ViewPoint-oriented Software Development: Tool
Support for Integrating Multiple Perspectives by
Distributed Graph Transformation

Michael Goedicke!, Bettina Enders!, Torsten Meyer! and Gabriele Taentzer?

! Specification of Software Systems, Department of Mathematics and Computer Science,
University of Essen, Germany
{goedicke, enders, tmeyer} @informatik.uni-essen.de
2 Theoretical Computer Science / Formal Specification Group, Department of Computing,
Technical University of Berlin, Germany
gabi@cs.tu-berlin.de

Abstract. Co-operative development of distributed software systems involves
to address the multiple perspectives problem: many stakeholders with diverse
domain knowledge and differing development strategies collaborate to con-
struct heterogeneous development artifacts using different representation
schemes. The ViewPoints framework has been developed for organizing multi-
ple stakeholders, the development processes and notations they use, and the
partial specifications they produce. In this contribution we present a tool envi-
ronment supporting ViewPoint-oriented software development based on a for-
malization by distributed graph transformation.

Introduction and Related Work

In system design the various development stages are visited more than once and quite
different notations and process models need to be integrated in order to satisfy the
requirements of the different stakeholders’ views and their processes. It is therefore
highly desirable to provide flexible conceptual means and related tool support for
representing the various cooperating stakeholders’ views and process models. In this
contribution we use the ViewPoints framework to represent such views and proc-
esses. In addition the ViewPoints framework involves to tolerate inconsistent infor-
mation in related ViewPoints until it seems necessary or appropriate to check and
(re)establish consistency -- at least in some parts of the system [1]. The ViewPoints
framework has been used quite successfully and has been documented in the literature
[2, 1,4].

The question which is addressed here is how tool support can be constructed to ef-
fectively represent the loosely coupled approach: some local development within a
ViewPoint is followed by interaction with related ViewPoints via consistency checks.

The approach of distributed graph transformation supports the idea of loosely cou-
pled ViewPoints as outlined above quite naturally. It realizes the separation between

the independent development of single local ViewPoints and the configuration and
connection of a set of related ViewPoints in a structured way.

Distributed graph transformation which is based on the double-pushout approach
to algebraic graph transformation is introduced formally in [6]. Using AGG [7] as a
computing platform an adequate level of tool support can easily be constructed. The
manipulation of representation schemes is expressed as graph transformation rules
and the interaction and cooperation of distributed ViewPoints is adequately formu-
lated as distributed graph transformation rules. As a result we gain tool support for
ViewPoints and a corresponding formal presentation [5, 4]. As such it provides the
possibility for formal analysis and most importantly a great deal of flexibility for
integrating new ViewPoints.

The ViewPoints framework was devised by A. Finkelstein et al. [2] to describe
complex systems. An overview of other approaches related to multiple perspectives in
software development can be found in [3]. In [1] a general overview wrt inconsis-
tency management within the ViewPoints framework is given.

In the chapter The ViewPoints Framework we introduce briefly our approach to
ViewPoint-oriented software development. Based upon this we present tool support
for our approach in the chapter The ViewPoint Tool.

The ViewPoints Framework

A ViewPoint is defined to be a locally managed object or agent which encapsulates
partial knowledge about the system and its domain. It contains partial knowledge of
the design process [2]. The knowledge is specified in a particular, suitable represen-
tation scheme. An entire system is described by a set of related, distributable View-
Points which are loosely coupled.

A single ViewPoint consists of five slots. The style slot contains a description of
the scheme and notation which is used to describe the knowledge of the ViewPoint.
The domain slot defines the area of concern addressed by the ViewPoint. The specifi-
cation slot contains the actual specification of a particular part of the system which is
described in the notation defined in the style slot. The fourth slot is called work plan
and encapsulates the set of actions by which the specification can be built as well as a
process model to guide application of these actions. Two classes of work plan actions
are especially important: In-ViewPoint check actions and Inter-ViewPoint check ac-
tions are used for checking consistency within a single ViewPoint or between multi-
ple ViewPoints, respectively. The last slot of a ViewPoint called work record contains
the development history in terms of the actions given in the work plan slot.

A ViewPoint template is a kind of ViewPoint type. It is described as a ViewPoint
in which only the style slot and the work plan slot are specified, i.e. the other slots are
empty. When creating a new ViewPoint, the developer has the opportunity to use an
existing ViewPoint template instead of designing the entire ViewPoint from scratch.

The ViewPoints framework is independent from any particular development
method and actively encourages multiple representations. Software development
methods and techniques are defined as sets of ViewPoint templates which encapsulate

the notations provided as well as the rules how they are used. Integration of methods
and views is realized by such rules referring to multiple ViewPoint templates.

A more detailed description of the ViewPoints framework and its formalization by
distributed graph transformation is given in [4]. In the next section we now present a
brief overview of tool support.

The ViewPoint Tool

The ViewPoint Tool comprises three main components: the ViewPoint manager, the
template editor and the ViewPoint editor. While the ViewPoint manager serves as a
central tool to coordinate all activities within using the ViewPoints framework, the
template editor allows to design ViewPoint templates — i.e. styles combined with
work plan actions — and the ViewPoint editor allows to work with specifications and
work records of actual ViewPoints. All ViewPoints used in the ViewPoint editor have
to be instantiated from existing ViewPoint templates developed by the template edi-
tor.

The ViewPoint manager serves to organize all developed ViewPoint templates and
all actual ViewPoints (cf. Figure 1). It is used as a starting point to enter the template
editor and the ViewPoint editor. First ViewPoint templates can be created which then
can be developed further within the template editor. Then actual ViewPoints can be
instantiated from a template which are usable within the ViewPoint editor.

The template editor allows to edit the work plan slot and the style slot of a View-
Point template. All actions of the ViewPoint template’s work plan have to be modeled
as graph transformation rules (cf. Figure 2). The ViewPoint editor allows to edit a
ViewPoint instantiated from a ViewPoint template developed by the template editor.
All actions defined in the corresponding template’s work plan can be applied to build
an actual specification. Figure 3 depicts a ViewPoint editor window, the actual speci-
fication is displayed on the left and all work plan actions are listed on the right.

E’iTerminﬂl !ﬂm

Template Incarnation

Root | ViewPoint image rTrigger log |

[new edit Checking WiewPaoint QS0L
compile _||Mo errors are faund.
Fi free protect. ini. |[a
Q5oL 1* protect. inj. [&
[editnew 1 edit selected et]
WebBrowser User1 a
~|
[»]
Edit the work space.
QSDL has new incarnation.

Fig. 1. ViewPoint manager window.

Formular[QSDL : new 1] !Em

File Edit Viewpoint Action Node Arc Info
Style | Domain Workplun|

Designed ViewPoint Ipnc |

[untag all I cut selected I glue |
W) move O eut
Select all acti ~
e -lnns | (_) create node: (i create arc:) mark:
Select all actions ~ ||| (Nd)signal ~ |[default ~ |[anchor - |

[Select inner actions
[Select inter actions
[Select assembly actions
[Select check actions
[Select trigger actions
[Select guide actions

1w 4

Edit a action. Use menu "Action -> Preferences’ to change the name and action type.
Move element with drag&drop.

Fig. 2. The work plan window of the template editor.

E«j ormular !Em

File Edit View Info

I»

[untagan mark{none ¥

recived command

assembly | check |trigger | guide |
add declaration

add state

add next state signal output

delete signal output

add next state signal input
A gelete state
delete signal input
delete declaration

| perform selected action |

Checking PACS (injektive)

ok

Checking match

ak

Action performed

4 &] |«
Use ViewPoint.
add next state signal output performed.

L]

Fig. 3. The ViewPoint editor.

A more detailed description of the ViewPoint Tool — including distribution aspects
and inconsistency management — is given in [7].

Conclusion and Further Work

In this contribution we have sketched a brief introduction to the ViewPoints frame-
work and the ViewPoint Tool environment. Various case studies modeling non-trivial
applications (e.g., integration of architecture design and performance evaluation
views [5]) have shown that our implementation meets all the requirements for sup-
porting the multiple perspectives problem in a flexible ViewPoint environmet. The
present version of the ViewPoint Tool is based on the local version of AGG [9]. Cur-
rently we are working on integrating the features of a prototype AGG version realiz-
ing distributed graph transformation.

References

1. Easterbrook, S. and Nuseibeh, B., “Using ViewPoints for Inconsistency Management”,
BCS/IEE Software Engineering Journal, pp. 31-43, 1996.

2. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M., “Viewpoints:
A Framework for Integrating Multiple Perspectives in System Development”, Int. Journal
of Software Engineering & Knowledge Engineering, vol. 2(1), 1992.

3. Finkelstein, A. and Sommerville, I., “The Viewpoints FAQ”, Software Engineering Jour-
nal, vol. 11 (1), pp. 2-4, 1996.

4. Goedicke, M., Meyer, T., and Taentzer, G., “ViewPoint-oriented Software Development by
Distributed Graph Transformation: Towards a Basis for Living with Inconsistencies”, Proc.

4" IEEE International Symposium on Requirements Engineering, Limerick, Ireland, 1999.

5. Goedicke, M., Enders, B., Meyer, T. and Taentzer, G., “Tool Support for ViewPoint-
oriented Software Development”, Proc. International Workshop and Symposium AGTIVE,
Kerkrade, The Netherlands, 1999, Lecture Notes on Computer Science, Springer, to appear.

6. Taentzer, G., Fischer, L., , Koch, M., and Volle, V., “Distributed Graph Transformation with
Application to Visual Design of Distributed Systems”, in Rozenberg, G. (ed.), Graph
Grammar Handbook 3: Concurrency & Distribution, World Scientific,1999.

7. Taentzer, G., Ermel, C., and Rudolf, C., “AGG-Approach: Language and Tool Environ-
ment”, in Rozenberg, G. (ed.), Graph Grammar Handbook 2: Specification & Program-
ming, World Scientific, 1999.

