in activity diagrams. This flexibility may be helpful during development, but
such “goto” structures can lead to entangled control flow that is hard to un-
derstand and maintain. An activity diagram is well structured if each activity
node (apart from start and end) has exactly one incoming and one outgoing
edge of the unlabelled (sequential) variety. Hence, the diagram in Fig. 3.10 is
well structured. ut
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disconnectSuper(s, _)
s:Super

:Super

ovl

endSuperTransaction(s:Super)
redirectClient(s, _,_)

s:Super
clients = c
clients := c - 1

:Super
clients = c
clients := c + 1
{clients < max}

:Clientlink

link

shutdownSuperTrans(s)

:User
s:Super

clients = 0
usr

exit

exit

alap

alap

Fig. 3.10. Activity diagram specifying transformation unit endSuperTransaction(s)

3.3.4 Transactional Behaviour

Some features that are well known in database transactions, such as atomicity,
isolation and integrity, are also relevant to controlled graph transformation
systems.

Atomicity is the requirement that a complex sequence of operations, combi-
ning several internal steps, has an all-or-nothing interpretation. For example,
the transformation unit endSuperTransUnit(s) will only succeed in updating the
graph if all components are executed successfully. If, for example, the applica-
tion of the last rule, shutdownSuperTU(s), should fail, the entire unit fails and
does not lead to a new state. An additional aspect of atomicity is its reflection
in the graph transition system. If atomicity is required at the level of a na-
med transformation unit, we can decide to replace the sequence of internal
transitions by a single transition labelled with the name and argument of the
transformation unit, thus significantly simplifying the transition system.

Note 3.1: Atomic transformation units as transactions. A trans-
formation unit combines several rule applications into a functional unit. A
transformation unit whose body is contained in an atomic block represents
a transaction. Just as rule applications form transactions over basic acti-
ons, transformation units form transactions over rule applications. This
means that (1) if a part of a transformation unit cannot be executed, the
whole transformation fails, (2) the execution cannot be interleaved with
rule applications that create or destroy matches for any of the rules in the
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unit, and (3) failure of the result graph of a unit to satisfy an integrity
constraint leads to the failure of the unit.

Atomicity also affects constructs such as alap that are, by themselves,
always successful. Units may contain sequences, try−else statements and
if−then−else statements which can exhibit partial failure. An atomic block
turns partial into total failure, so an alap block may fail if an internal se-
quence fails to execute completely.

Consistency requirements can be expressed by graph constraints, introdu-
ced in Section 2.4.1 as a means of describing structural properties of graphs.
Such constraints can be interpreted in a variety of ways, including as invari-
ants to be satisfied by all reachable graphs, for the declarative specification
of graph languages, and as global postconditions for rules or transactions. In
the latter interpretation, in analogy to databases, graphs have to be consistent
meaning that graph constraints allow transformations G =⇒ H to succeed only
if they are satisfied by the resulting graph H.

Example 3.8 (augmentation of overlay network). In Fig. 2.17, we introduced
a “shortcut” rule that adds redundant links to the network in order to im-
prove its tolerance to Super nodes leaving. The rule has negative application
conditions which ensure that no new ovl link is added between the Super nodes
determined by the match if (1) there already is such a link or (2) there is an
alternative two-hop path between the two nodes.

Rather than specifying such conditions as part of the application conditi-
ons, they could be given as global integrity constraints. In this case, a variant
of the shortcut rule without an application condition could be applied for
as long as there are transformations satisfying the global integrity constraint
shown in Fig. 3.11 ruling out triangular ovl links as well as parallel two-hop
paths. The advantage of such constraints over rule-specific application con-

NOT
:Super :Super

:Super

ovl

ovl

:Super

ovl

ovl

ovl

Fig. 3.11. Graph constraint limiting the redundancy in the network

ditions is that global conditions are rule independent, fully declarative and
therefore easier to understand and maintain. For example, when rules are
added or modified, application conditions have to be adapted, but integrity
constraints are usually not directly affected. To ensure that a rule is not tried
at the same match over and over again, some bookkeeping of matches may be
required. ut
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Isolation is relevant if we adopt the distributed interpretation of rule ap-
plications as described in the introduction to this chapter. In this case, con-
current execution prevents global control, it is important to understand how
complex processes run when different local nodes of a network can interfere.
Isolation means that concurrent executions of transformation units should not
interfere. This means that any interleaving of the internal transitions of two
units should be equivalent to a purely sequential (isolated) execution where
each unit is executed as a sequence of consecutive transitions. Syntactically,
this property is usually subsumed under the keyword atomic, but the following
example shows that atomicity (in the sense of all-or-nothing execution) and
isolation (in the sense of non-interference) describe different aspects.

Example 3.9 (unwanted interleaving). If the three shutdown rules were applied
as part of the overall graph transformation system without further restriction,
for example, they could interleave with applications of other rules: new clients
could connect to a Super node in the process of being shut down while existing
clients are in the process of transfer to other nodes, adding to the list of
clients to be handed over before the Super node can eventually be deleted
using rule shutdownSuperTrans() in Fig. 3.10. This means that new ovl edges
could be added to a Super-node while already existing links are redirected.
Isolation should encapsulate the termination process, preventing unwanted
interleaving. ut

Durability is concerned with the permanent storage of transaction results.
Hence it does not play a significant role at the level of behavioural semantics.
Implementing tools should ensure that, once a transaction is performed, all
its changes will be stored permanently in the system.

3.4 Summary and Further Reading

Graph transformation has been used in various application scenarios. In this
chapter, we have identified applications leading to three different semantic
models: (1) graph grammars are used to describe graph languages, (2) graph
relations define graph algorithms and, especially, translations, and (3) graph
transition systems specify detailed system behaviour. To restrict the behaviour
of a rule-based transformation system, we considered a range of control mecha-
nisms. Transformation units implement a form of procedural abstraction with
parameter passing. The order of rule applications can be further restricted by
control expressions. Atomic transformation units have a transactional beha-
viour similar to individual rule applications. In the following, we give pointers
to relevant literature on the control mechanisms presented.

Transformation units were introduced in [17] as an approach-independent
structuring principle for graph transformation systems. In their original form,
they consist of specifications for initial and terminal graphs forming pre- and
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postconditions for transformation units. They are parametric in the under-
lying graph transformation approaches, such as PROGRES, the double- or
single-pushout approaches, and the node- or edge-replacement approaches.

The main composition mechanism of transformation units is the import
and use of existing units establishing a hierarchical import relation. Trans-
formation units have been provided with an interleaving semantics defining
an input–output relation on graphs for each transformation unit, composed
of similar relations for imported units and individual rules. A comprehensive
theory of transformation units was developed by Kuske in [179].

Habel and Plump [122] have identified a minimal set of control constructs
such that a programming language based on graph transformation is compu-
tationally complete. This requires the nondeterministic application of a set
of transformation rules, sequential composition and loops. Omitting one of
these features results in a computationally incomplete language. Computatio-
nal completeness here means the ability to compute every computable partial
function on labelled graphs.

The idea of refining activity diagrams by graph rules and adopting them
as a control structure for rule applications goes back to story diagrams and
was comprehensively presented by Fischer et al. in [102] and Zündorf in [296].
These authors also introduced the link between rule-based structure transfor-
mations and the programmed manipulation of object-oriented structures. In
contrast to transformation units, story diagrams do not have a transaction
semantics, since they are compiled into Java code.

While by concurrency of transformations we refer to the fact that they can
be executed independently, parallel execution means that they are executed
simultaneously. We have not thoroughly discussed parallel transformations in
this chapter but there are several approaches to parallel graph transforma-
tion in the literature. Parallel graph transformation has its origin in graph
L-systems, a direct generalisation of L-systems describing the context-free pa-
rallel replacement of strings. Motivated by the application of L-systems to
modelling the development of organisms, graph L-systems have been used to
model the evolution of multidimensional structures such as cells [219, 220].
The parallel application of rules has also been exploited for hyperedge repla-
cement, for example, for the generation of collage graphs. The double-pushout
approach was extended to the parallel replacement of graphs in [78]. A more
general form of parallel graph transformation, allowing non-context-free re-
placements and more general forms of graph structures, was presented by
Taentzer in [268, 269].





4

Analysis and Improvement of Graph
Transformation Systems

One motivation for software models is the ability to analyse them, for example
to validate requirements and verify the consistency of models with each other
or with respect to an implementation. Since we want to use graph transfor-
mation systems as software engineering models, we have to provide analysis
techniques to answer questions about these systems that arise in their appli-
cations to software engineering problems.

Let us assume that we have settled on a semantic interpretation and set of
control features as described in Chapter 3 and created a first graph transfor-
mation system according to these choices. A common problem at this stage
is how to ensure the quality of the graph transformation system, such as
its internal well formedness, consistency, or correctness with respect to gi-
ven requirements. A precise semantics allows us to ask questions that have
well-defined, if not always computable, answers. Such questions can be purely
analytical, about assessing certain qualities such as if a state property is an
invariant of the system, or they may have a constructive aspect, for example,
how the rules of the system should be modified such that a state property
becomes an invariant. In this section we investigate questions such as these,
as well as the answers that have been developed.

We start by introducing a range of questions for each of the different
semantic interpretations illustrated with examples, and then give a high-level
overview of the popular analysis techniques for graph transformation systems
and describe their use for answering the questions identified in Section 4.1.
From Section 4.2, onwards we describe these techniques and their application
in more detail.

We organise the first part of the discussion in terms of the semantic in-
terpretations identified in Chapter 3 because different questions will arise
depending on the interpretation of the graph transformation model, as descri-
bing a graph language, a relation between sets of graphs or a graph transition
system.

A graph grammar GG is used to generate a graph language L(GG). In
Chapter 10, we will show how the language of well-structured activity dia-
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grams can be described by a graph grammar. For graph languages, the follo-
wing properties are relevant:
• Membership: Does the graph language L(GG) contain a given graph G?
• Inclusion: Does the graph language L(GG) contain another language L′,

for example, one described by another grammar or a type graph with
constraints, or is L(GG) itself a subset of another given graph language?

• Instance generation: Can we enumerate the graphs G in L(GG) or sample
this set randomly?

• Non-ambiguity: Does every graph in L(GG) have a unique derivation up
to reordering of independent steps, i.e. for any two derivations from the
start graph G0 to the same graph G, are those derivations equivalent up
to reordering?
The last question is relevant in relation to graph parsing, a process by

which we search for a derivation of G from the start graph G0 using the rules
in GG, thus solving the membership problem. A typical solution is for the
generating rules of the grammar to be turned into inverse reduction rules
as presented in Chapter 2. If G’s derivation is unique, this provides us with
information about the syntactic structure of the graph. Efficient parsing also
requires reduction rules to be terminating and confluent (i.e. deterministic
up to choices that do not affect the end result). Non-ambiguity is not itself
a property that can be stated based on the language semantics of sets of
derivable graphs. It is actually a property of the transition system, but is
included under language properties here because of its relevance to parsing.

The membership problem for the language of well-structured activity di-
agrams is considered in Chapter 10. It asks if a given graph forms a legal
representative of such a diagram. Given a specification of the language of all
activity diagrams, the question of whether all well-structured diagrams are
also in this language is one of language inclusion. Non-ambiguity means that
each well-structured diagram can be obtained by a unique sequence of trans-
formations, usually up to reordering of independent steps. This is relevant
because the derivation of a well-structured activity diagram reveals its hier-
archical block structure. The problem of instance generation is relevant to
testing and performance evaluation, for example, of model transformation or
analysis tools, where sample diagrams represent individual test cases. A parser
for well-structured activity diagrams would produce derivations representing
their hierarchical construction.

A typical example of a graph relation is a translation between two model-
ling languages. Chapter 12 presents a translation of class models to relational
database schemas. Assuming a transformation unit describing a relation bet-
ween two sets of graphs, we can consider the following properties:
• Functional behaviour: Does the relation describe a function, i.e. does it

associate each input graph with at most one output graph?
• Totality: Does the relation associate to every input graph at least one

output graph?
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• Injectivity: Does the relation always map different input graphs to different
output graphs?

• Surjectivity: Does it map an input graph to every graph of the target
domain?

• Correctness: Is the relation consistent with a given semantic interpretation
of graphs? Does it preserve certain properties, in the sense that, when
mapping an input graph G to an output graph H, if a property P holds
for G, then a property Q holds for H?

For the translation from class models to relational database schemas, functi-
onal behaviour and totality ensure that the mapping is well defined as a total
function, while injectivity and surjectivity imply that the mapping is one-
to-one and reaches all schemas in the target domain. Semantic correctness
could mean, for example, that all instances of a given class models, i.e. all
object structures over that class model, are matched by concrete tables which
conform to the corresponding relational schema. In practice, class models are
richer and more flexible than relational schemas since they allow class inheri-
tance. So while a semantically correct mapping may well be a total surjective
function, it will not be injective, because different class hierarchies can lead
to the same relational schema. This translation is presented in detail in Chap-
ter 12.

In the graph transition system interpretation, as represented by the VoIP
network model, we can ask questions about (sequences of) transitions and
their interrelations. It is worth recalling that a transition in a graph tran-
sition system s1 −r→ s2 is based on a transformation G1 =r⇒ G2 between the
underlying graphs G1 and G2 of states s1 and s2 but that not all transformati-
ons give rise to transitions, because the graph transition system also captures
the restrictions imposed by the control structures introduced in Chapter 3.
We will henceforth use the transition notation s1 −r→ s2 where we do not want
to focus on the specifics of the graph transformation step or where control flow
is being considered, and continue to use the graph transformation notation
G1 =r⇒ G2 otherwise. We consider the following properties:

• Reachability: Can a given graph, rule or transition be reached from the
start graph of the graph transition system? Can they be reached repea-
tedly?

• Invariants: Do all graphs reachable from the start graph satisfy certain
constraints or, dually, can we reach graphs that violate such constraints?

• Deadlocks: Are there terminal states (i.e. without outgoing transitions)
that are non-final?

• Planning and optimisation: Can we find a (good or optimal under a certain
objective function) path in the graph transition system from a given graph
to a graph satisfying certain properties?

• Temporal properties: Does the system satisfy certain safety and liveness
properties, for example, expressed by temporal logical formulas over paths
through the system?
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• Termination: Does the system only have finite paths from initial states?
• Confluence: Can every divergent pair of transition sequences G1 ←∗− G −∗→

G2 be joined as G1 −∗→ H ←∗− G2? Is this true locally for pairs of transitions
G1 ← G → G2? Is this relation strict in the sense that the tracking
functions along G −∗→ G1 −∗→ H and G −∗→ G2 −∗→ H agree? More specifically,
can a pair G1 ⇐r1== G =r2=⇒ G2 be joined directly as G1 =r2=⇒ H ⇐r1== G2? Can
we swap the order of steps in a sequence G =r1=⇒ G1 =r2=⇒ H to G =r2=⇒
G2 =r1=⇒ H?

In the VoIP network model, invariants such as ‘‘Super nodes with clients = 0
have no Client nodes attached’’ need to be maintained for the graphs to be
semantically meaningful. Connectivity of the network is a further, more com-
plex example. The transition system in Example 3.3 does not have a deadlock,
because all states have outgoing transitions. The question of how, from a dis-
connected configuration, a connected configuration is reached can be phrased
as a planning problem. It becomes an optimisation problem if we ask for the
best or nearest such configuration with respect to suitable metrics. This tran-
sition system does not terminate, since there is at least one infinite path that
applies rules newSuper, disconnectSuper and endSuper, in that order, indefini-
tely. The system is not confluent. As already shown in Fig. 3.6, applications
of newSuper to different User nodes can happen in either order. If the same user
connects to different Super nodes, however, this leads to a pair of conflicting
transformations that can not be joined.

4.1 Techniques for Analysis and Construction

There are a variety of techniques, including analytical and constructive ones,
to ensure the properties listed and illustrated above. They are described in
more detail in Sections 4.2–4.5. In particular, we cover the following techni-
ques:

• CDA: Conflict and dependency analysis includes static analysis techni-
ques (at rule level rather than involving state graphs and transitions) to
determine the possibility of conflicts or dependencies between rules. The
transformations G1 ⇐r1== G =r2=⇒ G2 are in conflict if the application of r1
destroys the match for r2 or vice versa. Otherwise, we consider them to
be parallel independent of each other. Starting from just two rules, criti-
cal pair analysis finds all conflicting pairs of transformations (when these
rules are applied) in a minimal context. This is useful for demonstrating
confluence. Similarly, dependency analysis detects the possibility of situa-
tions such as G1 =r1=⇒ G2 =r2=⇒ G3 where the application of r2 depends on
that of r1 or where an application of r2 to G1 could prevent r1 from being
applied. Otherwise, such a transformation sequence is called sequentially
independent.
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• TA: Termination analysis includes a range of techniques to establish the
absence of infinite transformation sequences. Termination is undecidable
in general, so these techniques are given in the form of sufficient criteria
which, if satisfied, guarantee termination. Under certain conditions, sys-
tems can be made to terminate by construction, for example, by adhering
to the restrictions of layered systems.

• CV&E: Constraint verification and enforcement can be analytical or con-
structive in nature. Constructive enforcement, given a rule and a graph
constraint intended as an invariant, derives the weakest precondition of
this constraint as an application condition for the rule. In addition, it
may be interesting to check if the weakest precondition constructed is re-
dundant since it is already entailed by existing application conditions or
invariants. We call such a check constraint verification; it implements the
analytical approach.

• MC: Model checking, given a graph transformation system and a start
graph, generates the transition system and then analyses it for satisfaction
of temporal properties. Owing to its ability to generate counterexamples,
model checking can also be used to construct sequences of transformations
satisfying certain conditions, for example to generate test cases. For some
analyses, such as non-ambiguity, the state space generation, a necessary
prerequisite to do model checking, is already enough to get results.

• GP: Graph parsing is an attempt to construct a derivation for a graph
based on the rules of a given grammar. This can be done in a top-down,
speculative way going forwards from the start graph of the grammar, or
in a bottom-up way going backwards from the given graph, reversing the
rules of the grammar in order to reduce any graph in the language to the
start graph. As a result, a derivation is produced which represents the
syntactic structure of the graph.

In most cases these techniques provide only incomplete answers to the
questions stated earlier, for example, in the form of sufficient criteria for ter-
mination. Sometimes combinations of techniques are required to address a
single question. For example, to check if a transformation system with a re-
lational semantics implements functional behaviour, we have to establish its
confluence. Confluence can be verified based on the computation of critical
pairs. If all critical pairs are strictly confluent and the graph transformation
system is terminating, its transformation relation is a function. Table 4.1 sum-
marises which technique addresses which questions.

4.1.1 Language Properties

With certain prerequisites (non-ambiguity, functional behaviour of the rever-
sed grammar), membership can be solved by graph parsing in an effective
way, i.e. without backtracking. An example of parsing for activity diagrams
is presented in Chapter 10. Model-checking techniques can provide a partial
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Table 4.1. Analysis techniques to address analysis questions

Conflict and dep- Termination Constraint Model Graph
endency analysis analysis verification checking parsing

Language
Membership X X

Inclusion X X X
Instance generation X X X

Non-ambiguity X X X
Relation

Functional behaviour X X X X
Totality X X

Injectivity X X X X
Surjectivity X X
Correctness X X X

Transition system
Reachability X X

Invariants X X
Deadlocks X

Planning &
optimisation X

Temporal properties X X
Termination X X
Confluence X X X

solution, for example, by generating a set of reachable graphs and checking if
a given graph is in that set. If the language is finite (and small enough) this
can be a complete (if inefficient) solution.

Language inclusion, for sets of graphs L,L′ with L ⊆ L′, can be sampled
(tested) by any solution to the respective membership problems. If L = L(GG)
is the language generated by a grammarGG and L′ = L(C) is the set of graphs
satisfying certain constraints C, we can use constraint verification to verify
that all graphs generated by GG satisfy C, i.e. L(GG) ⊆ L(C). In Chapter 10,
a set of constraints and a graph grammar for activity diagrams are given. We
can straightforwardly argue that the grammar fulfils all these constraints.

The inclusion question has a constructive version known as the filter pro-
blem [123]: Given GG and a logical specification of L, how do we derive a
grammar GGL such that L(GGL) = L(GG) ∩ L?

Instance generation can be supported by model checking, by generating
graphs reachable from the start graph and returning them as counterexamples
to properties representing the negation of policies to determine which instan-
ces should be returned. For example, in a language of activity diagrams we
may want to return graphs representing diagrams with more than one deci-
sion node. A temporal formula demanding that the rule to generate decision
nodes should be applied at most once would be violated by all paths through
the transition system with two or more applications, and such paths would be
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returned by the model checker as evidence that the formula is not satisfied.
Other approaches to sampling “interesting” graphs include CDA and con-
straint verification, which generate minimal graphs demonstrating conflicts or
dependencies or violating constraints. They can be checked for membership
using any of the techniques above.

Non-ambiguity can be verified by critical pair analysis on the set of in-
verse rules: if there are no critical pairs, the grammar is deterministic up to
independence of transformations. In this case, all derivations that a parser
can return are equivalent. Model checking can test non-ambiguity by trying
to establish two different paths to certain graphs.

4.1.2 Relation Properties

As discussed above, functional behaviour can be analysed by a combination
of critical pair analysis, reachability and termination. Termination guarantees
that a transformation relation produces a result, not necessarily unique, for
all input graphs. Conversely, if functional behaviour can be established for
the reversed system, this can be used to show injectivity of the original rela-
tion, while totality of this function establishes the surjectivity of the original
relation.

We distinguish between syntactic and semantic correctness. In the second
category, if the semantics is described by operational or semantic mapping
rules, mixed confluence based on critical pairs between semantic and transfor-
mation rules can be used to show correctness. For syntactic correctness, we
are interested in showing that all graphs from the input set are mapped to
syntactically correct graphs in the output set. This is also part of demonstra-
ting that the function or relation implemented is total, and it can be achieved
in part by showing that rules preserve or establish certain graph constraints. If
semantic correctness is easy to check for individual pairs of input and output
models, a constructive approach to correctness could restrict the transforma-
tion relation to exactly such pairs.

In Chapter 12 we consider the translation of class models to relational da-
tabase schemas and discuss its functional behaviour and correctness in details.

4.1.3 System Properties

Many properties of states, transitions and paths in transition systems can be
phrased as model-checking problems. Invariants can be verified by checking
or enforcing the preservation of graph constraints.

If the state space is described by a suitable grammar, parsing can solve
the reachability problem. Temporal properties expressing safety conditions,
such as the absence of unintended sequences, can be ensured constructively
by imposing control structures.
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Confluence can be established by critical pair analysis in combination with
termination and reachability. Termination and confluence admit both analy-
tical and constructive solutions. Termination by construction can be achieved
by control structures such as layered graph grammars. A constructive ap-
proach to confluence could reduce non-determinism either by suitable control
structures or by completions that add rules to join diverging transformations.

In general, graph languages, relations and transition systems are infinite.
Therefore, many questions about them are only semi-decidable. This means
that in order to answer them we seek sufficient criteria, or algorithms that
over- or under-approximate the relevant properties, such as in the case of
critical pairs: their non-existence demonstrates that two rules can never create
conflicting transformations, but if a critical pair exists, the corresponding
conflict may not be reachable from a given start graph. Reachability itself,
like the membership problem, is a semi-decidable property.

4.2 Conflicts and Dependencies

Often, in a graph transformation system, more than one rule is applicable
to a given state, or a single rule is applicable at different matches. Then
the application of one rule at one match may disable other choices available,
creating a conflict. Also, one rule application may enable another, leading to
a dependency. There may be several motivations for developers to understand
if and why conflicts or dependencies occur:
1. If graph transformations are used to model the requirements or design of

an application, rules define the data flow between actions, which might
not be consistent with the control flow expressed, for example, in a pro-
cess model. Finding potential conflicts and dependencies and comparing
them with the control flow can identify such inconsistencies [99]. This
interpretation is discussed in detail in Chapter 5.

2. In the optimisation of rule-based computations such as graph parsing [47],
conflict and dependency analysis helps to trim the solution space of pos-
sible computation paths. When specifying model refactorings as graph
transformation rules, their conflicts and dependencies can be analysed.
This may help to understand which refactorings have to be applied in
which order to reach a desired model structure. Model refactoring by
graph transformation is presented in Chapter 11.

3. If a transformation is expected to deliver unique results for all inputs, as
illustrated by the optimisation of overlay networks or the termination of
Super nodes in Section 2.2.1, we have to demonstrate its functional be-
haviour. This means that transformation sequences with a common start
graph have to end in the same result graph, i.e. they have to be confluent.
A sufficient condition for the confluence of a transformation system is the
strict confluence of all critical pairs [85], provided that the system is termi-
nating. Critical pairs are conflicts and dependencies in minimal contexts.
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They are strictly confluent if there exist sequences of transformations le-
ading to a common successor graph, such that the tracking functions of
these sequences are commutative, i.e. they are agree on the identities of
the nodes and edges.

4.2.1 Conflicting and Dependent Transformations

Two transformations are parallel independent if they are applicable to the
same graph without invalidating each other’s matches. This means that their
matches can only share graph elements preserved by both steps. Further-
more, they are not allowed to change the same attribute values, or to create
structures forbidden by the other rule’s application condition. Otherwise, the
transformations are called conflicting.

Two transformations are sequentially independent if the execution of one
transformation is not dependent of the execution on the other one. This me-
ans that the match of one rule application does not have to be prepared by
applying the other rule in some way.

Given two parallel independent graph transformation steps H1 ⇐r1,m1====
G =r2,m2===⇒ H2, the local Church-Rosser theorem formalises this intuition, sta-
ting that there are sequentially independent transformation steps G =r1,m1===⇒
H1 =r2,m′2===⇒ X as well as sequentially independent transformation steps
G =r2,m2===⇒ H2 =r1,m′1===⇒ X, both yielding the same result graph X.

There are different types of conflicts. If transformations t1 : G =r1,m1===⇒
H1 and t2 : G =r2,m2===⇒ H2 are conflicting, t1 may disable t2 or vice versa.
Transformation t1 disables transformation t2 (or t1 causes a conflict on t2) if
one of the following cases occurs:

• Delete/use: Applying r1 deletes an element used in the application of r2.
A special case is the deletion of a node that should be used as the source
or target of a new edge to be inserted with r2.

• Produce/forbid: Applying r1 produces an element that a NAC of r2 forbids.
• Change/use: Applying r1 changes an attribute value used in the applica-

tion of r2.

In the following, three examples of conflicts are illustrated and discussed.

Example 4.1 (types of conflict). A Super node without clients can be shut
down. Obviously, no clients can be linked to it afterwards. Hence, applications
of the rules endSuper and linkClient can be in a delete/use conflict. Conside-
ring Fig. 4.1, both rules are applicable at the selected matches. We see that
if endSuper deletes the Super node used by linkClient, the corresponding rule
applications are in a delete/use conflict with respect to Super node s.

For Users not yet part of the network, we can create new Client or Super
nodes. In real networks the choice may depend on factors outside the scope of
our model, such as the bandwidth of a user’s Internet connection. In Fig. 4.2,
both rules are applicable creating a conflict because each checks for an existing
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endSuper(s) = s
u:User s:Superusr

linkClient(c,s)

c:Client

s:Super
clients = n
clients := n + 1
{clients < max}

:Super

link

link

G

u:User
name = "Gabi"

s:Super
clients = 0

c:Client u2:User
name = "Reiko"

usr usr

m1

m2

Fig. 4.1. Delete/use conflict between endSuper and linkClient

Node before creating a Client or Super node. Since Node is a supertype of Client
and Super, the application of one rule prevents us from applying the other
rule to the same User. This is a produce/forbid conflict. In graph G, both
rules are applicable to user u. Graph H1 shows the situation after applying
rule newClient; rule newSuper is not applicable to this graph.

newClient(u) = c
u:User c: Clientusr: Node usr

newSuper(u,s) = s1
u:User

name = uid
s:Super

:Node

usr
s1:Super

clients := 0

ovlusr

G

u:User
name = "Reiko"

s:Super
clients = 0

u2:User
name = "Peter"

usr

H1

u:User
name = "Reiko"c:Client

s:Super
clients = 0

u2:User
name = "Peter"

usrusr

m1

m2

Fig. 4.2. Produce/forbid conflict between newClient and newSuper

Two competing applications of linkClient, linking both to the same Super
node, will each increase its clients attribute. Figure 4.3 illustrates how this
represents a change/use conflict on the clients attribute. This conflict could
be considered less severe, since it does not prevent the application of the
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second rule altogether. However, the original match does not survive, because
it includes the original attribute value 0. Instead, as expected, the deferred
second rule application updates clients from 1 to 2. ut

linkClient(c1,s)

c1:Client

s:Super
clients = n
clients := n + 1
{n < max}

:Super

link

link

linkClient(c2,s)

c2:Client

s:Super
clients = n
clients := n + 1
{clients < max}

:Super

link

link

G

c1:Clientu1:User
name = "Gabi"

s:Super
clients = 0

c2:Client u2:User
name = "Reiko"

u2:User
name = "Peter"

usr usr

usr

m1 m2

Fig. 4.3. Change/use conflict between linkClient and linkClient

There are different types of dependencyies. A sequence of transformations
G =r1,m1===⇒ H1 =r2,m′2===⇒ X is dependent if G =r1,m1===⇒ H1 enables H1 =r2,m′2===⇒ X.
We distinguish the following cases:

• Produce/use: Rule r1 produces an element needed for the match of r2.
• Delete/forbid: Applying r1 deletes an element that a NAC of r2 forbids.

A special case is the deletion of an edge by r1 such that the match of r2
fulfils the dangling condition.

• Change/use: Rule r1 changes an attribute value accessed by the application
of r2.

Example 4.2 (types of dependency). The application of rule linkClient may be
dependent on that of newClient if a new Client node c is created before it is linked
to a Super node. Figure 4.4 illustrates this dependency using an intermediate
graph where Client c has just been created.

After one has ended a client, it is possible to connect the same user to
the network by creating a new Super node. In this case, ending the Client node
enables the creation of the Super node. Figure 4.5 shows this dependency, with
applications overlapping in the User and Super nodes.

To shut down a Super node, all connected clients have to be disconnected
first. If the application of rule endClient disconnects the last client, the clients
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newClient(u) = c
u:User c: Clientusr: Node usr

linkClient(c,s)

c:Client

s:Super
clients = n
clients := n + 1
{clients < max}

:Super

link

link

H1

u:User
name = "Gabi" c:Client

s:Super
clients = 0

u2:User
name = "Reiko"

usr usr

m∗1

m′2

Fig. 4.4. Produce/use dependency of linkClient on newClient

endClient(c) = c
u:User

s:Super
clients = n
clients := n-1

c:Client

link

usr
newSuper(u,s) = s1

u:User
name = uid

s:Super

:Node

usr
s1:Super

clients := 0

ovlusr

H1

u:User
name = "Reiko"

s:Super
clients = 0

m∗1 m′2

Fig. 4.5. Delete/forbid dependency of endClient on newSuper

attribute is set to 0, which enables the shutdown of the Super node by rule
shutdownSuperTrans. This dependency is shown in Fig. 4.6. ut

Given the characterisations above, conflicts and dependencies can be de-
tected dynamically while executing the transformations or constructing the
transition system. For designing and reasoning about transformation rules,
however, it is also interesting to analyse potential conflicts and dependencies
at rule level. This static analysis technique is presented next.

4.2.2 Static Analysis of Conflicts and Dependencies

So far, we have considered conflicts and dependencies between graph trans-
formation steps. However, generating all possible steps to analyse them for
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endClient(c) = c
u:User

s:Super
clients = n
clients := n-1

c:Client

link

usr
shutdownSuperTrans(s)

:User
s:Super

clients = 0
usr

H1

u:User
name = "Reiko"

s:Super
clients = 0

u:User
name = "Peter"

usr

m∗1

m′2

Fig. 4.6. Change/use dependency of shutdownSuperTrans on endClient

dependencies is impossible in general. Hence, in this section we adopt a sta-
tic approach, analysing pairs of rules only. Rule r1 causes a conflict on rule
r2 if there is at least one pair of transformations t1 : G =r1,m1===⇒ H1 and
t2 : G =r2,m2===⇒ H2 where t1 disables t2. The outcome of this static analysis is a
conflict relation between rules, i.e. rule pair (r1, r2) is in a conflict relation if
r1 causes a conflict on r2 (or, equivalently, r1 disables r2). A conflict relation
is represented by a table whose entries in green refer to rule pairs without
conflicting transformations, while entries in red indicate the existence of con-
flicting situations as described above. Numbers in red entries refer to different
conflict reasons explained further below. A conflict relation can also be visu-
alised as a graph where nodes represent rules and an edge from rule node r1
to node r2 means that pair (r1, r2) is the in conflict relation.

Example 4.3 (conflict table and graph). Figure 4.7 gives an overview of the
conflicts between all rules shown in Fig. 2.7 and Fig. 2.8. The table was com-
puted using AGG’s critical pair analysis. For example, rule endSuper causes
one conflict on rule linkClient, which we will analyse more closely below. We
can also visualise the conflict relation by the graph in Fig. 4.8. ut

To gain a deeper understanding of the conflicts reported, we can ask which
rule elements cause each conflict.
Example 4.4 (conflict-causing elements). For rule pair (endSuper, linkClient),
Super node s is a conflict-causing element since it is deleted by rule endSuper and
used by linkClient. We have seen one concrete sample application in Figure 4.1.
For rule pair (newClient, newSuper), c:Client is a conflict-causing element created
by the first rule and forbidden by the second. ut

To inspect a conflict in even more detail, we can ask which combina-
tions of conflict-causing elements are possible. An answer to this question
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Fig. 4.7. Overview of conflicts between the rules in Figs. 2.7 and 2.8

conflict graph

newSuper

newClient

promoteClient

endSuper

endClient

redirectClient

disconnectSuper linkClientendUnlinkedClient

Fig. 4.8. Conflict graph for the rules in Figs. 2.7 and 2.8

is given by critical pair analysis. This technique is used in term rewriting
to check for the confluence of rewrite systems. It was generalised to term
graph rewriting in [230, 232] and to typed attributed graph transformations
in [136]. A critical pair formalises the idea of two conflicting transformations
H1 ⇐r1,m1==== G =r2,m2===⇒ H2 in a minimal context. This means that the shared
graph G is minimal with the property of allowing the application of each rule
of the critical pair, such that the resulting transformations are in conflict.

From each critical pair, we can extract its conflict reason [184]. For dele-
te/use conflicts, these are conflict-causing elements that rule matches overlap
in. For a produce/forbid conflict, the conflict reason is an overlap of created
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elements in the right-hand side of rule r1 with forbidden elements in a NAC
of r2.

Example 4.5 (critical pair for a conflict). Figure 4.9 shows a critical pair for
a conflict of rule pair (endSuper, linkClient). The minimal graph G shows an
overlap in node s: Super, which is deleted by rule endSuper and preserved by
rule linkClient. Both rules are applicable to this graph, assuming that 1 < max.
ut

endSuper(s) = s
u:User s:Superusr

linkClient(c,s)

c:Client

s:Super
clients = n
clients := n + 1
{clients < max}

:Super

link

link

G

u:User
name = uid

s:Super
clients = 1

c:Clientusr

m1

m2

Fig. 4.9. Critical pair for (endSuper, linkClient) showing a delete/use conflict

Similar questions can be asked to understand dependencies at different
levels of detail. The simplest one is whether rule r2 depends on rule r1. To
answer this question, we have to check whether there is a pair of dependent
transformations that apply the rules in this order. Analogously to the conflict
notation, there is a dependency relation between rules which can be shown in
a table or a graph, as illustrated by the next example.

Example 4.6 (dependency table and graph). Figure 4.10 shows which of the
rules in Figs. 2.7 and 2.8 depend on each other. Table entries in green point to
pairs of rules whose applications are always sequentially independent. Entries
in blue show the number of dependent situations for a chosen rule pair. This
table was computed using AGG’s critical pair analysis for dependencies. For
example, rule pair (endClient, newSuper) has one dependency, which we will
analyse in more detail below. In Fig. 4.11, a graph illustrates all the rule
dependencies in the example. ut

To gain a deeper understanding of the dependencies reported, we can ask
which rule elements cause the dependency of r2 on r1.

Example 4.7 (dependency-causing elements). For the pair of rules (endClient,
newSuper), Client node c is a dependency-causing element, since it is deleted by
endClient and forbidden by newSuper. We have seen one concrete application
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Fig. 4.10. Overview of dependencies between rule pairs in Figs. 2.7 and 2.8

dependency graph

endSuper

newClient

promoteClient

newSuper

redirectClient

linkClient

disconnectSuper endClientendUnlinkedClient

Fig. 4.11. Dependency graph for the rule pairs in Figs. 2.7 and 2.8

situation in Fig. 4.5. For rule pair (newClient, linkClient), c:Client is dependency-
causing, since it is created by the first rule and used by the second. ut

To inspect a dependency of a given rule pair in even more detail, we can ask
which combinations of dependency-causing elements are possible. An answer
to this question is also given by critical pair analysis, applied to find consecu-
tive rather than alternative transformations. To discover minimal dependent
pairs of transformations G =r1,m1===⇒ H1 =r2,m2===⇒ X, we have to consider all possi-
ble overlaps between the co-match m′1 : R1 → H1 for r1 and the match m2 for
r2. Since rules and transformations are mostly invertible (see Section 2.4.7), a
critical pair for a rule sequence r1; r2 can be reduced to a critical pair between
rules r−1

1 and r2.

Example 4.8 (critical pair for a dependency). Figure 4.12 shows a critical pair
for a dependency in the rule sequence endClient; newSuper. The minimal in-
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termediate graph H1 contains a user that has just been disconnected and a
Super node to which users and clients can connect. Only by deleting the client
connected to the user does the addition of the Super node become possible. ut

endClient(c) = c
u:User

s:Super
clients = n
clients := n-1

c:Client

link

usr
newSuper(u,s) = s1

u:User
name = uid

s:Super

:Node

usr
s1:Super

clients := 0

ovlusr

H1

u:User
name = uid

s:Super
clients = n - 1

m′1 m2

Fig. 4.12. Critical pair for (endClient, newSuper) showing a delete/forbid depen-
dency

Our experience with a variety of applications shows that some rule pairs
can cause large numbers of critical pairs. Hence, we have investigated solutions
to present conflicts and dependencies more concisely using just a subset of all
critical pairs. Firstly, parallel applications of the same rule at the same match
are often in conflict. Such self-conflicts are resolvable by performing just one
of these applications. In order to not clutter the presentation unnecessarily
we may omit such self-conflicting pairs.

Secondly, the same combination of conflict- or dependency-causing ele-
ments may be reported in a number of very similar critical pairs. This may
happen if there are overlapping non-conflicting or non-depending graph ele-
ments as well, leading to all permutations of such overlaps being reported. To
avoid this, essential critical pairs were introduced in [184]. The smaller set of
essential critical pairs is still sufficient to show confluence of the transforma-
tion system. Indeed, Lambers et al. [183] showed that the set of critical pairs
needed to demonstrate confluence can be even more compact if the number
of overlapping elements is minimised. Initial conflicts and initial dependencies
allow a considerable reduction in the number of transformation pairs to be
considered.



104 4 Analysis and Improvement of Graph Transformation Systems

4.2.3 Using Conflict and Dependency Analysis to Improve Graph
Transformation Systems

The analyses described so far can have different objectives and their results
can be used in different ways. Often, some or all conflicts or dependencies are
undesirable, either because we want the system to be conflict-free or because
certain conflicts or dependencies contradict given requirements. In this case
it is possible to remove them by the following methods:

1. Modifying the relevant rules, for example by adding NACs to prevent
particular transformations.

2. Adding control structures determining the order of conflicting rule ap-
plications, for example to first change an attribute and then move its
containing element.

3. Adding new rules to resolve a conflict by making it confluent.

The last solution is especially interesting for the relational model, where con-
fluence helps to guarantee functional behaviour. It can reduce non-determinism,
thus removing the need for backtracking to find a valid output graph. In the
following, we discuss criteria for confluence.

4.2.4 Confluence

Transformation sequences H1 ⇐∗= G =∗⇒ H2 are confluent if there are trans-
formation sequences H1 =∗⇒ X ⇐∗= H2. A graph transformation system is
confluent if this is the case for all pairs of sequences. It is locally confluent if
all pairs of steps H1 ⇐r1,m1==== G =r2,m2===⇒ H2 are confluent.

The local Church-Rosser theorem [81, 85] states that parallel independent
steps are trivially confluent by applying the same rules in different orders, i.e.
given independent steps H1 ⇐r1,m1==== G =r2,m2===⇒ H2, there are steps H1 =r2,m′2===⇒
X ⇐r1,m′1==== H2 leading to the same result graph X.

Critical pairs allow us to formulate a condition for general confluence: a
system is confluent if it is terminating and all critical pairs are (locally) con-
fluent in a strict sense, agreeing not only on the resulting graph X but also
on the tracking functions from their shared start graph G to X. A system is
terminating if all its transformation sequences are finite. Criteria and techni-
ques to analyse or ensure termination are discussed in Section 4.3 below. The
set of critical pairs of a given graph transformation systems is complete in the
sense that, given a pair of conflicting transformations, there is always a critical
pair that can be embedded into this transformation pair. Assuming that the
system is terminating, to prove that the system is confluent it is enough to
check the strict confluence of all its critical pairs [136, 85]. Note that such a
completeness property holds also for the set of all essential critical pairs [184]
and even for the set of all initial conflicts [183].
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Example 4.9 (confluence of the shutdown process for Super nodes). Exam-
ple 3.4 presents rules disconnectSuperSd, redirectClientSd and shutdownSuperSd
for implementing the shutdown of Super nodes without additional control con-
structs. To guarantee a unique result, we want to show local confluence. The
first step consists in finding critical pairs. Then we have to show that each
critical pair is strictly confluent. The only pair of rules with potential conflicts
is (redirectClientSd, redirectClientSd), in particular if (1) the same client can be
redirected to two different Super nodes (see the critical pair in Fig. 4.13), (2)
the attribute clients of the ending Super node has to be updated twice to re-
direct two different clients and (3) two clients are moved to the same Super
node such that its clients attribute has to be updated twice.

redirectClientSd(s,c,s1)
s:Super

clients = n
clients := n - 1
{clients > 0}
shutdown = true

s1:Super
clients = m1
clients := m1 + 1
{clients < max}
shutdown = false

c:Clientlink

link

redirectClientSd(s,c,s2)
s:Super

clients = n
clients := n - 1
{clients > 0}
shutdown = true

s2:Super
clients = m2
clients := m2 + 1
{clients < max}
shutdown = false

c:Clientlink

link

G

c:Client
s1:Super

clients = m1
shutdown = false

s:Super
clients = n
shutdown = true

s2:Super
clients = m2
shutdown = false

link

m1 m2

Fig. 4.13. Critical pair for (redirectClientSd, redirectClientSd) showing a delete/use
conflict

We have to show the confluence of all critical pairs detected. The pair
(1) depicted in Fig. 4.13 represents a situation where a client is redirected
to one of two Super nodes. This means that, if two non-ending Super nodes
are available, the choice is not unique. This conflict can be resolved by, for
example, redirecting the client again to the other Super node. This solution is
strictly confluent, as the corresponding tracking morphisms are equal.
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The critical pairs reported in (2) and (3) are very easy to resolve. In both
cases, an attribute is changed by both rule applications. These changes can
also be performed sequentially in either order, since either “+1” or “–1” is
performed twice, and this operation is commutative. ut

The process of establishing confluence through critical pairs can require
several iterations. We try to show local confluence of the original set of rules.
If this is not possible, we may decide to change or add rules and try again.
To show (general) confluence by the way of local confluence, we also have to
prove termination. This is discussed in the following section.

4.3 Termination

A graph transformation system is terminating if all its transformation se-
quences are finite. Graph transformation systems do not have this property in
general. For example, a graph grammar that generates all graphs by creating
single nodes and connecting them by edges is not terminating. Any genera-
ted graph can be extended by new nodes and edges at any time. In [231],
Plump showed that termination is undecidable for graph transformation sy-
stems. This means that there is no algorithm which, for every given system,
returns true if the system is terminating and false otherwise. Bereft of hope
for a general solution, we can nevertheless develop sufficient (but not neces-
sary) termination criteria: if a transformation system satisfies a termination
criterion, we know that it terminates. Otherwise we can try other criteria or
adapt the system.

In the following we give an overview of termination criteria for graph
transformation systems.

4.3.1 Well-Founded Orders

A general approach to proving termination of rewrite systems is through well-
founded partial orders. An order > on a set S is well founded if it does not con-
tain infinite descending chains, i.e. there is no infinite sequence x0, x1, x2, . . .
with xi > xi+1. If, in a rule-based system, there is a well founded order L > R
for all rules r : L → R, we have to show that this order is stable under rule
applications, i.e. that, for any rule application G =r,m==⇒ H, L > R implies
G > H. A stable order is enough to show termination because it implies that
the relation holds for all steps, so an infinite transformation sequence would
result in an infinite descending chain.

For example, in a graph transformation system where the number of graph
elements decreases at every step, the partial order on graphs given by “G > H
if G has more elements than H” would constitute a termination order. Rather
than counting all elements, we could consider elements of certain node or edge
types, or specific numerical attributes with decreasing values. More generally,
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we can count the number of occurrences of graph patterns, such as loops,
or outgoing edges on certain types of nodes or triangular structures, or use
combinations of the above.

Example 4.10 (termination of stepwise network deletion). Figure 2.8 shows a
number of rules that delete network elements step by step. Let sG and cG be
the numbers of Super and Client nodes and let oG be the number of ovl edges
in a network graph G. With tG = sG + cG + oG, it easy to see that each step
reduces tG, i.e. tG > tH for any G =r,m==⇒ H. Hence, given any network graph,
only finitely many applications of the rules shown in Fig. 2.8 are possible.
Once no more rule is applicable, the remaining network consists of User nodes
only. ut

We should stress that termination checks based on order relations do not
assume any control structures for rule applications. The situation is different
when the following criteria are considered.

4.3.2 Layer Conditions

In [84], termination criteria for layered graph transformation systems (intro-
duced in Chapter 3) were presented. Layering can be used to check termination
if the creation and deletion of vertices and edges with certain types are cou-
pled to layers. This is motivated by model-to-model transformations, where
models are translated from one language to another (see also Chapter 12).
Types of the source language are used by the given model, while instances
of types of the target language are created by the model translation. This
process can be controlled by layering.

In a layered graph transformation system, each rule r is assigned a layer
rl(r) = k with 0 ≤ k ≤ n, k, n ∈ IlN. Here, the overall number of layers is
n+ 1. This layering describes a simple control flow on rules in the sense that
the rules of the lowest layer are applied first for as long as possible, then the
rules of the next higher layer are applied, and so on.

To use layer conditions as termination criteria, each occurring node and
edge type is equipped with a creation and a deletion layer. All types that are
already used in the source language get the creation layer 0. The creation layer
of any other type is equal to the layer in which it is used first. The deletion
layer of a type is determined by the layer in which it is deleted first. All types
occurring in the target language get the deletion layer n+ 1.

Termination of the whole system can be shown by demonstrating termina-
tion for each layer separately. A layer is a deletion layer if (1) each of its rules
deletes at least one element, (2) for each type occurring in one of its rules, the
creation layer is lower than or equal to the deletion layer, (3) its rules delete
only elements whose deletion layer is lower than or equal to the current layer,
and (4) its rules create only elements whose creation layer is higher than the
current layer.
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A layer is a non-deletion layer if (1) each of its rules is non-deleting, (2)
each of its rules can be applied only once at any given match (expressed
by special NACs), (3) each rule only uses elements created in this layer or
earlier, and (4) each rule creates an element with a creation layer higher than
the current one. These conditions are summarised in Table 4.2.

Table 4.2. Conditions for deletion and non-deletion layers

Deletion layer conditions Non-deletion layer conditions
If k is a deletion layer, for every rule r
with rl(r) = k:

1. Rule r deletes at least one element.
2. 0 ≤ cl(t) ≤ dl(t) ≤ n for all types t

occurring in r.
3. If rule r deletes an element of type

t, then dl(t) ≤ rl(r).
4. If rule r creates an element of type

t, then cl(t) > rl(r).

If k is a non-deletion layer, for every rule
r : L→ R with rl(r) = k:

1. Rule r is non-deleting.
2. At least one NAC of r can be em-

bedded into R, extending the em-
bedding of L into R.

3. For all x ∈ L, cl(type(x)) ≤ rl(r).
4. If rule r creates an element of type

t, then cl(t) > rl(r).

Every layered graph transformation system is terminating, as illustrated
the following example.

Example 4.11 (termination of layered graph transformation systems). To il-
lustrate the termination criteria for layered graph transformation systems, we
consider an extension of our running example of a VoIP network to graph-
based stochastic simulation of networks to assess quality of service attributes.
While this example concentrates on a translation of network graphs into a
representation suitable for stochastic simulation, the simulation itself is pre-
sented in Chapter 9. In the following, we present this translation in more
detail and show that it is terminating.

Figure 4.14 shows the underlying type graph. It consists of three parts: (1)
the type graph of the original model (as presented in Fig. 2.25) on the left, (2)
the type graph of the simulation model on the right, and (3) a trace type called
Node2NN in the middle connected to types in the other two type graphs. The
new type graph on the right distinguishes network nodes SN as super nodes
and SC as client nodes, both are generalised by node type NN. For simulation
purposes, SN nodes are equipped with information about bandwidth and SC
nodes specify if they are hidden behind a firewall. The LK and OV node types
model links between client and super nodes and links among super nodes,
respectively, equipped with average delays. Note that attributed edges are
avoided here, since they are less common than attributed vertices. To keep the
network information, LK and OV vertices are used to represent links, equipped
with edges to point to their incident network modes. Users are not needed in
order to simulate network traffic.

In the following, four rules are shown for translating a VoIP network into
a network simulation model. All the translation rules are non-deleting, i.e.
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TG

Super
clients: Integer

Node
User

name: String

Client*link1

*usr1

*
ovl

*
SN

bandwidth: Integer

NN

SC
firewall: Boolean

LK
avg-delay: Integer

OV
avg-delay: Integer

*
src
1

*
tgt

1

*
end
2

Node2NN*orig1 * res 1

Fig. 4.14. Type graph for translating VoIP networks into network simulation models

they build up the new network model while keeping the original one. To keep
track of the mapping of original to new network nodes, their relations are
represented by vertices of type Node2NN and adjacent edges.

Rule translateSuper in Fig. 4.15 translates a Super node into a correspon-
ding SN node with a random bandwidth. The operation randInt provides a
normal distribution with mean m and variance v. Client nodes are transla-
ted very similarly using rule translateClient in Fig. 4.16 but, instead of setting
the bandwidth, they are randomly hidden behind a firewall. In both cases,
correspondences are kept by Node2NN vertices and adjacent edges.

When clients are added, the super node’s spare bandwidth is reduced based
on the clients’ connectivity as in rule translateLink in Fig. 4.17. When serving
a client behind a firewall, the super node has to route the audio traffic. Ot-
herwise, it only establishes and monitors the connection, while audio packets
are transferred directly between partners in a VoIP call.

translateSuper(m: Integer, v: Integer)

:Super :Node2NN
:SN

bandwidth := randInt(m,v)orig res

:Node2NN

orig

Fig. 4.15. Translation of Super nodes

translateClient()

:Client :Node2NN
:SC

firewall := randBool()orig res

:Node2NN

orig

Fig. 4.16. Translation of Client nodes
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The overlay information between Super nodes is translated with rule
translateOvl in Fig. 4.18. As the average delay needs to be set for each overlay
edge, an OV vertex is introduced for each ovl edge.

translateLink(dm: Integer, dv: Integer)

:Client

:Super

link

:Node2NN :SC
firewall = f

orig res

:Node2NN

:SN
bandwidth = b
bandwith := if f then b -300 else b - 30
{if f then b - 300 > 0 else b - 30 > 0}

orig res

:LK
avg-delay := randInt(dm,dv)src

tgt:LK
src

Fig. 4.17. Translation of link edges

translateOvl(dm: Integer, dv: Integer)
:Super

:Super

ovl

:Node2NN :SNorig res

:Node2NN :SNorig res

:OV
avg-delay := randInt(dm,dv)

end

end
:OV

end

end

Fig. 4.18. Translation of ovl edges

Table 4.3. Rule layers

Rule Layer
translateSuper 0
translateClient 0
translateLink 1
translateOvl 1

These four rules are applied in two layers as shown in Table 4.3. Links from
clients to super nodes and overlay edges are translated after node translation.
This means that rules translateSuper and translateClient are assigned to layer 0
and rules translateLink and translateOvl are assigned to layer 1. Given any VoIP
network, we can show that all translations by the layered graph transforma-
tion system terminate. We can show this property by applying the termination
criterion for non-deletion rules presented above. Table 4.4 shows a possible as-
signment of creation and deletion layers for all of the main types that occur
in this example. All types of the original type graph get creation layer 0, since
the translation assumes the existence of the original VoIP network. Network
nodes and trace nodes are translated next and get creation layer 1 and con-
necting edges are created thereafter, i.e. they get creation layer 2. Given an
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additional set of deletion rules, it would be possible to delete the original net-
work and trace structure, such that only the new network simulation model
remains as input for the simulation. Such deletion rules would be assigned
layer 2. Finally, any rules deleting elements of the network simulation model
would be assigned layer 3. Deletion layers for types are assigned accordingly.
The NACs ensure that each rule can only be applied once at a given match.
Each application creates a structure that contains at least one of the rule’s
NACs. This means that the original match, extended to the derived graph,
violates this NAC. Having all these assignments at hand, it is straightforward
to check the termination conditions for layered transformation systems stated
above. ut

Table 4.4. Creation and deletion layers for types

Original type cl(t) dl(t) Trace type cl(t) dl(t) Result type cl(t) dl(t)
Super 0 2 Node2NN 1 2 SN 1 3
Client 0 2 SC 1 3
User 0 2 LK 2 3

OV 2 3

These termination conditions are helpful for showing the termination of
transformation systems that translate graphs from one language to another.
Layers can be interpreted as several passes in the model translation process
and, of course, each pass has to terminate before the next ones can start.
Note that, given a set of rules without layers, these termination criteria can
also give hints about how to control rule applications by layers such that
termination is ensured. In this case, the given graph transformation system
can be improved (to a layered one) such that termination can be shown (using
layer conditions).

4.4 Graph Constraints as Invariants

A type graph defines a set of instance graphs. But, even with subtyping and
multiplicities, type graphs are not expressive enough to define more com-
plex constraints on the structure of their instance graphs, especially when
conditions on attributes are required. In Section 2.4.1, we introduced forbid-
den patterns to specify certain subsets of graphs. Here we will consider, in
addition, positive and conditional constraints. Given a graph transformation
system, graph constraints can be interpreted in a variety of ways. For example,
constraints can be used as invariants to be satisfied by all reachable graphs.
They can specify target graph classes of relational transformations or be part
of more general temporal conditions. In this section we will focus on the view
of constraints as invariants, as well as the problem of enforcing or verifying
them for a given graph transformation system.



112 4 Analysis and Improvement of Graph Transformation Systems

4.4.1 Positive and Conditional Constraints

When we require the presence of certain patterns in a graph G, there are
two simple cases. A positive constraint is a pattern Q that we would like to
occur somewhere in graph G. A conditional constraint generalises this idea
by demanding that Q occurs relative to all occurrences of a smaller pattern
P ⊆ Q. The occurrence of a pattern is expressed by the existence of an
injective mapping o : Q→ G. In the conditional case, this means that for each
occurrence n : P → G there should be an occurrence o : Q→ G extending n.
Since o is injective, it allows the counting of elements in the following sense.
Imagine two elements x, y in pattern Q that are of the same type and have
similar connections. Due to its injectivity, o is not allowed to map x and y to
the same element in G. Hence, a subgraph o(Q) ⊆ G has to be found with
two distinct elements matching x and y.

Logically, we can write ∃Q or ∀P.∃Q, respectively. Positive constraints
can be seen as a special case of conditional ones, with a trivial (i.e. empty)
pattern graph P , i.e. ∀∅∃Q, with the empty pattern ∅ playing the role of True
because it occurs in every graph. We also allow logical combinations such
as ∀P.(∃Q1 ∨ · · · ∨ ∃Qn), where one premise is followed by a disjunction of
conclusions. With the empty disjunction equivalent to False this allows us to
write ∀P.False, which is equivalent to the forbidden pattern ¬∃P .

More sophisticated constraints can be obtained by allowing propositional
logic over multiple levels of conditionality, as in nested graph constraints [121].
However, as shown in the following example, negative and conditional con-
straints are sufficient to capture multiplicity constraints over edges.

Example 4.12 (multiplicity as graph constraint). The type graph in Fig. 1.16
shows multiplicities for several edge types, in particular for usr edges. The
upper bound at the Node end tells us that no two Nodes are connected to the
same User, while the lower bound at the User end requires that each Node is
connected to at least one User. In addition, the upper bound at the User end
demands that no two Users have the same Node.

While upper bounds represent negative existential constraints forbidding
larger numbers of objects and links than allowed for, lower bounds represent
conditional constraints. In Figs. 4.19 and 4.20, the first two multiplicities
described above are formulated as graph constraints, called No2Nodes and
AtLeast1User. ut

No2Nodes
u:User

n1:Node

usr

n2:Node usr

¬∃

Fig. 4.19. Negative constraint: “No two Nodes are connected to the same User”
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P
n:Node∀

Q

n:Node

u:User

usr∃

Fig. 4.20. Conditional constraint: “Each Node is connected to at least one User”

4.4.2 Enforcing Graph Invariants by Application Conditions

Graph constraints serving as invariants have to be satisfied globally, i.e. by all
reachable graphs. In contrast, application conditions are local to rules, both
in a temporal and in a spatial sense. As left or right application conditions
of rules, they have to be checked before or after a rule is applied. They are
therefore stated in the context of a rule’s left- or right-hand side (see also
Section 2.4.2) and checked at the time and place of its application.

An invariant is a graph constraint that has to be satisfied by all reachable
graphs. To ensure that this is the case, we have to check that it is satisfied in
the start graph and that every transformation step starting in a valid graph
produces a valid graph as a result. Application conditions can help to ensure
the second part of this requirement by disallowing transformations leading
from valid to invalid graphs.

Here we describe a construction that takes a set of graph constraints and
a graph transformation system as inputs and generates the application con-
ditions required, so that each rule that can cause constraint violations is aug-
mented by additional application conditions. The result is an improved graph
transformation system whose transition relation coincides with the original
one except for transitions between valid and invalid states. Moreover, given
an invalid state, the augmented rule is only applicable if the resulting state
is valid. Hence, transformations using augmented rules are not only validity-
preserving but validity-guaranteeing.

Given a rule and a constraint, the construction works in two steps. The
constraint is first localised to a right application condition of the rule. Then,
this condition is transferred to an equivalent left application condition. We
explain this construction in two parts: first, a negative constraint is handled
and second, we consider the construction for a conditional constraint. Both
cases are explained with the constraints presented in Example 4.12.

Example 4.13 (enforcing forbidden patterns). We reconsider the constraint
No2Nodes in Fig. 4.19 asserting that no two Nodes are connected to the same
User. To enforce constraint No2Nodes, we only have to check the rules that add
usr edges, i.e. newSuper, newClient, promoteClient, endSuper and endClient. The
check of rule newClient is shown below.

We start by analysing all situations where the application of the rule could
violate the constraint. This is done by overlapping the constraint with the
right-hand side of the rule in all ways, as shown for one example overlap in
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newClient(u) = c
L

u:User: Node usr
R
u:User c: Clientusr

No2Nodes
u:User

n1:Node

usr

n2:Node usr

newClient(u) = c
G

u:User
name = uidn2:Node usr

H

u:User

n1,c:Client

usr

n2:Node usr

m
m∗

q

Fig. 4.21. Verifying constraint “No two Nodes are connected to the same User”

Fig. 4.21. The graph H in the bottom right is a gluing of R and No2Nodes
merging the corresponding Users, Node n1 with Client c, and the usr edges in
between. Other overlaps can be obtained by combinations of not merging the
usr edges, only merging either Users or Nodes, using node n2 instead of n1,
or taking the disjoint union of R and No2Nodes. Altogether, eight different
overlaps are possible.

We rule out situations unobtainable by an application of rule newClient.
For example, merging only n1 with c results in a graph where the Client node
just created by the rule is already linked to another User. Since this link could
neither have existed before the Client node was created nor have been created
by the rule itself, this is not a situation where the application of the rule
could have violated the constraint. Formally, the dangling condition for the
inverse rule of newClient is not satisfied by this embedding of R into H and
the corresponding left application condition is False.

The remaining overlaps constitute right application conditions. In parti-
cular, the gluing H in Fig. 4.21 represents the negative condition preventing
an embedding of R where u is the target of a second usr edge.

To derive the equivalent left application condition, the inverse of rule
newClient is applied, removing the Client node. The embedding of L into graph
G shows the resulting application condition stating that the rule should only
be applied if there is not already a Node connected to the User.

Other overlaps of R and No2Nodes either yield analogous results, fail to
satisfy the dangling condition for the inverse rule or are subsumed by the con-
dition depicted. The only other case of interest arises from the disjoint union
of R and No2Nodes, which results in a precondition checking that No2Nodes
does not occur before applying the rule. However, by assumption, this is not
the case, so this condition is redundant. This means that the application con-
dition depicted in Fig. 4.21 guarantees that this rule will never transform a
graph satisfying No2Nodes into one that does not. ut

Unlike a negative constraint, a conditional ∀P.∃Q consists of two patterns,
a premise P and a conclusion Q. This means that the construction described
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above has to be executed twice. The localisation of ∀P.∃Q to a right applica-
tion condition requires the construction of all possible overlaps of the premise
and the rule’s right-hand side R. Each overlap (R∪P )i is then extended by the
conclusion yielding (R∪Q)i. Inside these graphs, elements of R and the con-
clusion may be glued, yielding Tij . The resulting right application condition
is ∧

i

(
∀(R ∪ P )i

∨
ij

∃ Tij

)
.

To translate this condition into a left application condition, we try to
apply the inverse rule to each (R ∪ P )i. If this is not possible (i.e. because
the dangling condition is not satisfied), this part of the condition is dropped.
For all premises (R ∪ P )i that can be translated, we try to translate the
relevant conclusions Tij . Again, if the dangling condition is not fulfilled, the
corresponding conclusion becomes False. All remaining ones yield conclusions
Slk of the left application condition with translated premise (L ∪ P )l. The
result is the left application condition∧

l

(
∀(L ∪ P )l

∨
lk

∃ Slk

)
.

We illustrate this construction with the integration of the conditional con-
straint AtLeast1User into rule newClient.

newClient(u) = c
L

u:User: Node usr
R
u:User c: Clientusr

P
n:Node

newClient(u) = c
L ∪ P
u:User

R ∪ P
u:User n,c:Clientusr

Q

n:Node

u:User

usr

R ∪Q
u:User n,c:Clientusr

u1:User

usr

newClient(u) = c
S
u:User

T

u,u1:User n,c:Clientusr

iP jP

jQ

g

c
p

q

f

Fig. 4.22. Verifying constraint “Each Node is connected to at least one User”
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Example 4.14 (enforcing conditional constraints). The conditional constraint
AtLeast1User states that at least one User is linked to each Node. Figure 4.22
augments rule newClient with a left application condition enforcing this con-
straint. Similarly to the negative case, we start by investigating gluings of
the right-hand side R and premise P and check for each gluing, if it could
be the result of applying the rule. Each such gluing yields the premise of a
right application condition, which can be transformed into the premise of a
left application condition by applying the reverse of newClient. In this case
there are only two possible gluings of P and R. Figure 4.22 shows the case in
which Node n is glued to Client c. The alternative is their disjoint union. Both
are possible result graphs R∪P . The application of the inverse rule yields the
premise of the corresponding precondition.

In the second phase, the conclusion is derived analogously. Pattern Q is
glued to R ∪ P over the shared graph P , leading to R ∪ Q. This gives us a
minimal gluing with one Client connected to two Users, which is merged further
to produce all possible graphs T into which R ∪ Q and Q can be embedded
while preserving the shared premise P . (Note that u:User is renamed to u1.)
Those embeddings into T that can be transformed by the inverse rule result
in conclusions of the precondition. In our case the only T derivable by the
rule is the one depicted in Fig. 4.22. Being isomorphic to the premise, this
yields a precondition that is trivially satisfied: a tautology, which is omitted.
In [229, 239] a number of simplification rules for application conditions are
introduced capable of recognising and removing such redundant cases.

If R ∪ P is the disjoint union, L ∪ P contains an additional Node. The
resulting left application condition states that any existing Node has to be
connected to a User, which again is a consequence of the assumption that
the constraint is valid in the given state. This means that the conditional
constraint does not produce any additional application conditions for this
rule. This reflects the fact that rule newClient can not create a violation of the
constraint that every Node must be connected to a User. ut

4.4.3 Verifying Invariants

Rather than using an invariant to construct a new application condition for a
given rule, the construction presented may also be used to verify the desired
property in the sense that a given rule always transforms legal graphs into legal
ones. This is the case if the constructed application conditions can be shown to
be redundant. To find redundancies, we simplify the resulting left application
conditions by as much as possible. (This is also useful for producing simpler
application conditions when enforcing graph constraints.)

A left application condition ac entails a condition ac′ if, for every match
m : L → G that satisfies ac, it also satisfies ac′. In this case, if ac is an
existing application condition of a rule and ac′ is derived from an invariant,
this means that ac′ is redundant and does not have to be added to the rule.
Vice versa, we can remove ac if the derived application condition ac′ is stricter.
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An application condition can be simplified by refactoring its logical structure
or finding that one graph pattern entails another one.

Example 4.15 (simplifying application conditions). Assume an application con-
dition forbidding two nodes connected to a matched user. This application
condition is entailed by the left application condition in Fig. 4.21 where one
node connected to the matched user is forbidden. An application of the rule
in Fig. 4.21 checks that there is no node connected to the user, which implies
that there are no two nodes connected. ut

A calculus that allows one to compute the entailment relation, inclu-
ding the syntactic simplification of conditions and constraints, was provided
in [229]. Additional simplification rules can be found in [239]. However, en-
tailment is undecidable in general.

4.5 Model Checking

While graph constraints can be used as invariants, to be satisfied by any
reachable graph, temporal constraints can specify which constraints are to
hold on which graphs in a graph transition system. A liveness property, for
example, may require a graph condition to become true on an execution path
after finitely many transformation steps. Temporal properties can be verified
using model checking.

The term “model checking” is used here in accordance with standard text-
books such as [32], as verifying a transition system (which describes all the
potential ways in which a system can behave) against a formula in a temporal
logic (which expresses some desirable property of that system). In the context
of this book, such transition systems are graph transition systems, generated
by graph transformation systems as described in Section 3.2.3.

4.5.1 System Properties

A temporal logic can express properties of states across a (graph) transition sy-
stem, including the evolution of such properties over time or from one state to
the next along a transition. Typical example properties that can be expressed
are:
• Every message that is sent by some node in a network will eventually

(certainly) arrive at the target node.
• An error message will be generated if and only if an error has actually

occurred.
• Eventually the system will arrive at a stable state.
There are different families of temporal logic, dominant among which are
linear temporal logic (LTL) and computation tree logic (CTL). These differ
somewhat in the types of properties that can be expressed and in how concisely
they can be stated:
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• LTL expresses properties of paths (hence, is referred to as linear). Model
checking an LTL formula involves making sure that the property expressed
therein holds along every path allowed by the transition system.

• CTL expresses properties of trees; in particular, within a CTL property one
can express that there may be a choice in the way the system can continue,
due to the presence of multiple outgoing transitions of the current state. In
other words, the choice of which path to follow is not made up front but
during the evaluation of the formula, and there is no implicit universal
quantification over all paths. This makes CTL less concise than LTL: a
property that can be expressed in either logic will typically be much larger
when expressed in CTL than it is in LTL.
The conciseness of LTL comes at a price: the time it takes to check an LTL

formula, expressed as a function of the size of that formula, is exponential,
whereas for CTL it is linear. Throughout the rest of this section, we stick to
CTL over graph constraints. Hence, we may use temporal operators to formu-
late system properties for our graph transition systems. The most important
operators are the following ones:
• A c (All): c holds on all paths starting from the current state graph.
• E c (Exists): There is at least one path starting from the current state

graph where c holds.
• G c (Globally): c holds on the entire subsequent path.
• F c (Finally): c holds eventually (in some state on the subsequent path).
We illustrate the use of these operators in the following example.

Example 4.16 (temporal properties). Considering the rules for joining the net-
work and making connections shown in Fig. 2.7, the following properties are
interesting for the resulting graph transformation system:
• Liveness property: All Users are connected to some Node eventually.
• Safety properties:

– There is no Super node with more than max clients.
– There is no Super node with clients = 0 and linked to some Client.
– There is a Client link for all Super nodes with clients > 0.

All these properties are formulated as temporal formulas over graph con-
straints as presented in Fig. 4.23. ut

:Super
clients = 0

:ClientlinkAG ¬∃ :Super
clients > 0 ∃ :Super

clients > 0
:ClientlinkAG ∀

:Super
clients > maxAG ¬∃u:User :Nodeusr∃u:UserAF ∀

Fig. 4.23. Liveness and safety properties
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It should be noted that the word temporal is potentially confusing in this
context. Neither LTL nor CTL offer an ability to reason about time, in the
sense of being able to specify the duration of computations. Rather, the term
refers to the qualitative passing of time, i.e. the ability to express that one
thing happens after another.

4.5.2 Model Checking Procedure

To check if a graph-based temporal formula holds for a graph transformation
system, we explore its transition system for counterexamples. Starting from
the start graph of the graph transformation system, all reachable graphs are
investigated. Model checking of a graph transformation system is an automa-
ted technique which takes the transformation system and a system property as
input and returns the first counterexample found [248]. The counterexample
contains a path from the start graph to a state graph where the given property
does not hold. If no counterexample is found, the system property holds for
the complete transition system. During this process, it is important to know
whether a state graph with equal structure and attribute values has been in-
vestigated before. Ideally, such isomorphic graphs are discovered and checked
only once. Note that a transition system induced by a graph transformation
system can be infinite. In that case, the non-existence of counterexamples
cannot be inferred.

Example 4.17 (model checking). In the following, we consider a concrete set-
ting for model checking. Take the graph transformation system given by graph
IN in Fig. 2.6 as the start graph and consider the rules: newSuper, newClient
and endClient depicted in Figs. 2.7 and 2.8. The resulting graph transition
system contains 23 state graphs and 77 transitions. If we set max = 2 in the
upper right constraint in Fig. 4.23, both upper constraints are satisfied in this
transition system. If we were to choose max = 1, the upper right constraint
in Fig. 4.23 would not be fulfilled. This would be true already for the start
graph. ut

4.5.3 Potentials and Limits

Model checking of graph transformation systems allows to verify a range of
system properties expressed in a temporal logic over graph patterns. All trans-
formation concepts introduced so far, including different forms of rules (Chap-
ter 2) and control structures (Chapter 3), may be used to specify the system
under consideration. This means that rules may create and delete graph ele-
ments without limitation, and hence graphs may evolve dynamically. This last
feature is a great advantage of model checking graph transformation systems
over other model-checking techniques that often provide solutions only for
more rigid structures.
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A well-known problem of model-checking techniques is state space explo-
sion. Even small systems can result in large or even infinite transition systems.
Since all reachable states have to be investigated during model checking, the
state space has to be reduced to make the problem more manageable. A num-
ber of techniques have been developed to achieve this, including partial order
reduction and abstraction.

Partial order reduction exploits the commutativity of concurrently exe-
cuted transitions, where several paths between the same pair of states may
be reduced to one representative. For parallel independent transformations,
for example, the local confluence theorem, a classical result of graph trans-
formation theory, may be exploited. In abstraction techniques, a (potentially
infinite) set of similar states is considered equivalent and therefore represen-
ted as a single state. Abstraction of graphs offers the opportunity to reduce
a potentially infinite graph transition system to a finite one, making model
checking feasible [247]. Node and edge identities can often be neglected in con-
straint checking, and thus we consider graphs up to isomorphism. If we want
to refer to certain graph elements in temporal formulas, however, we have to
trace the identity of at least those elements, for example by passing them as
parameter values between rule applications. By exploiting graph isomorphism
as a notion of equivalence, the state space of a graph transformation system
can be considerably reduced [174]. Since graph transformation is defined up
to isomorphism, this abstraction is sure to preserve the behaviour of the sy-
stem. Graphs can be abstracted further by generalising similar structures into
a shape graph [247] at the cost of over-approximating the behaviour of the
system.

Stochastic model checking is used to verify properties of stochastic graph
transformation systems as presented in Chapter 9 to investigate dynamic soft-
ware architectures. Associating with each rule a probability distribution over
time, the continuous-time Markov chains can be used that are obtained by
adding rates of exponential distribution to the transitions of the resulting
LTS.

4.6 Graph Parsing

Graph parsing is a technique for solving the membership problem for graph
languages. One can phrase parsing as the search problem of finding a deriva-
tion from the start graph to the given graph using the rules of a grammar. One
simple approach is to reduce the given graph to the start graph by applying
the grammar rules in reverse. The resulting derivation records the syntactic
structure of the given input graph. In this case, graph parsing is understood
as graph reduction: given an input graph and a stop graph, parsing rules are
applied to the input graph such that the stop graph is reached after finitely
many steps. To solve the membership problem, the stop graph is the start of
a given graph grammar and the parsing rules are the inverse grammar rules.
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A naive graph-parsing algorithm is to apply the parsing rules in an arbi-
trary order for as long as possible. If the parsing process runs into a deadlock
without reaching the stop graph, backtracking may be required to check if
there is any other rule application sequence that reaches the stop graph. If
all possible sequences can be explored and do not reach the stop graph, the
input graph does not fulfil the reachability property. In general, there may
be sequences that do not terminate, such that it cannot be decided if they
are reducible to the start graph. Hence, the reachability problem is just semi-
decidable. The membership problem can be reduced to the reachability pro-
blem, as an input graph is member of a graph language if it can be reached
from the start graph.

Example 4.18 (parsing the network structure). Let us start with the graph
grammar GG defined in Example 3.1, consisting of rules newSuper, newClient
and linkClient (as shown in Fig. 2.7) as well as rules newUser and connectToSuper.
To check if a given network graph specifies a valid peer-to-peer architecture,
we invert these rules, yielding the rules deleteSuper, deleteClient, unlinkClient,
deleteUser and unconnectSuper in Fig. 4.24. Note that all rules which delete
nodes have the dangling condition as an additional application condition to
remove the network systematically. Note further that the parameters are just
informative; they do not restrict possible matches of parsing rules.

deleteClient(c:Client) [DC]
u:User c: Clientusr: Node usr

unlinkClient(c:Client)

c:Client
s:Super

clients = n
clients := n - 1

link

deleteUser(u:User) [DC]
u:User

name := uname

unconnectSuper(s:Super)
u:User

name = uid
s: Super

: User

usr

usr

deleteSuper(s:Super) [DC]
u:User

name = uid
:Super

:Node

usr
s:Super

clients := 0

ovlusr

Fig. 4.24. Rules for parsing network structures

In parsing, for example, graph H in Fig. 2.9, we can apply these par-
sing rules in the following order: unlinkClient(c2); deleteClient(c2); deleteSuper(s2);
unconnectSuper(s1); deleteUser(u1); deleteUser(u2); deleteUser(u3). The result is a
graph with just one Super node which is equal to the start graph of GG.
The following sequence of rule applications is also possible: unlinkClient(c2);
deleteClient(c2); unconnectSuper(s2); unconnectSuper(s1). This yields the interme-
diate graph shown in Fig. 4.25, which can be further reduced by deleting
all users, but two interconnected Super nodes remain. Hence, this rule appli-
cation sequence does not yield the stop graph. The sequence deleteSuper(s2);
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unconnectSuper(s1); unlinkClient(c2); deleteClient(c2), however, is also possible and
can be continued towards the stop graph. Hence, rule deleteSuper should have a
higher priority than unconnectSuper. Both delete a usr edge, but rule deleteSuper
deletes even more structure. It is a common parsing strategy to prioritise rules
that recognise larger structures over rules addressing smaller ones. ut

H ′

s1: Super
clients = 1

u3: User
name = “Gabi”

u2: User
name = “Reiko”

u1: User
name = “Peter”

s2:Super
clients = 0

ovl

Fig. 4.25. Intermediate graph of a parsing process requiring backtracking

In Chapter 10, as a further example for graph parsing, we discuss the parsing
of activity diagrams.

In the literature, sufficient criteria have been developed to avoid or reduce
backtracking during the parsing process. In [47], the application of conflicting
rules is delayed for as long as possible. This means that conflict-free rules
should be applied first to reduce the input graph before applying conflicting
rules. Following this strategy, the need for backtracking is reduced.

In [243], layered graph grammars help to identify several stages of parsing.
In classical grammars, just two layers of recognition are identified, distinguis-
hing terminal from non-terminal labels. Layered graph grammars allow a more
fine-grained decomposition of label alphabets into several layers. After spa-
tial relationships between visual elements are identified first in a bottom-up
manner, they are mapped to higher-level syntax elements. The abstract syn-
tax graph is recognised thereafter in a top-down phase. Each layer contains
specific rules which are applied in that layer as often as possible. If no rule of
the current layer is applicable any more, the parsing process continues with
the next layer.

4.7 Comparison of Analysis Techniques

After having presented a range of analysis techniques, we conclude this chap-
ter by discussing their commonalities and differences. We compare the techni-
ques in terms of their inputs and outputs as well as the nature of the analysis
performed. Each technique requires (a part of) a graph transformation sy-
stem and a system property as inputs. Outputs may be analysis results of
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varying granularity and, potentially, repair actions. Moreover, we characterise
the kinds of analysis provided. We refer to established work here, mostly with
tool support. More advanced approaches, purely theoretical or prototypically
implemented, are discussed in Section 4.8.

We refer to the analysis techniques as follows: conflict and dependency
analysis (CDA), termination analysis (TA), constraint verification and enfor-
cement (CV&E), model checking (MC), and graph parsing (GP).

4.7.1 Graph Transformation Systems

The two techniques that are state-based, requiring the start graph of the
system, are model checking and graph parsing. In model checking, the under-
lying transition system has to be explored from its initial state. Graph parsing
requires the entire graph grammar to check if the given graph can be reduced
to the start graph.

All techniques work with the rules of a transformation system, some im-
posing restrictions on their features. While, in theory, model checking and
parsing allow all transformation concepts, other techniques may support only
simpler rules, for example without control or application conditions. Specific
tools may impose additional limitations beyond what is possible in principle.
For example, tool support for CDA supports simple application conditions
only, while multipatterns are generally not allowed. Moreover, tools for CDA
and CV&E often do not take into account control structures.

4.7.2 System Properties

We distinguish two kinds of system properties. General properties such as
“Does the system terminate?”and “Does the system have conflicts or depen-
dencies?” can be formulated independently of any concrete graph transforma-
tion system. A system is terminating if there are no infinite transformation
sequences, i.e. each sequence ends in a graph where no further rules are ap-
plicable. A system does not have conflicts if all rule pairs are parallel inde-
pendent, so they can be applied in any order. It does not have dependencies
if all rule pairs are sequentially independent.

Specific properties are formulated for a given graph transformation system.
Usually they require the type graph to specify state or temporal properties
for the underlying transition system. Invariants can be considered as a special
kind of temporal property: they have to be satisfied in all states, for all paths.
The membership problem, whether a graph G is a member of a graph language
(can be reached from the start graph), is another special case.

4.7.3 Analysis Outcomes

The results of analysis can be more or less verbose. All techniques provide
binary answers, i.e. whether or not the desired property holds in the given
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system, but some techniques can give additional information about their re-
sult. CDA can show (increasingly more) information about concrete conflict
or dependency situations. TA can provide reasons for, or examples of, non-
termination, CV&E can return the rules not fulfilling the specified constraints,
and MC can show a counterexample, i.e. a transition path not satisfying a
constraint.

As discussed before, analysis techniques can also propose repair and im-
provement actions. TA can produce a layering for a set of rules such that the
resulting layered graph transformation system would terminate. CV&E provi-
des the user with additional application conditions for rules that would ensure
that these rules can only be applied when they do not violate the invariants.

4.7.4 Kinds of Analysis

We distinguish between static and dynamic analysis techniques. Static ana-
lysis is performed on a graph transformation system, while dynamic analysis
investigates the underlying graph transition system. Static analyses have the
advantage of taking a concise description of the specified system as input but
are often restricted in terms of the types of system supported. Dynamic ana-
lyses usually allow a large variety of system specifications and properties but
suffer from state space explosion.

Furthermore, we can distinguish push-button techniques from interactive
ones. While MC and GP are classical push-button techniques, the other ana-
lyses are more complex: CDA provides several granularity levels which present
more and more detail of conflicts and dependencies to the user. TA and CV&E
return their analysis results and support the adaptation of the original graph
transformation system such that it satisfies the required property.

4.8 Summary and Further Reading

In this chapter, we have presented the most popular analysis and improvement
techniques for graph transformation systems. Each of these techniques is for-
mally defined, and most of them have been implemented and applied in a
number of scenarios. We point to relevant literature for each of these techni-
ques.

4.8.1 Conflicting and Dependent Transformations

The consideration of conflicts and dependencies between graph transforma-
tions is central in the gluing approach to graph transformation. The local
Church-Rosser theorem about independence of graph transformation steps
was first shown for coloured graphs in [81] in the DPO approach. It was la-
ter generalized to high-level replacement systems in [90] and instantiated to
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typed attributed graphs with node type inheritance in [140]. Critical pairs of
(term) graph rules were extensively investigated by Plump in [231]. In [235],
Plump introduced a sufficient criterion for critical pairs to be confluent. Tool
support for critical pair analysis is available in AGG [98], Henshin [139] and
Verigraph [29].

Recently, a multigranular analysis for conflicts and dependencies has been
developed [186, 182, 30]. Several granularity levels were identified to reason
about conflicts and dependencies. At the binary level, the user is just inte-
rested in knowing if a pair of rules has a conflict or dependency. At the coarse
granularity level, information about the roots of conflicts and dependencies
is given to the user, while the fine granularity level contains all necessary in-
formation to understand the conflicts and dependencies in detail. Obviously,
critical pairs belong to the fine level. A user study showed that users often like
to start at a higher-level of granularity in order to avoid being overwhelmed
by information.

Conflicts and dependencies have been analysed for different use cases
throughout the software engineering domain. Lambers et al. [186] have given
an overview of these cases by their application domains, which are analysis
and design of software systems, model-driven engineering techniques, testing,
and optimisation of rule-based computations. We will go into more detail for
the first three domains in Chapters 5, 7 and 11.

4.8.2 Termination

Since termination of graph transformation systems is undecidable in general,
several sufficient but not necessary termination criteria have been developed.
Besides the ones presented in this chapter, there was early work on termination
orders for graph transformation systems by Aßmann [26]. A generalisation of
termination orders to high-level replacement systems was presented in [46]. In
[284], termination of graph transformation systems was shown based on Petri
nets. A condition which ensures that the union of two terminating hypergraph
transformation systems is terminating is presented was [236].

4.8.3 Graph Constraints as Invariants

In this chapter, we have focused on basic constraints and have presented how
they can be enforced or verified for a given graph transformation system. The
more general class of nested graph constraints [244, 121] is equivalent to first-
order logic on graphs. For example, a forbidden pattern N yields the nested
graph constraint ¬∃∅ → N , for short, ¬∃N . A conditional constraint can be
represented by ∀∅ → P,∃P → Q, for short, ∀P,∃Q. While ¬∃N does not show
any nesting, i.e. it has depth 0, conditional constraints have nesting depth 1.
Constraints with depth > 1 are also possible.

In Chapter 1, the properties of whole-part relationships were discussed.
One of the main properties of all whole-part relationships is acyclicity. To
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express this property by nested graph constraints, an infinite constraint is
needed of the form ¬∃C1 ∧ ¬∃C2 ∧ . . . with Ck denoting a cycle of length k
(see also [85]).

A generalisation of the work in [138] to high-level replacement systems
was presented in [83]. While constraints were first restricted to conditional
ones, they were extended to nested graph constraints in [244]. Habel and
Pennemann showed in [121] that nested constraints are expressively equivalent
to first-order graph formulas. The correctness of graph transformation systems
with respect to nested graph constraints in [121, 88] directly extends the
original work in [138] and its generalisation in [83].

The translation of constraints in Object Constraint Language (OCL) to
graph constraints was developed by Radtke et al. [239]. This is useful in
model-driven engineering, for example to generate models or editing rules.
The translation of OCL to graph constraints and their integration into rules
as application conditions are supported by tooling [222] based on Henshin.

4.8.4 Model Checking

In software model checking, program states are represented by arrays or lists,
as in JavaPathFinder [131]. Graphs, however, provide a more natural way to
represent object structures. The theoretical basis for verifying graph transfor-
mation systems by model checking was laid in [134] and subsequent papers.
The authors of these papers proposed that graphs can be interpreted as sta-
tes and rule applications as transitions in a graph transition system (see also
Section 3.2.3). This basic idea is used in all model-checking approaches to
graph transformation systems. In [248], the two main approaches were compa-
red: either traditional model-checking techniques are exploited by translating
graph transformation systems to an input format of an off-the-shelf model
checker [282] such as SPIN [148], or model checking is directly implemen-
ted on graph transition systems [246]. Both approaches have advantages and
disadvantages, as stated in [248]:

• If the graphical structure is relatively stable and has limited symmetry,
the translation to an off-the-shelf model checker seems superior. This is
due to very efficient state space representations and mature technology.

• If the structures are inherently dynamic (since, in particular, nodes and
edges are created at run time) and/or show a lot of symmetries, the direct
implementation of model checking on the resulting graph transition system
is a promising alternative. In particular, symmetry reduction in object
structures requires isomorphism abstraction [155].

Model checking has been implemented in several graph-transformation-
based tools, such as GROOVE [107], CheckVML [254] and Henshin [22]. While
GROOVE implements model checking directly on graph transition systems,
CheckVML and Henshin use external model-checking tools such as SPIN [148],
CADP [55] and mCRL2 [203, 174].
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4.8.5 Graph Parsing

Graph grammars are used to specify visual languages [11]. To parse visual
representations, two kinds of graph parsers have been suggested. Context-
free hypergraph grammars [213] use hypergraphs to specify the underlying
abstract syntax of visual representations. Parsing rules are context-free in the
sense that the left-hand side contains only a non-terminal hyperedge to be
replaced by a hypergraph on the right-hand side. Context nodes are used to
capture the connections of the non-terminal hyperedge, and connect the new
hypergraph. Instead, Rekers and Schürr [243] used a graph-parsing approach
based on typed attributed graphs as the abstract syntax. The form of rules is
unrestricted, but their application has to follow a layering condition to ensure
that the parsing process is terminating.

In contrast to text, there is typically no definite beginning or end point in a
graph. The order in which graph elements are parsed depends on the applica-
bility of rules and additional control structures. In general, therefore, parsing
may require search and backtracking. This means that the time complexity of
a graph parser can easily be exponential. Practical graph-parsing approaches
are defined to avoid or at least, minimise backtracking. For example, Drewes
et al. [75] study predictive shift-reduce parsing that yields efficient parsers for
a subclass of hyperedge replacement grammar. They show that parsers of this
kind run in linear space and time.

4.8.6 Further Analysis Techniques

There are more analysis techniques for graph transformation systems than we
are able to discuss in detail, but we would like to mention the following.

Baldan et al. [33] analysed a graph transformation system by approxima-
ting its behaviour by a Petri net. Given a graph transformation system with
somewhat restricted rules and some graph property, the tool Augur [171] over-
approximates a system by a Petri graph (a Petri net with edges between its
places) and translates a graph property into a property on Petri net markings.
The analysis is performed directly on the Petri net structure underlying the
Petri graph and checks all reachable graphs. If the property does not hold,
a counterexample for the net is generated and translated back to the graph
transformation system.

Non-functional requirements can be analysed with stochastic graph trans-
formation systems [137]. These extend graph transformation by continuous
time, associating a (random, exponentially distributed) application delay with
each rule. From this extension, continuous-time Markov chains, a stochastic
extension of transition systems, can be derived and used to analyse timed
probabilistic properties. This is described in detail in Chapter 9.
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Graph Transformation in Software Engineering
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Software engineering1 is “the application of a systematic, disciplined, quanti-
fiable approach to the development, operation, and maintenance of software”.
This comprises the definition of engineering processes consisting of a set of
interrelated activities which process artefacts. Engineering processes are not
confined to forward engineering, i.e. the development of new software, but
include reverse and re-engineering processes as they occur in continuous soft-
ware evolution [249]. Agile processes have been developed to acknowledge and
embrace change as an essential ingredient of software development.

Each activity of such engineering processes creates or modifies some arte-
facts; they are initiated and performed by stakeholders in different roles. For
example, software requirements elicitation may contain an activity for finding
inconsistencies in functional specifications (as presented in Chapter 5) while
model-based testing (as presented in Chapter 7) may include activities for the
specification of a test model and the generation of test cases.

In software engineering, a range of languages are used to represent soft-
ware artefacts. There are, of course, programming languages such as Java
and C, but also modelling languages such as UML and languages to exchange
data such as XML and to present textual information such as HTML. Besi-
des general purpose modelling languages, there are domain-specific modelling
languages such as the Business Process Model Notation [1], the Web Services
Description Language (Chapter 6), languages for feature models such as Fea-
tureIDE [5], and languages for Model-Driven Engineering such as the Eclipse
Modelling Framework [92]. All these languages have to be clearly defined in
terms of their syntax and semantics. Moreover, they need comprehensive and
user-friendly tool environments providing not only editors but also interpre-
ters, compilers, analysers, and version management tools. Chapters 10–12 are
dedicated to the engineering of domain-specific modelling languages.

According to the SWEBOK [262] “software engineering methods provide
an organised and systematic approach to developing software for a target
computer.” It is important for software engineers to use appropriate methods
for the chosen development process as “this choice can have a dramatic effect
on the success of the software project”. If software engineers want to specify,
analyse, or verify software artefacts, formal methods are needed. In addition,
software engineers may use other kinds of methods, such as model-based, agile
or prototyping methods. This book promotes graphs and graph transformation
as software engineering methods. Combining formal foundations, an intuitive,
visual nature and an executable semantics, they may be used both as a formal
modelling methods in their own right, but also to provide semantics to object-
oriented or component-based analysis and design. In the following, we discuss
in more detail how graphs and graph transformation can be used in software
engineering.

1 as defined in the Systems and Software engineering — vocabulary of the
ISO/IEC/ IEEE std 24765:2010(E), 2010
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Many activities in software engineering processes rely on models to sup-
port the specification, analysis, documentation and communication of different
aspects of a software system and its development. When models play a rele-
vant role throughout the engineering process, we refer to model-based software
engineering (MBSE). In this second part of the book, we will present a num-
ber of engineering processes using graph transformation systems as models,
i.e. using graph transformation-based software engineering (GTBSE) methods.
Here, graph transformation itself is used as a modelling language.

To support the use of models in software engineering, various software
modelling languages have been developed in academia and industry. The term
language engineering describes the definition of languages in terms of their
syntax and semantics as well as the concepts needed to design comprehensive
tool environments. We will show how graph transformation can be used to
support language definition leading to a range of methods, theoretical results
and tools for graph transformation-based language engineering (GTBLE).

Graphs and diagrams provide a direct, yet implementation-independent
representation of many of the complex structures we encounter in software
systems, such as objects and references, software architectures, or network
topologies. Their ability to model concepts and ideas in a direct and intuitive
way makes them uniquely suited to support a variety of activities typical of
software engineering, from the very early stages where we use blobs and arrows
to sketch the architecture or process flow of an application, to, for example,
detailed class and interaction models we use to generate code or test cases.

Unsurprisingly therefore, graphs are also the foundation of many of the
diagrammatic languages we use in model-based development. Apart from
general-purpose languages, such as UML, there are many customised domain-
specific modelling languages (DSMLs) that provide both dedicated notational
elements and semantic interpretations specific to their domain.

In both uses of graphs, directly as representations of software artefacts
or indirectly as a foundation of diagrammatic languages, we encounter many
situations where graphs have to be generated, queried, changed or translated.
For example, object structures, software architectures and network topologies
may evolve as a result of a system’s normal operation or in order to adapt to
changes in their environment. Diagrams have to be parsed, edited, checked for
consistency, and mapped to, generated from or synchronised with implemen-
tations, etc. All these manipulations are examples of graph transformations,
yet a comprehensive account of where and how to apply graph transforma-
tion in software engineering is still missing. This part is dedicated to providing
such an overview of applications of graph transformation in this area.

Chapters 5–9 are concerned with examples of graph transformation-based-
software engineering (GTBSE) using graph transformation systems as models.
This includes the specification and analysis of functional and non-functional
requirements, software architecture and service design, model-based testing,
and program understanding. In all these activities we benefit from the formal
foundations of graph transformations, their visual and intuitive nature, and
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their executable semantics. The result is a method that fits seamlessly into
mainstream modelling languages such as UML while supporting sophisticated
verification and analysis techniques. In particular:

• Chapter 5 is concerned with detecting inconsistencies between functional
requirements following a use-case-driven approach. When requirements
analysts specify use cases with activity diagrams, their actions may be
refined by pre- and postconditions formulated as graph transformation ru-
les, leading to an extension of the modelling language used. Since these
refined activity diagrams have a formal semantics as graph transforma-
tion systems, we can use analysis techniques such as those introduced in
Chapter 4 to detect inconsistencies between requirements.

• Chapter 6 presents a contract-oriented approach to service specification
and matching. Service developers can specify graph transformation rules as
constituents of visual contracts to describe service semantics and to match
services offered to service requests. Again, the use of graph transformation
is twofold: rules are used as interface specifications for services and their
formal foundation allows a precise definition of service matching.

• Chapter 7 uses visual contracts to specify a test model. Dependency co-
verage is presented as a new form of test selection criterion to generate
test cases. Test developers can also use the model to generate test oracles.
Visual contracts are used here both to specify interfaces of operations and
to analyse their interdependencies and derive relevant test cases.

• Chapter 8 presents a dynamic approach to reverse engineering visual con-
tracts from Java programs by tracing the execution of Java operations.
The resulting contracts give accurate descriptions of the observed object
structure transformations. This reverse-engineering approach can be used
to generate the visual contracts used by the methods in earlier chapters.

• Chapter 9 introduces stochastic graph transformations by modelling a sim-
ple dynamic peer-to-peer architecture. Analysts can specify non-functional
requirements, such as availability or response time, as stochastic pro-
perties and verify them using model checking or simulation. Stochastic
graph transformation systems are used as a formal method to analyse
non-functional requirements of software systems.

Chapters 10–12 are concerned with graph transformation-based language
engineering problems, in particular with the definition of domain-specific mo-
delling languages in terms of their syntax and semantics and the transforma-
tion and analysis of their models. In particular:

• Chapter 10 considers an advanced definition of domain-specific modelling
languages based on meta models and graph grammars. Focusing on the
conceptual design of language tools, language engineers can use graph
transformation rules to specify complex editor operations and interpreters
for models.
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• Chapter 11 presents the use of graph transformation to specify and analyse
model improvements. It also shows how graph transformation can help
modellers to understand complex model changes.

• Chapter 12 considers interrelated models and modelling languages. Here
language engineers use graph transformation to specify model translations
and model synchronisations, and to analyse their properties.

Each chapter introduces the field by referring to relevant literature and
stating the challenges faced by existing solutions. Then, graph-transformation-
based approaches are introduced and illustrated using running examples, be-
fore the chapter concludes with a summary and discussion of interesting ex-
tensions, tools, applications and further references.



5

Detecting Inconsistent Requirements in a
Use-Case-Driven Approach

Requirements engineering is the process of gathering, structuring, analysing
and validating requirements for a software system. The result is a require-
ments specification that provides the basis for design decisions. Therefore,
the detection of requirement errors later in the development process can cause
expensive iterations through all phases, emphasising the need for early vali-
dation and analysis. In the context of continuous software engineering, where
software is developed, released and evaluated in very short cycles [45] and re-
quirements change frequently as well, this analysis needs to be done repeatedly
and quickly. Automation is therefore key.

Following the “separation of concerns” principle, a complex problem is
decomposed according to different aspects or views to investigate them in
more depth. While most engineers seem to be well trained in this decompo-
sition task, the re-integration of partial models is more challenging (see e.g.
[126, 101]). A well-known instance of this problem is the integration of re-
quirements expressing different user views or aspects of a system. In the case
of inconsistencies, both kinds of integration may lead to mis-developments,
which are often detected much later in the process. In fact, since the work-
flow of eliciting requirements is followed by analysing them, and therefore
decomposing them with respect to aspects or views, unresolved consistency
problems tend to persist until the next big synthesis step: the design. It is thus
advisable to detect and eliminate (or at least manage [225]) inconsistencies in
the requirements model before progressing further in system development.

In object-oriented software development, UML [280] has become the stan-
dard notation for software models at different stages of the life cycle and
different levels of abstraction, including the requirements specification. The
result of requirements analysis usually includes a domain class diagram and a
use case specification with scenarios, often combined within an activity dia-
gram. This captures the dynamic aspect of the system, when an action should
be performed. The functional aspect, how it should be performed, can be speci-
fied by pre- and postconditions of the actions in activity diagrams. Often these
are just expressed in natural language. In that case the functional description
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is not formally integrated either with the dynamic or the static domain model.
The intended connections between domain classes and activities can be indi-
cated using meaningful names for classes and actions, but any formal checking
of their correct use will remain hard to reliably automate. Even if diagramma-
tically specified, an early consistency check of activity diagrams using object
structures and flow is made difficult by the informal nature of activity spe-
cifications. We consider an activity diagram to be consistent with an object
structure if all flow paths specified in the diagram can be performed based
on the actions’ pre- and postconditions. A more precise specification of each
action may enable a (semi-)automated consistency analysis. In particular, the
following kinds of inconsistency may occur:

• Type inconsistency: Dynamic and functional requirements expressed by
activity diagrams and their actions’ pre- and postconditions may refer to
terms of the problem domain that are not captured in the static domain
model, or that have been renamed or redefined in the static model. As a
consequence, the intended effect of executing an activity diagram may be
unclear or violate constraints of the static model.

• Inconsistency of dynamic and functional aspects: Dynamic requirements
expressed by activity diagrams may be inconsistent with the changes to
the data and object structure specified by the actions’ pre- and postcon-
ditions. In this case, the control flow in the activity diagrams or the pre-
or postconditions may have to be adapted.

• Inconsistency of views: Use cases expressing the requirements of different
stakeholders may overlap in scope. This may be intended if interaction is
required in order to perform a common task, but it may also be a conse-
quence of conflicting interests of different parties in the real world, or of
undocumented dependencies between different use cases. We distinguish
between conflicts, where the execution of one action may prevent the exe-
cution of another, and dependencies, where the execution of one action
may require the prior execution of another.

If a model is suitably formalised, for example using class diagrams for
domain models, activity diagrams for dynamic models and OCL for functional
specifications, type consistency is easy to check statically. In our case, where
the pre- and postconditions are expressed by graph transformation rules, this
amounts to verifying that rules are correctly typed over the class diagram seen
as a type graph. The remaining two consistency problems will be addressed
as follows. First, we augment activity diagrams by specifying their actions
in more detail. As suggested in [130], each action is modelled by pre- and
postconditions specified by a pair of interrelated object diagrams, i.e. by a
rule. This generalises the modelling of object flows to include object references.

Graph transformation systems provide a semantics for object-oriented mo-
dels consisting of class models, use case and activity diagrams and their action
specifications in terms of pre- and postconditions. In particular, activity dia-
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grams specify control flow over rule applications, analogously to transforma-
tion units in Chapter 3.

This interpretation of object-oriented models allows (semi-)automated in-
consistency analysis of aspects and views by formalising the intuitive notions
of conflict and dependency of activity diagrams. Compared with logic-based
approaches, which target critical systems where the cost of highly specialised
experts for creating and verifying formal specifications is justified, we aim
at models as they occur in mainstream business applications. Models in this
domain are used by both domain experts and developers. Our aim is not to
formally verify consistency, but to detect potential consistency problems. We
run a plausibility check, which allows us to analyse an integrated behaviour
model for favourable and critical signs of consistency [99]. Favourable signs
may be, for example, situations where rules are triggered by other rules that
precede them in the control flow. Critical signs are situations (1) where a rule
application causes a conflict with another rule that should be applied after the
first along the control flow, or (2) where a rule application depends causally
on the effects of a second rule application scheduled by the control flow to
occur after the first.

We will demonstrate with an example how the results of our analysis can
be used to annotate use cases and activity diagrams to trigger a review of the
requirements model to eliminate any undesired effects.

Before reading this chapter it is useful to be aware of the material in
Chapters 1 and 2, in particular on typed attributed graph transformation
systems. We will also make reference to control structures covered in Chapter 3
and use conflict and dependency analysis as introduced in Section 4.2 are used
to compute favourable and critical signs for consistency.

5.1 Integrated Modelling of Static and Dynamic
Requirements

Starting with an example of a lightweight, semi-formal requirements specifi-
cation, first we demonstrate its shortcomings. Then, by enhancing the speci-
fication, we make it amenable to automated consistency analysis.

Object-oriented requirements specifications comprise both static require-
ments concerning the object structures of the problem domain and dynamic
requirements concerning the intended behaviour. These can be expressed by
UML class and use case diagrams [280]. Use case diagrams are employed to
identify system boundaries. The main ingredients are actors and use cases,
representing major functional units of the system under development. A use
case may be refined by an activity diagram specifying its intended workflow.
Thereby, the overall workflow is structured into clusters of activities.

Example 5.1 (structural requirements). To illustrate our approach, we choose
a small, simple part of a shop and consider the domain model first, as it may
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be found in the glossary of a requirements specification. The shop has racks
carrying goods and provides shopping carts for its customers. Customers hold
a certain amount of cash, as do the cash boxes of the shop. A bill lists the
goods collected by a customer, together with the total of their prices.

We start with a global view of the shop and its customers, which is in-
tended to identify conflicts between different actors. Later, we will see what
information has to be provided in what view, depending on the use cases that
the customers and clerks perform.

All structural requirements are modelled in the class diagram in Fig. 5.1.
Since we are at the level of requirements, classes do not have method sig-
natures associated with them, i.e. the class diagram specifies only classes,
associations, attributes and constraints [150]. An object diagram, as shown in
Fig. 5.2, represents an object structure as an instance of this class diagram
modelling a snapshot of a shop, i.e. a concrete state of the shop. ut
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Fig. 5.1. A simple class model for a shop
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Fig. 5.2. Object diagram modelling a snapshot of a very small shop
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ShopShop

Customer

buy goods

sell goods Clerk

Fig. 5.3. Kernel use cases for selling goods

Example 5.2 (use case and activity diagrams). Dynamic requirements, here
business processes, can be identified within use case diagrams, with each use
case refined by an activity diagram. In this example, a shop offers goods to
be bought by customers while clerks are waiting to sell goods. This excerpt
of system behaviour is modelled by the use case diagram in Fig. 5.3. The
essential information of the use cases buy goods and sell goods is given in the
following:

• Use case buy goods: A customer buys a number of goods in a shop.
– Actor: Customer
– Precondition: A customer entity exists.
– Procedure: The customer first takes a cart and selects all desired goods

by taking them from the rack and placing them into the cart. After the
customer has selected these goods, they are entered onto the bill and
are paid for by the customer. Then the goods belong to the customer
and no longer to the shop. The customer carries them home in a bag.

– Postcondition: The customer owns all the goods they have bought.

• Use case sell goods: A clerk sells the goods in a shop.
– Actor: Clerk
– Precondition: A customer entity exists.
– Procedure: The clerk creates a bill for the customer and bills every item

the customer has in their cart. In doing so, the clerk takes one item
after another out of the cart and lists it on the bill. The total sum
of the bill is increased by the price of the item. Thereafter, the clerk
settles the bill and adds the total sum to the cash box of the shop.

– Postcondition: The customer owns all the goods they have bought.

To specify these use cases more precisely, we formulate them with activity
diagrams. These diagrams model the intended control flow of the activities.
The refinement of use case buy goods is given by the left activity diagram in
Fig. 5.4, while use case sell goods is refined by the right diagram. Activity
diagrams consist of actions connected by transitions modelling the flow of
control. To buy goods, a customer first takes a cart, provided that they do
not have one already, then selects goods repeatedly before paying the bill. To
sell goods, the clerk creates a bill, takes the goods out of the cart and settles
the bill. ut
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take cart

select good

pay bill

create bill

bill good

settle bill

Fig. 5.4. Activity diagrams for buying goods (left) and selling goods (right)

So far, the only link between static and dynamic requirements is given
by the names of the use cases and activities, such as buy goods or take cart,
which make reference to the classes in the class diagram. A requirements
specification of this kind cannot be used to find inconsistencies between the
functional behaviours of use cases. To do so we need to clarify how activities
change object structures. This information can be deduced, at least partly,
from the use case descriptions given above.

An integration of static and dynamic requirements can be achieved by
modelling the pre- and postconditions of activities. Some approaches, such
as xUML [207], provide means for formal action specification using a high-
level action notation. However, such formal notations require familiarity with
programming concepts. For discussing requirements with domain experts or
users, a diagrammatic action specification is more suitable. Catalysis [76], for
example, advocates the use of collaborations for this purpose. The idea goes
back to the Fusion method [60], where actions are specified by snapshots of
the object configuration before and after the operation. Building on the latter
approach, we propose a rule-based refinement of activities specifying a form
of collaboration. In the following example, the compact notation of rules (as
presented in Chapter 2) is adopted. This activity refinement summarises all
checks and basic actions that can be identified on the level of requirements
analysis.

Example 5.3 (activities modelled by dynamic object diagrams). For each acti-
vity in the diagrams in Fig. 5.4, a rule is given in Figs. 5.5 and 5.6. Activity
bill good, for example, is specified in Fig. 5.6. It is applicable if the current ob-
ject configuration comprises (instances of) Customer, Cart, Bill and Good such
that the Customer is associated with a Bill and a Cart containing a Good. As
a result of the application, the Good is taken from the Cart and added to the
Bill. Also, the total amount of the Bill is increased by the value of the Good.

In order to make our point, we have included two inconsistencies which will
be detected by formal analysis later. The first is between pay bill and settle bill.
Both activities include the transfer of ownership of the goods, as described
by the redirection of their links from the Shop to the Customer. This repre-
sents an overlap of responsibilities which requires further negotiation. Second,
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Customer and Clerk seem to come from different continents: use case buy goods
uses European standards, where customers have to collect their shopping by
themselves after paying the bill, whereas use case sell goods acts according to
the American custom, where goods are packed into bags by a clerk while they
are being entered on the bill. ut

take cart(c) = ca
c:Customer ca:Cart

ca2:Cart

has

has

select good(ca,g)
cc:Customer ca:Cart

g:Goodr:Rack

has

carries

is_in

pay bill(b,ba,ca)
c:Customer
cash = y
cash := y - x

ca:Cart

s:Shop

b:Bill
total = x

ba:Bag

G:GoodG:Good

pays

has
has

lists
carries

owns

carries

owns

Fig. 5.5. Three rules forming the activity specification for use case buy goods

create bill(c) = b
c:Customer

s:Shop

b:Bill
total = 0

pays

makes_out

bill good(b,ca,g)
c:Customer ca:Cart

b:Bill
total = y
total := y + x

g:Good
value = x

has

pays carries

lists

settle bill(b,ba,ca)

s:Shop

b:Bill
total = x

cb:CashBox
total = x
total := y + x

ba:Bag

G:GoodG:Good

owns

makes_out

lists
carries

owns

Fig. 5.6. Three rules forming the activity specification for use case sell goods

Refined activity diagrams provide an executable model which can visualise
a system’s behaviour at a high abstraction level. Considering a class model as
a type graph with a set of graph constraints capturing multiplicities, it defines
a set of object diagrams as instance graphs. A refined activity diagram can
be specified by a transformation unit (see Section 3.3.3), where control flow is
covered by constructs such as sequential composition, alap and if−then−else.
This means that the static, functional and dynamic aspects of a model can
be specified as a typed graph transformation system with control.
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A use case represents a view of the overall model corresponding to the
requirements of a particular actor (or a group of actors with the same role).
A view of a graph transformation system representing the complete model is
defined by a subgraph of the type graph (modelling the relevant fragment of
the class diagram) and a subset of the rules acting on that restricted set of
types [96].

Example 5.4 (views on the model). In our example, the view corresponding to
the use case buy goods comprises the rules take cart, select good and pay bill. The
relevant fragment of the class diagram excludes only the CashBox class and its
association to the Shop. The use case sell goods consists of the rules create bill,
bill good and settle bill. The corresponding class diagram excludes only the cash
attribute of class Customer.

A use case in isolation may not constitute a complete behaviour specifi-
cation, because it represents an incomplete view of the system’s functionality
from the perspective of a specific actor. Thus, interaction is required between
the system’s use cases. Executing the activity bill good of the clerk, for ex-
ample, should depend on previously executing the activity select good of the
customer. ut

One important integration problem is to fix interactions between use cases
due to incomplete developer views. Moreover, there may be conflicts between
use cases resulting from different opinions of the stakeholders about the inten-
ded behaviour or the scope of their responsibility. The next section is devoted
to the analysis of such conflicts and dependencies. Before arriving there, we
summarise how graph transformation is used to specify system requirements.

Note 5.1: Specifying activities on object structures. Object struc-
tures can be considered as a specific form of graph while type graphs
support all the main features of class models. Graph transformation rules
can specify activities on object structures by if–then patterns: if a specific
object pattern exists then a number of change actions are performed. A
set of rules extends the specification of object flow in activity diagrams.

5.2 Analysing Requirement Models

In the following, we investigate inconsistencies that may occur between dyna-
mic requirements, given as use cases refined by activity diagrams, and functio-
nal aspects, given in the form of pre- and postconditions for actions, expressed
in rules. First, we look for conflict and dependencies between functional requi-
rements specified in actions. Then, we compare the conflicts and dependencies
found with the specified control flow in activity diagrams to find favourable
or critical sign for consistency between these two views.
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5.2.1 Conflicts and Dependencies Between Functional
Requirements

To find conflicts or dependencies, we consider activity diagrams and look for
potential conflicts and dependencies between the rules specifying their actions.
If two use cases belong to different viewpoints, this analysis may reveal an
inconsistency between views as well.

We begin our consideration with an example that shows two conflicting
state transitions formulated as graph transformation steps. Both steps start
at the snapshot shown in Fig. 5.2.

Example 5.5 (conflicting state change). An example of a conflicting state
change is shown by the conflicting applications of pay bill and settle bill in
Fig. 5.7: both rule applications delete the owns links between the goods and
the shop. Thus, they overlap in items that are deleted. As a consequence,
each of the two applications disables the other one, i.e. they cannot be part
of the same sequence of rule applications. This is unfortunate, because both
rule applications capture important aspects of the intended overall behaviour.
For example, pay bill updates the cash attribute of the Customer, while settle bill
computes the new amount attribute of the CashBox. We will see below how
these different views of the same process can be integrated. ut

We want not only to test actions on sample snapshots, but also to under-
stand when they may be in conflict or dependency in general, with respect to
all possible snapshots. For this reason, we consider the modelled control flow
and check for potential conflicts and dependencies of participating actions by
applying the conflict and dependency analysis presented in Chapter 4. Note
that we also use rules with multiobjects for which the use of CDA has not been
explained yet. As presented before, a rule containing a multiobject is inter-
preted as a rule schema yielding an infinite number of graph transformation
rules. Obviously, this presents an obstacle to an exhaustive pairwise CDA.
However, since rules resulting from the same scheme differ in the number of
copies of the corresponding multiobject only, it is enough here to consider
the rule instance where the multi-object is represented by one normal object.
(The general case is more difficult; see [273, 44] for more details.) In the follo-
wing, we will see that some of the analysis results are expected, i.e. they are
favourable signs while others are not expected, i.e. they are critical signs.

5.2.2 Conflicts and Dependencies as Critical and Favourable Signs
for Consistency

If an application of rule A may disable an application of rule B, and B should
be applied after A, then this situation may lead to an incomplete functional
behaviour. This is a critical sign, and the requirements engineer may consider
switching the order of the corresponding actions in the activity diagram. On
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start state

c:Customer
cash = 50

b:Bill
total = 40

g1:Good
value = 30

cb:CashBox
amount = 1000

ba:Bag ca:Cart

s:Shop

g2:Good
value = 10

has

pays

carries carries

lists lists

owns owns

owns
makes_out

has

After applying pay bill(b,ba,ca)

c:Customer
cash = 10

b:Bill
total = 40

g1:Good
value = 30

cb:CashBox
amount = 1000

ba:Bag

ca:Cart

s:Shop

g2:Good
value = 10

has pays

carries

carries

lists

lists

owns

owns

owns
makes_out

has

After applying settle bill(b,ba,ca)

c:Customer
cash = 50

b:Bill
total = 40

g1:Good
value = 30

cb:CashBox
amount = 1040

ca:Cart ba:Bag

s:Shop

g2:Good
value = 10

has

pays

carries carries

lists lists

carries carries

owns
makes_out

has

pay bill(b,ba,ca)

settle bill(b,ba,ca)

Fig. 5.7. A conflict situation between actions pay bill and settle bill

the other hand, if, for some application of rule A, no potentially disabling
application of rule B is performed before A, then the application of rule A
cannot be impeded. If the requirements engineer expects this analysis result, it
is a favourable sign. The analysis of rule applications originating from different
use case specifications helps to determine potential dependencies of use cases,
as well as potentially conflicting ones.

Example 5.6 (potential conflicts between use cases buy goods and sell goods).
Considering the use cases buy goods and sell goods, CDA results in two potential
inter-use-case conflicts, as shown in Fig. 5.8. Binary analysis results are shown
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in the figure as follows. A red double arrow between two rule nodes indicates
potential conflicts in both directions. If such an arrow does not exist between
two rule nodes, there is no conflicting situation at all.

An application of rule pay bill may disable an application of bill good, and
vice versa, since both rule applications take goods out of a cart, i.e. delete
links between Good and Cart objects. These potential conflicts cannot be easily
resolved by ordering the rule applications. Therefore, if we want to apply both
rules on the same goods, we have to change at least one of the rules to make
both views consistent.

take cart

select good

pay bill

create bill

bill good

settle bill

Fig. 5.8. Activity diagrams with conflict relations

Moreover, an application of rule pay bill may disable an application of
settle bill, and vice versa, since both rule applications remove goods from the
shop, i.e. delete links between Good and Shop objects. As before, consistency
requires us to adapt at least one them such that they can both act on the same
goods. All potential conflicts found for this example are critical signs, since
they may impede intended rule applications. There are no further potential
conflicts.

The absence of conflicts can also indicate possible errors in a specification,
i.e. can also be a critical sign. Further analysis reveals that the application of
pay bill does not disable select good. So, customers are able to continue shopping
even though they have already paid. If this is regarded as unwanted behaviour,
we can prevent this case by requiring that the cart should be returned when
paying. This behaviour can be expressed by deleting the link between Customer
and Cart in an improved version of rule pay bill. ut

If an application of rule B may depend on an application of rule A and
B is applied after A, then the order of rule applications agrees with their
causal dependencies. This is a favourable sign for the requirements engineer.
If, for some application of rule B, however, no rule A is performed before
B is enabled, this may lead to an incomplete functional behaviour. Hence,
this is a critical sign, and the requirements engineer may decide to add some
triggering rule application or to adapt some previous rule applications such
that the needed trigger is created. As with conflicts, binary CDA results on
dependencies are enough to discover these signs.
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Example 5.7 (potential dependencies between buy goods and sell goods). Fi-
gure 5.9 shows the potential dependencies within and between our two ex-
ample use cases. The dependencies between actions inside each of the use
cases follow the specified control flow, and are favourable signs. They are
depicted by green dashed arrows.

take cart

select good

pay bill

create bill

bill good

settle bill

Fig. 5.9. Activity diagrams with dependency relations. Green arrows show favoura-
ble dependencies, and red ones show critical dependencies (since they are all inter-
view dependencies)

In addition, Fig. 5.9 shows potential inter-use-case dependencies. For ex-
ample, the customer has to take a cart and select goods before the goods
are billed and the bill is settled. Moreover, all goods have to be billed before
the bill is paid. Since no further dependencies have been found, this means
that, for example, a bill may be created even if the customer has not yet se-
lected any goods. Whether this is a mistake depends on the intention of the
requirements engineer: how should the actions of the two use cases be interle-
aved to perform the overall task? All inter-use-case dependencies are critical
signs, since we cannot ensure that the necessary rules have been applied early
enough. To apply rule bill good, for example, rules take cart and select good have
to be applied before as triggers. These dependencies are depicted by red solid
arrows. There is also a dependency in this example running in the opposite
direction, i.e. the use case interdependency is cyclic. ut

In surveying the results of the analysis, the requirements engineer has to
decide which dependencies or conflicts do actually represent errors or inconsis-
tencies in the model. Owing to the semi-formal and incomplete nature of such
analysis models, this decision must be based on the intention of the requi-
rements engineer and cannot be taken mechanically. Nevertheless, the signs
flagged up by the analysis can give valuable hints about changing the model
in the next iteration or documenting the relevant decisions better.

Example 5.8 (resolving conflicts). The conflicts between the use cases buy goods
and sell goods contradict the intuition that both use cases have to be perfor-
med in combination to achieve the desired effect. Having decided that there
should not be conflicts between these two use cases, we have to correct this at
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the level of the actions associated with pay bill and bill good, and with pay bill
and settle bill, respectively. In our case, the conflicts can be resolved by assig-
ning the responsibilities for Cart and Shop to the clerk. Hence, deleting the
links between Cart and Good and between Shop and Good is exclusive to the
operation settle bill of the clerk. The revised rules pay bill2 and settle bill are
shown in Figs. 5.10 and 5.11.

This rule adaptation is just the first step in resolving the conflict. Since
settle bill and pay bill are not in the same control flow, other activities can be
performed in between. If pay bill is applied first, for example, the customer’s
owns edges are created, but the shop’s owns edges are still there. Another
customer may buy the same goods as well, which is obviously an error. To
avoid this situation, we could form the use cases differently. Activities take cart
and select good would form a use case called selecting. Activity pay bill would
form a separate one called pay goods, to be combined with the use case sell good
into a larger case paying. ut

pay bill2(b,ba)
c:Customer
cash = y
cash := y - x

b:Bill
total = x

ba:Bag G:GoodG:Good

pays

has lists

carries

owns

Fig. 5.10. Revised version of rule pay bill

settle bill2(b)

s:Shop

b:Bill
total = x

cb:CashBox
total = x
total := y + x

G:Good

c:Cart

G:Good

owns

makes_out

lists

owns

carries

Fig. 5.11. Revised version of rule settle bill

We summarise the favourable and critical signs based on potential conflicts
and dependencies of rule applications in Table 5.1. Potential conflicts and
dependencies are considered in the context of the control flow in activity
diagrams.

If rule A disables rule B and B is to be applied after A, this potential
conflict is definitely a critical sign. If B should be applied after A, and A does
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Table 5.1. Potential conflicts and dependencies in control flows: critical or favou-
rable signs?

With control flow Against control flow No control flow
Conflict Critical sign — Critical sign
No conflict Favourable sign — Favourable sign
Dependency Favourable sign Critical sign Critical sign
No dependency Critical sign Favourable sign Favourable sign

not cause a conflict on B, this is a favourable sign. If B occurs before A but
not after it, the fact that A may cause a conflict on B does not have any effect.
If A and B are not in a specific control flow, they are meant to be independent
of each other. Therefore, a potential conflict between them is a critical sign;
no potential conflict is a favourable sign.

If the application of rule B follows that of rule A in a control flow, a
potential dependency of applying B on applying A fits the specified flow, i.e.
it is a favourable sign. Conversely, if the control flow specifies that rule A
should be applied after rule B or if both rule applications are not in a direct
control flow, a potential dependency of B on A turns into a critical sign,
since it may add a further restriction on applicability. If two rule applications
cannot have any dependency, this can only be a critical sign if the first rule
destroys a setting that is needed by the second one.

Up to now, we have interpreted binary CDA results only. In order to un-
derstand better the results of an analysis, the requirements engineer might be
interested in the objects and links responsible for conflicts and dependencies.
For this purpose, a combined presentation of control flow and data dependen-
cies is helpful.

Example 5.9 (dependent objects and links). Consider, for example, the dia-
gram in Fig. 5.12, where the dependencies between actions are depicted to-
gether with the essential objects and links where these dependencies manifest
themselves. Note that not all objects and links are considered here and that
link names have been omitted for better readability. A red, bent arrow from
an activity such as take cart to a link such as the one between Customer and
Cart represents the fact that the link is created by the action. Symmetrically,
an arrow from a link or object to an activity indicates that the item is used,
i.e. read or even deleted. Thus, the customer first has to take a cart, producing
the corresponding link, before goods may be selected or billed, where the link
is required, etc. Note that a diagram such as in Fig. 5.12 can be computed
from a coarse granular analysis of conflicts and dependencies (see Section 4.2).
ut

We started this chapter with a consideration of three different forms of
inconsistency that may occur in requirements specifications. Throughout this
chapter we have investigated inconsistencies between dynamic and functional
system aspects, finding that potential conflicts and dependencies between rules



5.3 Summary and Further Reading 149

take cart

select good

pay bill

create bill

bill good

settle bill

c:Customer

ca:Cart

g:Good

b:Bill

Fig. 5.12. Activity diagrams with dependent objects and links

may not be aligned with workflows described by activity diagrams. If two
rules refine actions in two different workflows occurring in different views,
this technique may also reveal inconsistencies between views.

Inconsistencies involving static requirements, i.e. with the types and struc-
tural invariants of the problem domain, can be discovered by type checking
and are usually easier to correct. Inconsistencies between types and activity
diagrams can be corrected by renaming types or activities. Functional requi-
rements in the form of rules may show various forms of inconsistency with
their class models, such as pre- and postcondition patterns that cannot be
mapped to the defined class structure. This kind of inconsistency can be chec-
ked by establishing the existence of a typing morphism. If there is no graph
morphism from a pre- or postcondition to the type graph defined by the class
model, there is a type inconsistency. Furthermore, a rule application may yield
a result state that does not fulfil all invariants specified in the class model.
Such an inconsistency can be resolved by integrating the failed invariant into
the rule as an additional application condition (see Section 4.4).

Inconsistency between views is not limited to the case where their re-
spective workflows are inconsistent. The problem may also extend to their
static requirements, for example, if the same type is specified by two different
names or the same name is used to denote semantically different concepts.
Such inconsistencies can be resolved, for example, by introducing a reference
model to relate several views [96].

5.3 Summary and Further Reading

This chapter has shown that rules can be integrated into object-oriented re-
quirement specifications based on UML. While workflows are described by
activity diagrams, their actions can be refined by rules describing pre- and
postconditions of actions. Since rules have to conform to the given class di-
agram, they build a bridge between static and dynamic requirements. This
approach to integrated modelling of static and dynamic system concerns ba-
sed on graph transformation, including their consistency analysis, was first
presented in [130] and then elaborated on in several further publications.
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The integrated modelling of static and dynamic system requirements al-
lows a (semi-)automated consistency analysis of aspects and views, looking
for favourable and critical signs with respect to control flow and functional
behaviour [99]. In a similar line of research, sufficient criteria for applicabi-
lity and non-applicability of rule sequences were presented [185]. Restricting
the control for rule applications to sequencing only, precise sufficient criteria
were presented to check in advance whether a rule sequence can be comple-
tely applied. These criteria were further developed in [153] to make them
useful for consistent behaviour modelling with refined activity diagrams. In
[154], refined activity diagrams were extended to allow the definition of object
flow between rule applications. Rules may have input and output parameters
that are objects or data; object flow is easily realised by passing parameters
between actions and thus, between rule applications.

The concept of refined activity diagrams with related consistency analysis
has been used not only for integrated requirements specifications but also in
the context of aspect modelling. An analysis of aspect-oriented model weaving
based on graph transformation was presented in [205, 206].



6

Service Specification and Matching

Service-oriented systems are developed by composing reusable services, often
distributed and provided by external organisations. In addition, the fami-
liar approach to building applications from reusable components is extended
into runtime, raising the need to find and bind to required services automa-
tically. At the business level, this means ensuring agreement on a range of
functional and non-functional characteristics of services to enable coopera-
tion between organisations. Owing to the dynamic nature of the composition,
this agreement must be automated. At the technical level, standardisation
and the specification of service interfaces ensure interoperability and support
automation.

Web services are the most common realisation of the service-oriented para-
digm. They provide programmatic access to application components distribu-
ted over the Web using ubiquitous W3C standards based on HTTP and XML,
thus ensuring technical interoperability at the transport and messaging level.
When the need arises, application software should be able to find and bind
to services at runtime. Web services follow the service-oriented architecture
(SOA) style, which defines the roles of provider, requester and registry. Pro-
viders advertise their services by publishing descriptions on a registry. When
requesters need a particular kind of service, they query the registry and re-
ceive a list of suitable candidates. After selecting the preferred service, the
requester is able to use it directly by contacting the provider.

To specify a service, an interface definition language such as the XML-
based Web Services Description Language (WSDL) [290] is used. WSDL spe-
cifies the operation offered by a Web service at the technical level, defining the
syntax of admissible service invocations and the protocols to be used to access
them, but not their business semantics nor their effect. In traditional software
development, a human developer may infer the semantics of an operation from
a signature such as orderBook(isbn:String). Automatic service discovery requires
a precise, machine-readable description.

Semantic service descriptions addressing this need are based on ontologies
that standardise the terms used in such specifications. Ontologies are repre-
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sented in Semantic Web languages such as RDF or OWL, based on which one
can describe semantics as input–output behaviour [201], workflow [169] or the
logical specification of pre- and postconditions. Non-functional properties are
defined in terms of quality of service (QoS) properties. In addition, services
may be classified by, for example, location, purpose and provider to be or-
ganised into categories in registries that support the automatic discovery of
services.

Besides the centralised, repository-based model, alternative discovery pro-
tocols include a publish-subscribe model, where requesters can register their
interest in being notified of the availability of a suitable service, and network-
based methods, which use gossiping protocols to query the network about the
services provided. However, since the matching of services based on semantic
descriptions is largely independent of the discovery protocol, we will stick to
one model which is the repository-based one.

Combined with the technical standardisation of service access, such des-
criptions provide the means to find and integrate services on a global scale.
This means that standard software functions such as authentication, logging
and payment but also real-world services such as shipment, hotel and trans-
port reservations can be obtained from suitable service providers and combi-
ned to provide added value to clients. However, the dynamic and distributed
nature of service composition poses a range of challenges in engineering such
systems (see e.g. [72]):

• Some common concerns in distributed applications, such as security and
fault tolerance, also apply to service-oriented computing. At the techno-
logy level these are addressed by dedicated protocols for secure service inte-
raction, reliable messaging and transaction handling, such as WS-Security
and WS-BPEL. However, solutions have to be decided on and specified at
the business level before being implemented using these standards.

• The development of services is distributed in space, time and authority:
individual components are developed by teams working at different times
in different organisations. This impacts on software engineering activities
at all levels, from capturing requirements via design and documentation
through to testing. It also means that service interactions implement con-
tracts between business partners rather than purely technical processes.

• Changes to requirements at any individual requester or provider may lead
to evolution at both specification and implementation level, with the need
to maintain consistency between requester and provider views.

Model-based software engineering can address these challenges using mo-
dels at different levels for different purposes. At an informal level, models
act as means of communication between distributed development teams. At
a semi-formal level, they serve as documentation (communication over time)
of designs or implementations. Formal models can be used to verify protocols
and other architecture choices for security and reliability properties, or they
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can serve as a basis for automated code generation, making it easier to create
and evolve applications that are correct by construction.

In this chapter, we describe the use of graph transformation as a model-
based approach to service engineering, in particular for the specification and
matching of services. Corresponding techniques for testing and reverse engi-
neering are considered in Chapters 7 and 8, respectively.

Graph transformation rules are used to describe service semantics through
visual contracts describing the preconditions and effects of an operation in
terms of both its input and output, and the service’s internal object structure.
Owing to their use of graph transformation rules, visual contracts support, in
particular, the specification of complex structural transformations, combining
a semiformal visual representation with a rigorous formal semantics. Based on
such a detailed yet technology-independent specification we can state precise
conditions for matching required by provided services, both one to one and
incrementally.

Visual contracts differ from contracts embedded in Java code using the
JML or contracts in Eiffel, as well as from model-level contracts formulated
in OCL. They are visual, using UML notation to model complex patterns and
transformations intuitively and concisely, and abstract, providing a specifica-
tion of object transformations at a high level of granularity to aid readability
and scalability. Moreover, they are deep, capturing the transformation of in-
ternal object structures besides input/output behaviour. And last but not
least, they are executable, yielding a graph transition system that can be used
for simulating and analysing system behaviour.

Employing well-known visual notations based on UML [280], this approach
integrates naturally with the model-based development of service-oriented sy-
stems on the requester as well as on the provider side. The principle of design-
by-contract [212] is used as a basis for service specification and matching. In
component-based development it supports reliable composition by specifying
interfaces formally and validating interactions against such specifications. A
core concept of design-by-contract is the formulation of pre- and postconditi-
ons for each operation. However, these conditions are usually expressed in a lo-
gical notation at programming-language level, making them hard to integrate
into diagrammatic model-based development methods. Graph transformation
rules provide a visual notation for pre- and postconditions that integrates ea-
sily into UML while providing a formal and operational semantics suitable
for both verification and execution. They also allow a precise formulation of
service matching along with semantic guarantees for the resulting composition
of services.

Starting from an overview of the development of service-oriented systems
in Section 6.1, we show how services and service requirements can be formu-
lated using visual contracts in Section 6.2. In Section 6.3, we focus on the
matching of service descriptions and requirements and discuss how service
matching is interpreted at runtime. Finally, to address the case where one
service does not fully satisfy a service requirement, we consider incremental
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service compositions in Section 6.4. Since visual contracts are specified by
typed attributed graph transformation rules, it is worthwhile to be aware of
the concepts introduced in Chapters 1 and 2 before reading this one.

6.1 Developing Service-Oriented Software

The most common implementations of the SOA paradigm are Web services.
More recent developments include mash-ups, software-as-a-service and cloud
computing [25]. In each case we distinguish two types of developmental acti-
vity: (1) on the requester side, the development of client applications that
use required services, and (2) on the provider side, the development of the
services themselves. Accordingly, in the following we distinguish application
developers from service developers. In a typical service-oriented architecture
as depicted in Fig. 6.1, service developers publish their implemented services
to a registry to attract service users. Application developers use a discovery
service or registry to find services with specific properties or satisfying a par-
ticular specification. To find the right service, an application developer sends
their requirements to the registry, which tries to find a matching service and,
if successful, sends the information to the requester, allowing them to contact
the provider.

Fig. 6.1. Service-oriented architecture

This process of discovery works best if the matching of service requests to
provided services yields precise and comprehensive results. A purely syntacti-
cal description of services does not allow semantic matching. Natural-language
descriptions of their semantics are understandable by developers, but too am-
biguous for precise automated matching. We are proposing an approach that
is both understandable to humans and precise enough for automation. The
concept of design-by-contract views services as software components with con-
tractually specified interfaces. A provided service promises certain results as
a postcondition, assuming that a precondition is met. A requester who wants
to use this service has to ensure that this precondition holds before they use
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the service. Then, after invoking the service, the requester can assume that
the postcondition holds as promised. We will present visual contracts based
on graph transformation as an approach that is both easy to understand and
precise, and thus represents a powerful realisation of design-by-contract at the
model level.

To allow a semantic description of services and service requests, visual
contracts are based on a common ontology, i.e. a shared conceptual data model
agreed between application and service developers. To enable matching, both
the service description and the requirement have to use the same concepts.

The shared ontology is used only for matching, i.e. the application and the
service implementation may use different internal data models. In this case,
the mapping between the internal and shared data models has to be docu-
mented, for example to allow the tracing of requirements to implementations.

6.2 Service Specification

According to our requirements, service matching must provide the flexibility of
discovering the widest range of services satisfying the requester’s requirements
while ensuring interoperability of the application with all of these services.
The first problem is the interrelation of the conceptual models behind the
client application and the services. This is achieved using shared ontologies as
standardised domain models.

Order

DeliveryAddress Media
price:int

Book Video

Bill
total:int

Payment

BankAccount CreditCard

1 listedOn 1

1

payedBy
1

1
deliverTo
1

1
contains

*

Fig. 6.2. Ontology for selling books and videos

At the conceptual level, ontologies can be represented by entity-relationship
models or class diagrams with additional constraints. We will use visual con-
tracts based on class diagrams to specify services. This combination translates
naturally into a typed graph transformation system consisting of a set of rules
over a fixed type graph.

Example 6.1 (service specification). Figure 6.2 shows a small sample ontology
for media sales depicted as a class diagram. It defines the concept of an Order
referring to one Bill, one DeliveryAddress, and any number of Books and Videos.
A generalisation relationship indicates that CreditCard and BankAccount are
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specialisations of Payment, while Book and Video specialise Media. Classes Media
and Bill both have attributes, and we can think of a constraint stating that,
for all orders o, the total of a bill is greater than or equal to the sum of all
prices of the media in its order.

If a vendor wants to express that their service is able to handle orders for
books payable by credit card, they can formulate this as the visual contract
expressed by the rule at the top left of Fig. 6.3. This rule says that the Web
service needs data on the media to be ordered, the delivery address of the
buyer and their credit card. It creates a new order for the item, and a bill
for this customer reflecting the price of the item ordered in its total attribute.
The link between the CreditCard and Bill objects denotes that the bill is paid
by credit card after the execution of the service. Note that subsequent steps in
selling the item, such as delivery and actual payment, are not covered by this
ontology fragment. Further operations, such as adding items to an existing
order or cancelling an order, can be specified in a similar way.

The precondition of a service is expressed by the left-hand side of a rule,
while the service’s effect comprises all creations and deletions formulated in
the rule. Visual contracts are linked to the signatures of the operations offe-

prov::order(mp, dap, cpp) = op

mp:Media
price = p

dap:DeliveryAddress

ccp:CreditCard

op:Order
bip:Bill
total = p

contains deliverTo

listedOn

payedBy

prov::cancel(op)

mp:Media dap:DeliveryAddress

ccp:CreditCard

op:Order bip:Bill

contains deliverTo

listedOn

payedBy

req1::orderBook(br1, dar1, ccr1) = or1

br1:Book dar1:DeliveryAddress

ccr1:CreditCard

or1:Order

contains deliverTo

req1::cancelOrder(or1)

br1:Book dar1:DeliveryAddress

ccr1:CreditCard

or1:Order

contains deliverTo

Fig. 6.3. Provider and requester rules for ordering a book (which is a media item)

red by the service. For example, the contract at the top left of Fig. 6.3 spe-
cifies an operation order(mp: Media, dap: DeliveryAddress, cpp: CreditCard): Order.
At the top right, the operation cancel(op: Order) is specified to delete a specified
order. ut
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Visual contracts can be used for describing both services provided and
services required. From a provider’s point of view, the left-hand side of a
rule specifies the precondition that must hold for its own internal state and
the data sent by the requester for the operation to execute successfully. The
right-hand side of the rule depicts the postcondition, i.e. a promise about the
situation after a successful execution. The operation’s effect consists of all
creation and deletion actions specified by the rule.

From a requester’s point of view, the left-hand side of a rule represents their
assumption about the provider’s state and the data they are willing to provide
when invoking the service, and the right-hand side describes their expectations
about the resulting state. In general, several rules may be needed to specify
a service provided or required, since, depending on different preconditions,
different effects may be expected.

Example 6.2 (specification of a service request). Visual contracts from a re-
quester’s point of view are shown in the bottom of Fig. 6.3. In contract
req1::orderBook(br1: Book, dar1: DeliveryAddress, ccr1: CreditCard) = or1: Order, for
example, if the client provides information about a book, a credit card and
their delivery address, the service provider should create an order based on
this information. This means that we are looking for a shop offering an ope-
ration to order books payable by credit card. Intuitively, the provider rule in
Fig. 6.3 should be a candidate for this requirement, since this rule creates an
order for media items, which, according to the ontology, include books. The
next section provides a precise formulation of this intuition. ut

6.3 Matching of Service Specifications

The motivation for implementing a service is to satisfy some demand, formally
expressed in a service requirement. When a requester application R finds and
binds to a provided service P , R has to be sure that P provides its functi-
onality in a way that is consistent with the assumptions about the required
service made in R’s implementation. These assumptions are expressed in a re-
quester contract consisting of one or more rules. The registry compares these
with available provider contracts which represent descriptions of actually im-
plemented services. The desired result is the set of those provider contracts
that fulfil the requirements. In this section, we give a more detailed explana-
tion of what it means that provider rule p fulfils the requirements of requester
rule r, or, briefly, that p matches r. Then, a provider contract CP matches a
requester contract CR if for every rule r in CR there exists a rule p in CP such
that p matches r. We give an operational interpretation of this statement and
discuss its consequences and benefits for the testing of services.
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6.3.1 Definition of Service Matching

A requester rule r declares the objects and links whose existence is guaranteed
by R when a service is invoked. These are the objects and links that are
preserved or deleted by the requester rule. The effects that R expects as a
result of invoking a matching service are specified by the actions of r, i.e. any
deletions and creations of objects and links and updates of certain attribute
values. A provider rule p has a slightly different interpretation. It expects the
existence of all objects and links in the left-hand side of p as a precondition,
and guarantees as effects all deletions and creations specified by p. Matching
provider and requester rules means comparing the guarantees given by either
side with the expectations of the other: the requester’s precondition must
entail the provider’s precondition and the provider’s effects must entail the
requester’s effects.

Example 6.3 (specification matching). The rule for orderBook() at the bottom
left of Fig. 6.3 says that, if the requester invokes the operation in a state
where objects ccr1:CreditCard, br1:Book and dar1:DeliveryAddress are present, then
or1:Order, with two links, should be created by the provider. Compare this with
the provider rule for order() above it, where objects ccp:CreditCard, mp:Media
and dap:DeliveryAddress are assumed, and then a guarantee is given that objects
op:Order and bip:Bill and four links will be created. It is easy to see that, in this
example, the requester’s precondition entails the provider’s precondition and
the provider’s effects entail the requester’s effects. In particular, the br1:Book
object guaranteed by the requester satisfies the expectation of mp:Media by
the provider because Book is a subtype of Media.

However, such a match can not be found between the rules cancel() and
cancelOrder() on the right side of Fig. 6.3 because the requester’s precondition
does not entail that of the provider. In particular, the provider expects the
Order to be linked to the CreditCard via a Bill. This information may be needed
to refund the price of the order to the correct card and we know from the
cardinalities in the ontology that such a connection exists. Based on the visual
representation it is easy to see that, in the requester’s version of this rule, the
Bill object is missing.

Instead, the effect expected by the requester, i.e. the deletion of the
or1:Order object with its links, is correctly entailed by the provider rule which
deletes the matching object op:Order and the bip:Bill object. Notice how the
effects provided can exceed the effects requested in terms of both the creation
and the deletion of elements.

Figure 6.4 shows a variant of the requester rule correcting the incomplete
precondition. It is structurally equivalent to the provider rule, but guarantees
the more specific Book object where a general Media object is expected. ut
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req1::cancelOrderComplete(or1)

br1:Book dar1:DeliveryAddress

ccr1:CreditCard

or1:Order bip:Bill

contains deliverTo

listedOn

payedBy

Fig. 6.4. Requester rule for cancelling orders, with completed precondition

In general, a provider rule p : Lp ⇒ Rp matches a requester rule r : Lr ⇒ Rr

if we can establish a structure-preserving mapping relating their elements1

such that the following conditions hold:

1. Every element in the left-hand side Lp of p is related to one element in
the left-hand side Lr of r.

2. Every element deleted in r is related to an element deleted by p.
3. Each element in p related to a preserved element in r is preserved in p.
4. Every element created in r is related to an element created by p.

The difference between the statements of conditions 2 and 4 on the one hand
and 3 on the other hand is necessary because the mapping between the ele-
ments of r and p can be partial. While all elements deleted and created by r
must be part of the mapping, elements preserved by r may not be, but if they
are, they are preserved as well.

The mapping of elements is subject to the same constraints as matches of
the left-hand sides of rules into host graphs. In particular, while renaming of
elements is possible, their types have to be compatible and the graph struc-
ture has to be preserved, i.e. matching links must have matching sources and
targets.

Example 6.4 (specification matching continued). Let us apply this definition
to the provider and requester rules p and r in Fig. 6.3. In order to sa-
tisfy condition 1, we consider a mapping m1 defined by pairs {(ccp, ccr1),
(mp, br1), (dap, dar1)}. Matching elements are of compatible types. Condition
2 requires an inclusion of the deleted elements of r in those of p, which is
trivial because these sets are empty for both rules. The preserved elements
of r are all matched by preserved elements of p, as requested by condition
3. Finally, condition 4 requires that all elements created in r (i.e. the object
or1:Order with its two links) are in correspondence with elements created in p.
Thus, the matching must be extended to include the pair (op, or1) as well as
the links from or1 and the corresponding ones from op.

1 Formally, this is a partial graph homomorphism from Lp ∪Rp to Lr ∪Rr. Recall
that, for each rule L ⇒ R, its deleted, created and preserved elements are given
by L \R, R \ L and L ∩R, respectively.
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req2::orderBook(br2, dar2, bar2, ccr2) = or2

br2:Book dar2:DeliveryAddress

ccr2:CreditCardbar2:BankAccount

or2:Order

contains deliverTo

Fig. 6.5. A second requester rule for ordering a book

The situation is more subtle with the requester rule req2::orderBook() in
Fig. 6.5, which provides an alternative payment mechanism. The correspon-
dence m2 = {(ccp, ccr2), (mp, br2), (dap, dar2)} satisfies condition 1 while the
new object bar2:BankAccount in r is not part of this match, because this data
is not assumed by the provider. However, it is included in the requester rule
to make it as flexible as possible, thus returning more matches. The sets of
deleted and created elements are similar to those of req1::orderBook(), but as
elements required to be preserved by the requester we have bar2, ccr2, br2, dar2.
The corresponding elements mp, dap, ccp of p = prov::order() are indeed pre-
served as required by condition 3 above. This illustrates the difference from
conditions 2 and 4, where elements of the respective kind in r must be in cor-
respondence with elements of the same kind in p, while in condition 3 elements
that are in correspondence must be of the same kind. Thus, objects that are
required to be preserved by the requester rule are optional in the sense that
they need not be present in the provider rule, but if they are, they must not
be deleted. ut

In order that an operation invocation by the requester can be processed by
the provider, we have to make sure that all the necessary data is supplied. This
is the case if, as stated in condition 1 above, all elements of p’s precondition are
matched by elements of the same or a more specific type in r’s precondition.
In particular, since an object of a subtype T is also an instance of a supertype
S of T , the expectation of p to find an object of type S is satisfied by an
object of type T .

While elements preserved by r are protected in p, the provider rule can de-
lete additional elements outside the scope of r, such as bip:Bill in prov::cancel().
Such unexpected effects of the provider can be undesirable. For example, we
would not want a matching provider rule p to delete any other orders we alre-
ady have while creating or:Order, nor to add any more products to this or any
other order. This can be specified on the requester side by declaring certain
critical types as protected, ruling out any matches resulting in unspecified
creation or deletion of its instances.

When the system is trying to negotiate a match between a requester and
a provider, it may happen that the provider needs more information and
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guarantees than have been given by the requester. If the requester is able and
willing to extend the precondition of their request, it can be matched with the
provided service. The requester may also decide to use another service with a
weaker precondition. If such a match covers only some of the requested effects,
this provided service is only a partial solution and has to be completed from
contributions of one or more further services. A process for such a composed
service solution is presented in Section 6.4.

Note 6.1: Rule matching for service matching. Graph transforma-
tion rules can be used to specify visual contracts, i.e. pre- and postcon-
ditions of operations of services or components. Rule matching is used
to check if contracts of service requesters and providers are compatible.
In particular, the precondition of a provider rule must entail that of the
requester rule, while a requester’s effects must entail the provider’s effects.

6.3.2 Operational Interpretation of Service Matching

Specification matching provides us with a static check of the interoperabi-
lity of a provider and requester, assuming that the respective rules faithfully
reflect the needs and provisions of their implementations. Their relation is
illustrated in Fig. 6.6 from an operational point of view. This diagram shows
the invocation of P by R, as well as P ’s reply, together with the relevant
preconditions and effects:

Fig. 6.6. Operational interpretation of service matching

1. When invoking the service, R guarantees that its precondition preR holds.
2. P can assume its precondition preP holds because it is entailed by preR.
3. P guarantees that its execution realises the effects described by its rule p.
4. R can assume the effects specified by its rule r, which are entailed by p.

With each service invocation, we avoid the need for the checks for con-
ditions 2 and 4, which are guaranteed by the matching. This saves not only
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time but also, more importantly, implementation effort in checking and error
handling. It also allows the developer of the requester to abstract from the
actual service implementation by working with the assumption that a suitably
matching service will be provided, thus decoupling the development processes
between the requester and provider sides.

To ensure that the software implemented by R with the help of P works
as expected, we have to verify that the guarantees given in conditions 1 and 3
are correctly implemented, and that the assumptions derived from conditions
2 and 4 are indeed sufficient to ensure the correct function of P and R. This
is not a problem of matchmaking, but one of establishing the correctness of
the implementations of P and R with respect to these specifications.

When one is testing a service-oriented application, specification matching
can to some extent replace integration testing, as the correct interaction of
services is analysed and guaranteed statically. The correctness of individual
services, however, has to be tested with respect to their requirements and
assumptions.

6.4 Incremental Service Composition

If a service requirement cannot be matched by a single offer, multiple services
have to be composed for a complete match. This requires incremental service
matching: a service request is matched partially at first, and then we compute
the remainder of this request with respect to the service offered, containing
all effects not yet realised, by identifying all effects the matched service shares
with the specified request. These effects become additional preconditions in
the remainder of the request. We iterate these steps until all required effects
are satisfied or we run out of providers to match. Finally, we compose all offers
into a global process summarising the overall set of preconditions and effects
of the combined services provided.

Example 6.5 (service composition). If both a book and a video are ordered
together, the combined request can be expressed as shown in Fig. 6.7. We
assume that there is no single operation offering such an order. Hence these
articles have to be purchased in two different steps, which means that two
order operations have to be matched against the requirement, one for the
book and one for the video.

In a partial match of requester operation req::orderBookAndVideo() with pro-
vider operation prov::order(), the order for one item (e.g. the book) can be
covered but the order for the video remains open. As a result of this par-
tial match, or1 and its outgoing edges are created by prov::order() as required.
The remainder of the request can be expressed by adding the newly cre-
ated elements to the precondition of the updated requester rule shown in
Fig. 6.8, representing the remainder yet to be matched. Then, we can use
the same provider rule with a mapping of mp to vr to cover the rest of the



6.4 Incremental Service Composition 163

req::orderBookAndVideo(br, vr, dr, bar, cr) = (or1, or2)

br:Book dr:DeliveryAddress

cr:CreditCardbar:BankAccount

vr:Video

or1:Order

contains contains

or2:Order

contains contains

Fig. 6.7. Requester rule for ordering a book and a video

requirements of req::orderBookAndVideo(). This means that the matching of
req::orderBookAndVideo(br, vr, dr, bar, cr) = (or1, or2) proceeds in two steps:

1. req::orderBookAndVideo(br, vr, dr, bar, cr) = (or1, or2) minus prov::order(br, dr,
cr) = or1 yields req::orderVideo(vr, dr, bar, cr) = or2.

2. req::orderVideo(vr, dr, bar, cr) = or2 is matched by prov::order(vr, dr, cr) = or2.

This is done such that the overall request req::orderBookAndVideo(br, vr, dr,
bar, cr) = (or1, or2) is matched by the composition prov::order(br, dr, cr) = or1 ;
prov::order(vr, dr, cr) = or2. ut

req::orderVideo(vr, dr, bar, cr) = or2

br:Book dr:DeliveryAddress

cr:CreditCardbar:BankAccount

vr:Video

or1:Order

contains contains

or2:Order

contains contains

Fig. 6.8. Remainder requester rule for ordering a video

In general, several different providers may be needed to fulfil a single re-
quest. In more complex cases, they may produce additional (transient) object
structure, which would occur in the remainder rule, but not necessarily in the
composed contract. For example, think of a shopping cart object created in
the first step in a series of multiple orders, which is updated by each order and
finally deleted. This is an implementation choice that the requester may not
want to anticipate, but it would be part of the provider rules and thus occur
in the remainder rules of the intermediate stages. Formally, the construction
is based on the notion of a concurrent or derived rule [85] which allows in-
termediate structures to be consumed in later steps. The relation between
the composed rule and the original request is analogous so that between the
provider and requester rules in a one-to-one match.
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The iterative process of matching a requirement to one or more provided
services either can be semi-automatic, requiring user input, or can be phrased
as a search and optimisation problem. Matching services are computed auto-
matically, but if there are multiple options we have to select the most suitable
one, for example one that covers the required effects most comprehensively
and efficiently. For example, our combined order request could also be mat-
ched by a sequence that orders a book, then cancels the order, and then orders
another book and the video as in the solution above, but this sequence may
be seen as less efficient than the shorter one consisting of the last two orders
only.

The matching procedure is complete in the following sense: if there is a
way of satisfying a request completely by a sequence of provided services,
then there exists a composed service together with a complete match. In other
words, if there is no match, the request cannot be satisfied. That means the
desired functionality cannot be implemented unless the requester decides to
adapt their requirements.

As a search and optimisation problem over a finite domain, the problem
is decidable but NP complete, assuming that the number of provided services
is finite and there are no complex constraints on attributes over unbounded
domains. In particular, the process is terminating, since the number of effects
in each service request is finite. If each partial match makes some progress,
i.e. it covers at least one requested effect, after a finite number of iterations
we will know if all requested effects can be matched, and which sequence of
provided services forms a solution. However, if complex attribute conditions
are used, the problem requires logical inference and will be semi-decidable
only. These properties were demonstrated in more detail in [218], based on
graph transformation theory.

In general, if we do not need full automation, several alternative combina-
tions of offers computed for a given service request could be presented to the
client to let them choose the most suitable one. Alternatively, the selection
could be automated based on a specification of non-functional requirements,
such as cost, response time or reliability of services. Once a combined offer
has been computed, it can be stored in a repository of services, such that
new requests can be served more quickly, by matching them against existing
combined offers.

6.5 Summary and Further Reading

Services are software components that can be published and discovered in
registries at runtime. Web services in particular are discovered and invoked
over Web protocols. They allow adhoc global application integration based
on changing business demands. At the technical level, standardisation and
rigorous semantic specifications are required to enable the automated integra-
tion of services. In this chapter, we have described an approach using visual
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contracts to specify the operations offered by a service with their data ty-
pes and constraints. Visual contracts support, in particular, the specification
of changes to complex object structures. They combine a semiformal visual
representation with a rigorous formal semantics enabling us to state precise
conditions for matching required by provided services.

Visual contracts are sets of graph transformation rules that define pre- and
postconditions of services based on a shared reference data model (ontology).
The requester and provider contracts match if the requester’s precondition
contains the provider’s precondition, and the provider’s contract subsumes all
effects (deletions, creations and updates) required in the requester’s contract
and preserves all of the matched context elements. The matching process
can be incremental, supporting the combination of several offered services to
satisfy a single requirement.

In Chapter 8, we will describe an approach to the reverse engineering
of visual contracts from service implementations in Java. This can help the
provider, who has access to the source or byte code, to create contracts for
their services. If a description of a provided service is created manually, the
service implementation can be validated by testing. This is supported by our
approach to testing against visual contracts presented in Chapter 7. Contracts
expressing service requirements arise from requirements analysis as presented
in Chapter 5, decomposing high-level functional goals into requirements for
individual components.

6.5.1 Tools and Evaluation

The technical feasibility of the approach described here has been validated
in a prototypical tool that supports the visual editing of service descriptions
and requests (Section 6.2) and their matching (Section 6.3) based on standard
Semantic Web languages and tools. As presented in [128], this prototype uses
AGG (the Attributed Graph Grammar system) [98] to develop graph trans-
formation rules over a type graph created by importing an RDF ontology
in DAML+OIL [61], a precursor to the Web ontology language OWL [286].
Rules are exported to RDF, so that ontologies, and pre- and postconditions
are all present as RDF graphs. This means that the matching of rules can
be described in terms of RDF graph matching. This has been implemented
in Java based on the Semantic Web toolkit Jena [56] using the RDF query
language RDQL.

Based on prototypical tool support, a study was conducted to explore the
practical use of visual contracts for the specification of services in business-
critical applications [97]. Natural language specifications of services were aug-
mented by formal descriptions using visual contracts. The company sd&m,
which led the study, was particularly interested in the visual nature of the
description, its seamless embedding into UML and its expressiveness for speci-
fying application interfaces concisely and in enough detail to support discovery
and matching. The evaluation of a case study, which consisted of contracts for
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about 50 operations at both technical and business level, showed that, despite
the limited tool support, visual contracts extended with advanced features
such as multiobjects and attribute conditions satisfied these requirements.

6.5.2 Extensions

Further concepts, such as attribute conditions, NACs or multiobjects, can
enhance the expressiveness and flexibility of rule-based specifications. For ex-
ample, a requirement that we may be allowed to cancel an order only if it
has not yet been delivered can be expressed by a negative condition over a
suitable extension of the model. A multiobject could be required to say that
we want to cancel all orders of a particular user. Such extensions require a
more sophisticated notion of matching, which can be realised using the advan-
ced graph transformation concepts discussed in Chapter 2. For example, [59]
formalised the matching of visual contracts containing NACs. Such matching
concepts can be implemented using more advanced logics [245], as supported
by Semantic Web languages such as OWL [286].

The idea of model-based specification and matching of services to enable
dynamic discovery has been the focus of a number of scientific publications
using a range of modelling languages. It has been used to support the ge-
neration of service monitors in the Java Modelling Language (JML) in [194],
where also attributes and NACs were considered. A service monitor allows one
to verify the compliance of a service with its published specification throug-
hout its life cycle. It can be used to bridge the gap between the high-level
specification of services for service matching and their implementation in an
object-oriented language.

Visual contracts were developed for the purpose of service interface spe-
cification in [129] and were used for model-based testing in [194, 118]. Using
a formal interpretation in terms of typed graph transformation, they are exe-
cutable and hence suitable for the generation of test oracles [167]. The theory
and tools of graph transformation also provide support for the generation of
test cases [253] and the definition and evaluation of coverage criteria [166].
These applications are explored in more detail in the following chapter.

From a logical point of view, Web services are a form of software component
discovered and provided over the Internet. The approach to specification and
matching presented here can also be used for discovering methods (operations)
in APIs, frameworks or libraries, for choosing plug-ins, and for Android apps.
Some of these domains use their own standards for interface specifications
and registries, to which any language and tool support for visual contracts
would have to be adapted. This is in line with the general idea of model-
driven development, where essentially similar models can map to different
implementation platforms.
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Model-Based Testing

Software testing is the most important method for verifying the correctness
of a system against its specification. This remains the case despite advances
in formal verification methods such as model checking or theorem proving.
Even if testing can not demonstrate the absence of errors, when carried out
systematically it can increase our confidence that the number of errors is low.

However, testing in practice is often unstructured, not reproducible, poorly
documented, lacking in detailed rationales for test design and dependent on
the ingenuity of individual testers. Testing is also expensive, taking up a signi-
ficant proportion of the development effort. A systematic approach to testing
consists of activities such as coverage analysis to assess the quality and com-
pleteness of tests, the creation of test oracles to predict the expected results,
and test case generation based on formal criteria. Model-based testing [281]
helps to perform testing activities at a higher level of abstraction, making
them traceable and supporting automation.

According to [281], model-based testing comprises the following steps (see
Fig. 7.1). Based on informal requirements or an early design of the system
under test (SUT), the developer extracts a model defining the structural and
behavioural aspects of the SUT. Owing to its purpose, this model is called
a test model. To be useful for testing, it is important that this model is in-
dependent of the SUT’s implementation. The test model can be abstract in
the sense that it neglects parts of the functionality or non-functional proper-
ties such as timing. However, it must be sufficiently precise and consistent
to serve as a basis for automatically generating high-quality test cases and
oracles. A test model may also contain test selection criteria to guide auto-
matic test case generation. Typically, coverage criteria are formulated with
respect to the SUT’s behaviour as well as the input and output data. Once
the test model and the test selection criteria are specified, a set of test cases
can be generated such that the coverage criteria are met. The test model can
be employed, moreover, to generate test oracles that are used to predict test
results.
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Fig. 7.1. Model-based testing

A test model can specify an SUT’s behaviour in terms of the pre- and pos-
tconditions of its operations. Languages used for this purpose include Z [263],
JML [58] and OCL [226]. We propose the use of visual contracts, which provide
an intuitive but precise notation for pre- and postconditions. Visual contracts
are able to specify the interfaces of operations of services, or components. As
described in Chapter 6, they can be used for modelling (and matching) servi-
ces. As executable, formal and visual models based on graph transformation,
they provide the basis for model-based testing in this chapter, including the
generation of test cases and oracles, and the definition of coverage criteria.

Test selection criteria are often defined in terms of the elements of a test
model, such as states, transitions and branch conditions of state machines or
activity diagrams. Such criteria are analogous to code coverage criteria based
on control or data flow graphs, except that they work at the level of models.
In this chapter, we are interested in testing the interaction of functional units
such as operations specified by visual contracts. To test potential interactions,
we have to observe their dependencies, i.e. situations where one operation
is required before another one can be executed. This means that that the
visual contracts serving as our test model will undergo a dependency analysis
before coverage is defined based on the resulting dependency graph. This
is reminiscent of white-box testing approaches based on data flow analysis,
where coverage is defined on a data-flow graph extracted from the code. In
contrast, we perform this process at model level. Full dependency coverage
is achieved if all edges of the dependency graph correspond to dependencies
observed when executing test cases [166, 253].

Given a test model and some test selection criteria, the objective of model-
based test generation is to produce a set of test cases that fulfil those criteria.
Since we are interested in dependencies between operation calls, we want
to generate test cases covering their dependencies. Similar motivations have
been considered in more specific settings, such as user sessions in Web ap-
plications [228]. The work presented in [221] discusses coverage analysis for
object-oriented systems using dependencies. The authors of [221] proposed a
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call-based system dependency graph capturing control and data dependen-
cies between statements, as well as operation calls. We present a language-
independent approach to test case generation, in line with the principles of
model-based development. Similarly, Briand et al. [49, 50] considered a model-
based approach using UML artefacts for test case generation. There, depen-
dencies have to be modelled explicitly at system level using activity diagrams.
In our case they are extracted from specifications of individual operations
(using visual contracts) by static analysis.

Given a set of visual contracts as part of a test model, their dependency
graph as a coverage criterion, and an initial state, our generation of test cases
will consist of two tasks: (1) generating a set of rule call sequences that cover
the dependency graph, and (2) translating them to test cases for the SUT.

Software testing uses test oracles to predict expected test results. In the
majority of projects, oracles are implemented manually, relying on the tes-
ter’s understanding of functional requirements to decide the correct response
of the system in every given test case. As a result, they are costly to create
and maintain and their quality depends on their correct implementation. Al-
ternatively, if suitable specifications are available, oracles can be generated
automatically at lower cost and with better quality [181].

Visual contracts are directly executable and therefore suitable for auto-
matically generating oracles. However, the gap in abstraction between service
implementations and visual models may pose a number of challenges in im-
plementing this basic idea. If we use a graph transformation engine to execute
our test model, we need an adapter to present the model’s functionality in
a way that is comparable to the interface of the SUT. An adapter allows
us to automate the decision about whether a test outcome is correct. Such
information is present in visual contracts and should be reused rather than
reimplemented. This is potentially relevant to all developers implementing
tests, independently of any specific testing or debugging tools, even if the
tests themselves are implemented manually.

This chapter is structured as follows. After defining a set of visual contracts
as a test model and a notion of dependency cover as a test selection criterion
in Section 7.1, we consider test case generation in more detail in Section 7.2.
Thereafter, we present our generation of test oracles in Section 7.3. The chap-
ter concludes with a summary and discussion of further work in Section 7.4.

Since visual contracts are specified as typed attributed graph transforma-
tion rules, it is worthwhile to be aware of the concepts introduced in Chapters 1
and 2 before reading this one. Dependencies between operation calls are used
as test selection criteria. They are based on conflict and dependency analysis
as presented in Section 4.2.
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7.1 Test Models and Test Selection Criteria

Starting from a software requirements specification, the developer creates a
test model based on defined interfaces. For example, when testing a service
(see Chapter 6) the developer takes into account information about its input,
output and basic workflow. For testing class or component operations, the
developer starts out from operation signatures and any available documenta-
tion of their behaviour. In both cases, a test model consists of a class model
and a set of visual contracts. This means that test models use the same basic
structure and notation as the service models considered in Chapter 6, but
provide a more detailed description of operations. As discussed in Chapter 6,
such models can be formally represented as graph transformation systems.

The following small case study will serve to illustrate and evaluate the
concepts and techniques of this chapter.

Example 7.1 (managing hotel guests). A registered guest can book a room,
subject to availability. There are no booking charges, and the bill starts to
accumulate once the room is occupied. Since payment details are already
stored by the hotel, the amount of the bill is automatically deducted when the
guest announces their intention to leave. They can check out successfully only
when the bill is paid. In Listing 7.1, the core of a potential service interface in
Java is depicted. It provides operation signatures that would typically occur
in this context. A basic domain model for this service is shown in Fig. 7.2.

// ...
public interface Hotel {

// ...
public Guest findGuest(String name);
public String bookRoom(Room room, Guest guest, s:Date, e:Date);
public String occupyRoom(Room room, Guest guest, Bill bill );
public boolean updateBill ( Bill bill , int amount);
public boolean clearBill ( Bill bill ) throws Exception;
public boolean checkout(Guest guest, Room room, Bill bill );
// ...

}

Listing 7.1. Interface for hotel service

Fig. 7.3 contains the visual contracts for all the operations occurring in the
listing. Given a name n, findGuest returns a guest g with this name. Given a
room r, a guest g, and start and end dates s and e, bookRoom books this room
for this guest if there is no overlapping reservation. When guest g arrives at the
hotel and wants to occupy room r, there are two successful alternatives. Either
a reservation exists starting from today so that the room can be occupied by
the guest, or there is no such reservation and the room is still free. Then, a new
reservation is created starting today. In both cases, occupyRoom occupies the
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Bill
total: Int
paid: Boolean

Room
number: int
occupied: Boolean

Guest
name: String
address: String

Reservation
startDate: Date
endDate: Date

*

booking

0..1

* room 1

*

guest

1

*guest1

*

room

1

Fig. 7.2. Simplified class model for the hotel example

room and creates a new bill b. This means that occupyRoom is an example of
an operation whose visual contract consists of two rules specifying alternative
outcomes depending on the current state. Rule updateBill repeatedly updates
bill b by amount a to cover the room price and additional expenses, such as
breakfast and beverages. At the end of their stay, the guest clears the bill
with clearBill and checks out. This is possible only if the bill is paid. Contract
checkout deletes the reservation for room r, and this room is no longer occupied.

Signatures allow us to relate visual contracts to operations in the system
and to represent their invocations with actual parameters and results as trans-
formations [166]. This is illustrated by the transformation sequence in Fig. 7.4,
which represents a series of system states changed by the invocation of ope-
rations, at model level. ut

If the implementation and model share the same signature, the expected
output and actual output can be compared directly. However, there are cases
where the signatures may deviate. If the implementation returns a complex
object type, such as a collection, the response of a visual contract can be a
set of nodes. Furthermore, an implementation signature may extend a model
signature by providing an additional response to indicate if the operation
was successful. This response can be in the form of a numerical error code, a
Boolean value or an exception. One example is the operation checkout(), where
a Boolean value is returned to indicate that the checkout was successful. The
model may check the successful execution of a rule invocation instead.

At model level, a test case combines an initial state with a sequence of rule
invocations. If the sequence is applicable, i.e. we can derive a corresponding
sequence of transformations as a model-level equivalent of a test execution,
this allows us to derive parameter bindings for the operations from the rules’
matches. This leads to a sequence of rule calls.

Example 7.2 (test case). Consider the following sequence of rule invocations:
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findGuest(n) = g
g:Guest

name = n

bookRoom(g, s, e) = r

r:Room

g:Guest

:Reservation
{s ≤ startDate < e}
{s < endDate ≤ e}

room

:Reservation
startDate := s
endDate := e

booking room

guest
updateBill(b, a) = true

b:Bill
total = x
total := x + a
paid = false

occupyRoom(g, r) = b
r:Room

occupied = false
occupied := true

g:Guest

:Reservation
{startDate = today()}room

guestbooking b:Bill
total := 0
paid := false

room

guest

occupyRoom(g, r) = b

r:Room
occupied = false
occupied := true

g:Guest

:Reservation
startDate := today()
endDate := today()+1

room

guest b:Bill
total := 0
paid := false

room

guest

:Reservation
{startDate = today()}

room

guest

clearBill(b) = true
b:Bill

total = x
paid = false
paid := true

checkout(g, r, b) = true
r:Room

occupied = true
occupied := false

b:Bill
paid = trueroom

g:Guest

guest :Reservation
room

guest

Fig. 7.3. Visual contracts for the hotel example

is : r = bookRoom(g, s, e);
b = occupyRoom(g, r);
updateBill(b, a);
clearBill(b);
checkout(g, r, b).

Given a graph G0, we obtain the rule call sequence cs where variables g and
r are bound to concrete values of G0. Later a Bill is created binding variable
b. The resulting rule call sequence is shown below and corresponds to the
transformation sequence in Fig. 7.4.

cs : r1 = bookRoom(g1, 18-09-13, 18-09-20);
b1 = occupyRoom(g1, r1);
updateBill(b1, 250);
clearBill(b1);
checkout(g1, r1, b1).
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G0

r1:Room
occupied = false

g1:Guest
name = "Tim"

r1 = bookRoom(g1, 18-09-13, 18-09-20)

G1

r1:Room
occupied = false

g1:Guest
name = "Tim"

booking

:Reservation
startDate=18-09-13
endDate = 18-09-20

guest

room

b1 = occupyRoom(g1, r1)

G2

r1:Room
occupied = true

g1:Guest
name = "Tim"

:Reservation
startDate=18-09-13
endDate = 18-09-20

guest

room

b1:Bill
total = 0
paid = false

room

guest

true = updateBill(b1, 250)

G3

r1:Room
occupied = true

g1:Guest
name = "Tim"

:Reservation
startDate=18-09-13
endDate = 18-09-20

guest

room

b1:Bill
total = 250
paid = false

room

guest

true = clearBill(b1)

G4

r1:Room
occupied = true

g1:Guest
name = "Tim"

:Reservation
startDate=18-09-13
endDate = 18-09-20

guest

room

b1:Bill
total = 250
paid = true

room

guest

true = checkout(g1, r1, b1)

G5

r1:Room
occupied = false

g1:Guest
name = "Tim"

b1:Bill
total = 250
paid = true

room

guest

Fig. 7.4. An example transformation sequence

ut

Since visual contracts are based on graph transformation rules, we can use
dependency analysis to extract a dependency graph for the visual contracts
in the test model as a basis for a coverage criterion. This graph differs slightly
from a dependency graph over rules, since the nodes are labelled by the ope-
ration names identifying the contracts. A visual contract, specified by a set of
rules, depends on another one if any of its rules depends on a rule of the other
contract. Based on such a dependency graph, we use dependency coverage as
a test selection criteria, i.e. test cases are designed to test all dependencies
between visual contracts.

Example 7.3 (dependency graph). Using the visual contracts in Fig. 7.3, we
compute a dependency graph as shown in Fig. 7.5. Considering, for example,

dependency graph
bookRoom occupyRoom

checkout

clearBill

updateBillfindGuest

Fig. 7.5. Dependency graph for visual contracts in hotel Web service

the edge between nodes bookRoom and occupyRoom, we see that a Reservation
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created by bookRoom is read by (the first rule of) operation occupyRoom. The
dependency between clearBill and checkout is due to the attribute paid. The first
rule sets it to true and the second one requires this value. Rule occupyRoom
may cause a dependency on checkout, since it may create a Reservation, deleted
later. By deleting it, occupyRoom may create a new Reservation for the same
room and the same guest again. So, occupyRoommay be dependent on checkout.
Similar dependencies occur between bookRoom and checkout. ut

As a test selection criterion, our model-level dependency coverage resem-
bles code-level data-flow coverage which is often complemented by control-
flow based criteria. However, control flow is not usually specified at the level
of service operations, but determined by the client program invoking them.
This means that to test an interface independently of a client program we
rely on the possible data flows between operations as represented by potential
dependencies between their visual contracts.

The dependency relation itself is a very basic test selection criterion. It
may be refined to take into account dependency-causing rule elements and
their potentially combined occurrences. For even more thorough testing, we
can require test cases to cover all minimal dependent transformation pairs
computed by critical pair analysis (see Section 4.2).

7.2 Generation of Test Cases

In this section, we introduce an approach to generating test cases for our
test model relying on dependency analysis for the test selection criterion. In
particular, we define a notion of test coverage based on dependency graphs
and present an algorithm generating rule call sequences that cover all depen-
dency edges, i.e. all potential dependencies between visual contracts, that are
reachable from a given state. We discuss how the approach can be extended
by considering more refined dependencies (as presented in Section 4.2) and
how conflict analysis and other analysis techniques for graph transformation
systems can be used for generating test cases in general.

The following algorithm generates rule call sequences that exercise depen-
dencies between visual contracts while recording coverage of the dependency
graph:

1. Given a set of rules R, its dependency graph DG and an initial graph
G0, we first check which of the rules are applicable to G0. Starting with
one of these for the first step, we compute all paths through DG that
cover at least one dependency, starting with the chosen rule and avoiding
executing each cycle in DG more than once. This provides us with a set
S of rule sequences. Note that this set depends on the initial graph G0.

2. As long as the dependency graph has uncovered edges, we perform the
following steps:
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(a) We enrich the sequences in S to cater for rules with multiple depen-
dencies. For example, dependencies (p, r) and (q, r) may lead first to
a sequence . . . p; r . . . , which is then augmented to . . . p; q; r . . . . If this
enrichment yields sequences that are subsumed by sequences covering
a larger set of dependencies, we remove redundant sequences.

(b) Next, we iterate through the sequences in S, repeatedly choosing a
sequence s that covers a maximal subset of dependency edges not co-
vered before. We verify the applicability of s while choosing matches
to maximise dependency coverage. The starting rule in s has a match
on G0 by assumption. After having applied a rule p of s, we look for
a match of the next rule q in s into the resulting graph such that the
co-match of p and the match of q overlap in dependency-causing ele-
ments. If no such match for q exists, we choose an arbitrary match. If
the resulting sequence of rule calls can be fully applied to G0, then we
move it to T , the set of test sequences. Otherwise, s is removed from
S. For successful sequences s, the coverage of new dependency edges
is determined. We continue by considering the remaining sequences in
S until full coverage is achieved or, by considering unmarked depen-
dencies, no further unmarked dependencies can be covered.

(c) In order to derive the actual test cases, all unbound parameters re-
maining are instantiated with concrete values, such that the entire
sequence remains applicable to G0. The result s is an operation call
sequence.

(d) We iterate through the steps above while there are unchecked starting
rules in R, until the coverage is complete or cannot be improved any
more. In addition, the user can be asked if they would like to continue
for one more iteration. In each new iteration, we select only those
additional sequences that improve coverage.

Throughout, we report progress by displaying which sequences have been
added to T and what is the resulting coverage.

Example 7.4 (rule sequences). Considering the rules in Fig. 7.3 and graph G0
in Fig. 7.4, we find that rules findGuest and bookRoom are the only applicable
ones. Since findGuest is not involved in any dependency with other rules, we
can neglect it and continue with bookRoom. Taking this rule as the initial one,
we construct a set of possible sequences, say {s1 = bookRoom;occupyRooom,
s2 = bookRoom;checkout}. Considering s2, we need occupyRoom to be included,
since there is a dependency (occupyRoom, checkout). Therefore, we extend s2
to s′2 = bookRoom;occupyRoom;checkout. Then we find that s′2 subsumes s1, so
running s1 would not improve coverage. Hence we drop s1 from the set. For
example, sequence s′2 results in the rule call sequence

r1 = bookRoom(g1, 18-09-13, 18-09-20);
b1 = occupyRoom(g1, r1);
checkout(g1, r1, b1).
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In executing this sequence, we observe an overlap between the co-match of
the first step and the match of the second step in the form of a produce/use
dependency. In particular, the booking edge created by bookRoom is read by
occupyRoom.

To cover more of the dependency graph, further sequences are needed,
such as

r1 = bookRoom(g1, 18-09-13, 18-09-20);
b1 = occupyRoom(g1, r1);
updateBill(b1, 250);
clearBill(b1);
checkout(g1, r1, b1);
bookRoom(g1, 18-09-13, 18-09-20).

Note that the last call of rule bookRoom is needed to cover the dependency of
bookRoom on checkout. ut

While this algorithm is eager to cover most of the edges in DG, some
edges may not be coverable, either because the corresponding rules are not
reachable from the start graph G0 or because matches chosen earlier in a
sequence prevent rules from being applicable. We can mitigate both problems
by considering different start graphs, enabling a wider range of sequences. Such
start graphs should be constructed such that the left-hand sides of at least
two dependent rules can be matched in a way that both rules are applicable
in sequence. The algorithm will always terminate, because the input is finite
and processed systematically.

Once a set of rule call sequences modelling interesting test cases generated,
the actual test cases have to be derived. A test case requires an object structure
that corresponds to the initial graph G0. Each rule call sequence generated by
the algorithm above is translated to an operation call sequence. While most
of this translation is straightforward, operations of the SUT may have return
values that have to be taken into account. Test assertions are not explicitly
modelled here. The simplest case is the successful execution of a complete
operation call sequence. More sophisticated assertions, checking properties of
the resulting object structure, could be realised by rules representing queries.
This topic is elaborated on in the next section.

The algorithm presented here considers the existence of dependencies wit-
hout distinguishing more detailed information (see the discussion within and
after Example 4.7). The test selection criteria could be refined by representing
each initial dependency (i.e. each cause for dependency) as a separate edge in
the dependency graph and requiring coverage of this refined graph. Similarly
to the above, the resulting algorithm would have to check which initial depen-
dencies (given by transformation pairs) can be embedded into the sequence
such that it is applicable to graph G0. The aim would be to cover all initial
dependencies. Analogously to dependencies, conflicts can be used as coverage
criteria. This would allow us to guarantee that critical interactions are tested,
for example conflicts in resource allocation such as trying to reserve a room
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that is already reserved. In [165], coverage of dependencies and conflicts was
considered in more detail. Moreover, rules that are neither in conflict nor in
dependency with any other rule could also be of interest for testing (conside-
ring, for example, favourable and critical signs of consistency as described in
Chapter 5).

7.3 Models as Test Oracles

To determine if a test has been successfully passed, the results of the execu-
tion have to be verified by comparing them with the results predicted by the
specification. Rather than predicting the results of all test cases beforehand, it
is common to use a trusted source, often called a test oracle [167], to produce
these results at execution time. In our approach, the role of the test oracle is
played by an executable model.

7.3.1 Partiality of Visual Contracts

In general, a visual contract only partially specifies the intended behaviour of
the implementation. If the oracle predicts success while the implementation
reports a failure, this difference could be due to either an error in the imple-
mentation or an underspecified precondition of the contract. This potential
failure should be reported to the developer as a warning, with all relevant
details needed to interpret the result.

Example 7.5 (partially modelled behaviour). Assume that the system opera-
tion clearBill throws an exception if the payment cannot be performed, for
example because the credit card details are wrong. Since payment is not mo-
delled explicitly, the model predicts success and returns a result graph, while
the SUT has to handle the exception. ut

7.3.2 Handling and Reporting Failure

There are different ways in which failures can be reported to the tester. We
distinguish them by asking: (1) What is the origin of the failure? (2) How
is the failure presented? (3) How is the failure interpreted? For example, in
a service-oriented system, a failure may be due to a fault at the server or
in client–server communication. Server-side failures can be due to logical or
technical reasons. Logical failures occur if the precondition of an operation
is not satisfied, i.e. the application is invoked, but not executed correctly or
not executed at all. Technical failures can be down to a variety of reasons,
such as the database being offline, server-side system failures, power outages
or hardware issues. Communication failures may result from loss of network
access, congestion causing delays, etc. A server-side failure presents itself as
an exception, a fault message or an application-specific error code, while a
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communication failure shows up as an exception (timeout) on the client side.
Taking all these failures into account, the following test outcomes are possible:
1. The test oracle and the execution are both successful and yield the same

result.
2. The test oracle and the execution are both successful but yield different

results.
3. The test oracle and the execution both show failures, and hence yield the

same result.
4. While the test oracle predicts success, the test execution fails. This out-

come could be due to either a faulty implementation or an underspecified
precondition of the visual contract, i.e. a weaker precondition than in the
implementation.

5. While the test oracle predicts failure, the test execution succeeds. This
is a failure, since the precondition of the visual contract should not be
stronger than that of its implementation.

Example 7.6 (diverse test results). We take the transformation sequence shown
in Fig. 7.4 as test oracle and start our consideration with the first transfor-
mation step. If bookRoom is implemented as modelled, we have an example of
case 1. Its implementation may do more, for example requiring a deposit for
a reservation. In that case, the test oracle is weaker, i.e. we have case 2. In
Example 7.5, we have already covered case 4. While we cannot book a room
twice for overlapping dates in the model, this may be possible in the SUT if
a reservation can be changed by the same guest. In this case, the test oracle
would predict a failure while the test execution on the SUT would succeed
(case 5). We could fix this situation by relaxing the precondition of bookRoom
in the model. A precondition checking that there is no overlapping reservation
by another guest would be weaker than the original one. If such a reservation
is not possible in the SUT, i.e. the operation fails in both the model and the
SUT, we have an example of case 3. ut

Test oracles can be used to check assertions expressed by additional query
rules. In this way, by checking for successful execution, we can encode a check
for the existence or non-existence of certain patterns.

7.4 Summary and Further Reading

Visual contracts provide a diagrammatic notation for pre- and postconditions
as an alternative to OCL or code-level contract languages. When using visual
contracts for testing, we benefit from their executability and formal back-
ground in graph transformation, allowing us to provide model-based coverage
criteria and test oracles.

We have provided a comprehensive approach aimed at automating the
three major challenges of testing through the use of models. In particular, we
can
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• define coverage based on the structure of the dependency graph and ana-
lyse potential dependencies between operations,

• deploy such a dependency graph to generate test cases, and
• use graph transformation to produce test oracles predicting the correct

outcomes of tests.

By extending our approach towards conflict coverage, testing of concurrent
threads could be tackled. To increase the expressiveness of test models, the
approach needs to be extended to advanced rule concepts such as multiobjects.
Finally, after having considered a coherent set of separate components, it is
worthwhile to investigate the use of model-based testing within a larger tes-
ting process. Alternative ways of interleaving test case generation, execution,
oracles and coverage analysis may be investigated to support, for example,
explorative testing at runtime.

7.4.1 Tooling

The generation of test cases and the computation of oracles have been prototy-
pically implemented based on AGG, as discussed in more detail in [166, 167].
To evaluate the scalability of the test case generation process presented and
the completeness of the generated test suite, the resulting test cases were exe-
cuted on the implementation. NCover1 was used as a tool to calculate code-
based coverage for a test set that provides a full dependency cover. Evaluation
results for a variant of the hotel service example and a larger case study of
a bug-tracking service (with 31 visual contracts) were reported in [166, 165].
Both systems, however, are relatively small compared with industry-size appli-
cations. While larger benchmark applications are available for software testing,
they do not come with visual contracts, making larger-scale experimentation
difficult.

7.4.2 Extensions

Visual contracts were used for testing in, for example, [195, 166, 165] and,
more specifically, for the generation of test cases in [118, 175, 257]. The ap-
proach proposed in [118] used visual contracts as system specifications and
translates them to the Java modelling language to create test oracles. In order
to translate logical into executable test cases, these test generation approaches
derive concrete prestates of the system from model-level representations and
automate the checking of poststates against postconditions.

In [165], test case generation and coverage were driven not only by de-
pendencies but also by conflicts between rules. A conflict graph was used to
represent potential conflicts, where test cases produced by critical pair analy-
sis were generated to cover all potential conflicts.

1 Available at http://www.ncover.com/.

http://www.ncover.com/.
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One popular method of model-based testing [281] uses model checking for
test case generation. Given a requirement in temporal logic, and deriving a
labelled transition system from the test model, a model checker can be used
to generate counterexamples as a source for generating test cases. As presen-
ted in Section 4.5, graph transition systems can be used for model checking.
In this context, counterexamples are rule call sequences. This approach was
investigated for service-oriented systems in [114] based on a platform metamo-
del for SOA and graph transformation rules describing the behaviour of the
platform. Rule sequences were generated as counterexamples using GROOVE
as a model checker.

The work in [257], in contrast, used visual contracts and translated them
into the planning domain definition language PDDL, so that planning tools
could be used for generating tests. Sequences of rules were computed based
on an encoding of the initial system state in order to reach a state satisfying
a given requirement. The authors of [257] compared their approach with the
alternative of using a model checker to generate the state space and to find
test sequences. They observed that the use of heuristics allowed them to not
generate the full state space, mitigating the state space explosion problem of
model checking. Note that our approach in this chapter is not state-based at
all, but focuses on a static analysis of the dependencies between rules.
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Reverse Engineering: Inferring Visual
Contracts from Java Programs

When working on an existing software system, we face the challenge of de-
veloping a high-level understanding of its implementation. This is necessary
for both finding and correcting errors, and for adding or revising features or
improving the architecture through refactoring. This is especially difficult in
large systems that have undergone many changes during their lifetime and
where the original design information is no longer visible or documented in
the code. Reverse engineering aims to address this problem of extracting high-
level information about the structure and behaviour of programs, often repre-
sented by visual models to support understanding and communication. In
this way, reverse engineering can help us to cope with the complexity of the
implementation.

To be scalable, and allow one to keep models consistent with evolving
software systems, reverse engineering has to be automated. We distinguish
between approaches based on static and dynamic analysis. The static appro-
ach, exemplified by [277, 251], examines the source code with the intention
of extracting the possible behaviours. This approach is well established but
limited in its ability to detect dynamic object-oriented behaviour, such as dy-
namic binding. The dynamic approach [294, 295] uses test runs to explore the
software. It can detect dynamic object behaviour, but the extracted model
represents only those behaviours actually executed. The resulting behavioural
models are often UML diagrams, such as sequence diagrams [251, 294], but
there is also work using graph grammars for representing sets of nested call
graphs [295].

In a service-oriented system, providers have to document the use of their
services while protecting the technology behind it. Visual contracts, as pre-
sented in Chapter 6, describe preconditions and effects on object structures.
They allow a detailed yet technology-independent specification of methods
and operations, that can be used for both service matching and testing.

In this chapter, we present a dynamic approach to reverse engineering
visual contracts from sequential Java programs by tracing the execution of
Java operations [15]. The resulting contracts give accurate descriptions of
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observed object transformations, i.e. their precondition and effects in terms
of object structures, and parameter and attribute values. The restriction to
sequential Java makes it easy to associate each object access to a unique
operation invocation during tracing, but is not essential for the remaining
steps in the inference of visual contracts.

Given a Java application, the reverse engineering starts with (1) defining
the type model (extracting the set of classes to be observed) and the scope
of the observation. We proceed by (2) observing the behaviour under test
using AspectJ instrumentation of the Java bytecode and synthesising rule
instances as pre/post snapshot graphs of individual invocations; (3) combining
the instances into higher-level rules by abstracting from non-essential context;
(4) generalising further by introducing multiobjects and patterns; (5) deriving
logical constraints and assignments over attribute and parameter values; and
(6) identifying universally shared conditions and structures as invariants that
are captured separately. The following section describes this process in more
detail, before we discuss the correctness and completeness of the extracted
contracts.

This chapter is structured as follows. The extraction of visual contracts
from code is presented step-by-step in Section 8.1. This extraction procedure is
analysed concerning correctness and completeness in Section 8.2. The chapter
concludes with a summary and a discussion of the approach with respect to
tooling, evaluation, extensions and applications in Section 8.3. Since visual
contracts are specified as typed attributed graph transformation rules, it is
worthwhile to be aware of the concepts introduced in Chapters 1 and 2 before
reading this one.

8.1 Extraction of Visual Contracts

We start the reverse engineering of visual contracts by extracting a class
diagram from the Java code. This extraction is based on a straightforward
mapping between the object-oriented concepts of Java and UML class dia-
grams. Then we describe how the execution of a method is traced and how
such a trace is translated into a rule instance reflecting the objects accessed
and changed by this specific execution. From rule instances we infer general
visual contracts and augment them first by attribute conditions and calcu-
lations, then by multiobjects and multipatterns to further raise the level of
abstraction.

8.1.1 Type Model and Scope

All classes of a package of interest, their fields and their inheritance relations
can be extracted into a type graph, where an object-valued field is shown as
an edge to the target class with cardinality 0..1, while fields that are arrays or
collections of objects are represented by edge types with cardinality * or 1..*.
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If the target class belongs to the package, the reference is extracted as an edge
type between node types that correspond to the source and target classes. If
the target is a data type or a class that does not belong to the package, the
corresponding reference gives rise to an attribute of the source class.

Example 8.1 (extracting type information). Let us start by considering the
implementation of a car rental service. The package rentalService shown in
Fig. 8.1 gives rise to the type graph in Fig. 8.2. An object-valued field is re-
presented, for example, by the edge type labelled car from Reservation to Car.
Edge type reservations has target cardinality *, since a collection of reservati-
ons is allowed. Note that the class diagram does not contain operations, but
represents a type graph defining node and edge types and attributes. ut

On this class model, we can now define the scope of our observation as the
subset of classes whose access will be traced. In our case we choose to observe
the entire model.

8.1.2 From Tracing Object Access to Rule Instances

We want to observe all accesses to objects of interest, i.e. objects that are
instances of classes within our scope, during the execution of an operation in-
vocation. Observations are enabled by instrumentation of the Java bytecode
following an aspect-oriented approach. In particular, we use unrestricted poin-
tcuts such as pointcut stateTriggers(): !within(Tracing.*); to access
the object state before and after each instruction to observe and log their ef-
fects. An operation invocation thus yields a trace recording all object creations
as well as read and write accesses to objects and fields caused by this invoca-
tion. For each operation invocation, we extract a rule instance capturing the
recorded behaviour.

In a sequential execution, all actions observed between the start and the
return of a method invocation can be attributed to this invocation. Concurrent
invocations make it more difficult to identify the inducing invocations for
each action. Therefore, we stick to sequential programs here. We aggregate all
observations of the same invocation into a rule instance capturing the overall
precondition and effect. Along with the instance, we collect traceability data
for its elements, such as the line numbers of corresponding statements in the
code. This is used later to validate the extraction, for example to assess which
code fragments are captured by which contracts.

Example 8.2 (Java methods in class Rental). We consider class Rental in Lis-
ting 8.1, which provides all main services as methods, listed with their signa-
tures only. The implementation of method dropOffCar() is shown in Fig. 8.3.
There are three possible paths, depending on the evaluation of the two if sta-
tements in lines 4 and 10. Hence, three test cases are enough to cover the
complete code of this method. (1) If an invalid reservation index is passed,
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1 package rentalService ;
2
3 public class Rental {
4 public Branch[] branches;
5 public ArrayList<Reservation> reservations ;
6 public String registerClient (String city , String clientName) {..}
7 public String makeReservation(String clientId , String pickup, String dropoff) {..}
8 public Boolean cancelReservation(String resId ) {..}
9 public Boolean cancelClientReservation (String clientId ) {..}

10 public Boolean pickupCar(String resId ) {..}
11 public Boolean dropoffCar(String resId ) {..}
12 public ArrayList<Reservation> showReservationsForClient(String clientId ) {..}
13 // further methods to access rental information
14 }
15
16 public class Branch {
17 public ArrayList<Car> at =new ArrayList<Car>();
18 public ArrayList<Client> ofClients=new ArrayList<Client>();
19 public String city=null;
20 public int cMax;
21 public int rMax;
22 }
23
24 public class Client {
25 public String cName;
26 public String cID;
27 }
28
29 public class Car {
30 private String registration =null;
31 private Branch ownedBy=null;
32 }
33
34 public class Reservation {
35 public String reference ;
36 public Client made=null;
37 public Branch pickup=null;
38 public Branch dropoff=null;
39 public Car For=null;
40 }

Fig. 8.1. Fragments of classes from package rentalService

the execution breaks (at line 5). (2) If the index is valid, i.e. the correspon-
ding Reservation object exists but the car has not been picked up yet, the
execution breaks (at line 11). This case can be recognised using the reference
pickup, which would have been deleted otherwise. (3) If the index exists and
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Car
registration: String

Reservation
reference:String

Branch
city: String
cMax: int
rMax: int

Client
name: String
id: String

Rental

*

car

1

0..1

cars
*

1

clients
*

*

client

1

*

pickup

0..1

*

dropoff

0..1

1 branches *

1

reservations

*

Fig. 8.2. Type graph for the Rental example

the car has been dropped off, the car is returned to the branch where it
has to be dropped off and the Reservation object is removed from the list of
reservations. Figure 8.4 presents an implementation of method showReservati-

1 public Boolean dropoffCar(String resId ){
2
3 int resIndex = this . getReservationIndex ( resId );
4 if ( resIndex==−1){
5 return false ;
6 }
7
8 Reservation reservation = this . reservations .get( resIndex );
9 // check if the reserved car has been picked up already

10 if ( reservation .pickup!=null){
11 return false ;
12 }
13
14 // return reserved car to the dropoff branch
15 reservation . dropoff . cars .add( reservation . car );
16 // remove reservation object
17 this . reservations .remove(resIndex);
18 return true ;
19 }

Fig. 8.3. Implementation of method Rental.dropOffCar()

onForClient. Given a clientId, the list of all existing reservations is traversed to
find all those reservations made by the client with clientId. These reservations
are returned. ut
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1 public ArrayList<Reservation> showReservationsForClient(String clientId ){
2
3 ArrayList<Reservation> cReservations = new ArrayList<Reservation>();
4 for (Reservation reservation : reservations ){
5 if ( reservation . client . cId . equalsIgnoreCase( clientId )){
6 cReservations .add( reservation );
7 }
8 }
9 return cReservations ;

10 }

Fig. 8.4. Implementation of method Rental.showReservationsForClient()

By invoking a method of interest, we can analyse its trace with respect
to the objects and fields accessed. The object referred to by this() and all
objects reachable from it define the scope of the execution. They are needed
to construct the rule instance representing this execution. Read access deter-
mines the additional context whose existence is required in order to execute
the method. Calls of getter and setter methods are used to observe read and
write accesses at field level, yielding corresponding actions on attribute values
or objects and references dependent on target types.

Collections such as sets and lists have to be treated in a special way. A
getter call yields a complete collection, while calls of add and remove result in
adding or removing references between the collection and corresponding ob-
jects. Additionally, the call of collection methods elements() and size() require
read access to a collection.

Example 8.3 (rule instances). Figure 8.5 shows four rule instances extracted
from four calls to method dropOffCar() with different arguments and in dif-
ferent internal states. The topmost instance reflects the behaviour when the
ArrayList of reservations is empty. This leads to a failure of the search for a
reservation matching the given resId in lines 1–6 in Fig. 8.3. The execution
breaks, and therefore the instance does not have any action, nor any further
context. In the second instance, the Reservation object Leicester_12 exists, but
the execution breaks as well, since the car has not been picked up yet. This
can be seen from the presence of the reference pickup, which would have been
removed by an invocation to pickupCar(). Since this execution of dropOffCar()
stops in line 11 in Fig. 8.3, the resulting second rule instance does not contain
any action either.

The third instance reflects an execution of the third path in a state where
the Reservation object Leicester_8 is the only object accessed by the call to
getReservationIndex() in line 3 of Fig. 8.3. This method is responsible for se-
arching through the ArrayList of reservations and returning the index of the
object matching the given resID. The conditions in lines 4 and 10 are false, so
there is no return from the method there, and the last lines of this method are
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false = dropOffCar("Leicester_1")
964628083: Rental

false = dropOffCar(“Leicester_12”)
964628083: Rental

2004270537:Reservation
reference = “Leicester_8”

reservations

363100463: Branch

pickup

true = dropOffCar(“Leicester_8”)
964628083: Rental

1022543124:Reservation
reference = “Leicester_8”

363100463: Branch

66755446:Car

dropoff

car

reservations cars

true = dropOffCar(“Leicester_3”)
964628083: Rental

3234849736:Reservation
reference = “Leicester_3”

1022543124:Reservation
reference = “Leicester_8”

05674285216:Reservation
reference = “Leicester_5”

363100463: Branch

552389703:Car

dropoff

car

reservations

reservations reservations cars

Fig. 8.5. Rule instances extracted from three calls of the method in Fig. 8.3

reached. In particular, the two statements in lines 15 and 17 are transferred
to actions in the contract instance.

The bottommost rule instance is the result of a similar execution except for
the fact that getReservationIndex() needs to access three Reservation objects
in order to find the one whose reference equals Leicester_3. As a consequence,
two additional Reservation objects appear in the rule instance as context. ut

8.1.3 General Rules and Contracts

Information about objects, references and attributes created, deleted or modi-
fied in a rule instance allows us to create a minimal rule describing the effect
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of the execution without any additional context. Two rule instances realising
the same effect share the same minimal rule.

A minimal rule is constructed by cutting out all context not needed to
achieve the observed changes and not required as the this object, input or
return parameters. Concrete attribute or parameter values are replaced by
variables. The result is a classification of instances by effect. Considering a
set of all instances with the same minimal rule, they have the same overall
effects in terms of the creation or deletion of objects and links, but potentially
different preconditions.

Example 8.4 (minimal rules). The minimal rule describing the effect of the
first two rule instances in Fig. 8.5 is shown in the left of Fig. 8.6. There is no
effect, so the this object of type Rental is the only element. The variable resId
for the input parameter is chosen to match that in the operation signature.

dropOffCar(resId) = false
:Rental

dropOffCar(resId) = true
:Rental

:Reservation

:Branch

:Car

reservations cars

Fig. 8.6. Minimal rules derived from the rule instances in Fig. 8.5

The last two rule instances in Fig. 8.5 share the minimal rule in the right
of Fig. 8.6. This rule contains the two effects of removing the reservations
link from the this object and adding the cars link to an existing Branch, the
respective source and target objects required for these links, and the attribute
of the Reservation object matched by the input parameter. ut

To generalise the preconditions of a set of rule instances sharing the same
minimal rule, we infer one so-called maximal rule, which extends the mini-
mal rule by all context that is present in all rule instances, essentially the
intersection of all its instances’ preconditions. A maximal rule represents a
general specification of one possible case of executing the operation, typically
corresponding to a path through the method’s code.

Example 8.5 (maximal rules). The maximal rules inferred from the rule in-
stances in Fig. 8.5 are shown in Fig. 8.7. The first one, in the left of the figure,
is identical to its minimal rule, because the smallest rule instance with this
minimal rule, shown in the in top of Fig. 8.5, does not contain any further con-
text. The rule in the right of Fig. 8.7 is the maximal rule derived for the last
two rule instances in Fig. 8.5, sharing the minimal rule in the right of Fig. 8.6.
This maximal rule is also structurally identical to the smaller instance with
the single Reservation object, omitting the two additional Reservation objects
only occurring in the last instance. ut
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dropOffCar(resId) = false
:Rental

dropOffCar(resId) = true
:Rental

:Reservation
reference = ref

:Branch

:Car

dropoff

car

reservations cars

Fig. 8.7. Maximal rules derived from the rule instances in Fig. 8.5

8.1.4 Universal Context

Preconditions present in all contracts are candidates for global invariants. To
identify and cut out such invariant context, we compare the preconditions of
all maximal rules across all contracts to identify structures that are univer-
sally present. Universal context presented as global invariants (and therefore
removed from the rules) can reduce the size of contracts, making them more
concise and readable.

Example 8.6 (extracting universal context). The Rental object occurs in each
rule, so it is a candidate for being moved into a global invariant. Note that
it is still needed as part of the effect specification in the rightmost maximal
rule in Fig. 8.7, since the link to the reservation with reference resId has to be
removed. ut

8.1.5 Attribute Conditions and Assignments

While the structural view is naturally expressed by graphical patterns, con-
straints or assignments over basic data types are more adequately expressed
in logical terms. Let us consider how attribute constraints for rules can be
inferred. Suppose a rule instance op(a1, . . . , an) has attribute and parameter
values a1, . . . , an. A maximal rule r = op(x1, . . . , xn) generalising a number
of instances with identical effect has a set of local variables and formal pa-
rameters x1, . . . , xn. Since the maximal rule r is embedded by a match into
every rule instance it subsumes, this match defines an assignment of the lo-
cal variables x1, . . . , xn → a1, . . . , an. If we fix the order of x1, . . . , xn, each
assignment becomes a vector of values to be fed into a machine learning tool
capable of deriving logical constraints.

A set of logical constraints can be generated that are valid for all those
assignments provided. These constraints are integrated into the graphical part
of the contract where each constraint becomes part of the pre- or postcondition
depending on whether the variables used occur in the left- or right-hand side
or both, or if they refer to the operation’s parameters.
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Example 8.7 (resulting visual contracts). Starting from the rule instances in
Example 8.3, we can derive the visual contracts as follows. We abstract from
concrete object identifiers and arguments and introduce formal parameters.
For the sake of clarity, in this example their names are chosen to correspond
to parameter names in the code. Moreover, the Rental object can be removed
partly as described in Example 8.6.

The resulting visual contract is shown in Fig. 8.8. The left rule is empty
because it represents cases without any effect. It is obtained by dropping
the Rental objects from the corresponding rule in Fig. 8.7. The right rule is
structurally identical to its maximal rule, because the Rental object is part
of the effect specification, but has the additional constraint {resId = ref}.
This is derived as an attribute condition because it holds in all rule instances
associated with the corresponding maximal rule. ut

The visual contract derived in the example does not fully capture the
control flow of operation dropOffCar but only the conditions relevant to the
specific case captured by each rule. This could be addressed by additional
control structures, such as a negative application condition or a transformation
unit, which could be derived from the control flow of the code.

dropOffCar(resId) = false

dropOffCar(resId) = true
:Rental

:Reservation
reference = ref
{resId = ref}

:Branch

:Car

dropoff

car

reservations cars

Fig. 8.8. Visual contract for dropOffCar() derived from the maximal rules in Fig. 8.7

8.1.6 Multiobjects and Multipatterns

The contracts extracted so far may use many rules to describe a single ope-
ration. When iterating over containers, for example, the set of rules is po-
tentially unbounded. Some of them may differ only in the number of objects
manipulated while performing the same actions on all of them. Multiobjects
and multipatterns are introduced as a concise way to specify constraints and
actions across sets of similar structures, i.e. to summarise sets of similar rules.

To extract rules with multiobjects, we have to discover sets of equivalent
objects (that have the same structure and behaviour) and represent them by a
multiobject node. We consider only multiobject nodes that are part of minimal
rules, because their typical use is to describe universally quantified effects
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(rather than preconditions). If several rules with multiobjects are isomorphic
after inferring multiobjects, the original rules can be replaced by a single rule
with appropriate cardinalities reflecting the generalised case.

Two objects are equivalent if (1) they are of the same type, (2) they are
part of the minimal rule, and (3) they have the same context (incident edges
of the same type connected to the same nodes) in the pre- and postcondition
(and thus specify the same actions). Assuming for every operation op a set of
maximal rules as constructed above, we derive contracts with multiobjects in
two steps as follows:

• Merge equivalent objects: For each rule r in a given set of maximal rules and
each non-trivial equivalence class of objects in r, one object is chosen as the
representative for that class and added to the set of multiobject nodes for
r, while all other objects of that class are deleted with their incident edges.
The cardinality of the multiobject node is defined to be the cardinality of
its equivalence class (the number of objects it represents).

• Combine isomorphic rules: A maximal set of structurally equivalent ru-
les constructed as above, differing only in their object identities and the
cardinalities of their multiobject nodes, forms an equivalence class. For
each such class, we derive a single rule by selecting a representative for
this class and assigning to each of its multiobject nodes the union of the
cardinalities of the corresponding nodes in all the rules in the same class.

• Multipattern inference: Occasionally we require universal quantification
not just on a single object but on a more general structure. Multipatterns
provide this extension. To derive contracts with multipatterns, we discover
equivalent graph fragments within a rule r that can be represented by
a multipattern. A graph fragment consists of nodes and edges that do
not necessarily form a graph themselves, because edges in the fragment
may be connected to nodes outside the fragment, called boundary nodes.
Two fragments f and f ′ in r are equivalent if (1) they are isomorphic
(share the same shape, typing and attributes), and (2) they have the same
external connections within r, i.e. they share the same boundary nodes.
We choose one representative of a set of equivalent fragments to infer the
multipattern.

Example 8.8 (visual contracts with multipatterns). Two rules for the operation
showReservationForClient can be deduced for the method shown in Fig. 8.4.
They are depicted in Fig. 8.9. The topmost rule shows one reservation for client
c1, while the middle shows two reservations for client c2. The derived rule is
shown at the bottom of Fig. 8.9. It contains a multiobject R of reservations
for client c. According to the semantics of multiobjects in rules, R is applied
to all reservations that a matched client has made. ut
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showReservationsForClient(“c1”) = {r1}

r1:Reservation c1:Client
id = “c1”client

showReservationsForClient(“c2”) = {r2,r3}

r2:Reservation c2:Client
id = “c2”client

r3:Reservation

client

showReservationsForClient(c) = R

R:ReservationR:Reservation
c:Client
id = cclient

Fig. 8.9. Two maximal rules (top) and the resulting multiobject rule (bottom) for
showReservationsForClient()

8.2 Correctness and Completeness

We want to understand to what extent the contracts extracted provide an
accurate description of the software’s behaviour. We answer this question by
considering the correctness and completeness of derived contracts.

For every state s in the implementation, there exists a corresponding object
graph G(s) at model level, obtained by representing all objects in the scope
of observation (i.e. that are instances of the classes selected for tracing) as
nodes, with object-valued attributes as edges and data-valued attributes as
node attributes. A model is correct, if for every valid state s and every valid
contract invocation, a step from G(s) to some graph H in the model implies a
step in the implementation from state s to a new state s′ such that H = G(s′).
This means that the model does not allow behaviour that is not implemented
by the system. Conversely, completeness means that for each valid state s, a
step caused by an operation invocation of the implementation leading to a
state s′ must be matched by a step from graph G(s) to graph G(s′) in the
model, i.e. all the system’s behaviour is captured by the model.

Extracted models are usually neither correct nor complete. Correctness
may fail because the model is extracted for a part of the system only as iden-
tified by the implementation classes selected for tracing. Anything outside this
scope of observation is not recorded and therefore not represented by the mo-
del. This means that if the implementation checks a condition that is defined
on an object outside that scope, this check is not reflected in the precondition
of the contract. If this check fails, a corresponding step in the model may not
be reflected by this step in the implementation. However, we can expect that
whenever both, the implementation and the model preconditions are satis-
fied, the observable effect of the implementation-level step matches the effect
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of the model-level step. The comparison is moderated via the mapping G of
implementation states to object graphs, which takes account of the selected
scope.

Completeness may fail because test runs usually do not reflect the com-
plete behaviour of a system. The dynamic approach to extracting contracts is
inherently dependent on the range of behaviours observed. System behaviour
that has not been observed will not be reflected in the model. So, what can
we realistically hope to achieve? A restricted form of completeness should re-
quire that the observed behaviour is present in the model. This means that,
when we execute the tests that the model was extracted from, all steps in the
implementation should be matched by the model.

Example 8.9 (reflecting on visual-contract extraction from dropOffCar()). In the
following, we reason about the correctness and completeness of our example
contract extraction. Figure 8.2 shows the classes selected for tracing. Test
runs for method dropOffCar were chosen such that the complete body of this
method was covered. If we invoke method dropOffCar() with any reservation
id on some state s yielding state s′, one of the corresponding visual contracts
in Fig. 8.8 is applicable to G(s) yielding a graph isomorphic to G(s′). Hence,
the restricted form of completeness can be shown for this example. ut

More generally, owing to the method of model extraction, we can assert
that the model and implementation should show the same behaviour at least
for the test runs used. In particular,

• a contract instance captures precisely the preconditions and effects relevant
to the invocation it is derived from, within the scope of observation;

• a minimal contract instance captures exactly the effect of the contract
instances it is extracted from;

• a maximal contract instance subsumes all contract instances it is derived
from, i.e. every contract instance can be replicated as an application of the
maximal contract instance;

• a contract with multipatterns is (more concise, but) equivalent to the set of
maximal contract instances it is derived from, i.e. by retaining the original
contracts’ cardinality information, they describe exactly the same set of
transformations, and

• the parameter and attribute constraints derived do not invalidate any of
the contract instances their maximal instance originates from.

8.3 Summary and Further Reading

This chapter has presented an automated reverse engineering approach for
Java programs yielding visual contracts that specify pre- and postconditi-
ons of operations. This approach is dynamic, as visual contracts are inferred
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from tracing the execution of Java operations. The reverse engineering pro-
cess requires us to define the scope of observation and to provide test cases
for the relevant operations. It proceeds by synthesising rule instances, com-
bining them and generalising them to general specifications of the operations
by means of attributed graph transformation rules.

8.3.1 Tooling

The inference of visual contracts from Java programs as presented in this
chapter has been implemented in a proof-of-concept tool [15] supporting the
following steps. A tracer observes test runs of a given Java program within
a specific scope defined on the basis of AspectJ. It produces visual-contract
instances that are generalised afterwards using graph matching. The inference
of generalised contracts uses Daikon [100], a machine learning tool that is
capable of deriving logical constraints. The resulting visual contracts can be
exported to Henshin [22, 139], a model transformation language and tool based
on graph transformation.

8.3.2 Evaluation

In [15], experiments were reported on two case studies to evaluate the scalabi-
lity of the presented approach to both large numbers of invocations and large
object graphs. The case studies were based on NanoXML and JHotDraw,1
both popular benchmarks for software testing and analysis, and representa-
tive of the kind of system our method would be appropriate for, i.e. with
significant and dynamic object structures in their core model. In NanoXML,
this is the object representation of the XML tree; for JHotDraw, it is that of
graphics objects.

NanoXML is a small non-validating XML parser for Java, which provides
a lightweight, standard way to manipulate XML documents. The experiments
were based on version 2.2.1, which consists of three packages and 24 Java
classes, focusing on two classes, XMLElement and XMLAttribute, which provide
the functionality to manipulate XML documents. In particular, all XMLElement
methods were monitored, executing 5605 test cases in order to evaluate the
handling of large numbers of invocations.

These tests covered 2099 out of 5836 instructions. Each test generated a
single rule instance from which minimal and maximal rules, multiobjects, and
constraints were extracted. The results showed that the efforts for tracing, rule
instance construction and extraction of minimal rules were essentially linear,
as was the derivation of constraints and multiobjects. The construction of
maximal rules requires one to compare all rule instances with shared minimal
rules, which is quadratic in the number of rule instances that share the same
effect.

1 See http://nanoxml.sourceforge.net/orig/ and www.jhotdraw.org/.

http://nanoxml.sourceforge.net/orig/
www.jhotdraw.org/
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JHotDraw is a Java GUI framework for technical and structured graphics,
developed as an exercise in good software design using patterns. Here, version
5.3 was used, which has 243 classes, focusing on the top-level methods for
the manipulation of graphs. Test cases were created by GUI testing using
WindowTester2 to generate tests by recording user interactions. This resulted
in 405 test cases covering 9284 of 34710 instructions. Based on the recorded
test cases, the total run time of the extraction was about 3 hours 15 mins. The
scalability is analogous to that of NanoXML, but the quadratic component
of maximal-rule extraction was less significant owing to the smaller overall
number of rule instances.

The evaluation also showed a proportionality between model accuracy and
code coverage, in particular branch cover. Moreover, a user study was con-
ducted to find out how visual contracts can help developers in assessing test
reports and localising faults. This confirmed an important benefit of visual
contracts, i.e. that they are not linear but able to correlate items of informa-
tion across more than one dimension.

8.3.3 Extensions

In this chapter, we considered typed attributed graphs with subtyping between
node types. Extracted rules can have attribute conditions, multiobjects and
multipatterns. It is possible to extend the approach to generate basic control
structures such as negative application conditions and simple transformation
units. For example, in the case of operation dropOffCar() in Fig. 8.8 we could
use negative conditions, priorities or a control expression to prefer the rule on
the right, considering the two identity rule on the left as failure case.

Owing to the way executions are logged, the approach is limited to se-
quential programs. To extract contracts from a concurrent execution, where
more than one invocation can be active in parallel, we would have to find a
way to allocate access to objects and attributes to one of the active invoca-
tions. Thereafter, the synthesis and generalisation of rules could proceed as
presented here. It would be interesting to consider how closely the concurrent
semantics of graph transformations matches the behaviour of concurrent Java
programs.

8.3.4 Applications

The automatic inference of visual contracts can be applied in several ways
such as to specify services in the context of service-oriented computing (see
Chapter 6), to document the behaviour of Java libraries, to generate further

2 A tool to record GUI tests for Swing applications; see https://developers.
google.com/java-dev-tools/wintester/html/gettingstarted/swing_
sampletest.

https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
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test cases (see Chapter 7) and to provide a visual form of debugging of Java
programs. We go into more details for three of these applications.

Given the implementation of a provided service together with representa-
tive example runs, a correct-by-construction service description by means of
visual contracts can be extracted. With s service request specified as a visual
contract, Chapter 6 presents how such specifications can be used for matching.

To understand the relation between visual-contract extraction as presented
here and testing using visual contracts discussed in the previous chapter,
observe that this is a reverse engineering approach, while testing is part of
forward engineering. Testing software against contracts extracted by running
the same version of the code is an interesting way to evaluate the correctness of
the overall approach, but otherwise redundant. Instead, testing and extraction
can be combined in a reengineering cycle, extracting visual contracts from an
old version of the software to generate regression tests for a new version.

Another application of reverse engineering Java programs is debugging [15].
Debuggers are used to inspect the behaviour of a program step by step. Star-
ting at a specified breakpoint, changes in the program state are inspected. As
users are interested only in part of the program’s behaviour, they could use
visual contracts to observe localised changes. Besides providing a visual form
of debugging, this can also raise the level of abstraction from the code to a
model.



9

Stochastic Analysis of Dynamic Software
Architectures

The high-level structure of a software system is referred to as its software
architecture. Apart from the functionality to be supported, its design is de-
termined by non-functional requirements, such as platform and location in-
dependence, scalability, and reliability. In this chapter, we want to consider a
method that uses graph transformation for probabilistic and stochastic mo-
delling of systems such that non-functional requirements can be analysed. We
will illustrate the approach by means of a model of our VoIP application.

Let us consider some examples of non-functional requirements for such an
application:

1. The VoIP services should be provided in a location-independent way to
allow access from mobile or fixed devices through a range of different
types of connection.

2. The system should be highly scalable while remaining free of charge, thus
imposing limits on the allowable infrastructure cost to the provider.

3. The system should be reliable in the sense that, at any time with high
probability, everyone in the network should be able to call everyone else.

The first requirement calls for the use of a ubiquitous underlying transport
network, such as the Internet, so the application is designed as an overlay
voice-over-IP network, i.e. an application-level network where VoIP clients
maintain their own connections. Requirement 2 suggests the use of a peer-to-
peer architecture, where management tasks, such as establishing connections,
are performed by clients, minimising the need for central infrastructure. Requi-
rement 3 calls for a mechanism to ensure fault tolerance, such as maintaining
an appropriate level of redundancy to cope with loss of connections or clients.

In general, designing a software architecture means making fundamental
structural choices that are hard to change once implemented. It is therefore
imperative to document the architecture of a system unambiguously and cle-
arly, both to facilitate discussion and agreement between stakeholders and
to assess if functional and non-functional requirements will be met. To sup-
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port both purposes, an architectural description needs to be readable and to
support suitable analysis techniques.

In particular, non-functional properties are difficult to assess before an ap-
plication is fully developed and deployed and many failures in software projects
have been attributed to a lack of understanding of the impact of early design
choices on non-functional aspects [110]. In distributed and mobile applicati-
ons, factors such as the availability and bandwidth of network connections,
computing resources, and the behaviour of end users have a major impact
on the overall performance. For example, the time taken to establish a VoIP
connection in a P2P network will depend on the length of the shortest path
between the caller and the callee, which will vary over time owing to peers
joining and leaving the network.

Such factors, which are external to the application, are often unpredictable
at an individual level. However, assumptions about external factors can be
formalised using probabilistic or stochastic methods. For example, while we
may not know for an individual user if they will accept a connection request
or for how long they will remain connected, we may be able to get statistical
information about their probability of accepting requests or the average time
connected. In the first case we have a probabilistic model, probabilities being
used to specify alternative actions or outcomes available in a given state. In
the second case, to model uncertainty in timing, we use a stochastic model
equipped with a continuous notion of time to describe the probabilities of
certain delays or durations of actions.

It follows from this discussion that any approach to documenting and
analysing software architectures of the type encountered in today’s mobile
and distributed applications should have the following characteristics:

• understandability to domain experts, software architects and developers;
• ability to model distributed structure and dynamic changes in the network;
• support for expressing non-functional requirements, including probabilistic

or stochastic properties;
• capability for probabilistic or stochastic modelling and analysis.

Architectural description languages typically use graphical notations, for
example based on UML, to support understandability by a wide range of
stakeholders. To specify the set of all possible configurations of a system,
structural models describe the types of components and connectors available
and the constraints governing their composition, e.g. using variants of class
and object diagrams for the type and instance levels, respectively. The ability
to model structural changes at a similarly high level is often limited. Dyna-
mic reconfiguration may be programmed or scripted but is rarely expressed
graphically.

To support the specification and analysis of non-functional properties, ar-
chitectural designs are often mapped to low-level semantic models such as
stochastic transition systems (or Markov chains [16, 224]), automata-based
languages such as UPPAAL [39], stochastic Petri nets [223, 217, 14, 38] or
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process calculi [71, 237, 51]. Most of these describe behaviour in terms of the
ordering of events, neglecting aspects of data transformations and changes
to software architecture or network topology. The stochastic π-calculus [237],
which allows one to describe dynamic reconfigurations, is an adequate seman-
tic framework for programming, but too low-level for expressing designs in an
implementation-independent way, i.e. what changes are required, instead of
how they are achieved.

The properties themselves can be expressed using probabilistic or stochas-
tic logics. For example, the reliability requirement 3 in the P2P example can
be formalised by a so-called steady-state property saying that, in the long run,
the probability of the network being disconnected must be below a certain
threshold. The scalability requirement 2 can be expressed, for example, by
the requirement that the time for a peer to connect to the network should not
increase significantly with the number of peers in the network. This is called
a transient property which states the probability that an event occurs within
a certain time interval, for example 99% of connection requests are answered
within 2 seconds.

Such properties can be verified through model checking based on stochastic
automata, transition systems or Markov chains, or by simulating the system
model and observing its performance. Model checking requires a translation
from the high-level modelling language to the semantic language used for
analysis. Simulations can be performed on the model directly, in a variant of
model-level testing coupled with a statistical analysis of the test results.

We have argued before that graph transformations are unique in providing
an intuitive visual modelling technique for structural and data transformati-
ons, equipped with both an operational semantics and a formal mathematical
interpretation that supports analysis. Rules specify pre- and postconditions
of operations in terms of complex patterns describing what transformations
should be achieved rather than how they should be realised. While other
languages or formalisms share some of these characteristics, graph transfor-
mations are unique in having this combination of features.

Stochastic graph transformation systems (SGTSs) [133, 132] add the abi-
lity to specify and analyse non-functional properties, such as the performance
and reliability of these models. They extend graph transformation systems
by continuous time, associating a random application delay with each rule.
As a result, we are able to derive semantic representations for stochastic ana-
lysis, such as continuous-time Markov chains (CTMCs) [224], a stochastic
extension of transition systems. By allowing one to specify timed probabilis-
tic properties, such as the probability of being connected to the service within
20 seconds after start-up or the long-term probability that a service will be
available, CTMCs form the basis for powerful analysis techniques and tools.
SGTSs enable the use of these techniques for models of dynamic networks,
where, as argued above, time-based probabilistic performance properties are
particularly relevant.
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For example, in the VoIP model this will allow us to answer questions about
the availability of network services in the case of different connection protocols
running at different speeds. Availability is interpreted as the probability of
the network being connected, so that every participant can communicate with
every other one. The high-level effects of protocols are specified by rules. Their
relative speed is defined by probability distributions governing the delay of
their application. We will discuss the use of simulation and model checking to
analyse this system in order to assess different alternative protocol.

In this chapter, we illustrate the use of stochastic graph transformation sy-
stems by modelling a simplified version of the VoIP network. From a software
engineering perspective, we follow a methodology that starts by identifying the
high-level requirements to be verified. These requirements inform our archi-
tectural modelling, which includes a structural dimension as well as the rules
for architectural adaptation. The model is validated using sample state graphs
and transformations. For the resulting graph transformation system, we define
distributions for the timing of rules, resulting in a stochastic system. We then
formalise the stochastic properties and verify them using model checking or
simulation.

After recalling the functional model of the VoIP network in Section 9.1, we
introduce and illustrate stochastic graph transformation systems in Section 9.2.
Section 9.3 explains how such models can be analysed using simulation and
model checking and Section 9.4 summarises the methodology of stochastic
modelling and analysis using graph transformation systems. We conclude this
chapter with a discussion of tools and relevant theoretical problems. Since
stochastic graph transformation systems extend typed attributed graph trans-
formation systems, it is worthwhile to be aware of the concepts introduced in
Chapters 1 and 2 before reading this one. We will refer to analysis techniques
such as model checking of graph transition systems as discussed in Section 4.5.

9.1 A Peer-to-Peer Network Model

Peer-to-peer (P2P) networks are decentralised, self-organising application-
level networks. Owing to the lack of global control and the unreliability of
the underlying network infrastructure, P2P networks are prone to dependabi-
lity problems. One common solution consists in creating sufficient redundancy
to ensure that, when a node unexpectedly leaves the network or is unreacha-
ble, its role in storing and routing information can be taken over by other
nodes. For example, the VoIP network Skype used to be based on a P2P
architecture before it was hosted on Microsoft’s cloud services. The P2P ar-
chitecture provided a scalable solution without the need to invest heavily in
infrastructure.

Mariani [198] proposed an algorithm which, when executed asynchronously
by each peer, adds redundant connections to the network to guarantee that
the disappearance of a peer does not unduly affect the overall performance and
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routing capabilities of the network. It does so by querying the local context
of a node up to a given depth to expose potential weaknesses in the network
topology. The assumption is that this happens fast enough to prevent loss of
connectivity owing to the disappearance of a node before extra links can be
added. The desired result is increased fault tolerance.

The idea is to compare the level of fault tolerance achieved by this syste-
matic approach with that obtained by the simpler solution of adding a limited
number of references at random. For this purpose, we model two protocols, a
random protocol and a systematic one following Mariani [198], by stochastic
graph transformation systems and analyse different variants to find out, for
each version of the model, the probability of encountering a state where the
network is disconnected.

TG

Super
ovl

Fig. 9.1. Type graph for simple P2P model

Example 9.1 (P2P network rules). We first recall the structure and operations
of the VoIP network model introduced as our running example in Chapter 2.
In that model, graphs represent configurations, modelling network nodes as
vertices and links between them as edges. For simplicity we consider only the
super node network, ignoring client peers and users, so our type graph in
Fig. 9.1 contains only one node and one edge type.

The rules for the P2P network model are shown in Fig. 9.2. Rule new
creates a new node of type Super and links it to an existing node s with a new
edge of type ovl. Rule end models the deletion of a node s with all its ingoing
and outgoing edges. This may cause the network to become disconnected.

The rule disconnected detects such situations. It is applicable if two nodes
s1, s2 are not connected by a path of ovl edges. Note that the application
does not have any effect on the graph. It is used only to generate a loop in the
transition system on every state whose graph is disconnected. This is achieved
by a negative application condition containing a path expression.

The rule smart models the approach of adding redundant links where the
network is weak, i.e. where the removal of a node would result in lengthening
the shortest path between two remaining nodes. It is identical to the shortcut
rule in Fig. 2.17. The rule random models the naive approach of adding links
at random as long as the number of additional ovl edges attached to either s2
or s3, beyond the ones linking them to s1, does not exceed two. Hence, the
rule will not increase the degree of any node beyond three. This condition
is expressed by negative conditions too, each involving a multiobject with a
cardinality constraint.
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new(s): e(1)
LHS
s: Super

RHS
s: Super

: Super

ovl

end(s): lnm(0,1)
LHS
s:Super

RHS

disconnected(s1,s2)
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s3:Super
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Fig. 9.2. Rules for nodes joining and leaving the network

Let us consider the different effects of rules smart and random. In the net-
work graph shown in Fig. 9.3, for example, there are several possible applica-
tions of the random rule such as to three of the outer corners of the square of
nodes, that would create additional edges. However, only the edge from s2 to
s4 will improve the resilience of the network against loss of connectivity in the
event of the removal of a single node. This is indeed the only edge added by
the smart rule, while the random rule is not applicable to this match because
s2 already has three connections. ut

Recall that the timing of operations such as those modelled by rules new
and end is unpredictable, because it depends on user behaviour. This is captu-
red by probability distributions specifying random delays for the application
of these rules. For example, for rule new, which is always applicable as long as
there is at least one node to connect to, we use an exponential distribution
with rate 1 that defines the average frequency at which new nodes will join
while allowing for random intervals between consecutive applications. The end
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s0:Super s1:Super

s4:Super

s2:Super

s3:Super

ovl
ovl ovl

ovl
ovl

ovl

Fig. 9.3. P2P network graph

rule is applicable to any node in the network, representing either the decision
of the user to terminate the node or a loss of the network connection. It has a
log-normal distribution, representing the time a node remains in the network.

Fig. 9.4. Exponential probability density functions with different rates c = λ.1

We usually consider exponential distributions e(c) or log-normal distri-
butions lnm(m, d). Exponential distributions are specified by a positive real
number c, representing the rate of the exponentially distributed delay of the
application. This means that the rate c defines an average delay of 1/c for the
application of a rule r once a match for r exists in the current graph. The
exponential distribution describes a random process in which events occur
independently of each other, at a given rate per unit of time. Examples of
such phenomena include radioactive decay, occurrences of a rare disease in a
large population and the arrival of a packet of information on the Internet.
The probability density functions for a range of rates c = λ in Fig. 9.4 show
how higher rates lead to lower values of the delay x being more likely.

Log-normal distributions are a typical model for the response times of
both humans and software performing or controlling a given task. Such a
distribution is characterised by a location parameter m and a scale parameter
d, the standard deviation on a logarithmic scale. Examples of probability
density functions withm = µ = 0 are shown in Fig. 9.5. We can see how higher
standard deviations lead to a higher likelihood of longer delays. In contrast to

1 From Wikipedia Commons, commons.wikimedia.org/wiki/File:Exponential_
pdf.svg

commons.wikimedia.org/wiki/File:Exponential_pdf.svg
commons.wikimedia.org/wiki/File:Exponential_pdf.svg
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exponential distributions, where the probability of an event occurring in the
next time interval decreases uniformly over time (accounting for the increasing
probability that it has already happened), a log-normal distribution has a peak
where the event is most likely (for example the most common duration of a
phone call), with both shorter and longer delays less likely.

Fig. 9.5. Log-normal probability density functions with identical parameter m = µ
but but differing parameters d = σ.3

Pragmatically, this means that if only the average delay d of an event is
known (e.g. customers arrive at a supermarket queue at average intervals of d),
we choose an exponential distribution with rate 1/d. If, in addition, we know
that delays closer to the average are more likely than those further away from
it, we use a log-normal distribution. Given a set of data points representing
sample delays, there are statistical methods to calculate the distribution’s
mean and standard deviation parameters. For example, for the mean we apply
the natural logarithm to each sample delay value and then take their average.

In our example, where we do not have sample data, we are not interested
in any specific delay values but in the effects of the relative timing between
the rules for creating and ending of peers and the repair operations of the
network. Therefore, we use rate 1 and mean 0, both describing an average
delay of 1 for their respective operation.

Example 9.2 (distribution rates). In Fig. 9.2 we indicate exponential distri-
butions by e(c), with the rates c being constants or variables, following the
parameterised rule name inside the arrow. For example, new(s): e(1) indicates
an exponential distribution with a rate of 1, which means that on average this
rule will be applied once per unit of time for each match of the left-hand side
to an existing node s.

Since rule new is applicable to a node in the network throughout its lifetime,
this means that the delay (the time between the rule becoming applicable and
its eventual application) is on average 1/1 = 1 unit of time. Since this rule

3 From Wikipedia Commons, commons.wikimedia.org/wiki/File:PDF-log_
normal_distributions.svg?

commons.wikimedia.org/wiki/File:PDF-log_normal_distributions.svg?
commons.wikimedia.org/wiki/File:PDF-log_normal_distributions.svg?
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is applicable again and again at the same match, this delay represents the
average time between two applications, i.e. a node receives a new neighbour
on average once every unit of time.

The rates s, r for smart(s1), random(s1) are variables ranging from 1 to 10000
when the model is analysed for the effect of different relative speeds of ope-
rations on the quality of the network. Rule disconnected does not model an
operation but a query. It is not assigned a distribution, because it is not
meant to be applied, but only used to observe a property of the state graph.

Rule end is also applicable to a node as soon as it is created. A log-
normal distribution lnm(0, 1) with mean 0 and standard deviation 1 specifies
an average delay of 1 unit, with delays around the average more likely than
longer or shorter ones. In our model, this delay represents the average time a
node remains in the network. The distribution of end(s): lnm(0,1) is visualised
in the lowest (blue) line in Fig. 9.5.

ut

9.2 Stochastic Graph Transformation

A stochastic graph transformation system is a typed graph transformation
system that associates with each rule a probability distribution over time des-
cribing by how much its application is delayed once a match becomes available.
Formally, a stochastic graph transformation system SG = 〈TG,R, F 〉 consists
of a graph transformation system 〈TG,R〉 and a mapping F assigning each
rule r ∈ R a continuous probability distribution F (r) : R → [0, 1] such that
F (r)(0) = 0.

The operational interpretation of stochastic graph transformation is based
on simulation. With the start graph G0 as the initial current state G, and
setting the simulation time to t = 0, we first determine the set E(G) of
enabled events, i.e. all rule matches e = r(m) of rules r ∈ R and matches m
for r in G.

For each enabled event, a scheduling time te is computed by a random
number generator (RNG) based on the probability distribution assigned to
the event. Timed events are collected in a schedule (a list ordered by time).
Then, at each simulation step:

1. The first element (e, t) is removed from the schedule.
2. The simulation time is increased to t.
3. The rule match r(m) is applied, changing the current state graph.
4. The new schedule is computed, based on the new current state graph,

removing all events past the current time, as well as those that are no
longer enabled in the current state graph, and adding to the schedule an
event for each newly enabled rule match r(m) with time t = t+ d, where
d is provided by the RNG depending on r’s distribution.
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An RNG draws a random value from a given probability distribution, in
this case a distribution over time of the delay of the event after it has been
enabled. The probability of a particular value being drawn depends on the
type and parameters of the distribution. The result is a timed sequence of
transformation steps

(G0, t0) =r1(m1)====⇒ (G1, t1) =r2(m2)====⇒ · · · =rn(mn)====⇒ (Gn, tn),

where t1 is the time of the application of r1(m1) and d1 = t1 − t0 is its delay.

G0 at t = 0
n1: Super

n2: Super

ovl

new(n1): 0.5
end(n1): 0.75
end(n2): 1
new(n2): 2

new(n1)

G1 at t = 0.5
n1:Super

n2:Super

n3:Super

ovl

ovl

smart(n1): 0.6
end(n1): 0.75
end(n2): 1
end(n3): 1.3
new(n1): 1.5
new(n2): 2
new(n3): 3

smart(n1)

G2 at t = 0.6
n1:Super

n2:Super

n3:Super

ovl

ovl

ovl

end(n1): 0.75
end(n2): 1
end(n3): 1.3
new(n1): 1.5
new(n2): 2
new(n3): 3

end(n1)

G3 at t = 0.75
n2:Super

n3:Super

ovl

end(n2): 1
end(n3): 1.3
new(n2): 2
new(n3): 3

Fig. 9.6. A timed step sequence simulating the P2P model

Example 9.3 (P2P model simulation). In Fig. 9.6 we illustrate the idea of a
timed sequence arising from a simulation of the P2P example. The start graph
G0 has two linked Super nodes, which each allow matches for rules new and
end. The four rule matches are scheduled by the RNG for the times shown
in the list below the graph; for example, new(n1): 0.5 means that rule match
new(n1) is scheduled for t = 0.5. According to the simulation algorithm, we
choose this as the earliest event and apply it, leading to graph G1.

The new node n3 enables additional rule matches new(n3) and end(n3).
Their delays, as determined by the RNG, are 2.5 and 0.8, respectively, to
which we add the current time 0.5 to get their scheduled times 3 and 1.3.
There is also a match for rule smart now, which is scheduled for 0.6 and
becomes the next event to be applied.

The resulting graph G2 at time 0.6 has an additional edge, which disables
another application of smart but retains all other rule matches and their times.
The next step is therefore end(n1) which leads to G3 at t = 0.75, where node n1
disappears and therefore all events relying on this node are cancelled. Again
there are no new matches, so no new events are added and the next step will
be end(n2) followed by end(n3) after which the simulation ends.

Note that the choice of rules and matches depends solely on the RNG.
If shorter delays for rule new had been created, it might have been applied
before end, leading to additional matches and a potentially longer simulation
sequence. ut
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In the final discussion in Chapter 4 we stressed that analysis techniques are
limited, by their underlying theory or tool support, to certain features of graph
transformation systems. In terms of the features introduced in Chapter 2,
our model is a typed graph transformation system with negative application
conditions. In addition, to express the graph property of connectedness, path
expressions are used inside negative conditions. We do not support explicit
control flow here, because our operational semantics is based on stochastic
simulation, which chooses available rules and matches randomly.

A consequence of this interpretation is that rule matches in different parts
of the graph are scheduled independently, reflecting the nature of a distributed
system. Therefore, stochastic graph transformation systems tend not to allow
globally programmed control structures, but are limited to rule-level control
such as application conditions. To increase expressivity it could be beneficial
to support transformation units representing strictly local control flow.

Data attributes are possible, depending on the type of analysis required.
If a graph transformation system is to be simulated as above, attributes do
not pose a fundamental problem. Analysis techniques that rely on generating
the state space of the system, such as stochastic model checking, will often
struggle with attributes of arbitrary data types because they can lead to an
infinite number of states.

9.3 Stochastic Analysis

In this section, we discuss two common approaches to verifying properties of
dynamic architectures specified by stochastic graph transformation systems.
The first is stochastic simulation as described above, and the second is based
on stochastic model checking.

9.3.1 Simulation

A stochastic simulation executes the model, generating a timed transformation
sequence that can be seen as a test. However, owing to the random nature of
the process, a single test run does not allow us to draw meaningful conclusions
about stochastic properties. Instead, by running a batch of simulations with
the same start graph we can collect statistics, for example on:

• how many runs terminate after a limited number of steps, as in the example
above;

• what is the average number of peers or links in the network;
• how often certain rules are actually applied, for example to assess the

frequency of use of the smart or random rule;
• what is the proportion of runs that eventually lead to disconnected graphs,

and how long it takes until that happens.
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By varying the model and the rule parameters, we can gain valuable in-
sights about the effect of design decisions. For example, to compare the ef-
fectiveness of the rules smart and random in creating redundancy to prevent
disconnected network graphs, we can run a batch of simulations using rules
Rrandom = {new, end, random} and another one with the same distributions
using Rsmart = {new, end, smart}. We can also analyse the effects of different
delays by modifying the distribution parameters, for example, to find how
quickly the rules random and smart have to react to weaknesses in the network
in order to repair them in time.

9.3.2 Model Checking

While simulations allow us to sample the range of possible system behaviours
and so gain statistical information, model checking allows a comprehensive
analysis of the labelled transition system generated. Our approach to stochas-
tic model checking is based on so-called Markov chains [16, 224], in particular
continuous-time Markov chains obtained by adding the rates of exponential
distributions to the transitions of an LTS generated from a graph transforma-
tion system.

The restriction to exponential distributions is worth noting. In fact, when
we are aiming at stochastic model checking, we work with a simplified notion
of stochastic graph transformation system where, for each rule p, instead of
an arbitrary distribution F (p) we provide the rate ρ(p) = c of an exponen-
tial distribution. This allows us to derive a CTMC which supports efficient
simulation and model-checking techniques.

As introduced before, exponential distributions are single-parameter dis-
tributions that have a wide range of applications in analysing the reliability
and availability of systems. For example, modelling a component’s reliability
with an exponential distribution presupposes that the failure rate is stable,
which is generally true for electronic components during the main portion of
their useful life. This means that the chance of a component breaking down
during the next unit of time is independent of its current age: the memoryless
property. A similar assumption is often used for the arrival of customers at a
supermarket queue or, as in this case, users starting their VoIP clients to join
the network.

Operations such as end, which we have deemed to be governed by log-
normal distributions, have to be approximated by an exponential distribution
with similar expected values (means) of the delay. This may lead to syste-
matic errors, which can be assessed by comparing the results of simulations
on (a small version of) the original model and simulations or model checking
analyses on the CTMC model. For example, in the case of the P2P model we
could simulate the version with log-normal distributions for a small number of
peers, then replace the log-normal by exponential distributions and simulate
the model again to see if we get similar results. If this is the case for the small
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model, we could expect this to hold also for models with larger numbers of
peers.

The questions that can be answered by stochastic model checking fall into
two categories:

• Transient property: Assuming that the current state has a given property
P , what is the probability of reaching a state with property Q within a
certain period of time?

• Steady-state property: What is the long-term probability of finding the
system in a state that satisfies a given property P?

Properties of the first kind are called transient because they depend on the
passage of time. For example, in the case of a system capable of reconnecting
a disconnected network graph, a transient property could state a probability
for the system being reconnected within a certain time limit. A steady-state
property refers to a system’s long-term behaviour. Such a property could
describe the probability of the system being disconnected over its entire life
time.

For analysis methods to be able to answer such questions, they require
information about both the states and transitions in a system and their timing
or probability. Such information will be captured in the CTMC derived from
the transition system of the given GTS. While it is possible to specify small
Markov chains directly, for example using a finite state machine notation, we
describe large and complex CTMCs over states representing network graphs
by a stochastic GTS.

In the context of this book, a CTMC is a simple transition system labelled
with positive real numbers, called transition rates. This means that for every
pair of states s, s′ there exists at most one transition s −c→ s′ labelled by its
rate constant c.4

The operational interpretation is as follows. If a transition s −c→ s′ is the
only one starting in s, the time for it to happen is exponentially distributed
with rate constant c and mean 1/c. If there is more than one transition starting
in state s, the time for leaving s is exponentially distributed with the total
exit rate O(s), given by the sum of all rates of outgoing transitions. In this
case there is a competition, or race, between the outgoing transitions. The
probability that transition s −c→ s′ wins the race is c/O(s), the ratio of c and
the total exit rate of s.

Given an initial state s, a CTMC can be used to analyse a system’s behavi-
our at two levels. Its transient solution P (t)(s, s′) is defined as the probability
that, starting out in s, we are in state s′ at time t. Its steady-state solution
S(s) defines, for each state s, the long-term, invariant probability of finding
the system in s.

4 This is an intuitive representation of CTMCs but not the most common or mathe-
matically most convenient one. In general, they are defined as a continuous-time,
discrete-state random process, represented by a Q-matrix, i.e. the “incidence ma-
trix” of its transition system (cf. [224]).
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A stochastic graph transformation system can be translated into a CTMC
by first deriving its graph transition system and then augmenting it with rates.
We already know how to construct the uncontrolled graph transition system.
Its CTMC has the same set of states. It has a transition s −c→ s′ if and only if
there is a transition s −p→ s′ using rule p in the LTS, where the rate c is the
sum of all rates of rules applied in transitions from s to s′.

Note that, in the original transition system, there may be multiple transi-
tions linking two given states. Since the CTMC is based on a simple transition
system, it can hold only a single transition for every pair of states. The rates
of all rules leading to transformations between s and s′ are therefore added
up. For example, assume that in a state s consisting of two nodes n1, n2 only,
both can decide to end their operation. This leads to two different transitions
end(n1), end(n2) whose resulting states are isomorphic graphs represented by
a single state s′. In this case, if the rate of end is 1, the transition s −c→ s′ has
a rate c = 2 ∗ 1 = 2.

We can use a graph transformation tool (such as GROOVE [107] or Hens-
hin) to generate the labelled transition system of a graph transformation sy-
stem. After augmenting it with rates as described above, the resulting CTMC
can be analysed by a probabilistic model checker or analysis tool (such as
PRISM [180]).

As usual, the size of the state space to be generated and analysed is a
limiting factor for the model-checking approach. Simulations are more scala-
ble in principle. Here the reliability of the result depends on the number of
simulation runs, so we avoid a hard limit by trading accuracy against effort.

Example 9.4 (stochastic model checking). The results of steady-state analysis
of the two stochastic graph transformation systems defined in the previous
section (using rule sets Rrandom and Rsmart) are visualised in Fig. 9.7. Both
systems were restricted to a maximum of seven peers. The bottom graph
represents the behaviour of SGsmart based on rules Rsmart, whose transition
graph has 798 states and 16293 transitions. We observe that, when we increase
the rate of rule smart by a factor of 10 we decrease the long-term probability of
a disconnected network by about the same factor: from 0.225300 for ρ(smart) =
10 to 0.000244 for ρ(smart) = 10000. Indeed, for rates at least 10 times higher
than those of rules end and new, the probability seems to follow 2.4·ρ(smart)−1.
This means that an estimate of the average time it takes to execute (the
implementation of) smart as a function of the rate of peers entering and leaving
the system would provide us with an estimate of the network’s reliability.

The upper graph in Fig. 9.7 represents the system SGrandom based on
rules Rrandom which has 487 states and 9593 transitions. We observe that the
added redundancy does not have a relevant effect on the reliability, even if
the number of additional edges created is roughly the same as in the other
system (the overall number of states is only slightly smaller). This shows the
superiority of SGsmart. ut
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Fig. 9.7. Results of stochastic model checking

9.4 Methodology

To give a better idea of where, when and how software engineers could use the
techniques described in this chapter, we summarise the overall methodology
of stochastic modelling and analysis using graph transformation systems.

The methodology works best if we focus on architecture modelling, in
particular structural reconfiguration and related data, rather than the com-
munication or computation aspects. While lower-level network traffic could
be modelled, for example using message nodes passed between components,
this may lead to scalability problems with simulation or stochastic model
checking. Apart from this, as usual, the scope of the model is determined by
its purpose. This means that to analyse a particular property, the relevant
information needs to be present. For example, in the current model we cannot
capture how client nodes connect to super nodes, because clients are not part
of the model, which focuses on super-node connectivity.

9.4.1 Identify High-Level Requirements to Be Verified

The purpose of a formal model is to be able to verify its properties, so we
start by collecting relevant requirements. In particular, when modelling using
stochastic graph transformation, we consider measurable, non-functional re-
quirements which can be expressed in architectural terms and which are de-
termined at least in part by architectural design choices. Examples include
availability, performance, response time and throughput. We start by expres-
sing these properties in natural language, in terms of architectural concepts.
For example, in our P2P model, availability can be described as the probabi-
lity that every network node can reach all other nodes, i.e. that the network
is connected.
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9.4.2 Architectural Modelling

We model different types of architectural elements, such as client or server
components, network nodes and communication links by a type graph with
attributes and constraints. To validate the type model, we show desirable
sample configurations as instance graphs and check that undesirable ones are
ruled out by the constraints.

9.4.3 Architectural Adaptation

We identify the operations that change the structure or data of configurations,
such as network nodes joining or leaving, and connections being established
or broken. We formulate these operations as rules over the architecture model
type graph and define their parameters, i.e. which nodes, edges or attribu-
tes determine their matches or outcomes. For example, new(n: Super) is the
operation to create a new Super node and to connect it to an existing node n.

9.4.4 Validate the Model

To test the type graph, configurations and rules, we apply rules to sample con-
figurations and validate their effects. This can be done using a graph transfor-
mation tool, which may also support more elaborate state space exploration,
manually guided or automated, to test and debug the model.

9.4.5 Determine Distributions

As described earlier, we consider exponential or log-normal distributions for
the delay in the application of our rules. The choice depends on the nature
of the operations described and the data we have available. For example, if
we know only the average delay d of an operation, as in the case of new, this
translates into an exponential distribution with rate 1/d. If we know that an
operation has a certain likely duration, as in the case of rule end, we may use
a log-normal distribution. There are models based on real data collected from
existing systems, from which distributions are derived, while other models are
hypothetical, created as part of the development of a new system where no
such data is available.

Recall that stochastic simulation is possible for a range of distributions,
while model checking is generally limited to exponential ones, so the choice of
analysis approach also determines which distributions we can use.

9.4.6 Formalise and Encode Stochastic Properties

From informal descriptions of the requirements, we derive the stochastic pro-
perties to be analysed. Typical formats include steady-state properties (in the
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long term, the probability that state property P will hold is at least p) or
transient properties (the probability that property P will hold within a cer-
tain period of time is at least p), but other kinds of properties such as the
frequency of certain events or the probability that a run contains an event
can also be used to express requirements. More complex temporal properties
can be expressed using logics such as continuous stochastic logic [31].

To express state properties, such as the (non)existence of certain structures
or the fact that a graph is (dis)connected we may need the addition of observer
rules, i.e. rules to observe state properties, for example disconnected in our P2P
example.

9.4.7 Analyse the Model

Using stochastic model checking we can analyse models with small state spa-
ces, such as networks with a small number of nodes or where the state space
is otherwise limited. This allows us to validate the model, including its sto-
chastic aspects, and give a first indication of whether the properties we are
interested in are formalised correctly and are true in small models.

Simulation can explore larger instances, but can also be used to compare
simulation and model-checking results on small models. This is important
in particular if, for example, log-normal distributions in a simulation model
are simplified to exponential ones and we need to assess if this change has a
significant impact on the analysis results.

Generally, simulation avoids the state space explosion problem and is the-
refore more scalable than model checking. The typical tradeoff is between the
accuracy of results, which increases with the number of simulations run, and
the run time required to execute large numbers of simulation runs.

9.5 Summary and Further Reading

In this chapter, we have introduced stochastic graph transformation systems
and developed a small case study to demonstrate their modelling and analysis
capabilities. Two protocols for adding redundant links in a P2P network have
been analysed.

For stochastic model checking, a simple tool chain uses GROOVE [107]
to generate the transition system and PRISM [180] for the actual analysis.
A similar solution has been created using the Henshin state space tools to
generate the transition system [22]. Stochastic simulation has been supported
by several tools. The algorithm presented here was first implemented in [278].
Kasim [69] is a stochastic simulator for the domain-specific graph transfor-
mation language Kappa which specialises in formal executable models for
computational biology.
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Let us conclude this chapter by discussing some of the shortcomings, furt-
her work and lessons learned. First, the model presented in this chapter cap-
tures only a simplified version of the original protocol. More comprehensive
models including the selection of and connection to super nodes by clients and
the promotion of clients to super nodes have been studied in [163, 164].

Second, P2P networks often contain thousands or even millions of nodes.
Hence, the validity of the results of our analysis, which considers only seven
peers, can be questioned. However, this is not so much an issue of the forma-
lism itself, but of the analysis techniques and tools. More realistic cases can be
anlysed by complementing model checking with stochastic simulation [278].

Finally, not all user behaviour, as expressed in rules such as new and end,
or system behaviour, such as in smart and random, is exponentially distributed.
The general notion of stochastic graph transformation [188] allows for more
general distributions, but such models are harder to analyse using simulation
or model checking.

SGTSs follow the example of approaches such as stochastic Petri nets [200]
in adding stochastic information to an existing behavioural modelling lan-
guage. A transition system (generated by a behavioural model, e.g. a GTS
or a Petri net) is augmented by probability distributions describing the time
it takes for a transition to occur. Such a transition system yields a CTMC,
providing the input to stochastic analysis techniques.

A simpler approach may augment transitions by probabilities rather than
rates, capturing the choices between transitions but not their timing. Discrete-
time Markov chains, the probabilistic analog of CTMCs, support probabilistic
analysis and model checking. Extending this approach further, Markov deci-
sion processes allow one to combine non-deterministic choice (by the system)
of an action followed by probabilistic selection (by the environment) of a
successor state. Such a combination has been introduced for graph transfor-
mation systems in [173] and further generalised to include stochastic time
in [202].

More domain-specific approaches to stochastic graph transformation have
been used in computational biology. Notably, Kappa [176] provides a range
of specific theoretical results, analysis capabilities and tools, some of which
have been adopted into the mainstream [70]. Targeting probabilistic graph
algorithms, the graph-programming language GP2 has been extended by pro-
babilistic features [28].
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Advanced Modelling-Language Definition:
Integrating Metamodelling with Graph
Transformation

Models are used in software development as abstract representations of sys-
tems, to focus on specific aspects, sketch new developments or create a high-
level view of an existing system. In Chapter 5, for example, class diagrams
and refined activity models were used to capture functional requirements. Sup-
porting different problem domains and implementation technologies, a variety
of domain-specific notations have been developed. In business modelling, for
example, business process models are used. Models may be represented in
textual or graphical forms, depending on their purpose. For example, OCL
constraints are textual while UML class diagrams are visual. Textual langua-
ges are typically closer, in both appearance and tool support, to programming
languages and are, therefore, often used by software developers. Domain ex-
perts, analysts and designers tend to prefer graphical notations to represent
complex structures at a high level of abstraction. To separate the structure
from the presentation of models, we commonly distinguish between their con-
crete and abstract syntax. This allows, for example, the same concepts to be
represented differently in different models.

To better support modelling for a given application domain or platform,
a domain-specific modelling language (DSML) provides dedicated concepts
and constraints, raising the level of abstraction and improving productivity.
Working efficiently with DSMLs requires tools such as editors, interpreters
and compilers. However, the manual implementation of such tools for each
new language is prohibitively expensive. Hence, language engineers need an
approach to engineering DSMLs which can automatically generate language-
specific tools from a language definition.

A DSML can be a textual or visual language. While the abstract syntax
of textual languages is typically tree-like, visual models are generally repre-
sented by object graphs, often equipped with spanning trees as in EMF [264].
Both types of definition abstract from concrete element shapes and layout.
However, tree-like and graph-like abstract syntax differ in how they represent
references that go beyond the parent–child relations in trees. While tree-like
representations use special attributes, such as IDREF in XML [9], graph-like
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structures use edges to represent references more directly. As a consequence,
graphs are a natural choice for defining (not only) the syntax of visual lan-
guages.

The syntax of textual languages can be defined constructively by string
grammars, such as the Extended Backus–Naur form (EBNF), describing how
instances of the language can be generated from a start symbol. Visual langua-
ges are typically defined in a declarative way, by meta-models. But what are
the reasons for such a divergence of methods? Looking back, grammar-based
methods have been used for visual languages, too. For example, in the ap-
proaches presented in [199], multidimensional representations are coded into
one-dimensional strings. Such encodings allow the use of string grammars at
the cost of a wider gap between concepts and their representation.

The awkwardness of such encodings may have been the reason that desig-
ners of visual languages have looked for an alternative, which they found in
metamodels, i.e. models specifying the abstract syntax of modelling languages.
However, when limited to defining object and link types only, metamodels are
too weak to define exactly the language of interest. To further restrict the
set of models defined by a metamodel, several forms of constraints have been
considered, such as multiplicities and OCL constraints. However, even meta-
models with constraints often allow too many models. The problem is that
an exact specification of a non-trivial language can require a number of con-
straints of significant complexity.

Let us illustrate this issue using the language of well-formed activity mo-
dels, i.e. activity models whose control flow is a combination of nested impe-
rative control structures. We will use this example to show how difficult it is
to give an exact specification of a language using metamodels with constraints
only.

Example 10.1 (well-structured activity models). Well-structured activity mo-
dels specify workflows which correspond to simple imperative programs using
control constructs, such as sequential composition, if–then–else and while–
loops. A sample activity diagram is depicted in Fig. 10.1. It models a typical
workflow arising as a result of a new sales order in a Web-based order mana-
gement system. For each product ordered, the following workflow is specified.
After receiving an order, a distributor checks the availability of the product.
If it is not available, the client is notified, otherwise its price is calculated
and a receipt sent. Attempting to define well-structured activity models using
metamodels with constraints only, we will demonstrate the limitations of this
approach. ut

A constructive way to define a DSML, circumventing the complexity of a
constraint-based declarative solution, is the use of graph grammars (defined in
Chapter 3). Similarly to the EBNF, the specification is rule-based, but in this
case graph grammar rules are used to manipulate the graph representations
of models. We start with a metamodel, formally presented as a type graph, to
define the types of nodes and edges allowed. Then, picking the smallest model
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receive order

check availability

notify client

calculate price

send receipt

[product not available] [product available]

receive order

check availability

notify client

calculate price

send receipt

[product not 
available] [product available]

Fig. 10.1. Example activity model for a product-ordering workflow

of the DSML as the start graph, further models are constructed by applying
grammar rules such that each rule application results in a new model. This
means that there are no non-terminal types (whose instances can not be part
of any model), i.e. all types in the metamodel are terminal.

By combining metamodels and graph grammars to generate the subset of
valid models from a basic start graph, we inherit the best features of both
methods. The definition of a language by a generating grammar is inductive,
building domain-specific models of increasing complexity. A DSML defined by
a graph grammar is a subset of the language specified by the metamodel, i.e.
all generated model graphs are well typed and satisfy the constraints.

In this way, we combine two technological spaces [178] with their indivi-
dual advantages and disadvantages: while metamodels support an intuitive
approach to language design, especially for languages with shallow structures
such as class models, grammars are better suited for defining models with
complex dependencies as they arise, for example, in programming languages.
Furthermore, graph grammars support the design of DSML-specific tools. In
analogy to string grammars, they can be used to generate model parsers.
We distinguish between graph grammars with and without non-terminals. As
pointed out in Section 4.6, classical grammars have two layers of recognition,
using terminal and non-terminal labels. In this chapter, we focus on grammars
with terminal labels only, which means that each derived model graph has to
represent a valid language instance. This design decision restricts the choice
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of parsers; however, domain-specific models are usually created and modified
in syntax-based editors that integrate constraint-validity checks. The use of
graph grammars for developing model editors is discussed below.

By defining the syntax of a DSML, we create a basis for the definition of its
semantics. For programming languages we can distinguish denotational inter-
preter semantics from operational compiler semantics. An interpreter executes
a model directly based on its abstract syntax. A compiler translates the mo-
del into another language. Unlike with syntax, there is no standard way to
define the semantics of a DSML. The UML specification, for example, defines
the semantics of UML using OCL and informal text. A formal definition of
an operational semantics is given by semantic anchoring [57] using Abstract
State Machines (ASMs). Another obvious way to define operational seman-
tics is by means of model transformations, such as in [189] based on graph
transformation or in [250] using MAUDE, an object-oriented language based
on rewriting logic.

Using a graph transformation system to define the operational semantics
of a DSML provides us with a visual definition which is easier to understand
at an intuitive level; it is also formal, so amenable to automated analysis; and
executable, and thus usable for implementing an interpreter. In this chapter, we
will define an interpreter for well-structured activity models, which executes
their workflow step by step.

Compilers for DSMLs are usually defined as model-to-model or model-to-
text transformations. We will consider compilers for DSMLs in more detail
in Chapter 12, translating well-structured activity models to Petri nets for
analysis purposes.

The specification of a DSML should allow the generation of an editor for
the language. A metamodel can be used to generate a basic model editor.
Distinguishing between basic and advanced editor operations, basic operati-
ons include creating and deleting individual model elements and relations,
updating attributes, and moving model elements. Models produced or mani-
pulated by such operations may not automatically belong to the language;
they may require further editing to become valid language instances.

Basic editors can be enhanced by advanced editor operations and quick fix
facilities to make manual editing more efficient. Providing a graph grammar
in addition to a metamodel, its rules can be used to generate advanced editor
operations and quick fixes.

This chapter is concerned with engineering methods for the definition of
the syntax and operational semantics of DSMLs and the generation of tool
support. More advanced aspects of language engineering such as model quality
assurance, version management, translation to and synchronisation with other
domains are considered in Chapters 11 and 12. We present these topics in
separate chapters because graph transformation techniques are particularly
useful there. Summarizing, this chapter makes the following contributions:
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• We position graph grammars for the syntax definition of DSMLs in re-
lation to metamodelling. Graph grammars allow a constructive approach
to language definition. They generalise Chomsky grammars [13] and allow
the generation of model parsers and further language-specific tools. The
semantics of DSMLs can be defined intuitively yet precisely by graph trans-
formation systems. While an interpreter is specified as an in-place model
transformation, a compiler is given by a model-to-model or model-to-text
translation (see Chapter 12).

• Graph transformation systems are well suited for the conceptual design
of language tools, such as domain-specific editors and interpreters, be-
cause transformation rules can naturally specify editor operations and in-
terpreter steps. Since rule applications may render the resulting models
invalid with respect to the language definition, rules can be restricted by
augmenting them with application conditions deduced from language con-
straints (see Section 4.4).

This chapter is structured as follows. We present a structured language
design process in Section 10.1, which starts with eliciting requirements as pre-
sented in Section 10.2, followed by defining the syntax of a DSML using graph
grammars in Section 10.3. This syntax definition is utilised for developing user-
friendly DSML editors in Section 10.4. Finally, we discuss how an interpreter
semantics can be defined using graph transformations in Section 10.5.

Since graph grammars in this chapter are based on typed attributed graph
transformation systems, it is useful to be aware of this material in Chapters 1
and 2. We will also refer to some of the semantic concepts introduced at the
start of Chapter 3 and to analysis techniques in Chapter. 3

10.1 Language Design Process

To support the language engineer in developing a DSML, we provide a struc-
tured methodology, starting with the gathering of requirements and leading
to the development of the relevant DSML tools, in particular an editor. In
Fig. 10.2 we outline the main tasks of language development.

To elicit the requirements for a DSML, we identify the basic building
blocks of models and the constraints for their combination. The basic building
blocks are the model elements and relations specified in the language alphabet.
A DSML for process design, for example, requires activities and transitions.
Initially, there is no need to specify how they are represented visually or how
they are connected: the logical relations between elements of the alphabet are
defined in the abstract syntax model of the DSML, while the concrete, visual
syntax is defined by mapping domain elements to their concrete representa-
tions. In our example, we choose a graph-like representation using ellipses
for simple activities and arrows for transitions. Moreover, we have to define
how attributes and relations are represented. A transition running between
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Fig. 10.2. Main tasks of language design

two activities, for example, is visually represented by an arrow starting at the
border of one ellipse and ending at the border of another one. This concludes
the definition of the DSML alphabet with its abstract and concrete syntax.

Next, we specify which models over the alphabet are considered valid.
First, constraints are formulated in natural language. For example, each acti-
vity model has to start with a single activity without incoming transitions.
Typically OCL [226] is used to formalise such constraints. Visual patterns as
they are supported by the graph constraints introduced in Chapter 4 help
to formulate and illustrate more complex constraints, expressing required or
forbidden combinations of elements.

Such a language specification can be used directly for deriving a DSML
editor with basic editing operations, displaying all elements of the alphabet in
a palette. Models created or manipulated in such a basic editor have to be
validated against the language constraints defined. This can be done either in
batch processing or incrementally. Since edited models can violate constraints,
it can be helpful to compute a set of editing operations for repairing invalid
models. These repair operations are also known as quick fixes. Grammar rules
may be used to deduce quick fixes: once basic editing operations have been
applied, leaving the editor with an invalid model, the rule corresponding to
the last operation applied is matched against the grammar rules, and so-called
residual rules are constructed specifying possible quick fixes. For example,
after the insertion of an unconnected activity, the model can be repaired by
several quick fixes which connect the new activity to existing activities in the
model, in line with the rules of the grammar.

To make the editing of models more efficient and less error-prone, ad-
vanced editors support complex editing operations, for example, implementing
modelling guidelines such as the splitting of end activities to produce less tang-
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led diagrams, refactorings such as the sequentialisation of concurrent actions,
and optimisations such as the deletion of unnecessary activities. Conceptually,
these operations are in-place model transformations, i.e. transformations per-
formed on and modifying a single model rather than transformations between
models. Graph transformations are well suited to specifying such endogenous
transformations because a rule application typically modifies just a small por-
tion of a graph while leaving the rest unchanged. Conceptually, we have to
make sure that additional editing operations do not lead to models outside
the defined language. Analysis techniques for graph transformation systems
are vital in verifying such properties of language consistency.

After defining the syntax of DSMLs, we turn towards specifying their
semantics. Languages for behaviour modeling can be equipped with an inter-
preter semantics. Alternatively, DSMLs may be given a compiler semantics,
translating them into other languages serving as semantic domains. These
target languages may be formal specification languages or logics supported by
tools for validating interesting properties, or implementation languages sup-
ported by an execution engine. We show how graph transformations can be
used to define both kinds of semantics: the interpreter semantics is conside-
red in this chapter, while a compiler semantics designed as a model-to-model
transformation is presented in Chapter 12.

Language design is often a continuous process, repeatedly producing new
versions of a language. Hence, domain-specific models can become obsolete
and require migration to newer versions. We will discuss this problem at the
end of the chapter.

10.2 Requirements Elicitation

When starting on the design of a new DSML, a language engineer has to
understand its requirements in terms of the types of model elements needed
and their visual representation. For example, when one is designing a lan-
guage for high-level process modelling, activity models may be a good choice.
Figure 10.3 shows a set of model elements to define activity models. The lan-
guage engineer distinguishes various forms of activities as well as transitions.
Textual annotations on transitions and in activities add information to these
model elements.

Then, a definition is required of the legal combinations of elements and
their relations. In our example, each transition runs between two activities or
as a loop at a single activity. More precisely, well-structured activity models
have to fulfil the following language constraints (stated in natural language
first):
1. Each activity model has exactly one start and one end activity.
2. (a) A start activity does not have incoming transitions, but has one out-

going transition. (b) An end activity does not have outgoing transitions,
but has one incoming transition.
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Fig. 10.3. Concrete representations of activity model elements and relations

3. (a) A decision activity has one incoming and two outgoing transitions. (b)
A merge activity has one outgoing and two incoming transitions.

4. A transition has a guard (i.e. a non-empty inscription) if and only if it
begins in a decision activity.

5. A simple activity has exactly one incoming and one outgoing transition.
6. A transition starts at one activity and ends at one activity.
7. The control flow graph so defined is connected and acyclic.

10.3 Abstract Syntax Design

Following requirements elicitation, a language engineer defines the abstract
syntax of their DSML by a metamodel. Here, language elements and their
relations form a domain-specific alphabet specified by a class structure. Addi-
tional constraints restricting the set of instances can be formulated in OCL.
In our graph-based approach, type graphs are used to specify the alphabet,
while graph constraints are well suited to restricting the set of instance graphs
through required and forbidden patterns.

In addition to this declarative method of language design, we have discus-
sed a constructive approach based on graph grammars. In analogy to string
grammars, a model is an element of a language if it can be derived by a series
of rewriting steps starting from the start graph. We will see below that graph
grammars are of special interest when it comes to the design of domain-specific
model editors.

10.3.1 Alphabet Definition

As the conceptual and structural foundation of a DSML, the definition of an
alphabet is a crucial part of its design. As an example, consider the abstract
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syntax definition of an alphabet for activity models. This approach directly
follows the metamodelling idea, where language elements with their attributes
and relations are specified by class structures, here represented by a type
graph. Informal constraints are formalised by graph constraints as illustrated
below.

Activity

StartActivity EndActivity Decision Merge SimpleActivity
name: String

Next
inscr: String

1 begin
1 end

Fig. 10.4. Type graph for simple activity models

The type graph for activity models introduces two kinds of concepts: acti-
vities and transitions which begin and end at activities. Activity is an abstract
type, so each Activity node is of one of its subtypes SimpleActivity, StartActivity,
EndActivity, Decision or Merge. In addition, simple activities may be named.
Moreover, transitions may have inscriptions, which are used as guard condi-
tions. This type graph is shown in Fig. 10.4. Transitions are realised by the
type Next.

10.3.2 Language Constraints

The most common way to describe conditions over a metamodel is by OCL
constraints; they have to be satisfied by all instance models. Two sample OCL
constraints formalising our conditions given above are the following:

• Constraint 1: context Activity inv:
allInstances()→select(oclIsTypeOf(StartActivity))→size() = 1 and
allInstances()→select(oclIsTypeOf(EndActivity))→size() = 1

• Constraint 4: context Next inv:
if begin.oclIsTypeOf(Decision) then inscr <> ’ ’ else inscr = ’ ’ endif

Not all the language constraints of activity models stated above, however,
can be formulated in OCL straightforwardly. Constraint 2(a), for example, is
formulated over all start activities and their incoming and outgoing transiti-
ons. Interpreting the edge types begin and end as unidirectional associations,
Constraint 2(a) cannot be specified in OCL directly. In [125], Hanysz et al.
presented an extension of OCL to navigate across non-navigable associations
by annotating these associations with opposite roles. Using that idea, we in-
troduce the opposite roles outgoing with begin and incoming with end. Then,
Constraint 2(a) can be specified in OCL as follows:
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• Constraint 2(a): context StartActivity inv:
self.incoming→empty() and self.outgoing→size() = 1

Graph constraints, as presented in Chapter 4, are a visual way to forma-
lise language constraints. They show graph structures directly without using
navigation expressions and hence, provide a more direct representation of
structural conditions. The navigability of associations does not play any role.
In Figs. 10.5–10.10, the informal constraints for activity models listed above
are formalised as graph constraints. Figure 10.5 shows a graph constraint for
constraint 1 which requires the existence of exactly one start activity and one
end activity. It is formalised by atomic graph constraints demanding at least
one and at most one such activities. In this way, the whole constraint can be
expressed by the existence and non-existence of simple graph patterns.

:StartActivity∃ ∧ :StartActivity :StartActivity¬∃ ∧

:EndActivity∃ ∧ :EndActivity :EndActivity¬∃
Fig. 10.5. Graph constraint formalising language constraint 1

More complex conditions starting with a universal quantification have to
be formulated as conditional constraints consisting of two graphs P ⊆ Q.
Such a constraint is satisfied by a graph G if each occurrence of pattern P in
G can be extended to an occurrence of pattern Q. We can use propositional
operators over constraints sharing the same pattern P to state more specific
conditions, as shown in Figs. 10.6–10.10.

We do not draw a direct relation between OCL and graph constraints
here. The interested reader is referred to [239] for a translation of Essential
OCL invariants to nested graph constraints. We also do not specify acyclicity
of activity diagrams, since such a constraint is not expressible in first-order
logic, and hence cannot be specified by the graph constraints introduced here.
In [238] Radke presented an extension of graph constraints where hyperedge
replacement is used to specify constraints with variable parts allowing one to
express second-order conditions.

1:StartActivity∀ 1:StartActivity :Nextend(¬∃ ∧

1:StartActivity :Nextbegin∃ ∧

1:StartActivity :Nextbegin:Next begin¬∃ )
Fig. 10.6. Graph constraint formalising language constraint 2(a); constraint 2(b)
can be formalised analogously
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1:Decision∀ 1:Decision :Nextend(∃ ∧
1:Decision :Nextend:Next end¬∃ ∧
1:Decision :Nextbegin:Next begin∃ ∧
1:Decision :Nextbegin:Next begin

:Next

begin¬∃ )

Fig. 10.7. Graph constraint formalising language constraint 3(a); constraint 3(b)
can be formalised analogously

1:Next∀ 1:Next 2:Decisionbegin((∃ ∧ 1:Next
inscr <> ’ ’∃ )∨

1:Next 2:Decisionbegin(¬∃ ∧ 1:Next
inscr = ’ ’∃ ))

Fig. 10.8. Graph constraint formalising language constraint 4

1:SimpleActivity∀ 1:SimpleActivity:Next end :Nextbegin(∃ ∧

1:SimpleActivity :Nextbegin:Next begin¬∃ ∧

1:SimpleActivity :Nextend:Next end¬∃ )
Fig. 10.9. Graph constraint formalising language constraint 5

1:Next∀ 1:Next :Activitybegin(∃ ∧

1:Next :Activityend∃ ∧

1:Next:Activity begin :Activitybegin¬∃ ∧

1:Next:Activity end :Activityend¬∃ )
Fig. 10.10. Graph constraint formalising language constraint 6

10.3.3 Language Instances

Figure 10.11 shows the model graph ASG of the activity diagram shown
in Fig. 10.1. It is typed over the type graph shown in Fig. 10.4 with the
mapping indicated by corresponding type names inside all nodes and at all
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edges. Moreover, it fulfils all of the language constraints depicted in Figs. 10.5–
10.10. Hence, this instance represents a well-structured activity model.

:StartActivity :Next
inscr = “”

:SimpleActivity
name = “receive order”

:Next
inscr = “”

:SimpleActivity
name = “check availability”

:Next
inscr = “”

: Decision
:Next

inscr = “product not available”
:Next

inscr = “product available”

:SimpleActivity
name = “notify client”

:SimpleActivity
name = “calculate price”

:Next
inscr = “”

:SimpleActivity
name = “send receipt”

:Next
inscr = “”

: Merge:Next
inscr = “”

:Next
inscr = “”

: EndActivity

begin end

begin

endbegin

end

begin

end

begin

end

begin

end

begin

end

begin

end

begin

end

Fig. 10.11. Model graph of activity diagram in Fig. 10.1

10.3.4 Language Grammar

An alternative way to define the syntax of a DSML is a graph grammar.
In contrast to a metamodel with constraints, a grammar is a constructive
specification, using an instance of the language as the start graph and deriving
all other instances by successively applying graph grammar rules.

In the following, we consider a simple graph grammar for well-structured
activity diagrams. As above in the context of constraints, we have chosen
a simple but meaningful subset of activity diagrams. Recall that our set of
well-structured activity diagrams does not have cycles and is connected.
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We consider the graph grammar shown in Fig. 10.12, given informally in
concrete syntax first. The start graph is the smallest activity diagram that sa-
tisfies our constraints. It consists of a start activity directly followed by an end
activity. The grammar contains three rules. Rule insertSimpleActivityAfterStart
inserts a simple activity, directly after the start activity. The name of the new
activity is given by the input parameter n. This rule can only be applied to
insert a simple activity. Rule insertDecision inserts a decision activity with two
branches. Each branch contains a simple activity, potentially to be rewritten
later. The branches are joined by a merge activity. This rule has four input
parameters: two transition inscriptions x and y as guards for the decision,
and two names n and m for the simple activities in both branches. Note that
activity a in the left-hand side is replaced by the decision structure in the
right-hand side. Lastly, rule insertSequentialActivity handles the insertion of a
second simple activity following the given one.

Fig. 10.12. Graph grammar in concrete syntax representation

This concrete syntax representation is useful for illustrating the idea of
the generation process, but it is not fully formal. For an exact definition of
the language, we require the abstract syntax, presenting a graph grammar for
well-structured activity diagrams typed over the abstract alphabet graph in
Fig. 10.4. This graph grammar is shown in Fig. 10.13. As a simple activity
can be inserted after the start activity and after a simple activity in a similar
way and since it should be possible to insert a simple activity also after a
merge activity, the grammar in abstract syntax is slightly more general than
the one in concrete syntax. Figure 10.13 contains just two rules since the
rules insertSimpleActivityAfterStart and insertSequentialActivity are integrated
into one rule called insertSimpleActivity. Activities after which a new simple
activity can be inserted may be of any type except for decision activities.
While we explicitly have to prohibit that the activity is a decision, this is
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not needed for end activities as there is no transition which begins at an end
activity. Hence, there is no match for insertSequentialActivity such that a is an
end activity.

Start graph
:StartActivity :Next :EndActivitybegin end

insertSimpleActivity(a,n)
a:Activity :Next

:Next
inscr := “”

:SimpleActivity
name := n

begin

end

begin

begina:Decision

insertDecision(a,x,y,n,m)
:Next

:Next

:Decision:Next
inscr := x

:Next
inscr := y

:SimpleActivity
name := n

:SimpleActivity
name := m

:Next
inscr := “”

:Next
inscr := “”

:Merge

end

begin begin

end end

begin begin

end end

begin

a:SimpleActivity

end

begin

Fig. 10.13. Graph grammar in abstract syntax representation

Example 10.2 (generating the abstract syntax graph of an activity diagram).
To illustrate the process of generating an abstract syntax graph by a graph
grammar, we consider the transformation sequence that creates the graph in
Fig. 10.11. Beginning with the start graph in Fig. 10.13, the following rule
sequence is applied:

1. insertSimpleActivity(start,"receive Order");
2. insertSimpleActivity(receiveOrder, "Check Availability");
3. insertSimpleActivity(checkAvailability,"Decision");
4. insertDecision(decision,"product not available", "product available", "notify

client", "calculate price");
5. insertSimpleActivity(calculatePrice,"send receipt");
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We assume that for activities receiverOrder, checkAvalability, decision and cal-
culatePrice, their object identifiers equal the values of their name attribute.
The object identifier of the start activity is just start. ut

Given two language specifications, one by a metamodel with constraints
and one by a graph grammar over the same metamodel, the question arises
how the corresponding modelling languages are related. According to our lan-
guage design process, we define a superset of the language by a metamodel
first, to further constrain it by a graph grammar afterwards. Therefore, we
need to check if all graphs derived by the grammar fulfil the constraints given
in the metamodel.

To show that the constraints in Figs. 10.5–10.10 are fulfilled by all graphs
derived by the abstract syntax grammar, we apply consistency checking as
presented in Chapter 4. First we have to show that the start graph fulfils all
constraints. For constraints 1 and 2 this is straightforward. Constraints 3 and
5 do not apply, and constraints 4 and 6 are easily checked.

For the rules, we have to show that, if graph G fulfils constraint c and
a transformation G =⇒r H takes place, then graph H fulfils constraint c as
well. Since none of the two rules change the number of start and end activities
or the number of their connections, constraints 1 and 2 are obviously fulfilled
by graph H.

1. insertSimpleActivity: This rule inserts a new Next relation between two
activities without an inscription. Therefore, constraints 4 and 6 are fulfil-
led and constraint 5 is obeyed, since new parts are directly connected to
existing ones. Constraint 3 does not apply since the activities occurring
in this rule cannot be decision activities.

2. insertDecision: A new decision structure is added to the graph. The
Decision-activity has exactly one incoming edge and two outgoing ones.
TheMerge-activity has exactly two incoming edges and one outgoing edge.
Therefore, constraint 3 is fulfilled. The Next-relations going out from the
Decision-activity have non-empty inscriptions, and thus constraint 4 is
obeyed. Since each new branch has one new simple activity with one in-
coming and one outgoing edge, constraint 5 is also obeyed.

Hence, our graph grammar is consistent with the given metamodel. Howe-
ver, there are models which fulfil all constraints of our metamodel but cannot
be constructed by the graph grammar. For example, a model with a decision
structure that does not contain any simple activity, i.e. with transitions that
go directly from the decision activity to the merge activity, cannot be derived
from the start graph.

10.3.5 Language Parsing

Graph parsing is the application of inverse grammar rules to a given instance
graph in order to reduce it to the start graph (see also Section 4.6). Considering
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the example above, all rules can be inverted and applied in reverse order. Note
that the inverse applications of insertSimpleActivity(start,"receive Order") and
insertSimpleActivity(receiveOrder, "Check Availability") could also occur earlier
as they are independent of the parsing of the decision structure, i.e. the simple
parsing process described is non-deterministic.

Note 10.1: Language definition using graph grammars. The ab-
stract syntax of a DSML instance is naturally presented as a graph, in
particular if there is no dominant tree structure containing all its elements.
Unlike metamodelling, graph grammars define the abstract syntax graphs
of a DSML in a constructive way. While textual parsers process input text
in a definite order, graph parsers do not fix the order of pattern recogni-
tion. This means that, in general, there is neither a defined starting point
for parsing nor a designated order of processing a graph.

10.4 Model Editors

In order to create and modify models we require operations for creating, de-
leting and changing model elements. Grammar rules are a good indication
of how models can be constructed using an editor. If each create operation
corresponds to a rule of the grammar, and deletion and change rules are de-
duced from grammar rules, the editor is syntax directed, guaranteed always
to produce models specified by the grammar. However, such an editing style
is often considered as too restrictive.

If inconsistent models are allowed temporarily, editing operations can be
more flexible. Often, in this case, they correspond to subrules of grammar
rules. An operation may cover, for example, the insertion and deletion of a
single element or relation or the modification of an attribute. Applying such
a simple operation can lead to models outside the language. A comparison
of the underlying simple rules with the original grammar rules can determine
residual rules that indicate quick fixes for inconsistent models.

Conversely, editing operations may be more complex than grammar-
induced operations, to perform larger modifications such as refactorings. To
ensure that their application always leads to models in the DSML, they should
be assembled from editing operations that preserve well-formedness. These
operations include grammar rules, deduced inverse rules and change rules.

10.4.1 Simple Editing Operations

A straightforward way to develop editing operations is to think of the rules
of the grammar as specifying the set of editing operations. However, allowing
just these operations may restrict the editing process too much. A convenient
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editor should also support basic operations. These are editing operations that
support the insertion of single elements and relations, their deletion, and their
modification. In Fig. 10.14, the specification of the basic operation rename-
Activity by a rule is shown, which identifies an activity by a parameter a and
renames it to m.

renameActivity(a,m)
a:SimpleActivity

name = n
name := m

Fig. 10.14. Editing rule RenameActivity

Operations that insert, move and delete single model elements and referen-
ces, set and update attributes are considered basic. They can be deduced from
a given metamodel or type graph. Often, basic operations do not preserve the
consistency of graphs; we will discuss below how to deal with inconsistencies.

10.4.2 Complex Editing Operations

Typical candidates for complex operations are refactorings and other domain-
specific transformations combining several basic operations. Since our gram-
mar of well-structured activity diagrams has quite elaborate rules already,
there are not very many combined operations that are both useful and general
enough. A reasonable candidate for an additional operation is insertDecision-
AfterActivity shown in Fig. 10.15, which combines sequential applications of
insertSimpleActivity and insertDecision. Further examples of complex operati-
ons are the splitting and merging of activities and the deletion of unnecessary
activities. These are all examples of refactoring operations on activity dia-
grams.

10.4.3 Living with Inconsistencies

Since we have restricted our DSML to well-structured activity models, consist-
ency-preserving editing operations are quite complex. If inconsistent activity
models are allowed temporarily, basic operations may be applied freely. For
example, when an isolated simple activity is inserted, the activity model be-
comes inconsistent. To repair this problem, the isolated activity has to be
integrated into an existing control flow. There are several ways to fix such an
invalid situation. We can design corresponding editing operations, called quick
fixes, from the given graph grammar. For example, the rule integrateSimple-
Activity in Fig. 10.16 can be used to connect an existing simple activity to
some activity (which is not a decision activity). It checks if an existing simple
activity is isolated, i.e. has neither an incoming nor an outgoing transition, as
expressed by two negative application conditions. If this precondition holds,
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insertDecisionAfterActivity(a,x,y,m,n)
a:Activity

:Next

:Next

:Decision:Next
inscr := x

:Next
inscr := y

:SimpleActivity
name := m

:SimpleActivity
name := n

:Next
inscr := “”

:Next
inscr := “”

:Merge

begin

end

begin begin

end end

begin begin

end end

begin

begin

a:Decision

Fig. 10.15. Specification of editing operation insertDecisionAfterActivity

integrateExistingSimpleActivityAfterActivity(a,s)

a:Activity :Next
inscr := “”

s:SimpleActivity

:Next

begin

end

begin

:Next begin :Nextendbegin

a:Decision

Fig. 10.16. Quick fix operation integrateExistingSimpleActivityAfterActivity

the simple activity is integrated into the control flow immediately after a
specified activity.

In the following we show how this quick fix operation is derived from
rule insertSimpleActivity in Fig. 10.13. Consider rule InsertIsolatedSimpleActi-
vity, which specifies the insertion of an isolated simple activity, with an empty
left-hand side and a simple activity on the right-hand side. The fact that
this simple activity is isolated can be made explicit by two NACs saying that
there are not transitions beginning or ending at this activity. A composition
(formally a concurrent rule, see [85]) of InsertIsolatedSimpleActivity and Inte-
grateExistingSimpleActivityAfterActivity overlapping in the complete right-hand
side of the first rule yields the original grammar rule InsertSimpleActivity. Note
that the left-hand side of such a composed rule is the union of the left-hand
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sides of the original rules except for the transient part, i.e. the elements crea-
ted by the first rule and consumed by the second. The right-hand side of the
rule is created analogously. Here, the right-hand sides of both original rules
are joined, again without the transient part. Furthermore, the NACs of both
rules are added appropriately. As the two NACs expressing the isolation of
the simple activity s to be integrated cannot be translated to the left-hand
side of InsertSimpleActivity since s does not exist there, they are dropped.

In this setting, rule IntegrateExistingSimpleActivityAfterActivity is a resi-
dual rule of the basic rule InsertIsolatedSimpleActivity and the grammar rule
InsertSimpleActivity. All residual rules of basic and grammar rules can specify
quick fixes. It is up to the editor designer to decide which subset of residual
rules should be offered to the user.

10.4.4 Editor Generation

A model-driven approach to DSML editor development allows one to gene-
rate fully functional model editors, making it easier to develop DSMLs and
use them in model-based software development. The underlying editor speci-
fication can use a metamodel or a graph grammar. Since it is tedious to define
the operations of an editor by hand, these specifications should be inferred
automatically from the underlying language specification.

In the following, we summarise which operations can be deduced from a
metamodel or a graph grammar. Given a metamodel, language-specific basic
operations can be generated. Remember that these operations do not neces-
sarily preserve the well-formedness of models. Two useful types of complex
operations are refactorings and quick fixes. They cannot be deduced automa-
tically from metamodels, but have to be added programmatically.

Given a graph grammar, all its rules specify consistency-preserving editing
operations. Delete operations can be deduced by inverting grammar rules. For
each type of model element, a change operation such as renameActivity can
be added. In addition, complex editing operations can be specified manually
by composing existing operations. New operations are specified as additional
transformation rules that are composed from existing ones. Finally, quick fix
rules can be deduced by subdividing the rules mentioned above into basic and
residual rules.

10.5 Interpreter Semantics

For a DSML modelling behaviour, an executable interpreter semantics can be
adequate. Requirements for operational semantics can be captured informally
first. To design an interpreter semantics, an example-based approach is help-
ful, where example patterns before and after its execution are specified for
each action. These examples can be considered as preliminary steps towards
the precise definition of an interpreter semantics.
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In the following, we present the definition of an interpreter semantics by
graph transformation rules. The approach is closely related to dynamic me-
tamodelling as presented in [95], using collaboration diagrams typed over the
language meta-model to specify interpreter steps. Collaboration diagrams can
be specified as graph transformation rules.

To define system behaviour, we extend the abstract syntax of the DSML
to represent the current state. To interpret, for example, an activity diagram,
it is necessary to mark the current activity to be executed. This means that
a marker is set at the start activity at the beginning and moved along the
specified control flow as the execution proceeds. As an example, the interpreter
semantics of well-formed activity diagrams is shown below. We assume that
all the diagrams to be interpreted are syntactically correct, i.e. belong to the
(slightly extended) DSML defined.

Of the different kinds of semantics for graph transformation systems pre-
sented in Chapter 3, labelled transition systems are the most appropriate to
represent the behaviour of an interpreter. All possible states and transitions
are specified, branching and termination can be studied directly, and parame-
ters can provide additional detail about transitions. Transformation units can
be useful for specifying complex interpreter steps that should not be inter-
rupted. An interpreter of statecharts, for example, may combine several state
changes into one larger step to implement a run-to-completion semantics [127].

Example 10.3 (interpreting well-formed activity models). To define an inter-
preter semantics of well-formed activity diagrams, we need a slight extension
of the alphabet. We choose a “current” marker to point to the current acti-
vity. It is depicted in activity diagrams by an additional arrow in the upper
left corner of an activity, as seen in Fig. 10.17. Alternative visualisations, for
example, using a different fill colour or border, are also possible.

The execution of an activity diagram starts with marking the current
state. We always begin at the start activity, and thus the marker is set there.
This action (specified by rule start()) and all other interpreter actions are
specified by the rules in Fig. 10.17. After marking the start activity, rule
nextAfterStart() can be applied. Its target activity is a simple one. Similar
rules can handle decision or end activities. Rule next() executes a sequence
of simple activities while rule decision(x:String) handles a decision, causing a
branching of control flow. Since we do not formalise the syntax and semantics
of guard conditions here, the choice of branch is an input parameter. A rule
for joining the control flow would look similar to rule next() where the target
is a merge activity. A separate rule is needed to handle end activities. Once
the end activity is reached, the current state marker is deleted by rule finish()
and the current interpreter run is finished.

To see that all interpreter runs terminate, consider that rule start() can be
applied to a well-formed activity diagram only once and all other rules process
exactly one activity. We never insert additional markers, so the number of
markers is at most one. Moreover, rule finish() deletes a marker at an end
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1

1

c1 c2

1

NAC

start()

1 1

finish()

2

3 1

2

3

next()

4 4

1

2

3

5

6

4 1

2

3

5

6

4

decide(x:String)

x = c1

c1 c2

1

2

3 1

2

3

nextAfterStart()

4 4

Fig. 10.17. Interpreter rules for well-formed activity diagrams

activity, and there is always at least one end activity in a well-formed activity
diagram. The simple activity diagrams we consider here do not contain cycles,
and thus they all describe finite control flows.

With a fully interpreted language for guards, it could happen that inter-
preter runs cannot terminate in an end activity, i.e. if neither of the two guards
at a decision holds. However, assuming that c2 is always the negation of c1,
in each state exactly one of the two conditions is true and the execution can
proceed deterministically. This can be achieved by setting c2 to otherwise. ut

As with the informal grammar rules in Fig. 10.12, we have presented the
interpreter rules using the concrete syntax of activity diagrams, extended by
a current state marker. It is easy to see how they could be translated into a
representation based on a suitably extended metamodel.

10.6 Language Evolution

A DSML has to adapt to changing requirements, for example, due to new de-
mands or an improved understanding of the target domain. DSML evolution
affects the language specification as well as its tool support. This can render
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existing models invalid, so they have to be migrated to the new version of the
language. If the DSML is specified by a metamodel, we consider the new ver-
sion of the abstract syntax as a target metamodel for a model transformation
implementing the migration.

Example 10.4 (language evolution). Based on the abstract syntax graph in
Fig. 10.4, we want to elaborate further the Next relations between activities.
They will be called Transitions and their inscriptions will be removed (be-
cause they are empty apart from decision branches). Instead, inscriptions will
be moved to guards, a new type of element. Furthermore, fork and join acti-
vities will be included in activity diagrams. The metamodel in Fig. 10.4 can
be transformed by the applications of suitable evolution rules to perform all
desired changes. These evolution rules include renaming a type, extracting an
attribute to a new type, and adding new types and relations. The result is
shown in Fig. 10.18.

Activity

StartActivity EndActivity Decision Merge Fork Join SimpleActivity
name: String

Transition
Guard

cond: String
1 begin
1 end

0..1guard

Fig. 10.18. Abstract syntax graph for simple activity models after evolution

New types of activities require new language constraints, extending the
set of constraints on page 221:

8. (a) Each fork activity has one incoming and two outgoing transitions.
(b) Analogously, each join activity has one outgoing and two incoming
transitions.

Additionally, we need a rule insertForkJoin, similar to the rule insertDecision
but substituting decision and merge activities by fork and join activities. ut

To migrate an existing model to this new language version, we distinguish
several cases. (1) New types and relations represent new language features.
Existing models do not have to be changed to incorporate them. In our exam-
ple, this applies to fork and join activities. (2) A type renaming (such as Next
to Transition) can be easily performed everywhere the type is used. (3) Migra-
tion is a little trickier when it comes to the incorporation of guards. Only if
an inscription is non-empty, it should be replaced by a guard. Otherwise, the
inscription should just be removed. Further cases of model migration are ima-
ginable. In general, we should keep as much as information as possible from
the existing model. In [116], Gruschko et al. classified metamodel changes into
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non-breaking, breaking and resolvable, and breaking and unresolvable. Chan-
ges are non-breaking if instance models do not have to be migrated at all,
as in our case (1). They are breaking and resolvable if model migrations can
be performed automatically, as in cases (2) and (3). If a metamodel change
is classified as unresolvable, model migrations need further information and
guidance.

10.7 Summary and Further Reading

The contribution of this chapter has been to show that graph grammars are
a natural means to define DSMLs. A graph grammar based on a metamodel
may offer a constructive view of a language. A grammar is of direct practical
use for the design of editing operations, not only for create operations (as
specified by the grammar rules) but for all standard operations. In addition,
graph transformation is well suited to defining an interpreter semantics for a
given DSML.

In the following, we relate our graph-grammar-based approach to promi-
nent methods for DSML specification in the literature. In [199], Mariott and
Meyer discussed two types of approach to defining visual languages: while
logic-based approaches such as metamodelling have their roots in artificial in-
telligence, grammar-based approaches originate in theoretical linguistics and
formal language theory. The focus of this chapter is on abstract syntax. Con-
crete syntax either is partly integrated (e.g. through the visual representation
of model elements) or has to be specified separately in a concrete syntax
structure related to the abstract syntax. A comprehensive overview of exis-
ting approaches to syntax definition for visual modelling languages was given
by Tveit in her dissertation [279]. Owing to their popularity, she focussed on
metamodel-based approaches.

The metamodelling approach to the definition of domain-specific langua-
ges has been widely adopted. It is declarative, with structural information and
well-formedness constraints specified in a logic-based form, and has resulted
in a variety of tool environments supporting visual editor generation, among
others. As a representative, MetaEdit+ [211, 276] supports the definition and
generation of different kinds of visual editor such as diagram, table and ma-
trix editors. Moreover, it supports multilanguage integration and multi-user
modelling. In addition, there are generation facilities for code and documenta-
tion. Further tool environments of this kind are GME [111] and Marama [210].
EMF [264] and the Graphical Modelling Framework (GMF) are in the same
category.

Grammar-based approaches to define domain-specific modelling languages
are established for textual languages. For example, Xtext [291] uses EBNF-like
grammars to define the syntax of domain-specific languages. Such a grammar
is translated to a metamodel for the definition of model transformations, for
example, for interpreting and translating domain-specific models. It may also
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be used as a basis to develop a visual editor for the specified DSML, as in the
GMF approach.

In the literature, there are various forms of grammar-based approaches
to visual-language definition extending string or tree grammars as in, for ex-
ample, [65], [156] and [256]. In these approaches, multidimensional structures
are encoded in strings or trees, usually via special attributes referring to ot-
her model elements. The approach DEViL [255] presented by Schmidt, for
example, is based on tree grammars and distinguishes three kinds of attri-
butes to represent data values, references and container structures. Similarly
to EMF, a visual model is represented in a tree structure induced by contai-
ners. String-based grammars are less established as a means to specify visual
domain-specific languages, possibly because the need for complex encodings
to capture multidimensional representations hampers usability and results in
scalability issues for parsers and other tools.

Graph grammars allow one to express multidimensional structures more
directly as graphs. The main graph-grammar-based approaches to visual-
language definition were presented and compared in [11]. Although this ap-
proach is feasible in principle, we are convinced that an integration of me-
tamodelling and graph transformation has the highest potential to enable
advanced DSML definition. To support, for example, instance generation, a
graph grammar can be deduced from a metamodel as presented in [91, 271].
To capture OCL constraints, they are translated to graph constraints in [239],
and further to preconditions of graph grammar rules in [121]. Corresponding
tool support was presented in [222].

Since graphs and graph transformation can be applied on different levels
of abstraction, they can also be used in continuous language engineering. Co-
evolution based on graph transformation of metamodels and instance models
has been investigated in [275, 274] and [197]. In this line of research, trans-
formation rules for metamodel evolution are used to automatically deduce
default migration rules, which may be customised as long as well-formedness
of models is preserved.
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Improving Models and Understanding Model
Changes

In model-based software development, models are primary artefacts that re-
present many aspects of a software system. In software evolution in particular,
models are used to provide an overview of the current version of the software,
to redesign it and to generate code from the redesigned model. Evolution may
be driven by changes in the environment, new feature requests or the need
to improve the software. In model-based software engineering, especially the
last two phenomena lead to model changes. When one is comparing models
before and after evolution, it is important to understand their differences.
This chapter presents the use of graph transformation to specify and analyse
model improvements as well as to understand complex model changes.

Software quality assurance frequently leads back to the quality assurance
of the models involved. While there are standards for software quality and
quality assurance processes in general, such standards do not exist for model
quality assurance. A widely accepted approach is the 6C goals of Mohagheghi
et al. [215], who proposed six quality categories for models. It remains open
how they can be applied to DSMLs.

Refactoring [103] is a widely adopted technique to improve the structure of
object-oriented software systems while preserving their behaviour. To identify
design issues, the concept of code smells has been developed. Both concepts
have been transferred to models, especially those using UML. Here, we propose
a quality assurance approach that can be adapted and applied to any DSML.

In [24], a model quality assurance process was presented that can be adap-
ted to project-specific and domain-specific needs. This process is based on sta-
tic model analysis using model smells. Based on the analysis results, appropri-
ate model refactoring steps may be performed. To define domain-specific mo-
del smells and refactorings, Arendt et al. followed the Goal–Question–Metric
(GQM) approach [35]. A model quality aspect is stated as a goal, and then
specific questions have to be developed, resulting in the definition of model
smells. These are used to find out if a model has to be refactored. This means
that, for a given refactoring to be applicable, a specified set of smells has to
be detected.
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Although smell detection and refactoring can be automated, deciding what
to refactor and which refactoring to apply remains a difficult manual process,
made more complex by conflicts and dependencies between refactoring ope-
rations. If language engineers specify refactorings by graph transformation
rules, they can use the CDA technique (as presented in Section 4.2) to detect
potential conflicts and dependencies that are implicit in their causal relati-
ons [208]. The results of this analysis can help a modeller to make an informed
decision about which refactoring is most suitable in a given context and for
what reason. Concretely, the following questions may be answered:

• What are the alternatives to a selected refactoring, i.e. are there other
mutually exclusive refactorings that address the same design smell?

• What other refactorings need to be applied first in order to make the
selected refactoring applicable?

• What other refactorings are still applicable after applying the selected
refactoring?

With respect to smells, additional questions occur:

• What refactoring is able to resolve a selected smell?
• What new smells may occur after a refactoring has been performed?

A language engineer can specify a model smell by a graph pattern. Such a
pattern can be regarded as an identical graph transformation rule with the
pattern as both its left- and right-hand side. A dependency analysis of all
rules specifying smells and refactorings is able to answer the questions above.

Complex refactoring processes lead to an evolution of both models and
software systems. A basic prerequisite for managing the evolution of model-
based software is to detect and understand changes at model level. The
currently available model differencing tools, however, operate on low-level,
sometimes even tool-specific model representations. Line-based differencing
tools group changes line by line. While this is acceptable for textual models,
it is not adequate for visual models. Storing a visual model in a textual format
allows one to exchange models between tools, but such a textual format does
not represent the model at the right level of granularity to be understood by
the user or analysed effectively by a differencing tool.

A better way to represent a model is an abstract syntax tree. Such a re-
presentation is usually not shown to the user either, so a model in abstract
syntax will be difficult to understand. Using a tree-based format, model diffe-
rences reported elementwise are still difficult to understand. A more concise
and syntax-independent form is needed to report complex model changes.

Investigating model editing processes more closely, we consistently found
certain recurring atomic changes. Hence, it makes sense to encapsulate them
as editing operations (see also Chapter 10) and to use those to communicate
changes. This means that, instead of reporting changes in each model element
individually, editing operations are reported together with their arguments.
Linking model differencing to model editing, they can be presented at a higher



11.1 An Example of Model Refactoring 241

level of abstraction. Editing operations have been shown to form adequate
building blocks for understanding of complex model changes [158, 159].

Our second contribution in this chapter is to show how graph transforma-
tion can help modellers to understand complex changes. Editing operations
encapsulate semantically connected model changes. As pointed out in Chap-
ter 10, the specification of an editing operation by a graph transformation rule
appears natural, since model editing is usually pattern-based and local. Larger
model changes are reported by so-called editing scripts, i.e. partially ordered
sets of operations with their arguments. Their partial order stems from their
causal dependencies. Note that a resulting script does not need to reflect the
actual editing process performed. It is a representative, but optimised version
of editing processes with the same outcome. This representation is minimal
in the sense of using the smallest number of operations to yield the change
considered. Instead of reporting various small model changes, such a script
reports the building blocks of a change process.

This chapter starts with an example of refactoring in Section 11.1. There-
after, we consider a widely used definition of model quality as a basis to specify
model smells and refactorings by graph transformation rules in Section 11.2.
These specifications are used as a prerequisite for analysing refactoring de-
pendencies in Section 11.3. Finally, we consider high-level model differencing
based on editing operations in Section 11.4.

Since this chapter uses typed attributed graph transformation systems
with control, it helps comprehension to be aware of the material in Chapters 1
to 3. In addition, CDA introduced in Section 4.2 is used to analyse conflicts
and causal dependencies between refactorings and editing operations.

11.1 An Example of Model Refactoring

Class models are basic ingredients of model-based software development. They
are often used to design the core structures of a software system, starting with
the domain model of high-level concepts and relations. In the following, we
consider a simple domain model for a university calendar which shows some
bad smells. They may be erased by refactoring the model. There are several
possible refactorings that would improve the model, but to choose an effective
refactoring process it is necessary to know how individual refactoring steps
interact, i.e. what their conflicts and dependencies are.

Our example domain model deals with lecturers who give courses and
students who attend them. Courses consist of lectures, which may have addi-
tional tutorials. This model is shown in Fig. 11.1 using the standard notation
for UML class diagrams. It contains some model smells, which may point to
design problems:

1. Classes Student and Lecturer have similar attributes, namely firstName and
forename as well as familyName and surname. This creates redundancy,
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1..1 tutorial
0..*

1..*
course
0..*

student 0..* course0..*

Lecturer
forename: String
surname: String

Student
firstName: String
familyName: String
registrationNumber: int

«enumeration»
Day

Monday: String
Tuesday: String
Wednesday: String
Thursday: String
Friday: String

«enumeration»
Time

8-10: String
10-12: String
12-14: String
14-16: String
16-18: String

Course
title: String
day: Day
time: Time

Lecture

Tutorial
title: String
day: Day
time: Time

RoomAdministration

Fig. 11.1. Class model before refactoring

which may be reduced by introducing a common superclass holding these
common attributes just once.

2. Similarly, class Tutorial has the same attributes as class Course.
3. There is an abstract class Course, which has just one subclass. This points

to speculative generality, i.e. a design decision which is not transparent,
introducing unnecessary complexity.

4. Class RoomAdministration is not connected to any other class. The class
model seems to be incomplete.

To improve this model, several refactorings may be performed:

1. Rename Student.firstName to forename.
2. Rename Student.familyName to surname.
3. Create a superclass Person for classes Student and Lecturer.
4. Pull up attribute forename from classes Student and Lecturer to class Per-

son. This refactoring presumes the first renaming mentioned above, as well
as a common superclass.

5. Pull up attribute surname from classes Student and Lecturer to class Person.
This refactoring presumes the second renaming mentioned above, as well
as a common superclass.

6. Delete the unused class RoomAdministration to resolve the incompleteness.
7. Pull up the association tutorial from class Lecture to class Course.
8. Delete the empty subclass Lecture. This refactoring presumes that associ-

ation tutorial has already been pulled up.
9. Insert an inheritance relation from class Tutorial to class Course and delete

all attributes of class Tutorial.
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This list of potential refactorings is quite long, even though the example
model is small. As already stated, some refactorings need others to be per-
formed beforehand, i.e. some of the refactorings presented are dependent on
others. For example, refactorings 4 and 5 are dependent on refactorings 1 –
3. All five refactorings are needed to erase the redundancy detected.

At the same time, some of the listed refactorings are mutually exclusive:
either association tutorial is pulled up and class Lecture is deleted as in refacto-
rings 7 and 8, or the attributes of class Tutorial are pulled up as in refactoring
9. In the first case, we decide that class Lecture indicates a speculative gene-
rality and delete it, while the second solution keeps class Lecture for future
enhancements.

Furthermore, we could also think of renaming Student.firstName and Stu-
dent.familyName to forename and surname, creating a superclass Person and
finally pulling up both attributes to this new superclass. These refactorings
are in conflict with refactorings 1 – 5. We have to decide one way or the other:

1..1

tutorial0..*

1..*
course
0..*

0..*
course
0..*

Person
forename: String
surname: String

Lecturer
Student

registrationNumber: int

«enumeration»
Day

Monday: String
Tuesday: String
Wednesday: String
Thursday: String
Friday: String

«enumeration»
Time

8-10: String
10-12: String
12-14: String
14-16: String
16-18: String

Course
title: String
day: Day
time: Time

Tutorial
title: String
day: Day
time: Time

Fig. 11.2. Class model after refactoring

Figs. 11.2 and 11.3 show two possible results of refactoring:

1. Starting with the model in Fig. 11.1 and applying refactorings 1 – 8 yields
the model in Fig. 11.2.

2. Starting with the model in Fig. 11.1 and applying refactorings 1 – 6 and
9 yields the model in Fig. 11.3.

It is clear that tool support is needed to perform complex model refac-
torings. Even in this small example, a number of refactorings are needed to
erase a design flaw. In the following sections, we discuss definitions of mo-
del quality and how modellers can be improved it by detecting model smells
and performing refactorings. Moreover, we show how language engineers can
specify smells and refactorings by graph transformation rules and how the
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1..1
tutorial
0..*

1..*
course
0..*

0..*
course
0..*

Person
forename: String
surname: String

Lecturer
Student

registrationNumber: int

«enumeration»
Day

Monday: String
Tuesday: String
Wednesday: String
Thursday: String
Friday: String

«enumeration»
Time

8-10: String
10-12: String
12-14: String
14-16: String
16-18: String

Course
title: String
day: Day
time: Time

Lecture Tutorial

Fig. 11.3. Class model after an alternative refactoring

analysis of conflicts and dependencies can help modellers to make informed
decisions about their refactoring processes.

11.2 Model Quality Assurance by Smell Detection and
Refactoring

In the following, we present how model quality and quality assurance can
be defined on the basis of graph transformation. We recall the established
definition of model quality by Mohagheghi et al. [215], which will be used as
guideline for defining domain-specific model smells and refactorings.

11.2.1 Model Quality

While software quality is concerned with the software system, model quality
focuses on the quality of models in model-based development. A prominent
approach to model quality are the 6C goals of Mohagheghi et al. [215]. Based
on a systematic literature review, these authors identified six classes of model
quality goals. Here, we recall part of the summary given in [24]:

1. Correctness: A model is correct if it meets the syntax and semantics of
the given modelling language. Model elements should be used in the way
defined and semantic ambiguities should not occur in models.

2. Completeness: A model is complete if it contains all relevant information,
and if it is detailed enough according to its purpose.

3. Consistency: A model is consistent if it does not contain contradictions.
This definition covers horizontal consistency, concerned with models or
diagrams on the same level of abstraction, vertical consistency, covering
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aspects of the model on different levels of abstraction, and semantic con-
sistency, focusing on the meaning of the same element in different models
or diagrams.

4. Comprehensibility: A model is comprehensible if it is understandable to
the intended user, be they a human or a tool. In most of the literature,
the focus is on comprehensibility to humans, including aspects such as the
aesthetics of a diagram, the simplicity or complexity of the model, and
using the correct type of diagram for the intended audience. This goal is
also referred to as pragmatic quality in the literature.

5. Confinement: A model is confined if it suits the modelling purpose and
the kind of system it represents. This definition also includes using the
relevant diagrams on the right abstraction levels. Furthermore, a confined
model does not have unnecessary information and is as simple as possible.
Developing the right model for a given system and purpose also depends
on selecting an adequate modelling language. This means that the mo-
deller uses language concepts that are suitable for the intended purpose.
Additional concepts should be used very sparsely or omitted entirely.

6. Changeability: A model is changeable if it can be evolved easily and con-
tinuously. This is important, since system requirements and context may
evolve over time. Changeability should be supported by modelling langua-
ges and modelling tools as well.

Depending on the purpose of the model, some quality aspects may have
higher priority than others. For example, comprehensibility of models is very
important if the main purpose of modelling is to communicate between diffe-
rent stakeholders. In model-driven development, correctness plays an impor-
tant role since code is generated from models.

To assess model quality, the methods proposed in the literature range from
inspections, via metrics, errors and bad smells, to controlled experiments [215].
In the following, we focus on smell detection and show how graph transfor-
mation can help language engineers to specify smells. Since refactoring is the
technique of choice to fix recognised model smells, we will later consider the
specification of refactorings. Each specified smell serves as a precondition for
at least one model refactoring. Therefore, it makes sense to analyse interde-
pendencies between smells and refactorings. If specifications for both are given
by graph transformation rules, this analysis is supported by CDA.

Assessing model quality by smells is a heuristic approach. Smells are just
indications that certain parts of a model may violate specific quality aspects.
To find out which smells are helpful for assessing a given quality, we follow the
goal/question/metric (GQM) approach [35]. For stating an aspect of model
quality as a goal, characteristic numbers have to be defined to assess this qua-
lity. An accepted approach is to formulate a range of questions which quantify
the quality by specific metrics. For example, to measure confinement of class
models for requirements elicitation, we may be interested in the following
questions (based on [24]):
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• Are there classes that are not used by any other model element? This is a
typical case of unnecessary information in the model.

• Are there abstract classes not doing much? Again, this might be an indi-
cator of unnecessary information in the model.

• Do similar attributes occur in more than one class? This might be a hint
that the modeller is not using the inheritance concept of class models
enough.

Model smells which can answer these questions are specified in the next
section. They can serve as the basis for metrics measuring the number of smell
occurrences in the model. The smaller these numbers are, the better is the
quality of the model.

11.2.2 A Sample Modelling Language

As we have seen in the previous chapter, the internal structure of models is
naturally specified by graphs while model changes can be specified by graph
transformation rules. Moreover, we have seen how type graphs are used to
define the types and relations of modelling languages.

In the following, we present the type graph for the simple class models used
to analyse an application domain. It contains classes with attributes and as-
sociations, but no operations. Associations may hold multiplicities and roles,
but are not further distinguished as, for example, aggregations or compositi-
ons. Multiplicities are given by lower and upper bounds in the form of natural
numbers, or unlimited upper bounds. In addition, enumerations and primitive
types are defined, but packages and comments are not. The resulting type
graph is shown in Fig. 11.4.

NamedElement
name: String

Type

Enumeration Class
abstract: Boolean

PrimitiveType

Literal

Property
lbd: NaturalUnlimited
ubd: NaturalUnlimited

Association

NaturalUnlimited

attribute *1

type
1

*

assocend
2

1

type

1

*

literal
*

1

*

gen

*

Fig. 11.4. Type graph for simple class models
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The underlying structure of the class model in Fig. 11.1 can be considered
as an instance graph of the type graph in Fig. 11.4. A snippet of this instance
graph is shown in Fig. 11.5. This shows the abstract syntax of the association
between classes Lecturer and Course, as well as the subclass Lecture. Note that
title is the only attribute of class Course shown. The attributes of class Lecturer
are omitted completely.

c1:Class
name = ‘Course’
abstract = true

c2:Class
name = ‘Lecture’
abstract = false

p1:Property
name = ‘title’
lbd = 1
ubd = 1

p2:PrimitiveType
name = ‘String’

p3:Property
name = ‘course’
lbd = 0
ubd = *

c3:Class
name = ‘Lecturer’
abstract = false

p4:Property
name = ‘lecturer’
lbd = 1
ubd = *

a:Association
name = ‘’

gen

attribute

type

type

assocend

assocend

type

Fig. 11.5. Snippet of instance graph for the simple class diagram in Fig. 11.1

Example 11.1 (smells specification). Figure 11.6 shows how model smells can
be specified by graph transformation rules. All these rules are graph queries,
i.e. they do not change the graph but check for the existence or non-existence
of graph patterns. If such a rule is applicable, its parameters are set. These
are output parameters reporting the smells found, to be used in possible sub-
sequent refactorings. Rule checkRedundantAttributes() = (p1,p2) reports on
two different attributes with the same name and type in two different classes.
Rule checkSpeculativeGenerality() = c checks for an abstract class c with fewer
than two subclasses. Note that the separate NAC is needed here to express
that two subclasses do not exist but one may exist, i.e. the whole structure in
red shown in N must not exist. Finally, rule checkUnusedClass() = c checks if
there is a class c that neither has attributes nor is used as the type of some
property (attribute or association end). ut

11.2.3 Specification of Model Refactorings

Effective tool support for refactoring should indicate continuously which refac-
toring operations are applicable to the current model. This involves checking
the pre-conditions of these operations, initially without specifying any input
parameters. If this check is passed and a refactoring is selected, it is followed
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checkRedundantAttributes() = (p1,p2)

:Class

:Class

p1:Property
name := n

p2:Property
name := n

:PrimitiveTypeattribute

attribute

type

type

N
c:Class :Class

:Class

gen

gen

checkSpeculativeGenerality() = c

LHS = RHS
c:Class

abstract = true
n

checkUnusedClass() = c
c:Class:Property :Propertyattribute type

Fig. 11.6. Smell specification by graph transformation rules

by a conclusive precondition check taking into account the actual parameter
values. This means that the initial precondition check determines if the ba-
sic pattern of the refactoring is present in the model. Once a refactoring is
selected, its input parameters are set and the instantiated precondition is ve-
rified before the actual model manipulation takes place. Hence, we consider a
refactoring as a three-step process, consisting of an initial precondition check,
a final precondition check and the actual model change. This procedure pre-
sented in [24] was originally proposed and implemented in the Eclipse-based
LTK technology [8] to specify program refactorings.

Example 11.2 (renaming). As a first example, we consider what is probably
the most popular refactoring: renaming, in particular, the renaming of attri-
butes. To apply this refactoring, we need to know the attribute to be renamed
and the new name. The initial precondition AttributeExists() (shown on the
left of Fig. 11.7) checks if there is at least one attribute in the model. In this
case, this refactoring is applicable. The final precondition is specified by a
controlled rule application, shown on the right of Fig. 11.7. This takes the
selected attribute p and the new name n and checks that neither the owning
class c nor any transitive parent or child class contains an attribute with the
new name. This requires two loops, applied for as long as possible to transi-
tively reach all parents and children. Note that in each new loop c is set to
c’ to go one step higher or lower in the inheritance hierarchy. Moreover, the
new name should be non-empty (checked by rule checkClass()). If the final
precondition is satisfied, the name of the attribute can be changed to the new
name. This is done by rule renameAttribute, depicted on the left of Fig. 11.7.

ut



11.2 Model Quality Assurance by Smell Detection and Refactoring 249

AttributeExists()
:Property

renameAttribute(p, n)
p:Property
name := n

checkClass(p,n) = c

p:Property c:Classattribute :Property
name = nattribute

n <> ”

checkSuperClass(c,n) = c’

c:Class c’:Classgen :Property
name = nattribute

checkSubClass(c,n) = c’

c:Class c’:Classgen :Property
name = nattribute

alap(c := c’)

alap(c := c’)

Fig. 11.7. Specification of refactoring renameAttribute

Example 11.3 (creating a superclass). Another popular refactoring is Crea-
teSuperclass. This creates a new class as a superclass of one or more existing
classes. This is necessary, for example, to eliminate redundant attributes or
associations by pulling them up to a superclass, if such a superclass does not
already exist. To apply this refactoring, we have to know the class(es) C that
should get a new superclass and the name n of this new class. The initial pre-
condition ClassExists() checks if there is at least one class in the model. If not,
the refactoring is not applicable. The final precondition takes the new name n
as input and checks if a class with this name already exists. If not, the actual
model change by rule createSuperclass(C,n) creates a new class with name n
as a superclass of the indicated classes C. (Note that C is a set parameter
used in a multiobject.) The whole specification of this refactoring is shown in
Fig. 11.8. ut

Example 11.4 (pulling up an attribute). To eliminate redundant attributes
occurring in several subclasses of a common superclass, the refactoring pul-
lUpAttribute can be used. It is applicable if there is any situation where an
attribute may be pulled up. To do this, the attribute’s name n has to be
specified as well as the class s to which it should be moved. The initial pre-
condition PullableAttributeExists() checks if there is an attribute in a subclass
which may be pulled up. The final precondition, checkSubclasses(), takes the
attribute name n and class s as input and checks if the corresponding attribute
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ClassExists()
:Class

checkClassName(n)
:Class

name = n

createSuperclass(C, n)
:Class

name := n

C:ClassC:Class

gen

Fig. 11.8. Specification of refactoring createSuperclass

is in all subclasses of class s and is not used by some association. With the fi-
nal precondition satisfied, the attribute can be pulled up. This is done by rule
pullUpAttribute() in Fig. 11.9, which moves the attribute from one subclass to
its superclass and deletes the attributes with the same name from all other
subclasses. ut

pullableAttributeExists()
:Class:Class :Propertygen attribute

checkSubclasses(n,s)

s:Class :Class:Class
:Property
name = n
:Property
name = n

gen attribute :Associationassocend

pullUpAttribute(n,s)

s:Class :Class:Class:Class gengen

p:Property
name = n

P:Property
name = n

P:Property
name = n

attribute

attribute

attribute

Fig. 11.9. Specification of refactoring pullUpAttribute

11.2.4 Discussion

Smell specification by graph transformation is useful for pattern-based smells.
The pattern of interest can be directly specified in a rule using the abstract
model syntax. Graph transformation is less useful for metrics-based smells,
since counting of model elements is not specifically supported. If metrics-
based smells focus on specific numbers of element occurrences, such as 0 or
1, or exactly, at most or at least n, however these are easy to encode in the
left-hand side patterns of graph transformation rules.
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As shown above, we follow the threefold specification approach for refacto-
rings. The arguments given for smell specification carry over to the specifica-
tion of preconditions. Thus, graph transformation is well suited for specifying
pattern-based preconditions and potentially less suited for metrics-based ones.
The specification of model changes by graph transformation rules is very na-
tural.

For each model smell, several refactorings may be relevant. These are not
necessarily all the refactorings applicable to the model, but a suitable subset
able to eliminate the smell. For an unused class, for example, the renaming of
this class is applicable, but would not eliminate the smell. The deletion of the
unused class or the creation of contained properties would address the smell.
The application of a refactoring poses the risk of creating new model smells.
Hence, it is worthwhile to check the relationship between model refactorings
and smells. An example of a refactoring that causes a smell is the insertion of
a new element that completes a partial smell.

11.3 Analysing the Interplay of Refactorings

After having shown how model smells and refactorings can be specified by
graph transformation rules, we now reason about the order in which refacto-
rings should be performed. By considering their potential conflicts and depen-
dencies, engineers can learn how design goals may be reached by refactorings.
For example, the refactoring pullUpAttribute may require the refactoring rena-
meAttribute to equip with the same name all those attributes being pulled up.
Table 11.1 shows potential dependencies between selected refactorings. Whe-
never a refactoring shown in the top row may be dependent on a refactoring
shown on the left, the table entry is +, otherwise –.

Note that a refactoring is dependent on another one if at least one rule
of the first refactoring is dependent on a rule of the second one. Refactoring
pullUpAttribute, for example, may be dependent on refactoring renameAttribute
since its rule checkSubclasses may be dependent on rule renameAttribute. It
may be necessary for attributes to be renamed before the check, such that all
subclasses have an attribute with the same name.

Table 11.1. Overview of potential dependencies between selected refactorings

Potential dependencies renameAttribute createSuperclass pullUpAttribute
renameAttribute + – +
createSuperclass – + +
pullUpAttribute – – +

Potential conflicts indicate (possibly mutually exclusive) choices in the
refactoring process. Potential conflicts between the set of refactorings consi-
dered above are shown in Table 11.2. If an attribute is pulled up, it cannot
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be renamed as an attribute of the original class, but only of the new one.
Hence, despite a conflict, subsequent refactorings may still be applicable but
not with the original parameters, i.e. they have to be adapted. If an attribute
with name n is pulled up to a class with an attribute that should be renamed
to n, this renaming cannot take place at all. So, either one or the other refac-
toring can take place, but not both. However, we have to keep in mind that
these are only potential conflicts, i.e. they may or may not occur in actual
refactoring scenarios. For example, not all renamings are in conflict, just those
that rename the same model element (attribute).

Table 11.2. Overview of potential conflicts between selected refactorings

Potential conflicts renameAttribute createSuperclass pullUpAttribute
renameAttribute + – +
createSuperclass – + –
pullUpAttribute + – +

In the following, we consider some selected dependencies and conflicts in
more detail.

Example 11.5 (dependency of pullUpAttribute on renameAttribute). The refacto-
ring pullUpAttribute can only be performed if each subclass has an attribute
with the same name. This check is done by rule checkSubclasses which is a
rule with multiobjects. To find potential dependencies, here it is enough to
consider dependencies of a rule where all multiobjects are replaced by single
objects. We call the resulting rule checkSubclass. (Note, however, that this
reduction to a simpler rule is not always possible; see [273, 44].) Figure 11.10
shows a change/use dependency of rules renameAttribute and checkSubclass.
Rule renameAttribute prepares the attribute name such that it is found as an
attribute of a subclass. Note that graph H1 shows a minimal situation where
rule renameAttribute has been applied and rule checkSubclass is applicable. In
a similar way, rule renameAttribute is dependent on rule pullUpAttribute. ut

Example 11.6 (dependency of pullUpAttribute on createSuperclass). The refacto-
ring pullUpAttribute can only be performed if there is already a superclass to
which an attribute can be pulled up. Hence, there is a potential produce/use
dependency with rule createSuperclass, as shown in Fig. 11.11. The first rule
of the refactoring pullUpAttribute, i.e. rule pullableAttributeExists, is already
dependent. Graph H1 shows a minimal situation where rule createSuperclass
has been applied and rule pullableAttributeExists is applicable such that its
match uses the newly created superclass. Similarly, rules checkSubclass and
pullUpAttribute are dependent on rule createSuperclass. ut

Example 11.7 (conflicts between renameAttribute and pullUpAttribute).
Figure 11.12 shows a conflict between rules renameAttribute and checkSubclass.
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renameAttribute(p, n)
p:Property
name := n

checkSubclass(n,s)

s:Class :Class p:Property
name = n

gen attribute

H1

s:Class :Class p:Property
name = n

gen attribute

n1 m2

Fig. 11.10. Change/use dependency between refactorings renameAttribute and pul-
lUpAttribute

createSuperclass(C,s)
s:Class

name := n

c:ClassC:Class

gen

pullableAttributeExists()
c:Classs:Class p:Propertygen attribute

H1

c:Classs:Class
name := n p:Propertygen attribute

n1

m2

Fig. 11.11. Produce/use dependency between refactorings createSuperclass and pul-
lableAttributeExists

(Again, we do not consider rule checkSubclasses, which contains multiobjects,
but restrict our consideration to the basic rule checkSubclass, which is enough
to find conflicts.) The conflict is caused by rule renameAttribute and can be
solved by performing just one of the two refactorings. One solution is to not
perform the renaming or to take it back, i.e. to rename the attribute back to
its original name. In that case, the attribute can still be pulled up. Another
solution is to perform the renaming and not to pull up the attribute.

In turn, rule pullUpAttribute can cause conflicts with rule checkClass of the
refactoring renameAttribute. Figure 11.13 shows a delete/use conflict where an
attribute link is deleted but is needed to check the existence of the attribute
in a given class. This conflict can be resolved by deciding on one or the other
refactoring and omitting the other one, or by first pulling up the attribute
and renaming it in the context of the new class.
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renameAttribute(p, n)
p:Property
name := n

checkSubclass(n,s)

s:Class :Class p:Property
name = n

gen attribute

G

s:Class :Class p:Property
name = n

gen attribute

m1 m2

Fig. 11.12. Conflict between refactorings renameAttribute and pullUpAttribute

pullUpAttribute(p,s)
s:Class :Classgenc:Class gen

p:Property
name = n

:Property
name = n

attribute attributeattribute

checkClass(p,n,c)
p:Property c:Classattribute

:Property
name = n

attributen <> ”

G

s:Class :Classgenc:Class gen

p:Property
name = n

:Property
name = n

attribute attribute

m1 m2

Fig. 11.13. Delete/use conflict between refactorings pullUpAttribute and renameAt-
tribute

Rule pullUpAttribute may also cause produce/forbid conflicts with rule
checkClass, as shown in Fig. 11.14. The application of rule pullUpAttribute
creates an attribute link such that the superclass does get an attribute with
name n. Hence, rule checkClass is not applicable any more, since its negative
application condition is no longer satisfied. This conflict can be resolved by
not applying one or the other refactoring, or by renaming the attribute to
another name. ut
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pullUpAttribute(p2,s)
s:Class :Classgen:Class gen

p2:Property
name = n

:Property
name = n

attribute attributeattribute

checkClass(p,n,c)
p:Property c:Classattribute

p2:Property
name = n

attributen <> ”

G

:Class s,c:Classgen :Classgen

:Property
name = n

p:Propertyp2:Property
name = n

attribute attributeattribute

n <> ”

m1 m2

Fig. 11.14. Produce/forbid conflict between refactorings pullUpAttribute and rena-
meAttribute

11.4 Understanding Model Changes

In model-based software development, models continuously evolve, not only
due to refactoring but also in response to changing requirements, software
changes or other external factors. Therefore, models can have many versi-
ons during a system’s lifetime. A clear picture of all model versions, of their
successor relationships and other dependencies, and of the changes between
revisions is essential to understand and plan the co-evolution of a system and
its model. This means that developers need adequate tools for model compa-
rison, patching and merging. However, the tools currently available typically
display and operate with low-level model changes based on their internal mo-
del representations. Presenting a large number of low-level changes to the user
does not help their understanding of model evolution histories.

11.4.1 Model Differencing

In [158, 159], the calculation and propagation of model changes was lifted to a
higher abstraction level. Semantically connected model changes are encapsu-
lated and reported as invocations of editing operations. Moreover, several such
invocations may be grouped together to edit scripts used as model patches. A
prerequisite for this approach is to specify all the editing operations of inte-
rest. This is typically the task of language designers, supported by modellers
if specific operations are needed.

As demonstrated in this and the previous chapter, graph transformations
are useful for specifying editing operations for models, especially refactorings.
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This is advantageous not only for developing user-friendly model editors, but
also for user-friendly model differencing tools. Editing operations are designed
to encapsulate semantically connected model changes. Therefore it is worth-
while to present reports on model changes at this level. This means that for
each DSML, one needs to specify all relevant editing operations. As shown
in [162], most of the standard editing operations can be generated from a
metamodel, i.e. this work can be largely automated.

Example 11.8 (model change). Considering the model versions in Figs. 11.1
and 11.2, a modeller wants to be informed which editing operations have led
to this evolution. As refactorings 1 – 8 have taken place, they result in the
following set of low-level changes:

• changeValue(firstName,“name”,“forename”)
• changeValue(familyName,“name”,“surname”)
• addNode(“Class”,“Person”,true)
• addReference(student,“gen”,person)
• addReference(lecturer,“gen”,person)
• deleteNode(“Class”,roomAdministration)
• deleteReference(lectureProp,“type”,lecture)
• addReference(lectureProp,“type”,course)
• deleteReference(lecturer,“attribute”,forename)
• addReference(person,“attribute”,forename)
• deleteReference(student,“attribute”,firstName)
• deleteNode(“Property”,firstName)
• deleteReference(lecturer,“attribute”,surname)
• addReference(person,“attribute”,surname)
• deleteReference(student,“attribute”,familyName)
• deleteNode(“Property”,familyName)
• deleteReference(lecture,“gen”,course)
• deleteNode(“Class”,lecture)

Different types of low-level changes are represented with corresponding
details. Value changes are shown by referring to the model node (a metaclass
instance), its meta-attribute and the new value. A new model node is added
by setting its type, name and further meta-attributes. References are added
or deleted, each referring to its source node, type and target node. In this
example, we use the following identifiers for nodes: if unique, we use their name
in lower case; for properties whose names refer to association roles equalling
the lowercase variant of their type, names are extended by “Prop”.

As this example shows, a few changes in a small model can already result
in a long list of low-level updates. For better understanding, we want to infer
higher-level editing operations. For example, the last two changes in the list
are caused by the refactoring deleteEmptySubclass. ut
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To find out which low-level changes belong together and form so-called
semantic change sets, a language engineer specifies editing operation rules
first. Since each operation leads to a characteristic pattern of low-level change
actions, a modeller tries to find occurrences of these patterns. To do so, each
editor rule is translated to a recognition rule. Note that recognition rules
operate on a data structure of low-level changes, while editor rules are applied
to domain-specific models.

Example 11.9 (recognition of editing operation). For rule pullUpAttribute in
Fig. 11.9, its pattern of low-level changes is

• deleteReference(c,“attribute”,p)
• addReference(s,“attribute”,p)
• deleteReference(c’,“attribute”,p’)
• deleteNode(“Property”,p’)

where s is a class, p is a property of class s, c is a subclass of s, for all c’ in
C (the set of subclasses of s except c) and all p’ in P (a set of properties in
subclasses of s with the same name as p). Since C or P may be empty, at least
two low-level changes are recognised as editing operations. Depending on the
number of sub-classes of s, there may be many more. If s has, for example,
three sub-classes, eight low-level changes are grouped. ut

Since a recognition rule just adds information about a pattern found and
checks application conditions on model elements and references only, the ap-
plications of such rules are always conflict free. Hence, they can be applied in
parallel. Considering the set of all possible applications of recognition rules to
a given low-level change set, some low-level changes may be recognised in two
or even more editor steps while others may not be recognised at all.

If one operation creates an element which is deleted by a subsequent one,
this transient effect is not recognisable by comparing the initial version of
the model with the final one. This means that not all low-level changes of
the corresponding editor steps can be recognised by an algorithm that works
without backtracking. Hence, the corresponding steps cannot be recognised.
In cases where a complete editing operation is undone, many transient effects
occur that do not affect the new version of the model and hence are not
isolated as low-level changes. In such a case, neither the original editor step is
recognised nor its inverse. This means that a language engineer has to check
that the initial editor rule set does not have transient effects other than those
due to applying inverse rules. We call such a rule set well-formed.

Given a well-formed rule set, it can still happen that some low-level chan-
ges are matched to two or more editor steps. However, we are looking for
a complete partitioning of the set of low-level changes into editor steps. It is
possible that some recognised editor steps have to be ruled out in order to find
an optimal set partition. For example, a combination of actions that delete
and add a reference can be interpreted as a move of a reference. Hence, pulling
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up an attribute can also be considered as moving a reference and deleting a
set of properties. However, a modeller typically wants to find the minimum
number of editor steps, because understanding model changes is easier for a
smaller number of reported steps.

In [158], the following strategy was presented: First, all low-level change
sets are recognized that do not overlap with any other and can be associated to
a unique editing operation. Second, all low-level change sets that are entirely
included in other sets and do not overlap with further ones, are discarded. This
fits our overall strategy of finding the minimum number of editor steps. This
case occurs whenever a complex operation is composed from smaller ones or
a core operation has one or more extensions. Finally, the remaining low-level
change sets are partially overlapping. This reduced set-partitioning problem
has to be solved by combinatorial optimisation. From a practical point of
view, this is not a problem since case studies have shown that this case occurs
very rarely.

11.4.2 Model Patching

If a modeller wants to patch model changes to another version, it is not enough
to infer a set of editing operations; the actual arguments are needed to exe-
cute the actual steps. Moreover, it has to be clear in what order the steps
have to be applied, such that all of them are applicable and there is no need
for backtracking. If an output parameter of one operation is used directly by
a subsequent one as an input parameter, the sequential dependency is ob-
vious. However, it cannot be reduced to parameter passing in general. The
execution of an operation call may also depend on other operation calls if, for
example, elements are deleted which are forbidden by subsequent steps. To
analyse all possible sequences of two editing operation calls by hand can be
tedious. Instead, a modeller can apply CDA to find all potential dependencies
between operations. Thereafter, the list of potential dependencies is traversed
with respect to the corresponding recognition rules. The corresponding mini-
mal difference graphs is tried to be embedded into the actual model difference
graph: given two editor steps G =⇒r1,m1 H1, H1 =⇒r2,m2 H2, they are ac-
tually dependent if the co-match m′1 : R1 → H1 and match m2 overlap in at
least one element. All the information gathered is synthesised in an editing
script, i.e. a partially ordered set of editing operation calls. In the following,
we present an example of an editing script deduced from the set of low level
changes presented above.

Example 11.10 (editing script). The low-level changes shown in the previous
example can be grouped into the following editing steps, forming a partially
ordered set of operation calls. All operation calls in item 1 can take place
immediately in any order. Thereafter, operation calls in item 2 become exe-
cutable. Note that these calls are not dependent with respect to parameter
passing, but are dependent owing to pattern-based dependencies:
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1. renameAttribute(firstName,“forename”),
renameAttribute(familyName,“surname”),
createSuperclass({student,lecturer} ,“Person”),
deleteUnusedClass(roomAdministration),
pullUpAssociation(tutorial,course)

2. pullUpAttribute(forename,person),
pullUpAttribute(surname,person),
deleteEmptySubclass(lecture)

We see that all the refactorings performed are reported as model changes.
Note that only their actual change rules are listed. Precondition checks are
not reported, since they do not cause any model changes. Abstract syntax
objects are referred to by their internal names (usually equal to their class
names). If two model elements (especially attributes and associations) have
the same name, their name spaces are given as well to distinguish them, for
example, Course.title and Tutorial.title (not needed in this example). ut

An editing script summarises model changes in a compact way. Such a
script can be used to report on model differences or to provide a patch to be
applied to another model version. A patch is applicable to a model version
if there is at least one transformation sequence that applies all editing rules
along the dependency-induced partial order. This technique is correct in the
sense that a patch can always be applied to the original model version it was
deduced from. Trying to apply it to any other model version may, of course, fail
[160]. Several kinds of problem may occur. If a modeller chooses an argument
of an editor step incorrectly, the step may be performed in the wrong context
of the model version or may not be executable at all. If a required model
element does not exist or a forbidden one does exist, the step involved, as well
as any dependent steps, cannot be performed.

If an editing script can be applied only partly, automatic model patching
should be enhanced by user interaction. A modeller may solve these problems
in different ways: either the script is not applied at all; the editing script is
applied partially, leading to a meaningful result; or problematic editor steps
are adapted manually such that the script can be applied completely.

11.5 Summary and Further Reading

Since models play an important role in model-based software engineering, mo-
dellers need to be supported in working with them. This chapter shows how
models can be improved by detecting model smells and performing refacto-
rings. Larger refactoring processes can consist of a number of basic refactoring
steps which have to be arranged such that the intended overall redesign can
performed. We have seen that CDA can help to find causal dependencies bet-
ween refactorings to help planing the redesign process. Moreover, it supports
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the modeller in finding conflicts between alternative refactorings that have to
be resolved.

After a period of model evolution, including but not limited to refactoring,
stakeholders such as system analysts, model engineers and software develo-
pers need to understand the changes performed. This chapter also shows how
graph transformation can help in providing a high-level view of model chan-
ges, by grouping semantically connected changes into editing operations. A
partial order of editing operations, called an editing script, represents a mi-
nimal editing process leading from one major model version to the next one.
CDA can be used again, to find causal dependencies between operations.

11.5.1 Improving Models

The initial idea of specifying refactorings by graph transformation to analyse
their conflicts and dependencies by critical pair analysis was due to [208]. It
was taken up by Arendt et al. to specify not only refactorings but also model
metrics and smells, as a basis for a model quality assurance process [23, 24, 21].
The semantics preservation of refactorings based on graph transformation was
further investigated in [241, 240]. The authors of those publications showed
that all the specified refactorings preserve the given semantics. This conside-
ration also covers the case in which a refactoring consists of several steps that
are not semantics-preserving individually, but only as whole. The refactoring
of architectural models based on graph transformation was presented in [43].
The main contribution was to show behaviour preservation using CSP [146] as
the semantic domain. Heckel et al. used refactoring by graph transformation
to transform legacy software architectures to service-oriented ones [135].

11.5.2 Understanding Model Changes

The second part of this chapter presents an approach to lifting low-level model
differences to a higher level using editing operations. Kehrer et al. presented
more details of this approach in [158, 159, 160, 157], especially the construction
of recognition rules from editor rules. Kehrer et al. [160] addressed the parallel
evolution of model variants as they occur in automation engineering. Local
improvements occurring in one variant have to be propagated to other variants
or back-ported to a central base version.

High-level model differencing has been applied in a number of case stu-
dies to show the flexibility of the approach and the usefulness of lifting model
differences. The parallel evolution of model variants in industrial plant auto-
mation was considered in [160]. Complex differences between feature models
were investigated to reason about software product-line evolution [53]. The
semi-automatic co-evolution of architecture and fault tree models was consi-
dered in [106]. As the use of textual domain-specific modelling languages is
an important trend in model-driven engineering, Kehrer et al. showed that
high-level differencing can also be adapted to a textual modelling language
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using simple Web models as an example [161]. This approach is also useful
for reversing engineering Java software systems to obtain model histories to
be analysed. The purpose of that work was to synthesise realistic test mo-
dels [293].

11.5.3 Tool Support

The concepts and methods presented in this chapter have led to Eclipse-based
tools, namely EMF Refactor [3] for quality assurance of models. EMF Refac-
tor supports language engineers in specifying metrics, smells and refactorings
for domain-specific modelling languages, not only in a graph-transformation-
based manner provided by Henshin, but also in Java, OCL and other model
transformation languages such as EWL [4].

For high-level model differencing, the tool environment SiLift [7] has been
developed. As a prerequisite, it supports the specification of editing operations
for DSLs. For a given change as reported by, for example, EMF Compare [2],
an editing script is generated. Several evaluations have been presented in
[159, 53, 106] to show that the proposed techniques and tools are correct and
useful. The generated editing scripts were shown to be correct in the sense that
they are always applicable to the original model and lead to the new model
version. Moreover, it was shown that a script raises the level of abstraction in
the sense that the algorithm finds as many complex operations as possible.
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Translating and Synchronising Models

In model-based software engineering, models are used to represent systems on
a higher level of abstraction. They allow developers to abstract from imple-
mentation details, focussing on expressing solutions in terms of domain con-
cepts. Model translations to one or more implementation platforms support a
model-driven approach, allowing reuse across platforms, reducing development
costs and improving software quality. Model translations have also been used
for analysing models by translating them to formal specification languages
and analysing the corresponding formal models. Based on their visual repre-
sentation and mathematical background, graph transformations can be used
to specify model-to-model and model-to-text transformations in an intuitive
and precise way supporting execution and formal analysis.

Individual models can represent specific but potentially overlapping views
of a system. For example, class models and sequence diagrams both contain
information about operations. In order to provide a basis for further deve-
lopment and analysis, such overlapping views have to be kept consistent with
each other as well as with the software artefacts they model. In a forward
engineering scenario, this consistency can be achieved by construction when
transforming models into implementations automatically. If there is a change
on either side, for example, in the class model or the code, the consistency
relation between them can break, and the views are not consistent any more.

Updating a view manually after each change of the other view is tedious
and error prone. Instead, we need a mechanism to translate and synchronise
models automatically. Model transformation languages and tools have been
developed for this purpose. Their intention is to provide dedicated support for
the development of model translation and synchronisation tools, at a higher
level of abstraction than a general-purpose programming language. Graph
transformation provides one such high-level model transformation approach.

As indicated above, model translations can be performed for different rea-
sons. They are required for realising mappings between models, from models
to code or other implementation-level artefacts, or vice versa, or for mapping
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software models to mathematical models used for analysis. Model transforma-
tions can relate models at the same level of abstraction, for example, if they
describe different components or aspects of the same system. Transformations
between models at the same level are called horizontal. In contrast, vertical
transformations describe mappings between models and other artefacts at dif-
ferent levels of abstractions, such as a mapping from a model to code [209]. In
both cases it is typical that the source and target artefacts are expressed in
different languages, i.e. they are defined over different metamodels. This type
of model transformation is called exogenous [209] or a model translation.

As a running example throughout this chapter, we will use an exogenous
vertical transformation that is one of the most popular case studies in the
literature: the translation of object-oriented models into relational database
schemas, also known as object–relational (O–R) mapping [40, 37].

The alternative to exogenous model transformations are endogenous ones,
between models over the same metamodel. Such transformations have been
used in the previous two chapters to describe DSMLs by graph grammars, de-
rive basic and advanced model editor operations and model fixes, and specify
smell detection and model refactoring, as well as model differencing.

When applying model transformations to generate models, a new model
is produced after each transformation step, i.e. such a transformation is per-
formed out-place. All other usage scenarios modify the current model and
therefore require in-place transformations. Endogenous model transformati-
ons may be performed in-place or out-place, dependent on their purpose. Mo-
del translations are intentionally out-place, since new artefacts are computed.
However, they may be implemented as in-place transformations computing
an extension of the given model to represent the translation result. To access
this result, it may be read out from the derived graph using a projection to
the types of the target metamodel.

There are many model transformation approaches and languages [68] tar-
geting different kinds of transformations. Since our focus is on model trans-
lations, we consider out-place transformation languages, such as ATL [152],
ETL [170], QVT (both QVT–O and QVT–R) [177, 266] and triple graph
grammars [260]. Alternatively, language engineers can use general-purpose
programming languages to specify model translations. The choice of a specific
transformation language may depend on objective characteristics, such as ex-
pressiveness, user-friendliness and tool support, but language engineers also
tend to stick with languages they are familiar with. A strong argument for
choosing a graph-transformation-based language is that it allows a declara-
tive definition of model translations in the sense that the way graph patterns
are navigated does not have to be specified. The underlying pattern matcher
implements strategies to find patterns. Furthermore, the visual layout of trans-
formation rules may be helpful in developing and maintaining translations of
complex structures as they can occur in models. Based on their mathemati-
cal background and theory, graph transformation languages also come with
powerful analysis techniques to reason about model translations.
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For a model translation to be well defined we expect that, given a valid
input model, the translation yields a correct model as a result. To verify that
this is the case, the following questions may be important:

• Is the result model syntactically correct?
• Is the result model semantically correct with respect to the input model?
• Can every syntactically correct input model be translated?
• Does the model translation always terminate?
• Does the model translation always yield a unique result model?

Translations based on graph transformation allow the use of tools for the
verification of such properties based on the analysis techniques discussed in
Chapter 4. Especially in critical applications, this is an important advantage
over translations implemented in programming languages and many model
transformation approaches. In the example case of an O–R mapping (which
may or may not be critical) we expect a translation to produce a unique rela-
tional schema for each valid class model. This schema has to be syntactically
correct, i.e. it has to belong to the modelling language of relational schemas.
Moreover, to be semantically correct the relational schema has to represent
a flattened structure of its input class model. Conversely, the same relational
schema may be the result of translating several class diagrams if they differ
only in their class inheritance relations.

To (re-)establish of consistency between related software artefacts we re-
quire model synchronisations. The consistency of related artefacts may break
owing to changes in just one artefact, or changes in several artefacts during the
same cycle. For example, a class diagram may be changed to reflect new re-
quirements while related code is updated to repair bugs. We limit ourselves to
the case of just two interrelated artefacts, leaving the problem of consistency
in dynamic artefact networks for the future [267].

In complex scenarios, achieving full consistency may not be possible. Then,
the problem becomes one of achieving maximum consistency. The basic form
of model synchronisation is unidirectional, where changes on one side are pro-
pagated to the other side. In addition, we consider concurrent model synchro-
nisation, where both models are modified and changes have to be propagated
in both directions. This is the case, for example, if a new class is added to the
class model while the relational schema is improved by splitting a table.

In an integrated tool environment, we would expect synchronisation to
be automatic once the developer has performed a change. As in the case of
model translation, this raises questions of syntactic and semantic correctness,
completeness, termination, and uniqueness of the result. In addition, we expect
model synchronisation to be Hippocratic1, i.e. not to change models that are
already consistent. As in the verification of model translations, we would like

1 The term is derived as a metaphor from the Hippocratic Oath, stating that a
doctor should not harm patients [265].
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to benefit from the analysis techniques and tools of graph transformation
systems to establish such properties.

Most graph transformation approaches to model synchronisation are ba-
sed on triple graph grammars (TGGs) [260]. A TGG is a graph grammar that
derives graph triples consisting of source, target and correspondence graphs,
the latter relating the source and target graphs. A triple graph grammar can
be projected to two graph grammars, one for the source and one for the tar-
get modelling language. The language of interrelated models generated by a
TGG defines all consistent interrelated models. This provides us with a decla-
rative specification of model consistency. A TGG can be operationalised auto-
matically to create forward (source-to-target) or backward (target-to-source)
translations, each resulting in consistent pairs of interrelated models. These
translations are syntactically correct, terminating and yield unique results un-
der reasonable assumptions. A TGG can also be used to generate correct and
Hippocratic model synchronisations.

This chapter is structured as follows. In Section 12.1 we consider inter-
related models and modelling languages based on an example of object–
relational mapping before studying model translations and their proper-
ties in Section 12.2. TGGs and their operationalisation are introduced in
Section 12.3. Finally, we discuss model synchronisation in Section 12.4.

Since this chapter uses typed attributed graph transformation systems, it
is useful to be aware of the material in Chapters 1 and 2. In addition, analysis
techniques presented in Chapter 4 (i.e. CDA, termination analysis, constraint
checking and graph parsing) are used to show relevant properties of model
translations and synchronisations.

12.1 Interrelated Models and Modelling Languages

Models can be linked in several ways. Apart from the use of shared names
or certain naming conventions, a simple method is to add references between
elements of different modules. Such links are easy to maintain when working
with models representing different views. UML diagrams, for example, often
refer to model elements defined in other diagrams, such as an object in a
behaviour diagram pointing to its defining class. Remote references realise
tightly coupled model relations, which require a close integration between the
manipulations of related models. A more loosely coupled relation is achieved
through correspondence links between elements of different models. This lea-
ves the source and target models, often belonging to different languages and
possibly held in different tools, independent of each other while allowing one
to represent their relation in a way that is navigable from both ends. In the
following example, we will relate class models and relational schemas by cor-
respondence links, giving us the option to modify each model independently.
Example 12.1 (classes to tables: requirements). This example provides a ba-
seline scenario for model-driven development. It served as a reference case
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study to compare a number of model transformation approaches [54]. Subse-
quently, various model transformation techniques and tools have been applied
to variants of it to illustrate and assess their features. Conceptually, an O–R
mapping is a translation between the two paradigms of object-oriented and
relational data modelling.

We will introduce this (slightly simplified) example by presenting its source
and target metamodels first. Note that multiplicities allow models with incom-
plete information, in order to support a stepwise translation of class models
while keeping intermediate inter-related models consistent with each other.

The Class metamodel is shown in Fig. 12.1. Its principal metaclass is Class,
which contains a set of Attributes and has a super reference pointing to a
superclass, if it exists, for modelling inheritance trees. An Attribute points
to a DataType and can be primary. Primary attributes are used to identify
objects. Note that subclasses do not have additional primary attributes. The
metaclass DataType models primitive data types. In addition, there is the
metaclass Association pointing to its source and destination classes with src
and dest. All these metaclasses are named. We forgo pulling up the name into
an abstract metaclass, for the sake of simplicity.

Class
name: String

Association
name:String

Attribute
name: String
isPrimary: boolean

DataType
name:String

1type

*

attr

*

super

0..1

1 src

1 dest

Fig. 12.1. Class metamodel

The principal metaclass of the Relational metamodel in Fig. 12.2 is Table,
containing a set of Columns and a set of ForeignKeys stored in columns. Table
points to the metaclass Column with the references pkey for its primary key
and col for all its columns. It may have at most one column functioning as the
primary key. A ForeignKey refers to a Table; it is represented by the Column
it refers to with fcol. Furthermore, a Column may have a reference to Type.
Tables, columns and types are named. (Again, we intend to keep the meta-
model simple, and forgo pulling up the name into an abstract metaclass.) The
translation of class to relational models is specified as follows:

• For each Class instance, which is not a subclass, a Table instance has to be
created with the same name. A complete class hierarchy is translated into
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Table
name: String

ForeignKey

Column
name: String

Type
name:String

0..1type

1
fcol

*
fkeys1

refersTo

0..1

pkey

*

col

Fig. 12.2. Table metamodel

one table, i.e. a subclass is not mapped to a separate table but corresponds
to the table of its superclass. This design decision is well suited for small
inheritance hierarchies with little variance between classes, while large
hierarchies with large variance are better split up into several tables.

• For each DataType instance, a Type instance has to be created. Their names
have to correspond.

• For each Attribute instance typed over a DataType, a Column instance has
to be created. Their names and their types have to correspond. If the
Attribute is primary, the Table refers to this Column by a pkey reference.
In any case, the Table has to refer to the Column with a col reference.

• For each Association instance, a ForeignKey instance has to be created. In
addition, a Column is created which belongs to the table that corresponds
to the source class; the ForeignKey refers to it by fcol. The ForeignKey
also points to the table that corresponds to the destination class. This is
indicated by a refersTo reference.
A very small example is depicted in Figs. 12.3 and 12.4. Note that both

models are depicted in their abstract syntax. The Class model contains two
classes, Family and Person. The class Family has an attribute name, which is
primary. The class Person has an attribute firstname, which is primary as well.
Furthermore, there is an association members, which refers to all family mem-
bers. Another association, called closestFriend, points to a person who is the
closest friend of a given person. This class model is to be translated to a re-
lational schema: This schema contains two tables, called Family and Person.
Table Family has two columns, called name (this one is the primary key) and
members_firstname, pointing to persons stored in table Person. That table also
has two columns, one is called firstname (this one is the primary key here) and
closestFriend_firstname, pointing to a person in the same table. ut

To design a translation from one metamodel to another, developers of-
ten start with identifying which metaclasses correspond to each other. Such
metaclass correspondences can be expressed by correspondence links.

Example 12.2 (correspondences between metamodels). The Class and Tableme-
tamodels are both shown in Fig. 12.5. To design a model translation from
class models to relational ones, we identify correspondences between meta-
classes first. The translation should map a Class to a Table, an Association to
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:Class
name=”Family”

:Class
name=”Person”

:Attribute
name=”name”
isPrimary = true

:Association
name=”members’’

:Attribute
name=”firstname”
isPrimary = true

:Association
name=”closestFriend”

:DataType
name=”String”

type type

attr attr

assoc

src dest
src

dest

Fig. 12.3. An example Class model

:Table
name=”Family”

:Table
name=”Person”

:Column
name=”name”

:Column
name=”members_firstname”

:ForeignKey

:Column
name=”firstname”

:ForeignKey

:Column
name=”closestFriend_firstname”

:Type
name=”String”

type type

type

type

pkey col

col
fkeys

pkey col
col

fkeys
refersTo

fcol

refersTo

fcol

Fig. 12.4. An example Table model

a ForeignKey, an Attribute to a Column, and a DataType to a Type. To keep
track of the translation, we make these correspondences explicit by the use of
correspondence nodes and their references into the source and target models.
Depending on which node types correspond to each other, correspondence
nodes are typed by CT (class–table), AC (attribute–column), DT (datatype–
type), or AF (association–foreignKey). In addition, there is ST(subclass–table)
to relate a subclass to the table of its parent class. This is a special kind of cor-
respondence between classes and tables indicated by an inheritance relation
from ST to CT. Note that, for the sake of simplicity, adjacent edges of cor-
respondence nodes are not typed explicitly but are typed implicitly by their
source and target node types (see [113] for details of this approach). ut
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Class
name: String

Association
name:String

Attribute
name: String
isPrimary: boolean

DataType
name:String

0..1

type

*

attr

*

super

0..1

1

src
1

dest

Table
name: String

ForeignKey

Column
name: String

Type
name:String

0..1

type

1

fcol

*
fkeys1

refersTo

0..1

pkey

*

col

:CT

:ST

:AF

:AC

:DT

Fig. 12.5. Example metamodels with correspondence links

12.2 Model Translation

Defining correspondences between metamodels is a valuable first step in deve-
loping a model translation. It clarifies at the type level how elements should be
translated. Next, we identify model patterns to specify how instances should
be translated. Since ultimately we have to design rules to translate entire
models, we also have to consider the order in which model patterns are trans-
lated. This will remain implicit in the sequential dependencies between rules,
however. We design the model translation for class models first, deriving their
corresponding relational schemas. Then we discuss important properties of
such model translations.

Example 12.3 (translation of classes to tables). Figure 12.6 shows the model
translation rules that are needed to translate a class model to a relational
one. We assume that well-formed input models are given, in particular that a
subclass does not have a primary attribute if a superclass already has one.

Rule translateClassToTable() translates a class without superclass to a ta-
ble with the same name. Similarly, rule translateDataTypeToType() translates
a datatype of the class model to a type in the relational schema. Rule transla-
teAttributeToColumn() translates an attribute if its container class has already
been translated. In this case a new column is created with the same name as
the attribute and a corresponding type. This column belongs to the transla-
ted table. Rule translatePrimary() sets a column to be the primary key if its
corresponding attribute is primary. Rule translateSubclassToTable() translates
a subclass of an already translated class to the same table. This means that



12.2 Model Translation 271

translateClassToTable()

:Class
name = n :CT :Table

name = n

:Class

super :CT

translateAttributeToColumn()
:Class

name = n :CT :Table
name = n

:Attribute
name = a

attr

:DataType
name = t

type

:DT :Type
name = t

:AC :Column
name = a

col

type

:AC

translateDataTypeToType()

:DataType
name = t :DT :Type

name = t

:DT

translatePrimary()
:Class :CT :Table

:Attribute
isPrimary = true

attr

:AC :Column

pkeypkey

translateSubclassToTable()
:Class :CT :Table

:Class

super

:ST

:ST

translateAssociationToFKey()

:Class :CT :Table

:Association
name = an

:Class :CT :Table

src

dest
:Column
name = cnpkey

:Type

type

:AF :FKey

fkeys

:Column
name = an + “_” + cn

refersTo

fcol

col

type:AF

Fig. 12.6. Example model translation rules for O–R mapping

a complete inheritance tree is flattened into one big table. This strategy to
handle class inheritance is not the only possibility. More details of this pro-
blem can be found in [37]. Finally, an association is translated to a foreign
key by rule translateAssociationToFKey(), which also creates another column
belonging to the same table. This table corresponds to the source class of the
translated association. The foreign key refers to the table corresponding to
the destination class of the association. The type of the new column is the
corresponding type used by the primary key of the destination table, since it
should contain those keys. Two further rules for translating associations are
not shown in Fig. 12.6. If an association runs from and to the same class, a
variant of rule translateAssociationToFKey() is needed where the upper and
lower classes, linked CT nodes, and tables as well as edges in between, are
merged. For associations between classes related to the same table due to in-
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heritance, we need a further variant of rule translateAssociationToFKey() to
merge the two tables.

Note that each class model element can only be translated once, since
we keep track of the translation in correspondence links. If we require the
translation rules in Fig. 12.6 to be applied to a class model for as long as
possible, each rule match can be used only once, owing to negative application
conditions. This solution can be used as long as there are n-to-1 relationships
between source and target elements. For the backward translation mapping
relational schemes to class models, this would fail, as a table may correspond
to more than one class. In that case, markings would help, as introduced in
[190].

By applying the model translation rules presented in Fig. 12.6 to the class
model in Fig. 12.3, we obtain a related model pair with the relational model in
Fig. 12.4 as the target and a correspondence model linking it with the source.
ut

12.2.1 Properties of Model Translations

A model translation is implemented with special requirements on its input
and output: given a valid model as input, the translation result should be
correct, syntactically with respect to its language definition and semantically
in relation to the input model. This means that the output model is syn-
tactically correct if its target model is an element of the target modelling
language. Semantic correctness is harder to formalise. Often, semantic equi-
valence is postulated, for example, before and after a refactoring step that
improves the structure of a model while preserving its semantics. For trans-
lations (exogenous transformations between models in different languages), a
compiler semantics can be used to map both the input and the output model
into a common semantic domain where their relation can be formalised. Furt-
hermore, the translation should yield a result after finitely many steps. And
often, the translation should yield a unique result.

The analysis techniques in Chapter 4 can be used to demonstrate some
of the desired properties. The syntactic correctness of output models can be
checked by parsing the corresponding model graph, as discussed in Section 4.6.
If we just want to see if the multiplicities of the target metamodel are observed,
we can interpret them as graph constraints and verify these as presented in
Section 4.4.

Semantic correctness is often difficult to demonstrate. If both, the source
and the target language have a formal semantics in a shared domain, a useful
technique is to show semantic equivalence or refinement. For example, in the
case of behavioural models, the operational semantics of the input and output
models can be given by labelled transition systems S1 and S2. In this case we
could ask if they are bisimilar, or if one simulates the other [149].

Systems S1 simulates S2 if there exists a relation R between their states
such that for every pair of related states s1 in S1 and s2 in S2 and transition
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s1 −p→ s′1, there is a transition s2 −p→ s′2 where s′1 is related to s′2. Relation
R is called a simulation, and if its inverse R−1 is a simulation too, R is a
bisimulation and S1, S2 are bisimilar.

Ehrig and Ermel [86] described an approach, for example, where the tran-
sition systems associated with both models are described by an interpreter
semantics, using operational rules executing the model. Then, each operatio-
nal semantics rule of the source language is translated into a corresponding
rule of the target language. This is used to show that a transition in S1 can
always be matched by one in S2, and vice versa. If either of the two modelling
languages involved lacks a formal semantics, correctness of the translation can
only be validated by testing, as outlined below.

To show termination, we will see in the following example that the layer
conditions presented in Section 4.3 can be used. To argue that the result is
unique for any input model, we consider all potential conflicts (computed by
conflict analysis) and demonstrate how they can all be resolved.

Example 12.4 (functional behaviour of class model translation). To show the
termination of the forward translation above, we check if any termination
criteria are fulfilled and find that the forward translation satisfies the non-
deletion layer conditions presented in Section 4.3:

• All forward translation rules are non-deleting.
• Each rule has a NAC which can be embedded into its right-hand side.

We define four rule layers. Rules translateClassToTable() and translateDataTy-
peToType() are in layer 0. Rule translateSubclassToTable() is in layer 1. Rule
translateAttributeToColumn() is in layer 2. All other rules are in layer 3. All
types of class models have creation layer 0. Types CT, Table, DT and Type and
adjacent edge types have creation layer 1. Type ST and adjacent edge types
have creation layer 2. Types AC and Column and all types of adjacent edges
have creation layer 3. All other types have creation layer 4. With this layer
assignment, each translation rule creates at least one element whose type has
a creation layer greater than the rule’s and uses only elements with types of
creation layers lower than or equal to the rule’s.

To show the confluence of our model translation, we start by reasoning
about potential conflicts. Each rule is applicable at a given match only once.
This means that, if we want to apply the same rule twice at the same match,
these two applications are in conflict. More precisely, all such application pairs
have produce/forbid conflicts. Since such rule applications would lead to the
same result, we can ignore these kinds of conflicts. Applying the same rule
at two different matches does not lead to conflicts provided that all instance
graphs fulfil the upper bound constraints of the input metamodel. A similar
argument applies to pairs of applications using two different rules. Hence, we
do not have any real conflicts during model translation, so the result is unique
for any input model. ut
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12.2.2 Testing a Model Translation

To test a model translation, we have to check if it yields correct results for a
set of representative input models. This involves the following activities [36]:
(1) select test adequacy (or coverage) criteria to be reached, (2) generate test
models and (3) construct a test oracle to decide if a test yields the correct
result.

The language metamodel can be used as a basis for test adequacy criteria.
Typical coverage criteria are based on the instantiation of metaclasses and a
category partition for their attribute values. The effectiveness of these crite-
ria for finding errors, however, has not been systematically established. This
means that large numbers of test cases have to be created for comprehen-
sive testing, making manual model creation impractical, hence an automated
generation of test models is needed. This step is challenging because, if the
input and output languages are complex, the corresponding models can be
large and complex as well.

Input models have to be valid; in particular, they have to fulfil the well-
formedness constraints of their metamodel. Models can be generated auto-
matically based on the structure of a metamodel [52], but ignoring its well-
formedness constraints. If the language is described by a graph grammar, this
can be used to generate language instances satisfying complex constraints (see
also Chapter 10).

A further obstacle is the potential complexity of the resulting models.
Combined with the potentially confusing layout of automatically generated
models, this makes them hard to inspect and assess by hand. A test oracle
can automate this task, for example by comparing the output model with a
model provided as the expected result of the test. To compare two models,
their underlying graph structures have to be compared, which involves finding
a graph isomorphism between them. In practice, this problem can be solved
efficiently if the model graphs are extensively typed and attributed, and by
exploiting the containment hierarchy over model elements that is present in
many models. Another way of assessing output models is to query them to
check properties such as syntactic correctness, size and the (non-)existence of
specific patterns.

Example 12.5 (testing an O–R mapping). The class model in Fig. 12.3 nearly
covers the whole metamodel in Fig. 12.1, but it remains to test the translation
of class inheritance. Additionally, not all categories of attribute values and
(non-)existence of instances are covered by this class model. In particular,
non-primary attributes still have to be considered. We need to also check
what happens for a class without a primary attribute. It turns out that an
association to a class without a primary attribute cannot be translated, since
the corresponding table needs a primary column. This situation can be fixed
by extending the model translation with a further rule shown in Fig. 12.7.

After extending the O–R mapping with this rule, we have to check again
if the required properties still hold. To fulfil the termination criteria, we set
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createPrimaryColumn(t)
:Class :CT t:Table

:Attribute
isPrimary = true

attr :Column
pkey

:Column
name = “id”

colpkey

Fig. 12.7. Additional model translation rule for O–R mapping

the rule layer of our new rule createPrimaryColumn() to 2. The rule then uses
types of lower or equal layers only and creates element types of upper layers.
Moreover, one of its NACs can be embedded into its right-hand side. The
arguments above for the uniqueness of results are still valid, and it is obvious
that this rule does not violate the syntactic correctness of the output models.

In view of the (non-)existence of instances of certain types, the translation
of associations is most interesting. Associations can occur in various settings:
(1) between two classes without an inheritance relation, (2) in only one class
(forming a loop), and (3) between two classes that are in an inheritance re-
lation where (a) the source class inherits the target class and (b) vice versa.
This example shows that the pure coverage of a given metamodel is often not
enough but has to be extended to cover all relevant patterns that can occur
in input models. ut

12.3 Triple Graph Grammars

When working with model pairs linked by a correspondence relation, we need
to maintain the consistency of both, the source and the target model, and the
relation. Bidirectional transformation languages simplify the task of maintai-
ning the consistency of two or more artefacts. Triple graph grammars [260, 19]
are a graph-transformation-based bidirectional transformation language. A
triple graph grammar constructs two models and their correspondences, i.e. an
interrelated model, simultaneously. After each derivation step, the resulting
triple graph represents a consistent interrelated model. As inter-related models
are often not changed simultaneously but independently of each other, rules
are needed to edit source and target models separately. As a triple graph
grammar may be projected to its source and target grammars, these rules
can be automatically constructed, defining the source and target modelling
languages. In addition, rules for translating source models to target models,
and vice versa, can be automatically constructed from a given TGG. And
finally, for maintaining consistency, rules can be derived that construct cor-
respondence relations between unrelated source and target models and repair
already established correspondence relations. For model transformations im-
plemented by general-purpose programming languages, TGGs can serve as
high-level specifications of such implementations to generate test cases and
oracles.
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TGG rules are graph transformation rules over an interrelated metamodel
used as a type graph. Typically, they are monotonic (i.e., non-deleting) to ena-
ble efficient parsing. They may include NACs, often to control synchronisation
processes, such as model translations (as in Example 12.3). Those NACs are
restricted such that they include instances of either the source or the target
metamodel [89] but not both, because such more complex conditions cannot
easily be associated to one or the other side.

To set and interrelate attribute values, the data types used need according
operations. We will discuss later the fact that a TGG rule using non-invertible
operations may not be usable in all contexts.

Example 12.6 (triple graph grammar for O–R mapping). Figure 12.8 shows all
triple graph rules needed for our O–R mapping. They can be used to create
class models and their corresponding relational schemas simultaneously, star-
ting from the empty triple graph. While most of the rules are simple, there
are four rules we want to consider in more detail. Rule setPrimary() does not
create a new source model element but changes an attribute value related
to the creation of a new reference in the target model. Rule createSubclass()
creates new source model elements, but no new target elements. Rule crea-
teAssociationAndFKey() creates a new column in the target model whose name
is constructed from two other names using string concatenation. Finally, rule
createPrimaryColumn() contains two NACs separately matching parts of the
source and target models.

Two further TGG rules are needed to create specific associations, but not
shown in Fig. 12.8. If an association is a loop at one and the same class,
a variant of rule createAssociationAndFKey() is needed where the upper and
lower classes, CT nodes, and tables, as well as the adjacent edges, are merged.
For associations between classes that are related to the same table because
of inheritance, we need a further variant of rule createAssociationAndFKey()
where the two tables are merged. ut

Note 12.1: Interrelation of patterns. Triple graph grammars provide
a declarative, rule-based description of models linked by a correspondence
relation. A triple graph rule describes a pattern of interrelated models,
and shows how it can be extended by additional elements and relations.

12.3.1 Operationalisation of TGGs

To support a wide range of scenarios for the management of evolving interrela-
ted models, not only model translations but additional operations are required
such as for creating intermodel relations, checking their consistency, and syn-
chronising related models where one or both sides may have changed. TGGs
can be operationalised in a variety of different ways to support all these situ-
ations. This means that dedicated operational rule sets can be derived from
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createClassAndTable(n)
:Class

name = n :CT :Table
name = n

createDatatypeAndType(t)
:DataType
name = t :DT :Type

name = t

createAttributeAndColumn(a,t)
:Class

name = n :CT :Table
name = n

:DataType
name = t :DT :Type

name = t

:Attribute
name = a
isPrimary = false

attr

type

:AC :Column
name = a

col

type

setPrimary(a)
:Class :CT :Table

a:Attribute
isPrimary = false
isPrimary := true

attr

:AC :Column

pkey

createPrimaryColumn(t)
:Class :CT t:Table

:Attribute
isPrimary = true

attr :Column
pkey

:Column
name = “id”

colpkey

createSubclass()
:Class :CT :Table

:Class

super

:ST

createAssociationAndFKey(an)

:Class :CT :Table

:Class :CT :Table

:Type

:Column
name = cnpkey

type

:Association
name = an

src

dest

:AF :FKey

fkeys

:Column
name = an + “_” + cn

refersTo

fcol

col

type

Fig. 12.8. A triple graph grammar for O–R mapping

a TGG automatically, realising the following operations, which we list first
before explaining how they are derived:

• Source construction: Given a model of the source modelling language, an
application of source rules, i.e. rules over the source metamodel, to the
empty start model (graph) constructs a derivation sequence for this model.

• Target construction: Given a model of the target language, an application
of target rules, i.e. rules over the target metamodel, to the empty start
model construct a derivation sequence for this model.

• Forward translation: A model of the source language can be translated to
an interrelated model containing a model of the target language using for-
ward rules. Each forward rule takes a source model pattern and completes
it to obtain its corresponding target pattern.
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• Backward translation: A model of the target language can be translated
to an interrelated model containing a model of the source language using
backward rules. Each backward rule takes a target model pattern and com-
pletes it to obtain its corresponding source pattern.

• Consistency creation: Given a model of the source language and a model
of the target language, they are consistent if they can be generated as part
of an interrelated model using TGG rules. Consistency-establishing rules
build up the correspondence interrelation between a source and a target
model.

• Consistency checking: Given an interrelated model, consistency-checking
rules are used to check if all the correspondence relations are consistent, i.e.
can be generated by the grammar. These rules just check for consistency,
but do not change anything.

• Synchronisation: Given a valid interrelated model and model updates on
the source and/or target model, the output is a valid interrelated model
where model updates have been propagated. If both, the source and the
target model have been changed, we call this synchronisation concurrent.
Hence, synchronisation rules propagate model changes.

We will illustrate the derivation of operational rules using selected ope-
rations. Source rules are easy to construct by projecting TGG rules to their
source metamodel. Analogously, target rules are projections of TGG rules to
their target metamodel. Forward rules assume that the source model part is
given, and thus the source part of the forward translation rule is the iden-
tity on the right-hand side. The correspondence and target parts of the TGG
rule are inherited by the forward rule. Additionally, all the target NACs of
the TGG rule have to be carried over. If the TGG rule creates a target node
without a correspondence to some source node, however, source NACs have
to be added to the forward rule as well. Furthermore, we have to ensure that
forward rules do not translate source parts several times, which is often done
with additional NACs. Backward rules are constructed dually to forward rules.
Consistency-establishing rules take the source and the target parts of a TGG
rule as given and just create correspondence links, while consistency-checking
rules just check the existence of interrelated patterns, i.e. they are identical on
the right-hand sides of the TGG rules. These constructions of operationalised
rules are presented in [191] in detail.

Example 12.7 (deriving forward rules from TGG rules for O–R mapping). The
triple rules in Fig. 12.8 are in a direct relation with the model translation rules
in Fig. 12.6. In fact, these model translation rules can be automatically derived
from the TGG rules following the recipe described above.

While the construction is largely straightforward, there are three transla-
tion rules which deserve more explanation. There are two rules in the TGG
which create classes, namely createClassAndTable() and createSubclass(). Rule
createClassAndTable() creates a class without a superclass. The corresponding
translation rule translateClassToTable() has to explicitly exclude this case by
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an additional NAC, since the source model exists already completely. Rule
setPrimary() creates just an edge, and therefore rule translatePrimary() needs
an additional NAC preventing it from creating such an edge more than once.
Rule createPrimaryColumn() creates a column containing the primary key of
the table. This column is not connected to any attribute, since there is no
primary attribute in the class. Therefore, the source NAC has to be included
in the forward rule as well, as seen already in Fig. 12.7.

Note that not all backward translation rules can be deduced automatically,
since the string concatenation in rule createAssociationAndFKey() cannot be
translated into a canonical string decomposition. Nevertheless, it is possible to
define a suitable inverse manually, by taking the column name and stripping
off “_” + cn. ut

TGG operationalisations have been shown to be sound: a model is con-
sistent, i.e. it is syntactically correct if it can be generated by the grammar
of its language. An interrelated model is consistent in this sense if it can be
generated by the rules of its TGG. If an application of a set F of forward rules
can extend a given source model to an interrelated model M such that M is
consistent, the set F is correct. A set of forward rules is complete if there is
a forward translation with these rules to a consistent interrelated model for
every model of the source language [87, 112]. Moreover, forward translations
are information-preserving in the sense that, given a consistent source model
S, a forward translation guided by the derivation of S has an inverse backward
translation yielding interrelated models whose source model is again S [82].

12.4 Model Synchronisation

Once the correspondence between two models is established, further changes
can be propagated through model synchronisation to preserve consistency.
Model updates are propagated either unidirectionally in the case of changes
in only one model, or bidirectionally in the case of concurrent changes.

To perform a model synchronisation, one or both of the interrelated models
are checked for modifications. If one model has been modified, we have to check
if the resulting interrelated model is consistent, i.e. can be generated by our
TGG rules. If this is the case, there is no need for further synchronisation.
Otherwise, the modification has to be propagated to the other model.

A naive approach to synchronisation might remove all inconsistent parts of
the model and all elements depending on them, and reconstruct them again
in a consistent way. However, this solution is not only inefficient, but may
also delete consistent model information that should have been kept. In the
following, we are looking for a solution that discards as little information as
possible.

TGG rules often realise a hierarchical definition of consistency in the sense
that model elements are in correspondence if the model elements they are de-
pendent on are already in correspondence. An association is in correspondence
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with a foreign key, for example, if its adjacent classes are in correspondence
with the tables the foreign key belongs to and refers to. If one of these classes
changes, this modification might have implications for adjacent associations
and foreign keys. If the primary key changed, for example, the column for the
foreign key will get a different name. In our running example, the hierarchy
is rather flat. In general, such hierarchies can be much more elaborate, which
increases the synchronisation effort considerably. Since model synchronisation
is of special interest for concurrent model editing, synchronisation procedu-
res have to be quick to not obstruct the user too much [108]. To decrease
synchronisation time, all unnecessary model modifications must be avoided.
Hence, deleting all dependent correspondences and building up corresponden-
ces from scratch is not an efficient solution. So, we have to find a minimal set
of correspondences to be reconsidered for fixing the inconsistent situation. In
general, our strategy for a unidirectional (without loss of generality forward)
synchronisation is as follows. For each match of a forward translation rule that
is changed by the model modification, the effect of the corresponding rule ap-
plication has to be reversed. This can lead to a cascade of element deletions
in the target model. Then, forward rules are applied again to build up a mo-
dified target model. If target models can be fixed locally, this strategy may be
optimised by finding suitable shortcut rules [104] to perform the modification
directly. Instead of deleting and recreating columns for foreign keys, for ex-
ample, a possible repair would be a suitable renaming of foreign-key columns
taking new primary-key names into account.

Example 12.8 (model synchronisation with TGG rules). We consider two ex-
amples of synchronisations triggered by modifications using the rules shown
in Fig. 12.9. (1) After an attribute has been renamed using rule renameAt-
tribute(), it is no longer in correspondence with a column, since their names
are no longer the same. If this attribute is a primary one, this renaming has
additional implications for associations in correspondence with foreign keys
since the corresponding columns also have to change their names. (2) After
an attribute has been set to be non-primary with rule setNonPrimary(), the
corresponding pkey edge has to be deleted in the relational schema.

renameAttribute(n,n2)
:Attribute
name = n
name := n2

setNonPrimary()
:Attribute

isPrimary = true
isPrimary := false

Fig. 12.9. Two modification rules for source models

Both situations have to be postprocessed, since associations may refer to
the attribute-containing class as their target. The conservative strategy is to
take back all applications of the rule translateAssociationToFKey() where the
association points to the class with the changed primary key. Then, this rule
is applied at new matches creating columns with new names to hold foreign
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keys. The optimised strategy is to modify these names directly, which can
be done by applying rule modifyPrimaryColumn() in Fig. 12.10, combining the
“net effects” of rules translateAssociationToFKey() applied inversely, createPri-
maryColumn() and translateAssociationToFKey(). “Net effects” are all those
rule actions that remain when we do not consider deletion and re-creation of
model elements. Note that application conditions of the original rules may
not occur in such a composed rule if they cannot be translated. One of the
NACs of rule createPrimaryColumn, forbidding a primary-key column, cannot
be translated, since the table has a primary key at the beginning which is
replaced by a new one. ut

modifyPrimaryColumn(cn)

:Class :CT :Table

:Association
name = an

:Class :CT :Table

src

dest

:Type:AF :FKey

fkeys

:Column
name = an + “_” + cn
name := an + “_id”

refersTo

fcol

col

type

:Column
name = cn

type

pkey

:Attribute
isPrimary = true

attr
:Column

name = “id”

pkey
col

type

Fig. 12.10. A shortcut synchronisation rule

12.4.1 Properties of Synchronisation

A number of interesting properties have been identified for model synchro-
nisation, including correctness (also called soundness), Hippocraticness, and
completeness [266, 141]. A model synchronisation is correct if the resulting
interrelated model is consistent assuming that the triggering model modifi-
cation was consistent. Remember that consistency of an interrelated model
means that this model can be generated by our TGG rules. A triggering mo-
del modification is consistent if it yields an interrelated model with consistent
source and target models (but their correspondence may be inconsistent). A
source or target model is consistent if it can be obtained as a source projection
or target projection of a consistent interrelated model, respectively.

A model synchronisation is Hippocratic if it does not change interrelated
models that are not modified. Finally, a model synchronisation is complete if
it produces a consistent interrelated model, provided that one exists.

In addition, invertibility is often desired to allow an immediate “undo” of
a modification. A model synchronisation from A to B is invertible if there is
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an opposite synchronisation from B to A such that their composition leads
back to the original interrelated model. Often, a model synchronisation is just
weakly invertible, meaning that the first synchronisation may not be invertible
because of some initial information loss, but the inversion of the inverted
synchronisation and continued inversions do not cause any further loss of
information.

Another property of model synchronisations is incrementality [67, 192].
Intuitively, a synchronisation is incremental if, after a source model modifica-
tion, it does not translate the entire modified model again, but modifies only a
minimal part of the model affected by the change. To actually decide if a least
change has been performed, one would need some metric to measure the size
of change. An additional requirement of incremental model synchronisations
is often that they preserve recent changes, assuming that these were inten-
ded by the modeller despite additional changes needed to rebuild a consistent
model.

Example 12.9 (properties of model synchronisations). Both modification rules
in Fig. 12.9 are consistent source rules, since attributes with arbitrary names
can be generated and attributes can be set to primary or non-primary. The
shortcut modification rule in Fig. 2.17 induces correct model synchronisations:
it creates a new column containing the primary key id if there is no primary
attribute in the class corresponding to the column’s table, and adapts the
column name of a foreign key that refers to this table, assuming that there is
exactly one foreign key pointing to this table. Further modification rules are
needed for cases where no foreign key points to this table, or more than one
does so. All these modifications can be summarised in a rule where the associ-
ation, its class, the foreign key, its table and its column, both correspondence
links in between and all edges in between are in a multipattern (Section 2.4.4).
With this rule, we can perform correct model synchronisations only. Owing to
its NAC, the synchronisation rule in Fig. 2.17 is not applicable if an attribute
is not set to non-primary. Hence, this rule is Hippocratic.

Finally, the synchronisation rule is minimal in the sense that it needs
to move the pkey pointer to a new column, since the corresponding class is
without a primary attribute after the modification. Also, the names of all
foreign-key columns have to be adapted to the new primary key. All actions
performed by the rule are required to reach a consistent interrelated model
that preserves the triggering change, i.e. keeps the attribute non-primary. ut

12.5 Summary and Further Reading

Model translation and synchronisation are core functions of model-based de-
velopment activities such as code generation from or reverse engineering of
models, co-evolution of models and code, and mappings between models. Es-
pecially model synchronisation is in the focus of the bx community which
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considers bidirectional transformations (bx) as a mechanism for maintaining
the consistency of two (or more) related sources of information2.

In this chapter, we have shown that triple graph grammars provide a po-
werful mechanism to support the translation and synchronisation of models in
a declarative way. A triple graph rule extends a related model pair assuming
the existence of a given related model pattern. A TGG can be operationa-
lised to implement forward and backward translations, rules for consistency
checking and consistency creation, and for model synchronisation. Under cer-
tain assumptions, analysis techniques for graph transformation systems can be
used to show that model translations yield correct and unambiguous results.

Since interrelated models can become inconsistent if one or both models
change, automated model synchronisation is essential to support evolution
in model-based software projects. Synchronisations realised by TGGs may be
shown to be correct, complete, deterministic, Hippocratic and invertible [142].
Repair rules can be constructed automatically to improve the efficiency of
model synchronisation processes [104].

12.5.1 Extensions

As presented in this chapter, TGGs use simple rules without multipatterns.
However, a universal quantification of certain rule parts can be useful, for
example, when flattening hierarchical structures as they occur in class models
with inheritance or in hierarchical statecharts. TGG rules with multipatterns
as defined in [193] can handle these situations conveniently. TGG rules with
multi-patterns can be operationalised to forward and backward translation
rules as shown in [193]. In addition, they increase the true expressiveness of
TGGs: if we restrict ourselves to TGG rules that do not add source elements,
TGGs with simple rules only are less expressive than TGGs with rules allo-
wing multipatterns. Without multipatterns, each TGG rule can relate only
a fixed number of model elements. Multipatterns allow one to create varia-
ble numbers of interrelations. For example, when flattening class structures, a
class property can be translated and linked to a variable number of properties,
which depends on the number of (transitive) subclasses.

12.5.2 Tooling

There are several tools implementing the main features of TGGs. In [145, 192],
three tools were compared in terms of their usability, expressiveness and ana-
lysis techniques. They all support the definition of TGG rules and the au-
tomatic deduction of forward and backward translation rules. MoTE [144] is
an EMF-based tool which also supports incremental synchronisations. Simple
TGG rules may be equipped with attribute assignments and conditions in

2 The wiki of the bx community can be found at http://bx-community.wikidot.com
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OCL or Java. NACs and multipatterns are not supported. The TGG inter-
preter [115] is an Eclipse-based tool allowing incremental synchronisations,
too. Conditions are generally formulated in OCL. Both tools implement syn-
chronisations that are correct, but not complete. eMoflon [18, 287] is a tool
suite for TGGs based on EMF. It supports unidirectional and bidirectional
translations. TGG rules may have NACs and bidirectional attribute manipu-
lations. eMoflon is able is to handle model generation, forward translation and
consistency checking.

12.5.3 Applications

TGGs have been developed in a number of industrial applications, for ex-
ample to support the integration of modelling tools. In complex industrial
projects, modelling tools have to work together based on different model re-
presentation formats. This leads to the need for translations between such
formats [172]. TGGs have been used to implement model translations bet-
ween different formats. When working with textual formats, TGGs are used
to translate abstract syntax trees to models to be further translated to mo-
dels in another format. In turn, these are mapped to another abstract syntax
tree. Parsers and pretty-printers are used to translate a textual format to an
abstract syntax tree and vice versa.

The possibly largest application of TGGs has been the automated trans-
lation of satellite procedures [143]. Here, domain experts were able to specify
translations over a metamodel consisting of 140 types using a TGG with about
250 rules, for which they also demonstrated correctness. Savings of 1–2 person
years, compared with manual conversion and validation, showed that TGGs
can be used effectively in practice. Further industrial applications of TGGs
were, for example, reported in [109] where SysML and AUTOSAR models
were synchronised, and in [20], to support concurrent model-driven automa-
tion engineering.



References

1. Business Process Modeling Notation. http://www.bpmn.org
2. EMF Compare. http://www.eclipse.org/emf/compare
3. EMF Refactor. http://www.eclipse.org/emf-refactor
4. Epsilon Wizard Language. http://www.eclipse.org/epsilon
5. FeatureIDE. http://fosd.de/fide
6. The Fujaba tool suite. www.fujaba.de
7. SiLift: Semantic Lifting of Model Differences. http://pi.informatik.

uni-siegen.de/Projekte/SiLift
8. The Language Toolkit (LTK). http://eclipse.org/articles/Article-LTK/

ltk.html
9. XML. www.w3.org/standards/xml

10. XSL Transformations Version 3.0. http://www.w3.org/standards/xml/
transformation

11. Application of graph transformation to visual languages. In: Bardohl, B., Mi-
nas, M., Schürr, A., Taentzer, G. (eds.) Handbook of Graph Grammars and
Computing by Graph Transformation: Vol. 2: Applications, Languages, and
Tools. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1999)

12. AGG: http://www.user.tu-berlin.de/o.runge/agg/
13. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techni-

ques, and Tools (2nd Edition). Addison-Wesley (2006)
14. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.:

Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons (1995)

15. Alshanqiti, A.M., Heckel, R., Kehrer, T.: Visual contract extractor: A tool for
reverse engineering visual contracts using dynamic analysis. In: Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2016, Singapore, September 3-7, 2016. pp. 816–821. ACM (2016),
https://doi.org/10.1145/2970276.2970287

16. Anderson, W.G.: Continuous-Time Markov Chains. Springer (1991)
17. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S.,

Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification
and programming. Science of Computer Programming 34(1), 1–54 (1999)

18. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: Emoflon: leveraging EMF
and professional CASE tools. In: Informatik 2011: Informatik schafft Com-
munities, Beiträge der 41. Jahrestagung der Gesellschaft für Informatik e.V.

http://www.bpmn.org
http://www.eclipse.org/emf/compare
http://www.eclipse.org/emf-refactor
http://www.eclipse.org/epsilon
http://fosd.de/fide
www.fujaba.de
http://pi.informatik.uni-siegen.de/Projekte/SiLift
http://pi.informatik.uni-siegen.de/Projekte/SiLift
http://eclipse.org/articles/Article-LTK/ltk.html
http://eclipse.org/articles/Article-LTK/ltk.html
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.user.tu-berlin.de/o.runge/agg/
https://doi.org/10.1145/2970276.2970287


286 References

(GI), 4.-7.10.2011, Berlin, Deutschland (Abstract Proceedings). LNI, vol. 192,
p. 281. GI (2011), http://subs.emis.de/LNI/Proceedings/Proceedings192/
article314.html

19. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars:
A roadmap for future research. ECEASST 73 (2015), http://journal.ub.
tu-berlin.de/eceasst/article/view/1031

20. Anjorin, A., Yigitbas, E., Leblebici, E., Schürr, A., Lauder, M., Witte, M.:
Description languages for consistency management scenarios based on exam-
ples from the industry automation domain. Programming Journal 2(3), 7
(2018), https://doi.org/10.22152/programming-journal.org/2018/2/7

21. Arendt, T.: Quality Assurance of Software Models: A Structured Quality As-
surance Process Supported by a Flexible Tool Environment in the Eclipse
Modeling Project. Ph.D. thesis, Philipps-Universität Marburg (2014)

22. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Ad-
vanced Concepts and tools for In-Place EMF Model Transformation. In: Model
Driven Engineering Languages and Systems, 13th International Conference,
MoDELS 2010, Oslo, Norway. Proceedings. LNCS, vol. 6394, pp. 121–135.
Springer (2010)

23. Arendt, T., Kranz, S., Mantz, F., Regnat, N., Taentzer, G.: Towards syn-
tactical model quality assurance in industrial software development: Process
definition and tool support. In: Reussner, R.H., Grund, M., Oberweis, A., Ti-
chy, W.F. (eds.) Software Engineering 2011: Fachtagung des GI-Fachbereichs
Softwaretechnik, 21.-25. Februar 2011 in Karlsruhe. LNI, vol. 183, pp.
63–74. GI (2011), http://subs.emis.de/LNI/Proceedings/Proceedings183/
article6301.html

24. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the
Eclipse Modeling Framework. Automated Software Engineering 20(2), 141–184
(2013), http://dx.doi.org/10.1007/s10515-012-0114-7

25. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud
computing. Commun. ACM 53(4), 50–58 (Apr 2010), http://doi.acm.org/
10.1145/1721654.1721672

26. Aßmann, U.: Graph rewrite systems for program optimization. ACM Trans.
Program. Lang. Syst. 22(4), 583–637 (Jul 2000)

27. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F.,
Johannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert,
M., Thiele, M., Wende, C., Wilke, C.: DropsBox: the Dresden Open Software
Toolbox - Domain-specific modelling tools beyond metamodels and transfor-
mations. Software and System Modeling 13(1), 133–169 (2014)

28. Atkinson, T., Plump, D., Stepney, S.: Probabilistic graph programs for rand-
omised and evolutionary algorithms. In: Lambers and Weber [187], pp. 63–78,
https://doi.org/10.1007/978-3-319-92991-0_5

29. Azzi, G.G., Bezerra, J.S., Ribeiro, L., Costa, A., Rodrigues, L.M., Machado, R.:
The Verigraph System for Graph Transformation. In: Graph Transformation,
Specifications, and Nets - In Memory of Hartmut Ehrig. Lecture Notes in
Computer Science, vol. 10800, pp. 160–178. Springer (2018), https://doi.
org/10.1007/978-3-319-75396-6_9

30. Azzi, G.G., Corradini, A., Ribeiro, L.: On the essence and initiality of conflicts
in M-adhesive transformation systems. Journal of Logical and Algebraic Met-

http://subs.emis.de/LNI/Proceedings/Proceedings192/article314.html
http://subs.emis.de/LNI/Proceedings/Proceedings192/article314.html
http://journal.ub.tu-berlin.de/eceasst/article/view/1031
http://journal.ub.tu-berlin.de/eceasst/article/view/1031
https://doi.org/10.22152/programming-journal.org/2018/2/7
http://subs.emis.de/LNI/Proceedings/Proceedings183/article6301.html
http://subs.emis.de/LNI/Proceedings/Proceedings183/article6301.html
http://dx.doi.org/10.1007/s10515-012-0114-7
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
https://doi.org/10.1007/978-3-319-92991-0_5
https://doi.org/10.1007/978-3-319-75396-6_9
https://doi.org/10.1007/978-3-319-75396-6_9


References 287

hods in Programming 109 (2019), https://doi.org/10.1016/j.jlamp.2019.
100482

31. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model Checking
Continuous-Time Markov Chains by Transient Analysis. In: Emerson, E.A.,
Sistla, A.P. (eds.) Computer Aided Verification, 12th International Confe-
rence, CAV 2000, Chicago, IL, USA, July 15 - 19, 2000, Proceedings. Lec-
ture Notes in Computer Science, vol. 1855, pp. 358–372. Springer (2000),
https://doi.org/10.1007/10722167_28

32. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
33. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph

transformation systems. In: CONCUR 2001 - Concurrency Theory, 12th In-
ternational Conference, Aalborg, Denmark, August 20-25, 2001, Proceedings.
Lecture Notes in Computer Science, vol. 2154, pp. 381–395. Springer (2001),
https://doi.org/10.1007/3-540-44685-0_26

34. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A soft-
ware engineering perspective. In: Graph Transformation, First International
Conference, ICGT 2002, Barcelona, Spain, October 7-12, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2505, pp. 402–429. Springer (2002),
https://doi.org/10.1007/3-540-45832-8_30

35. Basili, V.R.: Software modeling and measurement: the goal/question/metric
paradigm. Tech. rep., College Park, MD, USA (1992), http://portal.acm.
org/citation.cfm?id=137076

36. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.:
Barriers to systematic model transformation testing. Commun. ACM 53(6),
139–143 (Jun 2010), http://doi.acm.org/10.1145/1743546.1743583

37. Bauer, C., King, G., Gregory, G.: Java Persistence with Hibernate. Manning
Publications Co., Greenwich, CT, USA, 2nd edn. (2015)

38. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets. Vieweg Verlag, 2nd edn.
(2002)

39. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 years. Softw., Pract. Exper. 41(2), 133–142 (2011), https:
//doi.org/10.1002/spe.1006

40. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Model transformations in practice
workshop. In: Bruel, J.M. (ed.) Satellite Events at the MoDELS 2005 Confe-
rence. pp. 120–127. Springer, Berlin, Heidelberg (2006)

41. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent emf
model transformations by algebraic graph transformation. Software and Sy-
stem Modeling 11(2), 227–250 (2012)

42. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory. Oxford University Press (1986)
43. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings

by rule extraction. In: Fiadeiro, J.L., Inverardi, P. (eds.) Fundamental Ap-
proaches to Software Engineering, 11th International Conference, FASE 2008,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Pro-
ceedings. Lecture Notes in Computer Science, vol. 4961, pp. 347–361 (2008),
http://dx.doi.org/10.1007/978-3-540-78743-3_26

44. Born, K., Taentzer, G.: An algorithm for the critical pair analysis of amal-
gamated graph transformations. In: Graph Transformation - 9th Internati-
onal Conference, ICGT 2016, in Memory of Hartmut Ehrig, Held as Part

https://doi.org/10.1016/j.jlamp.2019.100482
https://doi.org/10.1016/j.jlamp.2019.100482
https://doi.org/10.1007/10722167_28
https://doi.org/10.1007/3-540-44685-0_26
https://doi.org/10.1007/3-540-45832-8_30
http://portal.acm.org/citation.cfm?id=137076
http://portal.acm.org/citation.cfm?id=137076
http://doi.acm.org/10.1145/1743546.1743583
https://doi.org/10.1002/spe.1006
https://doi.org/10.1002/spe.1006
http://dx.doi.org/10.1007/978-3-540-78743-3_26


288 References

of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings. Lecture No-
tes in Computer Science, vol. 9761, pp. 118–134. Springer (2016), https:
//doi.org/10.1007/978-3-319-40530-8_8

45. Bosch, J.: Continuous Software Engineering: An Introduction, pp. 3–13.
Springer International Publishing, Cham (2014), https://doi.org/10.1007/
978-3-319-11283-1_1

46. Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level repla-
cement units and their termination properties. J. Vis. Lang. Comput. 16(6),
485–507 (2005)

47. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages ba-
sed on critical pair analysis and contextual layered graph transformation. In:
2000 IEEE International Symposium on Visual Languages, VL 2000, Seattle,
Washington, USA, September 10-13, 2000, Proceedings. pp. 59–60. IEEE Com-
puter Society (2000), https://doi.org/10.1109/VL.2000.874351

48. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/xt 0.17.
A language and toolset for program transformation. Sci. Comput. Program.
72(1-2), 52–70 (2008), https://doi.org/10.1016/j.scico.2007.11.003

49. Briand, L., Labiche, Y.: A UML-Based Approach to System Testing. In: Go-
golla, M., Kobryn, C. (eds.) UML 2001 — The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. pp. 194–208. Springer, Berlin, Hei-
delberg (2001)

50. Briand, L., Labiche, Y.: A UML-Based Approach to System Testing. Software
and Systems Modeling 1(1), 10–42 (Sep 2002), https://doi.org/10.1007/
s10270-002-0004-8

51. Brinksma, E., Hermanns, H.: Process algebra and markov chains. pp. 183–231.
Springer-Verlag New York, Inc., New York, NY, USA (2002), http://dl.acm.
org/citation.cfm?id=567305.567310

52. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based
test generation for model transformations: An algorithm and a tool. In: Procee-
dings of the 17th International Symposium on Software Reliability Engineering.
pp. 85–94. ISSRE ’06, IEEE Computer Society, Washington, DC, USA (2006),
http://dx.doi.org/10.1109/ISSRE.2006.27

53. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Re-
asoning about product-line evolution using complex feature model differen-
ces. Autom. Softw. Eng. 23(4), 687–733 (2016), https://doi.org/10.1007/
s10515-015-0185-3

54. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Model transformations in practice
workshop. In: Satellite Events at the MoDELS 2005 Conference: MoDELS
2005 International Workshops Doctoral Symposium, Educators Symposium
Montego Bay, Jamaica, October 2-7, 2005 Revised Selected Papers. pp. 120–
127 (01 2006)

55. CADP: Construction and Analysis of Distributed Processes. http://cadp.
inria.fr

56. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wil-
kinson, K.: Jena: Implementing the Semantic Web Recommendations.
Tech. Rep. HPL-2003-146, Hewlett Packard Laboratories ( 24 2003),
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.html;http:
//www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf

57. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring
with model transformations. In: Hartman, A., Kreische, D. (eds.) Model Driven

https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-40530-8_8
https://doi.org/10.1007/978-3-319-11283-1_1
https://doi.org/10.1007/978-3-319-11283-1_1
https://doi.org/10.1109/VL.2000.874351
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1007/s10270-002-0004-8
https://doi.org/10.1007/s10270-002-0004-8
http://dl.acm.org/citation.cfm?id=567305.567310
http://dl.acm.org/citation.cfm?id=567305.567310
http://dx.doi.org/10.1109/ISSRE.2006.27
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1007/s10515-015-0185-3
http://cadp.inria.fr
http://cadp.inria.fr
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.html; http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.html; http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf


References 289

Architecture – Foundations and Applications. pp. 115–129. Springer, Berlin,
Heidelberg (2005)

58. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Tes-
ting: The JML and JUnit Way. In: Proceedings of the 16th European
Conference on Object-Oriented Programming. pp. 231–255. ECOOP ’02,
Springer-Verlag, Berlin, Heidelberg (2002), http://dl.acm.org/citation.
cfm?id=646159.680018

59. Cherchago, A., Heckel, R.: Specification Matching of Web Services Using Con-
ditional Graph Transformation Rules. In: Ehrig, H., Engels, G., Parisi-Presicce,
F., Rozenberg, G. (eds.) Graph Transformations, Second International Confe-
rence, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Proceedings.
Lecture Notes in Computer Science, vol. 3256, pp. 304–318. Springer (2004),
https://doi.org/10.1007/978-3-540-30203-2_22

60. Coleman, D., Arnold, P., Bodof, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremes,
P.: Object Oriented Development, The Fusion Method. Prentice Hall (1994)

61. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: DAML+OIL (March 2001) reference description.
W3C note, W3C (Mar 2001), http://www.w3.org/TR/daml+oil-reference

62. Cordy, J.R.: The TXL source transformation language. Sci. Comput. Program.
61(3), 190–210 (2006), https://doi.org/10.1016/j.scico.2006.04.002

63. Corradini, A., Heckel, R.: Canonical derivations with negative application con-
ditions. In: Graph Transformation - 7th International Conference, ICGT 2014,
Held as Part of STAF 2014, York, UK, July 22-24, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8571, pp. 207–221. Springer (2014),
https://doi.org/10.1007/978-3-319-09108-2_14

64. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting.
In: Graph Transformations, Third International Conference, ICGT 2006, Natal,
Rio Grande do Norte, Brazil, September 17-23, 2006, Proceedings. Lecture
Notes in Computer Science, vol. 4178, pp. 30–45. Springer (2006)

65. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: Positional grammars: A
formalism for LR-like parsing of visual languages. In: Marriott, K., Meyer, B.
(eds.) Visual Language Theory. pp. 171 – 192. Springer (1998)

66. Czarnecki, K.: Domain engineering. In: Encyclopedia of Software Engineering.
Wiley (2002)

67. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.:
Bidirectional transformations: A cross-discipline perspective. In: Proceedings
of the 2nd International Conference on Theory and Practice of Model Transfor-
mations. pp. 260–283. ICMT ’09, Springer-Verlag, Berlin, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02408-5_19

68. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

69. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular
signaling networks. In: Shao, Z. (ed.) Programming Languages and Systems,
5th Asian Symposium, APLAS 2007, Singapore, November 29-December 1,
2007, Proceedings. Lecture Notes in Computer Science, vol. 4807, pp. 139–157.
Springer (2007), https://doi.org/10.1007/978-3-540-76637-7_10

70. Danos, V., Heckel, R., Sobocinski, P.: Transformation and refinement of rigid
structures. In: Giese, H., König, B. (eds.) Graph Transformation - 7th Inter-
national Conference, ICGT 2014, Held as Part of STAF 2014, York, UK, July

http://dl.acm.org/citation.cfm?id=646159.680018
http://dl.acm.org/citation.cfm?id=646159.680018
https://doi.org/10.1007/978-3-540-30203-2_22
http://www.w3.org/TR/daml+oil-reference
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1007/978-3-319-09108-2_14
http://dx.doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-540-76637-7_10


290 References

22-24, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8571, pp.
146–160. Springer (2014), https://doi.org/10.1007/978-3-319-09108-2_10

71. D’Argenio, P.: Algebras and Automata for Timed and Stochastic Systems.
IPA Dissertation Series 1999-10, CTIT PhD-Thesis Series 99-25, University of
Twente (November 1999)

72. Di Nitto, E., Dustdar, S.: Principles of engineering service oriented systems. In:
31st International Conference on Software Engineering, ICSE 2009, May 16-
24, 2009, Vancouver, Canada, Companion Volume. pp. 461–462. IEEE (2009),
https://doi.org/10.1109/ICSE-COMPANION.2009.5071062

73. Diestel, R.: Graph Theory, vol. 5th ed. Springer (2017)
74. Drewes, F., Kreowski, H.J., Habel, A.: Handbook of graph grammars and com-

puting by graph transformation. chap. Hyperedge Replacement Graph Gram-
mars, pp. 95–162. World Scientific Publishing Co., Inc., River Edge, NJ, USA
(1997), http://dl.acm.org/citation.cfm?id=278918.278927

75. Drewes, F., Hoffmann, B., Minas, M.: Formalization and correctness of pre-
dictive shift-reduce parsers for graph grammars based on hyperedge replace-
ment. J. Log. Algebr. Meth. Program. 104, 303–341 (2019), https://doi.org/
10.1016/j.jlamp.2018.12.006

76. D’Souza, D.F., Wills, A.C.: Objects, Components and Frameworks with UML:
The Catalysis Approach. Addison-Wesley Longman Publishing Co., Inc., Bos-
ton, MA, USA (1999)

77. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools. World Scientific (1999)

78. Ehrig, H., Kreowski, H.J.: Parallel graph grammars. In: Lindenmayer, A., Ro-
zenberg, G. (eds.) Automata, Languages, Development, pp. 425–447. Amster-
dam: North Holland (1976)

79. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of
Graph Grammars and Computing by Graph Transformation. Vol. 3: Concur-
rency, Parallelism, and Distribution. World Scientific (1999)

80. Ehrig, H., Pfender, M., Schneider, H.: Graph grammars: an algebraic approach.
In: 14th Annual IEEE Symposium on Switching and Automata Theory. pp.
167–180. IEEE (1973)

81. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey).
In: Graph-Grammars and Their Application to Computer Science and Biology.
Lecture Notes in Computer Science, vol. 73, pp. 1–69. Springer (1979)

82. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information pre-
serving bidirectional model transformations. In: Fundamental Approaches to
Software Engineering, 10th International Conference, FASE 2007, Held as
Part of the Joint European Conferences, on Theory and Practice of Soft-
ware, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4422, pp. 72–86. Springer (2007),
https://doi.org/10.1007/978-3-540-71289-3_7

83. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and application
conditions: From graphs to high-level structures. In: Graph Transformations,
Second International Conference, ICGT 2004, Rome, Italy, September 28 -
October 2, 2004, Proceedings. LNCS, vol. 3256, pp. 287–303. Springer (2004)

84. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.:
Termination criteria for model transformatio. In: Proc. Fundamental Approa-

https://doi.org/10.1007/978-3-319-09108-2_10
https://doi.org/10.1109/ICSE-COMPANION.2009.5071062
http://dl.acm.org/citation.cfm?id=278918.278927
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1016/j.jlamp.2018.12.006
https://doi.org/10.1007/978-3-540-71289-3_7


References 291

ches to Software Engineering (FASE). LNCS, vol. 2984, pp. 214 – 228. Springer
(2005)

85. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. An EA-
TCS Series, Springer (2006)

86. Ehrig, H., Ermel, C.: Semantical correctness and completeness of model
transformations using graph and rule transformation. In: Proceedings of the
4th International Conference on Graph Transformations. pp. 194–210. ICGT
’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-87405-8_14

87. Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-fly construction, cor-
rectness and completeness of model transformations based on triple graph
grammars. In: Model Driven Engineering Languages and Systems, 12th In-
ternational Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5795, pp. 241–255. Sprin-
ger (2009), https://doi.org/10.1007/978-3-642-04425-0_18

88. Ehrig, H., Habel, A., Lambers, L., Orejas, F., Golas, U.: Local confluence
for rules with nested application conditions. In: Graph Transformations - 5th
International Conference, ICGT 2010, Enschede, The Netherlands, September
27 - October 2, 2010. Proceedings. LNCS, vol. 6372, pp. 330–345. Springer
(2010)

89. Ehrig, H., Hermann, F., Sartorius, C.: Completeness and correctness of mo-
del transformations based on triple graph grammars with negative application
conditions. ECEASST 18 (2009), http://journal.ub.tu-berlin.de/index.
php/eceasst/article/view/270

90. Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: A new categorical framework for graph transformation. Fundam. In-
form. 74(1), 1–29 (2006)

91. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and System Modeling 8(4), 479–500 (2009)

92. EMF: Eclipse Modeling Framework. http://www.eclispe.org/emf
93. eMoflon: . https://emoflon.org/
94. Engels, G., Gall, R., Nagl, M., Schäfer, W.: Software specification using graph

grammars. Computing 31, 317–346 (1983)
95. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling:

A graphical approach to the operational semantics of behavioral diagrams in
UML. In: «UML» 2000 - The Unified Modeling Language, Advancing the Stan-
dard, Third International Conference, York, UK, October 2-6, 2000, Procee-
dings. Lecture Notes in Computer Science, vol. 1939, pp. 323–337. Springer
(2000), https://doi.org/10.1007/3-540-40011-7_23

96. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model-
and view-based approach to system specification. International Journal of Soft-
ware Engineering and Knowledge Engineering 7(4), 457–477 (1997), http:
//dx.doi.org/10.1142/S0218194097000266

97. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J., Voß, M.,
Willkomm, J.: A method for engineering a true service-oriented architecture.
In: ICEIS 2008 - Proceedings of the Tenth International Conference on En-
terprise Information Systems, Volume ISAS-2, Barcelona, Spain, June 12-16,
2008. pp. 272–281 (2008)

http://dx.doi.org/10.1007/978-3-540-87405-8_14
http://dx.doi.org/10.1007/978-3-540-87405-8_14
https://doi.org/10.1007/978-3-642-04425-0_18
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/270
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/270
http://www.eclispe.org/emf
https://emoflon.org/
https://doi.org/10.1007/3-540-40011-7_23
http://dx.doi.org/10.1142/S0218194097000266
http://dx.doi.org/10.1142/S0218194097000266


292 References

98. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and tool
environment. In: Ehrig et al. [77], pp. 551 – 601

99. Ermel, C., Gall, J., Lambers, L., Taentzer, G.: Modeling with plausibility
checking: Inspecting favorable and critical signs for consistency between control
flow and functional behavior. In: Fundamental Approaches to Software Engi-
neering - 14th International Conference, FASE 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saar-
brücken, Germany, March 26-April 3, 2011. Proceedings. pp. 156–170 (2011),
http://dx.doi.org/10.1007/978-3-642-19811-3_12

100. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz,
M.S., Xiao, C.: The Daikon System for Dynamic Detection of Likely Invariants.
Science of Computer Programming 69(1-3), 35–45 (Dec 2007), http://dx.doi.
org/10.1016/j.scico.2007.01.015

101. Eshuis, R., Gorp, P.V.: Synthesizing object life cycles from business process
models. In: Conceptual Modeling - 31st International Conference ER 2012,
Florence, Italy, October 15-18, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7532, pp. 307–320. Springer (2012), https://doi.org/10.1007/
978-3-642-34002-4_24

102. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In:
Theory and Application of Graph Transformations, 6th International Works-
hop, TAGT’98, Paderborn, Germany, November 16-20, 1998, Selected Papers.
Lecture Notes in Computer Science, vol. 1764, pp. 296–309. Springer (2000),
https://doi.org/10.1007/978-3-540-46464-8_21

103. Fowler, M.: Refactoring – Improving the Design of Existing Code. Object
Technology Series, Addison-Wesley (1999), http://martinfowler.com/books/
refactoring.html

104. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Efficient model synchroniza-
tion by automatically constructed repair processes. In: Fundamental Appro-
aches to Software Engineering - 22nd International Conference, FASE 2019,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Procee-
dings. Lecture Notes in Computer Science, vol. 11424, pp. 116–133. Springer
(2019), https://doi.org/10.1007/978-3-030-16722-6_7

105. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A Fast
SPO-based Graph Rewriting Tool. In: Proceedings of the Third International
Conference on Graph Transformations. pp. 383–397. ICGT’06, Springer-Verlag,
Berlin, Heidelberg (2006), http://dx.doi.org/10.1007/11841883_27

106. Getir, S., Grunske, L., van Hoorn, A., Kehrer, T., Noller, Y., Tichy, M.: Suppor-
ting semi-automatic co-evolution of architecture and fault tree models. Journal
of Systems and Software 142, 115–135 (2018), https://doi.org/10.1016/j.
jss.2018.04.001

107. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.:
Modelling and analysis using groove. International journal on software tools
for technology transfer 14(1), 15–40 (February 2012)

108. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale mo-
dels. Tech. rep. (2009)

109. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work:
Keeping SysML and AUTOSAR Models Consistent, pp. 555–579. Springer
Berlin Heidelberg (2010), https://doi.org/10.1007/978-3-642-17322-6_24

http://dx.doi.org/10.1007/978-3-642-19811-3_12
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1007/978-3-642-34002-4_24
https://doi.org/10.1007/978-3-642-34002-4_24
https://doi.org/10.1007/978-3-540-46464-8_21
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://doi.org/10.1007/978-3-030-16722-6_7
http://dx.doi.org/10.1007/11841883_27
https://doi.org/10.1016/j.jss.2018.04.001
https://doi.org/10.1016/j.jss.2018.04.001
https://doi.org/10.1007/978-3-642-17322-6_24


References 293

110. Gilb, T.: Principles of Software Engineering Management. Addison-Wesley
(1988)

111. Generic Modeling Environment. http://www.isis.vanderbilt.edu/
projects/gme

112. Golas, U., Ehrig, H., Hermann, F.: Formal specification of model transfor-
mations by triple graph grammars with application conditions. ECEASST 39
(2011), http://journal.ub.tu-berlin.de/eceasst/article/view/646

113. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward Bridging the Gap between
Formal Foundations and Current Practice for Triple Graph Grammars – Flexi-
ble Relations between Source and Target Elements. In: Graph Transformations
– 6th International Conference, ICGT 2012, Bremen, Germany, September 24-
29, 2012. Lecture Notes in Computer Science, vol. 7562, pp. 141–155. Springer
(2012), https://doi.org/10.1007/978-3-642-33654-6_10

114. Gönczy, L., Heckel, R., Varró, D.: Model-based testing of service infrastruc-
ture components. In: Testing of Software and Communicating Systems, 19th
IFIP TC6/WG6.1 International Conference, TestCom 2007, 7th International
Workshop, FATES 2007, Tallinn, Estonia, June 26-29, 2007, Proceedings. Lec-
ture Notes in Computer Science, vol. 4581, pp. 155–170. Springer

115. Greenyer, J., Kindler, E.: Comparing relational model transformation techno-
logies: implementing query/view/transformation with triple graph grammars.
Software and SystemModeling 9(1), 21–46 (2010), https://doi.org/10.1007/
s10270-009-0121-8

116. Gruschko, B., Kolovos, D., Paige, R.: Towards synchronizing models with evol-
ving metamodels. In: Proceedings of 1st International Workshop on Model-
Driven Software Evolution. pp. 1–9 (2007)

117. Guha, S., Daswani, N., Jain, R.: An Experimental Study of the Skype Peer-
to-Peer VoIP System. In: Proceedings of the 5th International Workshop on
Peer-to-Peer Systems (IPTPS). pp. 1–6. Santa Barbara, CA, USA (February
2006)

118. Güldali, B., Mlynarski, M., Wübbeke, A., Engels, G.: Model-based system tes-
ting using visual contracts. In: 35th Euromicro Conference on Software Engi-
neering and Advanced Applications, SEAA 2009, Patras, Greece, August 27-29,
2009, Proceedings. pp. 121–124. IEEE Computer Society (2009)

119. GXL: Graph eXchange Language. http://www.gupro.de/GXL/
120. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application

conditions. Fundam. Inform. 26(3/4), 287–313 (1996)
121. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems

relative to nested conditions. Mathematical Structures in Computer Science
19(2), 245–296 (2009)

122. Habel, A., Plump, D.: Computational completeness of programming languages
based on graph transformation. In: Honsell, F., Miculan, M. (eds.) Foundations
of Software Science and Computation Structures. pp. 230–245. Springer, Berlin,
Heidelberg (2001)

123. Habel, A., Sandmann, C., Teusch, T.: Integration of Graph Constraints into
Graph Grammars, pp. 19–36. Springer International Publishing, Cham (2018),
https://doi.org/10.1007/978-3-319-75396-6_2

124. Hans-Jörg Kreowski, Renate Klempien-Hinrichs, S.K.: Some Essentials of
Graph Transformation, pp. 229–254. Springer, Berlin, Heidelberg (2006),
https://doi.org/10.1007/978-3-540-33461-3_9

http://www.isis.vanderbilt.edu/projects/gme
http://www.isis.vanderbilt.edu/projects/gme
http://journal.ub.tu-berlin.de/eceasst/article/view/646
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/s10270-009-0121-8
https://doi.org/10.1007/s10270-009-0121-8
http://www.gupro.de/GXL/
https://doi.org/10.1007/978-3-319-75396-6_2
https://doi.org/10.1007/978-3-540-33461-3_9


294 References

125. Hanysz, M., Hoppe, T., Uhl, A., Seibel, A., Giese, H., Berger, P., Hildebrandt,
S.: Navigating across non-navigable ecore references via OCL. ECEASST 36
(2010), https://doi.org/10.14279/tuj.eceasst.36.440

126. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC spe-
cifications. Int. J. Found. Comput. Sci. 13(1), 5–51 (2002), https://doi.org/
10.1142/S0129054102000935

127. Harel, D., Kugler, H.: The Rhapsody Semantics of Statecharts (or, On the Exe-
cutable Core of the UML), pp. 325–354. Springer, Berlin, Heidelberg (2004),
https://doi.org/10.1007/978-3-540-27863-4_19

128. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based discovery of web ser-
vices. In: Proceedings of the IEEE International Conference on Web Services
(ICWS’04), June 6-9, 2004, San Diego, California, USA. pp. 324–331. IEEE
Computer Society (2004), https://doi.org/10.1109/ICWS.2004.1314754

129. Hausmann, J.H., Heckel, R., Lohmann, M.: Model-based development of web
services descriptions enabling a precise matching concept. International Journal
of Web Service Research 2(2), 67–84 (2005)

130. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: A static analysis technique based
on graph transformation. In: Proceedings of the 22rd International Conference
on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA.
pp. 105–115 (2002), http://doi.acm.org/10.1145/581339.581355

131. Havelund, K., Pressburger, T.: Model checking Java programs using Java Path-
Finder. International Journal on Software Tools for Technology Transfer 2(4),
366–381 (Mar 2000), https://doi.org/10.1007/s100090050043

132. Heckel, R.: Stochastic analysis of graph transformation systems: A case study
in P2P networks. In: Van, H.D., Wirsing, M. (eds.) Proc. Intl. Colloquium on
Theoretical Aspects of Computing (ICTAC’05), Hanoi, Vietnam. LNCS, vol.
3722. Springer (October 2005), invited paper

133. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems.
In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) Proc. 2nd
Intl. Conference on Graph Transformation (ICGT’04), Rome, Italy. LNCS, vol.
3256, pp. 210–225. Springer (October 2004)

134. Heckel, R.: Compositional verification of reactive systems specified by graph
transformation. In: Astesiano, E. (ed.) Fundamental Approaches to Software
Engineering. pp. 138–153. Springer Berlin Heidelberg (1998)

135. Heckel, R., Correia, R., Matos, C.M.P., El-Ramly, M., Koutsoukos, G., An-
drade, L.F.: Architectural transformations: From legacy to three-tier and servi-
ces. In: Mens, T., Demeyer, S. (eds.) Software Evolution, pp. 139–170. Springer
(2008), http://dx.doi.org/10.1007/978-3-540-76440-3_7

136. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph
transformation systems. In: Graph Transformation, First International Confe-
rence, ICGT 2002, Barcelona, Spain, October 7-12, 2002, Proceedings. Lecture
Notes in Computer Science, vol. 2505, pp. 161–176. Springer (2002)

137. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation sys-
tems. Fundam. Inform. 74(1), 63–84 (2006), http://content.iospress.com/
articles/fundamenta-informaticae/fi74-1-04

138. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting -
a constructive approach. Electr. Notes Theor. Comput. Sci. 2, 118–126 (1995)

139. Henshin: http://www.eclipse.org/modeling/emft/henshin

https://doi.org/10.14279/tuj.eceasst.36.440
https://doi.org/10.1142/S0129054102000935
https://doi.org/10.1142/S0129054102000935
https://doi.org/10.1007/978-3-540-27863-4_19
https://doi.org/10.1109/ICWS.2004.1314754
http://doi.acm.org/10.1145/581339.581355
https://doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/978-3-540-76440-3_7
http://content.iospress.com/articles/fundamenta-informaticae/fi74-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi74-1-04
http://www.eclipse.org/modeling/emft/henshin


References 295

140. Hermann, F., Ehrig, H., Ermel, C.: Transformation of Type Graphs with In-
heritance for Ensuring Security in E-Government Networks. In: Fundamen-
tal Approaches to Software Engineering, 12th International Conference, FASE
2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings. LNCS,
vol. 5503, pp. 325–339. Springer (2009)

141. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent model synchroniza-
tion with conflict resolution based on triple graph grammars. In: Fundamental
Approaches to Software Engineering - 15th International Conference, FASE
2012, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Procee-
dings. Lecture Notes in Computer Science, vol. 7212, pp. 178–193. Springer
(2012), https://doi.org/10.1007/978-3-642-28872-2_13

142. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gott-
mann, S., Engel, T.: Model synchronization based on triple graph grammars:
Correctness, completeness and invertibility. Software and System Modeling
14(1), 241–269 (2015), https://doi.org/10.1007/s10270-012-0309-1

143. Hermann, F., Gottmann, S., Nachtigall, N., Ehrig, H., Braatz, B., Morelli,
G., Pierre, A., Engel, T., Ermel, C.: Triple graph grammars in the large for
translating satellite procedures. In: Theory and Practice of Model Transfor-
mations - 7th International Conference, ICMT 2014, Held as Part of STAF
2014, York, UK, July 21-22, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8568, pp. 122–137. Springer (2014), https://doi.org/10.1007/
978-3-319-08789-4_9

144. Hildebrandt, S., Lambers, L., Giese, H.: The MDELab tool framework for the
development of correct model transformations with triple graph grammars. In:
Proceedings of the First Workshop on the Analysis of Model Transformations,
AMT@MODELS 2012, Innsbruck, Austria, October 2, 2012. pp. 33–34. ACM
(2012), http://doi.acm.org/10.1145/2432497.2432504

145. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W.,
Lauder, M., Anjorin, A., Schürr, A.: A Survey of Triple Graph Grammar Tools.
ECEASST 57 (2013), http://journal.ub.tu-berlin.de/eceasst/article/
view/865

146. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
147. Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation.

RAIRO Theoretical Informatics and Applications 25, 445–472 (1991)
148. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software En-

gineering 23(5), 279–295 (May 1997), http://dx.doi.org/10.1109/32.588521
149. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehr-

heim, H.: Showing full semantics preservation in model transformation: A com-
parison of techniques. In: Proceedings of the 8th International Conference on
Integrated Formal Methods. pp. 183–198. Springer, Berlin, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1929463.1929477

150. Jacobson, I., Booch, G., Rumbaugh, J.E.: The Unified Software Development
Process - The Complete Guide to the Unified Process from the Original De-
signers. Object Technology Series, Addison-Wesley (1999)

151. Janssens, D., Rozenberg, G.: On the structure of node-label controlled graph
grammars. Information Science 20, 191–216 (1980)

https://doi.org/10.1007/978-3-642-28872-2_13
https://doi.org/10.1007/s10270-012-0309-1
https://doi.org/10.1007/978-3-319-08789-4_9
https://doi.org/10.1007/978-3-319-08789-4_9
http://doi.acm.org/10.1145/2432497.2432504
http://journal.ub.tu-berlin.de/eceasst/article/view/865
http://journal.ub.tu-berlin.de/eceasst/article/view/865
http://dx.doi.org/10.1109/32.588521
http://dl.acm.org/citation.cfm?id=1929463.1929477


296 References

152. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Science of Computer Programming 72(1–2), 31–39 (Jun 2008), http:
//dx.doi.org/10.1016/j.scico.2007.08.002

153. Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient criteria for consis-
tent behavior modeling with refined activity diagrams. In: Model Driven Engi-
neering Languages and Systems, 11th International Conference, MoDELS 2008,
Toulouse, France, September 28 - October 3, 2008. LNCS, vol. 5301, pp. 341–
355. Springer (2008), http://dx.doi.org/10.1007/978-3-540-87875-9_25

154. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object flow de-
finition for refined activity diagrams. In: Fundamental Approaches to Software
Engineering, 12th International Conference, FASE 2009, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. LNCS, vol. 5503, pp. 49–63. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-00593-0_4

155. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE.
In: Model Checking Software, 13th International SPIN Workshop, Vienna,
Austria, March 30 - April 1, 2006, Proceedings. Lecture Notes in Computer
Science, vol. 3925, pp. 299–305. Springer (2006), https://doi.org/10.1007/
11691617_19

156. Kastens, U., Schmidt, C.: VL-Eli: A generator for visual languages - system
demonstration. Electr. Notes Theor. Comput. Sci. 65(3), 139–143 (2002)

157. Kehrer, T.: Calculation and Propagation of Model Changes Based on User-
Level Edit Operations. Ph.D. thesis, Universität Siegen (2015)

158. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic
lifting of model differences in the context of model versioning. In: Alexan-
der, P., Pasareanu, C.S., Hosking, J.G. (eds.) 26th IEEE/ACM Internatio-
nal Conference on Automated Software Engineering (ASE 2011), Lawrence,
KS, USA, November 6-10, 2011. pp. 163–172. IEEE Computer Society (2011),
http://dx.doi.org/10.1109/ASE.2011.6100050

159. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in
model versioning. In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. pp. 191–201. IEEE
(2013), http://dx.doi.org/10.1109/ASE.2013.6693079

160. Kehrer, T., Kelter, U., Taentzer, G.: Propagation of software model chan-
ges in the context of industrial plant automation. Automatisierungstechnik
62(11), 803–814 (2014), http://www.degruyter.com/view/j/auto.2014.62.
issue-11/auto-2014-1102/auto-2014-1102.xml

161. Kehrer, T., Pietsch, C., Kelter, U., Strüber, D., Vaupel, S.: An adaptable tool
environment for high-level differencing of textual models. In: Brucker, A.D.,
Egea, M., Gogolla, M., Tuong, F. (eds.) Proceedings of the 15th International
Workshop on OCL and Textual Modeling co-located with 18th International
Conference on Model Driven Engineering Languages and Systems (MoDELS
2015), Ottawa, Canada, September 28, 2015. CEUR Workshop Proceedings,
vol. 1512, pp. 62–72. CEUR-WS.org (2015), http://ceur-ws.org/Vol-1512/
paper05.pdf

162. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the
specification of model editing operations from meta-models. In: Theory and
Practice of Model Transformations - 9th International Conference, ICMT 2016,

http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1007/978-3-540-87875-9_25
http://dx.doi.org/10.1007/978-3-642-00593-0_4
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/11691617_19
http://dx.doi.org/10.1109/ASE.2011.6100050
http://dx.doi.org/10.1109/ASE.2013.6693079
http://www.degruyter.com/view/j/auto.2014.62.issue-11/auto-2014-1102/auto-2014-1102.xml
http://www.degruyter.com/view/j/auto.2014.62.issue-11/auto-2014-1102/auto-2014-1102.xml
http://ceur-ws.org/Vol-1512/paper05.pdf
http://ceur-ws.org/Vol-1512/paper05.pdf


References 297

Held as Part of STAF 2016, Vienna, Austria, July 4-5, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9765, pp. 173–188. Springer (2016),
https://doi.org/10.1007/978-3-319-42064-6_12

163. Khan, A., Heckel, R.: Evaluating Super Node Selection and Load Balancing
in P2P VoIP Networks Using Stochastic Graph Transformation. In: Obai-
dat, M.S., Sevillano, J.L., Filipe, J. (eds.) E-Business and Telecommunica-
tions: International Joint Conference, ICETE 2011, Seville, Spain, July 18-21,
2011, Revised Selected Papers. Communications in Computer and Informa-
tion Science, vol. 314, pp. 60–73. Springer (2011), https://doi.org/10.1007/
978-3-642-35755-8_5

164. Khan, A., Heckel, R.: Model-based Stochastic Simulation of Super Peer Promo-
tion in P2P VoIP using Graph Transformation. In: Obaidat, M.S., Sevillano,
J.L., Ortega, E.C. (eds.) DCNET 2011 and OPTICS 2011 - Proceedings of the
International Conference on Data Communication Networking and Internatio-
nal Conference on Optical Communication Systems, Seville, Spain, July 18-21,
2011. pp. 32–42. SciTePress (2011)

165. Khan, T.A.: Model-based testing using visual contracts. Ph.D. thesis, Univer-
sity of Leicester (2012)

166. Khan, T.A., Runge, O., Heckel, R.: Testing against visual contracts: Model-
based coverage. In: Graph Transformations - 6th International Conference,
ICGT 2012, Bremen, Germany, September 24-29, 2012. Proceedings. Lecture
Notes in Computer Science, vol. 7562, pp. 279–293. Springer (2012), https:
//doi.org/10.1007/978-3-642-33654-6_19

167. Khan, T.A., Runge, O., Heckel, R.: Visual contracts as test oracle in AGG 2.0.
ECEASST 47 (2012), http://journal.ub.tu-berlin.de/eceasst/article/
view/728

168. Klop, J.W., Bezem, M., Vrijer, R.C.D. (eds.): Term Rewriting Systems. Cam-
bridge University Press, New York, NY, USA (2001)

169. Klusch, M., Kapahnke, P., Schulte, S., Lécué, F., Bernstein, A.: Semantic Web
service search: A brief survey. Künstliche Intelligenz 30(2), 139–147 (2016),
https://doi.org/10.1007/s13218-015-0415-7

170. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation lan-
guage. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Theory and Practice
of Model Transformations. pp. 46–60. Springer, Berlin, Heidelberg (2008)

171. König, B., Kozioura, V.: Augur 2 - A new version of a tool for the analysis of
graph transformation systems. Electr. Notes Theor. Comput. Sci. 211, 201–210
(2008), https://doi.org/10.1016/j.entcs.2008.04.042

172. Königs, A., Schürr, A.: Tool integration with triple graph grammars - A sur-
vey. Electronic Notes in Theoretical Computer Science 148(1), 113–150 (2006),
https://doi.org/10.1016/j.entcs.2005.12.015

173. Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig,
H., Engels, G., Kreowski, H., Rozenberg, G. (eds.) Graph Transformations -
6th International Conference, ICGT 2012, Bremen, Germany, September 24-29,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7562, pp. 311–325.
Springer (2012), https://doi.org/10.1007/978-3-642-33654-6_21

174. Krause, C., Neumann, S.: Instance-aware Model Checking of Graph Trans-
formation Systems using - and mCRL2 (2012), www.eclipse.org/modeling/
emft/henshin/documents/henshin_mcrl2.pdf

175. Krenn, W., Aichernig, B.K.: Test case generation by contract mutation in
spec#. Electr. Notes Theor. Comput. Sci. 253(2), 71–86 (2009)

https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-642-35755-8_5
https://doi.org/10.1007/978-3-642-35755-8_5
https://doi.org/10.1007/978-3-642-33654-6_19
https://doi.org/10.1007/978-3-642-33654-6_19
http://journal.ub.tu-berlin.de/eceasst/article/view/728
http://journal.ub.tu-berlin.de/eceasst/article/view/728
https://doi.org/10.1007/s13218-015-0415-7
https://doi.org/10.1016/j.entcs.2008.04.042
https://doi.org/10.1016/j.entcs.2005.12.015
https://doi.org/10.1007/978-3-642-33654-6_21
www.eclipse.org/modeling/emft/henshin/documents/henshin_mcrl2.pdf
www.eclipse.org/modeling/emft/henshin/documents/henshin_mcrl2.pdf


298 References

176. Krivine, J., Danos, V., Benecke, A.: Modelling Epigenetic Information Mainte-
nance: A Kappa Tutorial. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification: 21st International Conference, CAV 2009, Grenoble, France, June
26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643,
pp. 17–32. Springer (2009), https://doi.org/10.1007/978-3-642-02658-4_3

177. Kurtev, I.: State of the Art of QVT: A Model Transformation Language Stan-
dard. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of Graph Trans-
formations with Industrial Relevance: Third International Symposium, AG-
TIVE 2007, Kassel, Germany, October 10–12, 2009, Revised Selected and Invi-
ted Papers, LNCS, vol. 5088, pp. 377–393. Springer, Berlin, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-89020-1_26

178. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: An initial appraisal.
In: International Symposium on Distributed Objects and Applications, DOA
2002 (2002)

179. Kuske, S.: Transformation Units—A Structuring Principle for Graph Transfor-
mation Systems. Ph.D. thesis, University of Bremen (2000)

180. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabi-
listic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings
of 23rd International Conference on Computer Aided Verification (CAV’11).
LNCS, vol. 6806, pp. 585–591. Springer (2011)

181. Lamancha, B.P., Polo, M., Caivano, D., Piattini, M., Visaggio, G.: Automated
generation of test oracles using a model-driven approach. Inf. Softw. Technol.
55(2), 301–319 (Feb 2013), http://dx.doi.org/10.1016/j.infsof.2012.08.
009

182. Lambers, L., Born, K., Kosiol, J., Strüber, D., Taentzer, G.: Granularity of
conflicts and dependencies in graph transformation systems: A two-dimensional
approach. Journal of Logical and Algebraic Methods in Programming 103, 105–
129 (2019), https://doi.org/10.1016/j.jlamp.2018.11.004

183. Lambers, L., Born, K., Orejas, F., Strüber, D., Taentzer, G.: Initial conflicts
and dependencies: Critical pairs revisited. In: Graph Transformation, Specifi-
cations, and Nets - In Memory of Hartmut Ehrig. Lecture Notes in Computer
Science, vol. 10800, pp. 105–123. Springer (2018), https://doi.org/10.1007/
978-3-319-75396-6_6

184. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph trans-
formation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci.
211, 17–26 (2008)

185. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient criteria for applicability and
non-applicability of rule sequences. ECEASST 10 (2008), http://eceasst.cs.
tu-berlin.de/index.php/eceasst/article/view/139

186. Lambers, L., Strüber, D., Taentzer, G., Born, K., Huebert, J.: Multi-granular
conflict and dependency analysis in software engineering based on graph trans-
formation. In: Proceedings of the 40th International Conference on Software
Engineering. pp. 716–727. ICSE ’18, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3180155.3180258

187. Lambers, L., Weber, J.H. (eds.): Graph Transformation - 11th International
Conference, ICGT 2018, Held as Part of STAF 2018, Toulouse, France, June 25-
26, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10887. Springer
(2018), https://doi.org/10.1007/978-3-319-92991-0

https://doi.org/10.1007/978-3-642-02658-4_3
http://dx.doi.org/10.1007/978-3-540-89020-1_26
http://dx.doi.org/10.1016/j.infsof.2012.08.009
http://dx.doi.org/10.1016/j.infsof.2012.08.009
https://doi.org/10.1016/j.jlamp.2018.11.004
https://doi.org/10.1007/978-3-319-75396-6_6
https://doi.org/10.1007/978-3-319-75396-6_6
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/139
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/139
http://doi.acm.org/10.1145/3180155.3180258
https://doi.org/10.1007/978-3-319-92991-0


References 299

188. de Lara, J., Guerra, E., Boronat, A., Heckel, R., Torrini, P.: Domain-specific
discrete event modelling and simulation using graph transformation. Soft-
ware and System Modeling 13(1), 209–238 (2014), https://doi.org/10.1007/
s10270-012-0242-3

189. de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. Journal of Visual Langua-
ges & Computing 15(3), 309 – 330 (2004), http://www.sciencedirect.com/
science/article/pii/S1045926X04000138

190. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging in-
cremental pattern matching techniques for model synchronisation. In: Graph
Transformation - 10th International Conference, ICGT 2017, Held as Part of
STAF 2017, Marburg, Germany, July 18-19, 2017, Proceedings. Lecture No-
tes in Computer Science, vol. 10373, pp. 179–195. Springer (2017), https:
//doi.org/10.1007/978-3-319-61470-0_11

191. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency checking using
triple graph grammars and linear optimization techniques. In: Fundamental
Approaches to Software Engineering - 20th International Conference, FASE
2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10202, pp. 191–207. Springer (2017),
https://doi.org/10.1007/978-3-662-54494-5_11

192. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.:
A comparison of incremental triple graph grammar tools. ECEASST 67 (2014),
http://journal.ub.tu-berlin.de/eceasst/article/view/939

193. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple
graph grammars: Formal foundation and application to visual language trans-
lation. J. Vis. Lang. Comput. 42, 99–121 (2017), https://doi.org/10.1016/
j.jvlc.2016.03.001

194. Lohmann, M., Mariani, L., Heckel, R.: A model-driven approach to discovery,
testing and monitoring of web services. In: Baresi, L., Di Nitto, E. (eds.) Test
and Analysis of Web Services, pp. 173–204. Springer (2007), https://doi.
org/10.1007/978-3-540-72912-9_7

195. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In: VL-
HCC ’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing. pp. 63–70. IEEE Computer Society, Washington,
DC, USA (2005)

196. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theo-
retical Computer Science 109, 181–224 (1993)

197. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and
their instance models: A formal approach based on graph transformation.
Sci. Comput. Program. 104, 2–43 (2015), https://doi.org/10.1016/j.scico.
2015.01.002

198. Mariani, L.: Fault-tolerant routing for P2P systems with unstructured topo-
logy. In: 2005 IEEE/IPSJ International Symposium on Applications and the In-
ternet (SAINT 2005), 31 January - 4 February 2005, Trento, Italy. pp. 256–263.
IEEE Computer Society (2005), https://doi.org/10.1109/SAINT.2005.30

199. Marriott, K., Meyer, B.: Visual Language Theory. Springer (1998)
200. Marsan, M.A.: Stochastic Petri nets: An elementary introduction. In: Rozen-

berg, G. (ed.) Advances in Petri Nets 1989. pp. 1–29. Springer, Berlin, Heidel-
berg (1990)

https://doi.org/10.1007/s10270-012-0242-3
https://doi.org/10.1007/s10270-012-0242-3
http://www.sciencedirect.com/science/article/pii/S1045926X04000138
http://www.sciencedirect.com/science/article/pii/S1045926X04000138
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-662-54494-5_11
http://journal.ub.tu-berlin.de/eceasst/article/view/939
https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1007/978-3-540-72912-9_7
https://doi.org/10.1007/978-3-540-72912-9_7
https://doi.org/10.1016/j.scico.2015.01.002
https://doi.org/10.1016/j.scico.2015.01.002
https://doi.org/10.1109/SAINT.2005.30


300 References

201. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuin-
ness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara,
K.: Bringing semantics to Web services: The OWL-S approach. In: Procee-
dings of the First International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004), July 6-9, 2004, San Diego, California,
USA. (2004)

202. Maximova, M., Giese, H., Krause, C.: Probabilistic timed graph transfor-
mation systems. In: de Lara, J., Plump, D. (eds.) Graph Transformation -
10th International Conference, ICGT 2017, Held as Part of STAF 2017, Mar-
burg, Germany, July 18-19, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10373, pp. 159–175. Springer (2017), https://doi.org/10.1007/
978-3-319-61470-0_10

203. mCRL2: Analysing system behaviour. http://mcrl2.org
204. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Tool-

box. Springer (2008)
205. Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model we-

aving. Transactions on Aspect-Oriented Software Development 5, 235–263
(2009), http://dx.doi.org/10.1007/978-3-642-02059-9_7

206. Mehner-Heindl, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented
models using graph transformation systems. In: Aspect-Oriented Require-
ments Engineering, pp. 243–270. Springer (2013), http://dx.doi.org/10.
1007/978-3-642-38640-4_13

207. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven
Architecture. Object Technology Series, Addison-Wesley (2002)

208. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using
graph transformation. Software and System Modeling 6(3), 269–285 (2007)

209. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci. 152, 125–142 (Mar 2006), http://dx.doi.org/10.1016/
j.entcs.2005.10.021

210. Meta-Tools: Marama. http://wiki.auckland.ac.nz/display/csidst
211. MetaEdit+: http://www.metacase.com
212. Meyer, B.: Object-Oriented Software Construction, 2nd Edition. Prentice-Hall

(1997)
213. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings

of the 1997 IEEE Symposium on Visual Languages (VL ’97). pp. 230–237. VL
’97, IEEE Computer Society, Washington, DC, USA (1997), http://dl.acm.
org/citation.cfm?id=832278.834445

214. Minas, M.: Hypergraphs as a uniform diagram representation model. In: The-
ory and Application of Graph Transformations, 6th International Workshop,
TAGT’98, Paderborn, Germany, November 16-20, 1998, Selected Papers. Lec-
ture Notes in Computer Science, vol. 1764, pp. 281–295. Springer (1998),
https://doi.org/10.1007/978-3-540-46464-8_20

215. Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches to model
quality in model-based software development - A review of literature. Informa-
tion & Software Technology 51(12), 1646–1669 (2009), http://dx.doi.org/
10.1016/j.infsof.2009.04.004

216. de Mol, M., Rensink, A.: On a graph formalism for ordered edges. ECEASST
29 (2010), http://journal.ub.tu-berlin.de/index.php/eceasst/article/
view/417

https://doi.org/10.1007/978-3-319-61470-0_10
https://doi.org/10.1007/978-3-319-61470-0_10
http://mcrl2.org
http://dx.doi.org/10.1007/978-3-642-02059-9_7
http://dx.doi.org/10.1007/978-3-642-38640-4_13
http://dx.doi.org/10.1007/978-3-642-38640-4_13
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://wiki.auckland.ac.nz/display/csidst
http://www.metacase.com
http://dl.acm.org/citation.cfm?id=832278.834445
http://dl.acm.org/citation.cfm?id=832278.834445
https://doi.org/10.1007/978-3-540-46464-8_20
http://dx.doi.org/10.1016/j.infsof.2009.04.004
http://dx.doi.org/10.1016/j.infsof.2009.04.004
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/417
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/417


References 301

217. Molloy, M.K.: On the Integration of Delay and Throughput Measures in Dis-
tributed Processing Models. Ph.D. thesis, University of California (1981)

218. Naeem, M., Heckel, R., Orejas, F., Hermann, F.: Incremental service composi-
tion based on partial matching of visual contracts. In: Fundamental Approa-
ches to Software Engineering, 13th International Conference, FASE 2010, Held
as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings. Lec-
ture Notes in Computer Science, vol. 6013, pp. 123–138. Springer (2010),
https://doi.org/10.1007/978-3-642-12029-9_9

219. Nagl, M.: On the relation between graph grammars and graph l-systems. In:
Fundamentals of Computation Theory. pp. 142–151. Springer, Berlin, Heidel-
berg (1977)

220. Nagl, M.: A tutorial and bibliographical survey on graph grammars. In: Graph-
Grammars and Their Application to Computer Science and Biology, Interna-
tional Workshop, Bad Honnef, October 30 - November 3, 1978. LNCS, vol. 73,
pp. 70–126. Springer (1978)

221. Najumudheen, E.S.F., Mall, R., Samanta, D.: A dependence graph-based test
coverage analysis technique for object-oriented programs. In: Proceedings of
the 2009 Sixth International Conference on Information Technology: New Ge-
nerations. pp. 763–768. IEEE Computer Society, Washington, DC, USA (2009),
https://doi.org/10.1109/ITNG.2009.284

222. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC: Automatic Trans-
lation of OCL Constraints to Graph Constraints and Application Conditi-
ons for Transformation Rules. In: Lambers and Weber [187], pp. 171–177,
https://doi.org/10.1007/978-3-319-92991-0_11

223. Natkin, S.: Les Roseaux de Petri Stochastiques et leur Application a
l’Evaluation des Systemes Informatiques. Ph.D. thesis, CNAM Paris (1980)

224. Norris, J.R.: Markov Chains. Cambridge University Press (1997)
225. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the re-

lationships between multiple views in requirements specification. IEEE Trans.
Softw. Eng. pp. 760–773 (1994)

226. OCL: Object Constraint Language, Version 2.2, http://www.omg.org/spec/
OCL/2.2/

227. Orejas, F.: Symbolic graphs for attributed graph constraints. Journal of Sym-
bolic Computation 46(3), 294–315 (2011), https://doi.org/10.1016/j.jsc.
2010.09.009

228. Peng, X., Lu, L.: A new approach for session-based test case generation by ga.
In: 2011 IEEE 3rd International Conference on Communication Software and
Networks. pp. 91–96 (May 2011)

229. Pennemann, K.H.: Development of Correct Graph Transformation Sys-
tems. Ph.D. thesis, Department für Informatik, Universität Oldenburg, Ol-
denburg (2009), http://formale-sprachen.informatik.uni-oldenburg.de/
~skript/fs-pub/diss_pennemann.pdf, Electronic Dissertation

230. Plump, D.: Critical Pairs in Term Graph Rewriting. In: Mathematical Foun-
dations of Computer Science. LNCS, vol. 841, pp. 556–566 (1994)

231. Plump, D.: Termination of graph rewriting is undecidable. Fundamenta Infor-
maticae 33(2), 201–209 (1998)

232. Plump, D.: Term Graph Rewriting. In: Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 2: Applications, Languages and
Tools, pp. 3–61. World Scientific (1999)

https://doi.org/10.1007/978-3-642-12029-9_9
https://doi.org/10.1109/ITNG.2009.284
https://doi.org/10.1007/978-3-319-92991-0_11
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
https://doi.org/10.1016/j.jsc.2010.09.009
https://doi.org/10.1016/j.jsc.2010.09.009
http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/diss_pennemann.pdf
http://formale-sprachen.informatik.uni-oldenburg.de/~skript/fs-pub/diss_pennemann.pdf


302 References

233. Plump, D.: Essentials of term graph rewriting. Electr. Notes Theor. Comput.
Sci. 51, 277–289 (2001), https://doi.org/10.1016/S1571-0661(04)80210-X

234. Plump, D.: The Graph Programming Language GP. In: Algebraic Informatics,
Third International Conference, CAI 2009, Thessaloniki, Greece, May 19-22,
2009, Proceedings. Lecture Notes in Computer Science, vol. 5725, pp. 99–122.
Springer (2009)

235. Plump, D.: Checking graph-transformation systems for confluence. ECEASST
26 (2010), http://journal.ub.tu-berlin.de/index.php/eceasst/article/
view/367

236. Plump, D.: Modular termination of graph transformation. In: Heckel, R., Ta-
entzer, G. (eds.) Graph Transformation, Specifications, and Nets - In Memory
of Hartmut Ehrig. Lecture Notes in Computer Science, vol. 10800, pp. 231–244.
Springer (2018), https://doi.org/10.1007/978-3-319-75396-6_13

237. Priami, C.: Stochastic π-calculus. Computer Journal 38(7), 578–589 (1995)
238. Radke, H.: HR* Graph Conditions Between Counting Monadic Second-Order

and Second-Order Graph Formulas. ECEASST 61 (2013), http://journal.
ub.tu-berlin.de/eceasst/article/view/831

239. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating
essential OCL invariants to nested graph constraints for generating instan-
ces of meta-models. Science of Computer Programming 152, 38–62 (2018),
https://doi.org/10.1016/j.scico.2017.08.006

240. Rangel, G.: Behavioral congruences and verification of graph transformation
systems with applications to model refactoring. Ph.D. thesis, Berlin Institute
of Technology (2008), https://depositonce.tu-berlin.de/handle/11303/
2329

241. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preserva-
tion in model refactoring using DPO transformations with borrowed contexts.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) Graph Transforma-
tions, 4th International Conference, ICGT 2008, Leicester, United Kingdom,
September 7-13, 2008. Proceedings. LNCS, vol. 5214, pp. 242–256. Springer
(2008), http://dx.doi.org/10.1007/978-3-540-87405-8_17

242. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013)

243. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph
grammars. Journal of Visual Language Computing 8(1), 27–55 (1997), https:
//doi.org/10.1006/jvlc.1996.0027

244. Rensink, A.: Representing first-order logic using graphs. In: Graph Transforma-
tions, Second International Conference, ICGT 2004, Rome, Italy, September 28
- October 2, 2004, Proceedings. LNCS, vol. 3256, pp. 319–335. Springer (2004)

245. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels,
G., Parisi-Presicce, F., Rozenberg, G. (eds.) Graph Transformations. pp. 319–
335. Springer, Berlin, Heidelberg (2004)

246. Rensink, A.: Explicit state model checking for graph grammars. In: Concur-
rency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occa-
sion of His 65th Birthday. Lecture Notes in Computer Science, vol. 5065, pp.
114–132. Springer (2008), https://doi.org/10.1007/978-3-540-68679-8_8

247. Rensink, A., Distefano, D.: Abstract graph transformation. Electronic No-
tes in Theoretical Computer Science 157(1), 39–59 (2006), http://www.
sciencedirect.com/science/article/pii/S1571066106002271, proceedings

https://doi.org/10.1016/S1571-0661(04)80210-X
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/367
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/367
https://doi.org/10.1007/978-3-319-75396-6_13
http://journal.ub.tu-berlin.de/eceasst/article/view/831
http://journal.ub.tu-berlin.de/eceasst/article/view/831
https://doi.org/10.1016/j.scico.2017.08.006
https://depositonce.tu-berlin.de/handle/11303/2329
https://depositonce.tu-berlin.de/handle/11303/2329
http://dx.doi.org/10.1007/978-3-540-87405-8_17
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1007/978-3-540-68679-8_8
http://www.sciencedirect.com/science/article/pii/S1571066106002271
http://www.sciencedirect.com/science/article/pii/S1571066106002271


References 303

of the Third International Workshop on Software Verification and Validation
(SVV 2005)

248. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations:
A comparison of two approaches. In: Graph Transformations, Second Interna-
tional Conference, ICGT 2004, Rome, Italy, September 28 - October 2, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3256, pp. 226–241. Sprin-
ger (2004), https://doi.org/10.1007/978-3-540-30203-2_17

249. Reussner, R.H., Goedicke, M., Hasselbring, W., Vogel-Heuser, B., Keim, J.,
Märtin, L. (eds.): Managed Software Evolution. Springer (2019), https://doi.
org/10.1007/978-3-030-13499-0

250. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and Tool Support
for Model Driven Engineering with Maude. Journal of Object Technology 6(9),
187–207 (Oct 2007), http://www.jot.fm/contents/issue_2007_10/paper10.
html, TOOLS EUROPE 2007 — Objects, Models, Components, Patterns

251. Rountev, A., Volgin, O., Reddoch, M.: Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. ACM SIGSOFT Software Engineer-
ing Notes 31(1), 96–102 (Sep 2005), http://doi.acm.org/10.1145/1108768.
1108816

252. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation.: Vol. 1: Foundations. World Scientific, Singapore (1997)

253. Runge, O., Khan, T.A., Heckel, R.: Test case generation using visual contracts.
ECEASST 58 (2013), http://journal.ub.tu-berlin.de/eceasst/article/
view/847

254. Schmidt, Á., Varró, D.: CheckVML: A Tool for Model Checking Visual Mo-
deling Languages. In: «UML» 2003 - The Unified Modeling Language, Mo-
deling Languages and Applications, 6th International Conference, San Fran-
cisco, CA, USA, October 20-24, 2003, Proceedings. Lecture Notes in Compu-
ter Science, vol. 2863, pp. 92–95. Springer (2003), https://doi.org/10.1007/
978-3-540-45221-8_8

255. Schmidt, C.: Generierung von Struktureditoren für anspruchsvolle visuelle
Sprachen. Ph.D. thesis, Universität Paderborn (2006)

256. Schmidt, C., Kastens, U.: Implementation of visual languages using pattern-
based specifications. Softw., Pract. Exper. 33(15), 1471–1505 (2003)

257. Schnelte, M., Güldali, B.: Test Case Generation for Visual Contracts Using
AI Planning. In: Fähnrich, K.P., Franczyk, B. (eds.) Informatik 2010: Service
Science - Neue Perspektiven für die Informatik, Beiträge der 40. Jahrestagung
der Gesellschaft für Informatik e.V. (GI), Band 2, Leipzig, Germany, GI Jahre-
stagung (2). LNI, vol. 176, pp. 369–374. GI (2010)

258. Schürr, A.: Programmed graph replacement systems. In: Rozenberg [252], pp.
479 – 546

259. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and
environment. In: Ehrig et al. [77], pp. 487–550

260. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Graph-Theoretic Concepts in Computer Science, 20th International Workshop,
WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings. Lecture Notes
in Computer Science, vol. 903, pp. 151–163. Springer (1994), https://doi.
org/10.1007/3-540-59071-4_45

261. Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.J.D. (eds.): Term Graph Re-
writing: Theory and Practice. Wiley, Chichester, UK (1993)

https://doi.org/10.1007/978-3-540-30203-2_17
https://doi.org/10.1007/978-3-030-13499-0
https://doi.org/10.1007/978-3-030-13499-0
http://www.jot.fm/contents/issue_2007_10/paper10.html
http://www.jot.fm/contents/issue_2007_10/paper10.html
http://doi.acm.org/10.1145/1108768.1108816
http://doi.acm.org/10.1145/1108768.1108816
http://journal.ub.tu-berlin.de/eceasst/article/view/847
http://journal.ub.tu-berlin.de/eceasst/article/view/847
https://doi.org/10.1007/978-3-540-45221-8_8
https://doi.org/10.1007/978-3-540-45221-8_8
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/3-540-59071-4_45


304 References

262. Society, I.C., Bourque, P., Fairley, R.E.: Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society
Press, Los Alamitos, CA, USA, 3rd edn. (2014)

263. Spivey, J.M.: Understanding Z: A Specification Language and Its Formal Se-
mantics. Cambridge University Press, New York, NY, USA (1988)

264. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley (2008)

265. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and
open questions. In: Model Driven Engineering Languages and Systems, 10th
International Conference, MoDELS 2007, Nashville, USA, September 30 - Oc-
tober 5, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4735, pp.
1–15. Springer (2007), https://doi.org/10.1007/978-3-540-75209-7_1

266. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and
open questions. Software & Systems Modeling 9(1), 7–20 (2010), https://doi.
org/10.1007/s10270-008-0109-9

267. Stevens, P.: Bidirectional transformations in the large. In: 20th ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems,
MODELS 2017, Austin, TX, USA, September 17-22, 2017. pp. 1–11. IEEE
Computer Society (2017), https://doi.org/10.1109/MODELS.2017.8

268. Taentzer, G.: Parallel and distributed graph transformation: Formal descrip-
tion and application to communication-based systems. Berichte aus der Infor-
matik, Shaker (1996)

269. Taentzer, G.: Parallel high-level replacement systems. Theoretical Computer
Science 186(1-2), 43–81 (1997)

270. Taentzer, G.: AGG: A graph transformation environment for modeling and
validation of software. In: Applications of Graph Transformations with Indus-
trial Relevance, Second International Workshop, AGTIVE 2003, Charlottes-
ville, VA, USA, September 27 - October 1, 2003, Revised Selected and Invited
Papers. Lecture Notes in Computer Science, vol. 3062, pp. 446–453. Springer
(2003), https://doi.org/10.1007/978-3-540-25959-6_35

271. Taentzer, G.: Instance generation from type graphs with arbitrary multi-
plicities. ECEASST 47 (2012), http://journal.ub.tu-berlin.de/eceasst/
article/view/727

272. Taentzer, G., Carughi, G.T.: A Graph-Based Approach to Transform XML
Documents. In: Fundamental Approaches to Software Engineering, 9th Inter-
national Conference, FASE 2006, Held as Part of the Joint European Confe-
rences on Theory and Practice of Software, ETAPS 2006. LNCS, vol. 3922, pp.
48–62. Springer (2006)

273. Taentzer, G., Golas, U.: Towards local confluence analysis for amalgamated
graph transformation. In: Graph Transformation - 8th International Confe-
rence, ICGT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 21-23,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9151, pp. 69–86.
Springer (2015), https://doi.org/10.1007/978-3-319-21145-9_5

274. Taentzer, G., Mantz, F., Arendt, T., Lamo, Y.: Customizable model migra-
tion schemes for meta-model evolutions with multiplicity changes. In: Model-
Driven Engineering Languages and Systems - 16th International Conference,
MODELS 2013, Miami, FL, USA, September 29 - October 4, 2013. Procee-
dings. Lecture Notes in Computer Science, vol. 8107, pp. 254–270. Springer
(2013), https://doi.org/10.1007/978-3-642-41533-3_16

https://doi.org/10.1007/978-3-540-75209-7_1
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1007/978-3-540-25959-6_35
http://journal.ub.tu-berlin.de/eceasst/article/view/727
http://journal.ub.tu-berlin.de/eceasst/article/view/727
https://doi.org/10.1007/978-3-319-21145-9_5
https://doi.org/10.1007/978-3-642-41533-3_16


References 305

275. Taentzer, G., Mantz, F., Lamo, Y.: Co-transformation of graphs and type
graphs with application to model co-evolution. In: Graph Transformations -
6th International Conference, ICGT 2012, Bremen, Germany, September 24-29,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7562, pp. 326–340.
Springer (2012), https://doi.org/10.1007/978-3-642-33654-6_22

276. Tolvanen, J.P., Rossi, M.: MetaEdit+: Defining and using domain-specific mo-
deling languages and code generators. In: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Application, OOPSLA Companion. pp. 92–93. ACM (2003)

277. Tonella, P., Potrich, A.: Reverse Engineering of the Interaction Diagrams from
C++ Code. In: Proceedings of the International Conference on Software Main-
tenance. pp. 159–168. IEEE Computer Society, Washington, DC, USA (2003),
http://dl.acm.org/citation.cfm?id=942800.943599

278. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation
systems. In: Rosenblum, D.S., Taentzer, G. (eds.) Fundamental Approaches
to Software Engineering, 13th International Conference, FASE 2010, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings. Lecture Notes
in Computer Science, vol. 6013, pp. 154–157. Springer (2010), https://doi.
org/10.1007/978-3-642-12029-9_11

279. Tveit, M.S.: Meta-model-based Specification of Graphical Languages and Their
Representations. Ph.D. thesis, University of Oslo (2010)

280. UML: Unified Modeling Language, http://www.uml.org
281. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing

approaches. Software Testing, Verification and Reliability 22(5), 297–312 (Aug
2012), http://dx.doi.org/10.1002/stvr.456

282. Varró, D.: Automated formal verification of visual modeling languages by
model checking. Software and System Modeling 3(2), 85–113 (2004), https:
//doi.org/10.1007/s10270-003-0050-x

283. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: Three generati-
ons of the VIATRA framework. Software and System Modeling 15(3), 609–629
(2016), https://doi.org/10.1007/s10270-016-0530-4

284. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformations by Petri Nets. In: Graph Transformati-
ons, Third International Conference, ICGT 2006, Natal, Rio Grande do Norte,
Brazil, September 17-23, 2006, Proceedings. LNCS, vol. 4178, pp. 260–274.
Springer (2006)

285. ViaTra: https://www.eclipse.org/viatra/
286. W3C OWL Working Group: Web Ontology Language (OWL). W3C Note,

W3C (2009), https://www.w3.org/OWL/
287. Weidmann, N., Anjorin, A., Fritsche, L., Varró, G., Schürr, A., Leblebici, E.:

Incremental bidirectional model transformation with emoflon: : Ibex. In: Pro-
ceedings of the 8th International Workshop on Bidirectional Transformations
co-located with the Philadelphia Logic Week, Bx@PLW 2019, Philadelphia,
PA, USA, June 4, 2019. CEUR Workshop Proceedings, vol. 2355, pp. 45–55.
CEUR-WS.org (2019), http://ceur-ws.org/Vol-2355/paper4.pdf

288. Wende, C., Thieme, N., Zschaler, S.: A role-based approach towards modular
language engineering. In: Software Language Engineering, Second International

https://doi.org/10.1007/978-3-642-33654-6_22
http://dl.acm.org/citation.cfm?id=942800.943599
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-12029-9_11
http://www.uml.org
http://dx.doi.org/10.1002/stvr.456
https://doi.org/10.1007/s10270-003-0050-x
https://doi.org/10.1007/s10270-003-0050-x
https://doi.org/10.1007/s10270-016-0530-4
https://www.eclipse.org/viatra/
https://www.w3.org/OWL/
http://ceur-ws.org/Vol-2355/paper4.pdf


306 References

Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 5969, pp. 254–273. Springer
(2010)

289. Winter, A., Kullbach, B., Riediger, V.: An Overview of the GXL Graph Ex-
change Language. In: Revised Lectures on Software Visualization, Internatio-
nal Seminar. pp. 324–336. Springer, London, UK (2002), http://dl.acm.org/
citation.cfm?id=647382.724795

290. WSDL: Web Services Description Language, Version 2.0. http://www.w3.org/
TR/wsdl20

291. Xtext: Language Development Framework. http://www.eclipse.org/Xtext/
292. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach

to attributed graph clustering. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. pp. 505–516. ACM (2012),
http://doi.acm.org/10.1145/2213836.2213894

293. Yazdi, H.S., Pietsch, P., Kehrer, T., Kelter, U.: Synthesizing realistic test mo-
dels. Computer Science - Research and Development 30(3-4), 231–253 (2015),
http://dx.doi.org/10.1007/s00450-014-0255-y

294. Zhao, C., Kong, J., Zhang, K.: Program behavior discovery and verification: A
graph grammar approach. IEEE Transactions on Software Engineering 36(3),
431–448 (May 2010), http://dx.doi.org/10.1109/TSE.2010.3

295. Ziadi, T., da Silva, M.A.A., Hillah, L.M., Ziane, M.: A Fully Dynamic Appro-
ach to the Reverse Engineering of UML Sequence Diagrams. In: Proceedings
of the 2011 16th IEEE International Conference on Engineering of Complex
Computer Systems. pp. 107–116. IEEE Computer Society, Washington, DC,
USA (2011), https://doi.org/10.1109/ICECCS.2011.18

296. Zündorf, A.: Rigorous Object Oriented Software Development. Habilitation,
University of Paderborn (2002)

http://dl.acm.org/citation.cfm?id=647382.724795
http://dl.acm.org/citation.cfm?id=647382.724795
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
http://www.eclipse.org/Xtext/
http://doi.acm.org/10.1145/2213836.2213894
http://dx.doi.org/10.1007/s00450-014-0255-y
http://dx.doi.org/10.1109/TSE.2010.3
https://doi.org/10.1109/ICECCS.2011.18


Index

Activity diagram, 139, 216
Application condition, 113
Attribute assignment, 39
Attribute condition, 39

Church-Rosser theorem, 95, 104
Class diagram, 137, 241, 266
Compiler semantics, 272
Completeness, 192
Conflict, 94, 95, 143, 251
graph, 99
initial, 103
relation, 99
resolution, 146

Confluence, 94, 104, 273
local, 104

Consistency
critical sign, 143
favourable sign, 144

Constraint enforcement, 91
Constraint verification, 91
Correctness, 93, 192
Critical pair, 94, 104
essential, 103

Critical pair analysis, 90, 100

Dangling condition, 49
Dependency, 94, 97, 143, 251
graph, 101, 173
initial, 103
relation, 101

Dependency analysis, 90
Derivation, 72
Design-by-contract, 154

Domain-specific modelling language,
215

Edge, 12
attribute edge, 19
list edge, 27

Editing operation, 230, 257

Filter problem, 92
Functional behaviour, 93

Gluing condition, 49
Graph
attributed, 16
bidirected, 12
bipartite, 22
labelled, 14
multigraph, 12
simple directed, 12
start graph, 72
typed, 15

Graph constraint, 51, 111, 224
conditional, 112
positive, 112

Graph grammar, 72, 87, 226
Graph language, 72, 87
Graph parsing, 91, 120, 229
Graph relation, 73, 88
Graph transformation, 45, 172
embedding approach, 32
gluing approach, 32
parallel independent, 95
sequentially independent, 95
step, 43



308 Index

Graph transformation system, 45, 64,
70

layered, 81, 107
stochastic, 205

Graph transition system, 70, 74, 89, 117

Hypergraph, 20
attachment point, 21
hyperedge, 21
tentacle, 21

Identification condition, 46
Inclusion problem, 92
Inconsistency, 136, 231
Instance generation, 92
Interpreter semantics, 233
Invariant, 93, 111, 116

Label, 14
Language
alphabet, 222
constraint, 223
design, 219
evolution, 235

Layer condition, 107

Match, 43
non-injective, 47

Membership problem, 91
Metamodel, 216
Model
change, 255
quality, 244
quality assurance, 239
refactoring, 247
smell, 245
synchronisation, 265, 279, 281
transformation, 264
translation, 263

Model checking, 91, 117
stochastic, 208

Multiobject, 55, 190
Multipattern, 56, 190

Negative application condition, 52
Non-ambiguity problem, 93
Non-determinism, 45

Object-oriented modelling
aggregation, 23

collection, 27
composition, 23
inheritance, 22
multiplicity, 22
ordering, 27

OCL constraint, 223
Ontology, 155

Parameter
input, 43
output, 43

Parameter passing, 79
Path expression, 54
Principle of locality, 46
Property
steady-state, 209
transient, 209

Reachability problem, 93
Requirements engineering, 135, 221
Reverse engineering, 181
Rule, 140
amalgamated, 55
application, 44
elementary, 39
instance, 183
integrated notion, 60
inverted, 61
kernel, 55
maximal, 188
merging, 59
minimal, 187
provider, 156
requester, 156

Rule call sequence, 79, 171
Rule invocation, 79

Service
composition, 162
matching, 157, 161
specification, 155
web service, 151

Simulation
stochastic, 207

Software architecture, 197
peer-to-peer, 200

Spanning tree, 23
State
final, 71



Index 309

initial, 71
terminal, 71

Temporal logic, 117
Termination, 104, 106, 273
analysis, 91
order, 106

Test
coverage, 167, 173
model-based testing, 167
test case, 171
test case generation, 174
test model, 170

test oracle, 177
test selection criteria, 173

Transaction, 62, 82
Transformation unit, 79
Triple graph grammar, 266, 275
Type graph, 15

Use case diagram, 137

Vertex, 12
data vertex, 19

Visual contract, 153, 170
partiality, 177


	Part I Foundations of Graph Transformation 
	Graphs for Modelling and Specification
	Feature Model for Graphs
	Basic Graph Structures
	Simple Graphs
	Multigraphs
	Summary

	Decorations: Labels, Types and Attributes
	Labelled Graphs
	Typed Graphs
	Graphs with Attributes
	Summary

	Hypergraphs
	Advanced Graph Features
	Inheritance and Multiplicities
	Whole–Part Relationships and Spanning Trees
	Ordering and Collections

	Summary and Further Reading
	Formal Definitions of Graphs
	Formal Considerations of Graph Attribution


	Graph Transformation Concepts
	Feature Model for Graph Transformation Concepts
	Rules and Transformations
	Elementary Rules
	Attribute Handling
	Example Rules
	Rule-Based Graph Transformation

	Global Application Conditions: Injectivity and Gluing
	Mapping Distinct Rule Nodes to the Same Graph Node
	Gluing Conditions
	Summary: From Conservative to Radical

	Advanced Graph Transformation Features
	Graph Constraints
	Negative Application Conditions
	Path Expressions
	Multipatterns
	Merging
	Integrated Notation for Rules
	Inverting Rules
	Transactional Behaviour

	Summary and Further Reading
	Graph Transformation Approaches in the Literature
	Tool Support for Graph Transformations
	Relations to Other Transformation Concepts


	Beyond Individual Rules: Usage Scenarios and Control Structures
	Feature Model for Rule Control Mechanisms
	A Matter of Semantics
	Graph Languages
	Graph Relations
	Graph Transition Systems and Other Small-Step Models

	Taking Control
	Motivating Example
	Procedural Abstraction and Parameter Passing
	Scheduling Expressions
	Transactional Behaviour

	Summary and Further Reading

	Analysis and Improvement of Graph Transformation Systems
	Techniques for Analysis and Construction
	Language Properties
	Relation Properties
	System Properties

	Conflicts and Dependencies
	Conflicting and Dependent Transformations
	Static Analysis of Conflicts and Dependencies
	Using Conflict and Dependency Analysis to Improve Graph Transformation Systems
	Confluence

	Termination
	Well-Founded Orders
	Layer Conditions

	Graph Constraints as Invariants
	Positive and Conditional Constraints
	Enforcing Graph Invariants by Application Conditions
	Verifying Invariants

	Model Checking
	System Properties
	Model Checking Procedure
	Potentials and Limits

	Graph Parsing
	Comparison of Analysis Techniques
	Graph Transformation Systems
	System Properties
	Analysis Outcomes
	Kinds of Analysis

	Summary and Further Reading
	Conflicting and Dependent Transformations
	Termination
	Graph Constraints as Invariants
	Model Checking
	Graph Parsing
	Further Analysis Techniques



	Part II Graph Transformation in Software Engineering
	Detecting Inconsistent Requirements in a Use-Case-Driven Approach
	Integrated Modelling of Static and Dynamic Requirements
	Analysing Requirement Models
	Conflicts and Dependencies Between Functional Requirements
	Conflicts and Dependencies as Critical and Favourable Signs for Consistency

	Summary and Further Reading

	Service Specification and Matching
	Developing Service-Oriented Software
	Service Specification
	Matching of Service Specifications
	Definition of Service Matching
	Operational Interpretation of Service Matching

	Incremental Service Composition
	Summary and Further Reading
	Tools and Evaluation
	Extensions


	Model-Based Testing
	Test Models and Test Selection Criteria
	Generation of Test Cases
	Models as Test Oracles
	Partiality of Visual Contracts
	Handling and Reporting Failure

	Summary and Further Reading
	Tooling
	Extensions


	Reverse Engineering: Inferring Visual Contracts from Java Programs
	Extraction of Visual Contracts
	Type Model and Scope
	From Tracing Object Access to Rule Instances
	General Rules and Contracts
	Universal Context
	Attribute Conditions and Assignments
	Multiobjects and Multipatterns

	Correctness and Completeness
	Summary and Further Reading
	Tooling
	Evaluation
	Extensions
	Applications


	Stochastic Analysis of Dynamic Software Architectures
	A Peer-to-Peer Network Model
	Stochastic Graph Transformation
	Stochastic Analysis
	Simulation
	Model Checking

	Methodology
	Identify High-Level Requirements to Be Verified
	Architectural Modelling
	Architectural Adaptation
	Validate the Model
	Determine Distributions
	Formalise and Encode Stochastic Properties
	Analyse the Model

	Summary and Further Reading

	Advanced Modelling-Language Definition: Integrating Metamodelling with Graph Transformation
	Language Design Process
	Requirements Elicitation
	Abstract Syntax Design
	Alphabet Definition
	Language Constraints
	Language Instances
	Language Grammar
	Language Parsing

	Model Editors
	Simple Editing Operations
	Complex Editing Operations
	Living with Inconsistencies
	Editor Generation

	Interpreter Semantics
	Language Evolution
	Summary and Further Reading

	Improving Models and Understanding Model Changes
	An Example of Model Refactoring
	Model Quality Assurance by Smell Detection and Refactoring
	Model Quality
	A Sample Modelling Language
	Specification of Model Refactorings
	Discussion

	Analysing the Interplay of Refactorings
	Understanding Model Changes
	Model Differencing
	Model Patching

	Summary and Further Reading
	Improving Models
	Understanding Model Changes
	Tool Support


	Translating and Synchronising Models
	Interrelated Models and Modelling Languages
	Model Translation
	Properties of Model Translations
	Testing a Model Translation

	Triple Graph Grammars
	Operationalisation of TGGs

	Model Synchronisation
	Properties of Synchronisation

	Summary and Further Reading
	Extensions
	Tooling
	Applications


	References
	Index


