
Detection of Conflicting Functional Requirements in a Use
Case-Driven Approach

A static analysis technique based on graph transformation

Jan Hendrik Hausmann
Dept. of Math. and Comp. Sci.

University of Paderborn
33095 Paderborn, Germany

corvette@upb.de

Reiko Heckel
Dept. of Math. and Comp. Sci.

University of Paderborn
33095 Paderborn, Germany

reiko@upb.de

Gabi Taentzer
∗

Dept. of Math. and Comp. Sci.
University of Paderborn

33095 Paderborn, Germany

gabi@upb.de

ABSTRACT
In object-oriented software development, requirements of
different stakeholders are often manifested in use case mod-
els which complement the static domain model by dynamic
and functional requirements. In the course of development,
these requirements are analyzed and integrated to produce
a consistent overall requirements specification. Iterations of
the model may be triggered by conflicts between require-
ments of different parties.

However, due to the diversity, incompleteness, and infor-
mal nature, in particular of functional and dynamic require-
ments, such conflicts are difficult to find. Formal approaches
to requirements engineering, often based on logic, attack
these problems, but require highly specialized experts to
write and reason about such specifications.

In this paper, we propose a formal interpretation of use
case models consisting of UML use case, activity, and col-
laboration diagrams. The formalization, which is based on
concepts from the theory of graph transformation, allows
to make precise the notions of conflict and dependency be-
tween functional requirements expressed by different use
cases. Then, use case models can be statically analyzed, and
conflicts or dependencies detected by the analysis can be
communicated to the modeler by annotating the model.

An implementation of the static analysis within a graph
transformation tool is presented.

Keywords
requirements specification, use cases, UML, unified process,
graph transformation

1. INTRODUCTION
∗On leave from the Technical University of Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM ...$5.00.

The development of software consists in a repetition of
analysis and synthesis activities. Following the separation
of concerns principle a complex problem or model is de-
composed into different aspects or views, which are refined
separately and integrated again. While most engineers seem
well trained to the decomposition task, the re-integration of
partial models still presents great challenges. A well-known
instance of this problem is the integration of scenario de-
scriptions in terms of UML sequence diagrams or message
sequence charts into statecharts specifying the behavior of
individual classes or components [6, 15]. Another instance,
which shall be the focus of this paper, is the integration and
consistency of requirements models expressing the views of
different users, like clerks and customers, or different aspects
of the problem, like static and dynamic requirements. Simi-
lar problems arise when separately evolved models shall be
re-merged [25].

Requirements engineering is the process of gathering and
structuring information both on the problem domain and
on expectations toward the new (or improved) system. This
activity is relevant for the construction of complex software
systems which cannot be handled by small, highly inter-
active teams of programmers, but require large groups of
developers specialized in different roles. In particular, sev-
eral analysts will be busy capturing requirements of differ-
ent stakeholders, resulting in a set of overlapping and partly
conflicting requirements models. Then, these partial mod-
els have to be integrated toward a single consistent require-
ments document. This document is extremely important as
it provides the basis for all relevant development decisions.
In fact, the detection of requirements errors late in the devel-
opment process causes very expensive re-iterations through
all phases [2, 30].

In object-oriented software development, the UML [27]
has become the standard notation for software models at
different levels, including the requirements specification. In
particular, class diagrams are used to capture static require-
ments and use cases are employed for dynamic and func-
tional requirements. For this paper we will align (but not
restrict) our terminology and argument to the UML-based
Unified Process [19], although our approach can be com-
bined with other use case-driven development processes, too.

The result of the requirements capture workflow in the
Unified Process consists of a single domain model (a class
diagram) and a collection of use cases. To build this com-

mon model, all analysts have to compare and integrate their
separately developed partial models. For the synthesis of a
consistent domain model, describing what are the relevant
concepts of the problem domain, we may rely on techniques
and tools developed for database schema integration based
on the entity-relationship model [29]. They provide means
to detect, for example, homonyms and synonyms, and to re-
solve structural conflicts by refactoring of models. Use cases
represent both dynamic and functional requirements. The
dynamic aspect—when something should be done—is cap-
tured by sequences of actions of the system and the user
which interact to fulfill a certain user-goal. They can be
modeled by sequence or activity diagrams. The functional
aspect—how it should be done—is described by pre- and
post-conditions of actions in natural language. In particu-
lar, the functional aspect is not formally integrated with
the static domain model. Thus, intended connections be-
tween static structures and activities can only be indicated
by giving meaningful names to use cases or activities. As a
consequence, no tool support can be provided for detection
and elimination of conflicts, which relies entirely on the in-
tuition of experienced modelers. This applies to two kinds
of consistency problems.

Consistency of aspects: Dynamic and functional re-
quirements expressed by use cases and their annota-
tions may refer to terms from the problem domain that
are not captured in the static domain model, or that
have been renamed or redefined in the integration of
the static model. The intended effect of executing a
use case may violate constraints of the static model.

Consistency of views: Semantic overlap may exist be-
tween use cases expressing requirements of different
stakeholders. This may be intended if interaction is re-
quired to perform a common task, but it may also be a
consequence of conflicting interests of different parties
in the real world, or of undocumented dependencies
between different use cases. We distinguish conflicts,
where the execution of one activity may prevent the
execution of another one, and dependencies, where the
execution of one activity may require the prior execu-
tion of another activity.

Technically, we define aspects at the language level (e.g.,
statechart diagrams specify the dynamic aspect) while views
are more generally related to users’ concerns. Many authors
speak in both cases of views [26, 13].

Both kinds of inconsistencies may lead to severe misdevel-
opments which are only detected much later in the process.
In fact, since the workflow of requirements capture is followed
by the decomposition activities of the analysis workflow, un-
resolved consistency problems tend to persist until the next
big synthesis step: the design. It is thus advisable to de-
tect and eliminate (or at least manage [26]) inconsistencies
from the requirements model before progressing further in
the development of the system.

In this paper, we approach the first problem by propos-
ing a diagrammatic specification of pre- and post-conditions
of actions by UML collaborations which are formally in-
terpreted as graph transformation rules. Based on concepts
from the theory of graph transformation, we approach the
second problem by formalizing the intuitive notions of con-
flict and dependency of use cases with the aim of providing

:Customer
cash = 50

:Cart

:Shop

:Bill
total = 10

:Cash Box
amount = 1000

:Good
value = 30

:Good
value = 10

ownsowns

Rack

Customer
cash

Cart

ShopBill
total

owns
owns

0..1 0..1

0..1
0..1

0..1

0..1

0..1

1 1

1
0..1

CashBox
amount

1

1

Good
value

Figure 1: Class diagram of the shop

an analysis technique and tool support. In this way, we com-
bine the technical benefits of formal requirements specifica-
tions using, e.g., a logic-based language, with the intuitive
usability of a visual technique. In fact, the logic-based ap-
proaches discussed in [23] are mainly targeted at the area of
safety-critical systems, where the costs of employing highly-
specialized experts for creating and verifying formal specifi-
cations are justified. In the context of business applications,
however, it is more important that models can be commu-
nicated to both domain experts and developers. Therefore,
our aim is not formal verification of consistency, but detec-
tion of potential consistency problems. We shall demonstrate
by means of an example how the results of our analysis can
be used to annotate use cases and activity diagrams and to
trigger a re-iteration of the requirements model to eliminate
the undesired effects.

The paper is organized as follows: Section 2 introduces our
running example and motivates the use of UML collabora-
tions as functional specifications in UML use case models.
Section 3 gives a formal interpretation of these models by
means of graph transformation, which is used in Section 4 to
formalize conflicts and dependencies. Analysis method and
tool support are introduced in Section 5, while Section 6 is
dedicated to the application and interpretation of the analy-
sis results in terms of our running example. The concluding
Section 7 summarizes our results and points out ideas for
further work on this topic.

2. INTEGRATED MODELING OF STATIC
AND DYNAMIC REQUIREMENTS

Object-oriented requirements specifications represent
both static requirements concerning the objects of the prob-
lem domain, and dynamic requirements concerning the in-
tended workflows. They can be expressed, respectively, by
UML class and activity diagrams. Use case diagrams are em-
ployed to identify actors and system boundaries. Thereby,
they structure the overall workflow into clusters of activities
corresponding to the actor’s goals, while abstracting from
the actual subtasks necessary to reach these goals. Collabo-
rations are used to model pre- and post conditions of actions
in activity diagrams thus providing an integration of static
and dynamic aspects.

Static model.Employing the UML, static requirements are
specified by a class diagram. The class diagram in Figure 1
represents part of the business model of a shop which will be
used as a running example to illustrate our approach. The
shop provides racks carrying goods and shopping carts for
the customers. Customers hold a certain amount of cash, as
does the cash box of the shop. Bills list the goods collected
by the customers together with the overall total of the prizes.

Since we are at the level of requirement specification,

:Customer
cash = 50

:Cart

:Shop

:Bill
total = 10

:Cash Box
amount = 1000

:Good
value = 30

:Good
value = 10

ownsowns

Rack

Customer
cash

Cart

ShopBill
total

owns
owns

0..1 0..1

0..1
0..1

0..1

0..1

0..1

1 1

1
0..1

CashBox
amount

1

1

Good
value

Figure 2: An instance of the class diagram in Fig-
ure 1 representing a snapshot of the shop

Customer

take cart

select good

pay bill

Clerk

create bill

bill good

settle bill

buy goods

sell goods

<<refine>><<refine>>

Figure 3: Use case diagram of the shop

classes do not have method signatures associated with them,
i.e., the class diagram specifies only classes, associations, at-
tributes, and constraints [19, 7]. An instance of this class
diagram, as shown in Figure 2, represents a snapshot of our
model.

Dynamic model.Dynamic requirements, like business pro-
cesses, are described by means of activity diagrams (see Fig-
ure 3) consisting of action states (oval vertices) connected
by transitions modeling the flow of control. The behavior of
the shop is to allow customers to buy goods. Therefore they
take a cart, select goods by placing them into the cart, and
proceed toward the cash box. There, a clerk is waiting to
sell the goods. An entry on the bill is created for each good,
the goods are taken out of the cart and, with the settlement
of the bill (the payment by the customer), the ownership
of the goods is transferred from the shop to the customer.
These facts have been captured in the use cases displayed in
Figure 3. The dashed lines represent the annotation of each
use case by a UML activity diagram.

Functional model.So far, the only link between static and
dynamic requirements is given by the names of use cases
and action states, like buy goods or take cart, which make
reference to the classes in the class diagram. A more formal
integration can be achieved by a description of the pre- and
post-conditions of the actions and use cases. Such functional
requirements are often specified in natural language as part
of a use case model (see, e.g., [19]). Some approaches, like
xUML [20], provide means for formal action specification us-
ing a high-level action notation. However, such formal nota-
tions, require familiarity with programming concepts. Thus,

:Customer :Cart

:Rack :Good

select good

:Customer

:Cart

:Customer

:Cart

take cart

:Customer
cash=y

:Cart :Good

:Bill
total=x

:Shop
ow
ns

:Customer
cash=y-x

:Cart :Good

:Bill
total=x

owns

:Shop

pay bill

:Customer :Cart

:Rack :Good

Figure 4: Action specifications for use case buy goods

:Customer

:Shop

create bill
:Customer

:Shop

:Bill
total = 0

bill good

:Customer :Cart

:Bill
total = y

:Good
value = x

:Customer :Cart

:Bill
total = y+x

:Good
value = x

:Shop

:Good:Bill
total = x

:CashBox
amount = y

owns

:Shop

:Good:Bill
total = x

:CashBox
amount = y+x

settle bill

Figure 5: Action specifications for use case sell goods

for discussing requirements with domain experts or users, a
diagrammatic action specification is more suitable. Cataly-
sis [7], for example, advocates the use of collaborations for
this purpose. The idea goes back to the Fusion method [3]
where actions are specified by snapshots of the object con-
figuration before and after the operation.

Building on the latter approach, we propose a rule-based
specification of pre- and post-conditions and effects of ac-
tions by means UML collaborations. In Section 3, this use of
collaborations shall be formalized by means of graph trans-
formation rules (cf. [21, 17]).

For each of the actions of the activity diagrams in Figure 3,
their pre- and post-conditions are described as collaboration
rules, i.e., pairs of collaborations representing transforma-
tions on object configurations (see Figures 4 and 5). The
precondition of an action is satisfied in a given state (an in-
stance of the class diagram) if the object pattern forming the
left-hand side of the corresponding rule has an occurrence
in this instance diagram. In this case, the action consists in
replacing this occurrence by a copy of the right-hand side
pattern. For example, the action bill good specified in Fig-

:Customer :Cart

bill good

:Bill
total = total +x

:Good
value = x

{destroyed}

{new}

:Customer :Cart

:Bill
total = y

:Good
value = x

:Customer :Cart

:Bill
total = y+x

:Good
value = x

bill good

Figure 6: Condensed presentation of the collabora-
tion rule for bill good

ure 5 is applicable if in the current object configuration there
exist (instances of) Customer, Cart, Bill, and Good such that
the Customer is associated with a Bill and a Cart containing
a Good. As a result of the application, the Good is removed
from the Cart and added to the Bill. Also, the total of the
Bill is increased by the value of the Good (see also Figure 7).

In order to make our point, we have included two inconsis-
tencies which shall later be formalized and detected by for-
mal analysis. The first is between pay bill and settle bill. Both
actions include the transfer of ownership of the goods, as de-
scribed by the redirection of the owns links from the Shop
to the Customer. This represents an overlap of responsibil-
ities which requires further negotiations. Second, Customer
and Clerk even seem to come from different continents: Use
case buy goods uses European standards where customers
have to collect their shoppings by themselves after paying
the bill. Use case sell goods acts according to the American
way where goods are packed into bags while they are entered
on the bill.

Alternatively to the rule-based notation stressing the dis-
tinction between pre- and post-conditions we can adopt a
more compact presentation by plain UML collaborations
where pre- and post-conditions are jointly represented in
one diagram. In order to distinguish those items that are
deleted or newly created, constraints {destroyed} and {new}
are used. For the collaboration rule bill good in Figure 5, the
corresponding condensed presentation is shown in Figure 6.
The decision, which representation is more appropriate in a
given situation, depends on the amount of change between
the pre- and the post-collaboration. In the sequel we stick
to the rule-based notation.

Like the textual action notations in [20], collaboration
rules for action specification provide an executable model
which can visualize the behavior of a high-level requirements
specification as a sequence of snapshots. In the following sec-
tion, we shall formalize these notions and explain how such
a sequence is actually produced.

3. TYPED GRAPH TRANSFORMATION
AS SEMANTIC MODEL

In this section, some basic concepts and constructions
from the theory of graph transformation are presented in
order to formalize the requirements models discussed above.

Graphs as states.Graphs are often used as abstract rep-
resentation of diagrams, e.g., in the UML meta model [27].
Formally, a graph consists of a set of vertices V and a set of
edges E such that each edge e in E has a source and a tar-
get vertex s(e) and t(e) in V , respectively. Variations include

hypergraphs, where edges can be attached to an arbitrary
sequence of vertices, attributed graphs [24], whose vertices
and edges are decorated with textual or numerical informa-
tion, or more complex object-oriented or hierarchical graph
models. The theory described below is largely independent
of the notion of graph, which can be chosen to reflect as
closely as possible the concepts of the modeling language.
In fact, most of the notions and constructions can be (and
have been) described at the level of high-level replacement
systems [9], an axiomatization based on category theory of
the so-called double-pushout approach to graph transforma-
tion [10], which can be instantiated to a variety of differ-
ent graph models. In the following we deal with attributed
graphs.

In object-oriented modeling graphs occur at two levels:
the type level (given by the class diagrams) and the instance
level (given by all valid object diagrams). This idea can be
described more generally by the concept of typed graphs [4],
where a fixed type graph TG serves as abstract representa-
tion of the class diagram. Its instances are graphs equipped
with a structure-preserving mapping to the type graph, for-
mally expressed as a graph homomorphism.

For example, the instance diagram in Figure 2 can be
mapped to the class diagram in Figure 1 by defining
type(o) = C for each instance o : C in the diagram. Extend-
ing this to links, preservation of structure means that, for
example, a link between objects o1 and o2 must be mapped
to an association in the class diagram between type(o1) and
type(o2). By the same mechanism of structural compatibil-
ity we ensure that an attribute of an object is declared in
the corresponding class, etc.

In order to formalize, in an abstract way, the notion of
constraints (like upper and lower bounds for the multiplic-
ity of associations), we assume for each type graph TG a
class of constraints Constr(TG) that could be imposed on
its instances. A class diagram is thus represented by a type
graph TG plus a set C ⊆ Constr(TG) of constraints over
TG. The class of instance graphs over TG is denoted by
Inst(TG) while we write Inst(TG, C) for the subclass sat-
isfying the constraints C. Thus, if (TG, C) represent a class
diagram with multiplicity constraints as in Figure 1, an in-
stance like in Figure 2 is an element of Inst(TG, C) (see [11]
for an elaboration of this concept).

In particular, we will be interested in negative constraints
which enjoy the following monotonicity property: Given a
graph G and a subgraph G0 ⊆ G, if G satisfies a negative
constraint c then so does G0. That means, negative con-
straints, once violated in a configuration, cannot become
valid again when the configuration is placed into bigger
context. Typical examples include upper bound multiplic-
ity constraints like 0..1, but also more complex properties
like the absence of certain paths or cycles.

Rules and transformations.After having defined the valid
object configurations as instances of a type graph satisfying
the constraints, the idea of collaboration rules describing
the evolution of such configurations is formalized in terms
of graph transformation. A graph transformation rule p :
L → R consists of a pair of TG-typed instance graphs L, R
such that the union L∪R is defined. (This means that, e.g.,
edges which appear in both L and R are connected to the
same vertices in both graphs, or that vertices with the same
name have to have the same type, etc.) The left-hand side

Cu:Customer Ca:Cart

B:Bill
total = y

G:Good
value = x

Cu:Customer Ca:Cart

B:Bill
total = y+x

G:Good
value = x

bill good

o|L o|R

L R

G H

o(Cu) = c1, o(Ca) = c2,
o(B) = b1, o(G) = g1,
o(x) = 20, o(y) = 10
o(x) = 30, o(y) = 10

c1:Customer
cash = 50

c2:Cart

:Shop

b1:Bill
total = 10

:Cash Box
amount = 1000

g1:Good
value = 30

:Good
value = 10

ownsowns

c1:Customer
cash = 50

c2:Cart

:Shop

b1:Bill
total = 40

:Cash Box
amount = 1000

g1:Good
value = 30

:Good
value = 10

ownsowns

Figure 7: Application of the rule bill good

L represents the pre-conditions of the rule while the right-
hand side R describes the post-conditions. Usually, we omit
the identities of objects and links in the collaboration rule,
assuming that the intended intersection between a rule’s left-
and right-hand side is obvious from the layout.

A graph transformation from a pre-state G to a post-state

H, denoted by G
p(o)
=⇒ H, is given by a graph homomorphism

o : L ∪R → G ∪H, called occurrence, such that

• o(L) ⊆ G and o(R) ⊆ H, i.e., the left-hand side of the
rule is embedded into the pre-state and the right-hand
side into the post-state, and

• o(L \R) = G \H and o(R \L) = H \G, i.e., precisely
that part of G is deleted which is matched by elements
of L not belonging to R and, symmetrically, that part
of H is added which is matched by elements new in R.

Operationally, the application of a graph transformation
rule like bill good in Figure 5 is performed in three steps.
First, find an occurrence o|L of the left-hand side L in the
current object graph G. Second, remove all the vertices and
edges from G which are matched by L \ R. Make sure that
the remaining structure D := G \ o(L \ R) is still a legal
graph, i.e., that no edges are left dangling because of the
deletion of their source or target vertices. In this case, the
dangling condition [10] is violated and the application of the
rule is prohibited. Third, glue D with R \ L to obtain the
derived graph H. Figure 7 shows a sample application of the
rule bill good. Its occurrence is given by the bold objects and
links.

Altogether, the static and functional aspects of a model
can be formally represented as a typed graph transformation
system G = 〈TG, C, P, π〉 consisting of a type graph TG, a
set of constraints C ⊆ Constr(TG), a set of rule (or action)
names P , not necessarily finite, and mapping π associating
with each rule name p ∈ P a rule π(p) = L → R over TG. In
this case, we write p : L → R ∈ G. Infinite sets of rules are
necessary because collaboration rules with multi objects, like
pay bill, represent rule schemes which expand to a countably
infinite set of graph transformation rules, one for each legal
multiplicity of the multi object. When applying these rules
to a given graph, always the maximal rule is chosen among

all applicable ones (cf. [32]).

A transformation G
p(o)
=⇒ H in G is a transformation using

a rule p ∈ G such that whenever G satisfies the constraints C
expressed in the class diagram, so does the resulting graph
H. This can be checked at runtime or verified statically [18].
It ensures that only consistent configurations are reachable
from a consistent starting configuration. The behavior of G
is given by the set of its transformation sequences G0

p1(o1)
=⇒

· · · pn(on)
=⇒ Gn, i.e., sequences of consecutive transformations

in G starting from a consistent graph G ∈ Inst(TG, C).
The dynamic model selects among the transformation se-

quences in G those which are compatible with the ordering of
actions as specified in the activity diagrams. It is possible to
encode this selection into the same formal model by “com-
piling” activity diagrams into sets of graph transformation
rules. (This is similar to an encoding of finite automata into
(string) grammars, where the nodes of an automaton are
turned into non-terminals.) Since our focus is on the anal-
ysis of functional requirements, we do not elaborate such
encoding but refer the interested reader to [22] where a sim-
ilar construction is shown for statechart diagrams.

Use cases as views.A use case represents a view of the
overall model corresponding to the requirements of a partic-
ular actor (or a group of actors). A view on a graph transfor-
mation system representing the complete model is defined
by a subgraph of the type graph (modeling the relevant frag-
ment of the class diagram) and a subset of the rules [12].1

In our example, the view corresponding to the use case by
goods comprises the rules take cart, select good, and pay bill.
The relevant fragment of the class diagram includes every-
thing except for the CashBox class, its attribute and asso-
ciation with the shop. On the other hand, the use case sell
goods consists of the rules create bill, bill good, and settle bill
and all classes, associations and attributes, except for the
cash attribute of class Customer.

One use case in isolation does not show meaningful behav-
ior because it represents an incomplete view of the function-
ality from the perspective of a single actor. Thus, interaction
is required between different use cases. For example, the ex-
ecution of the action bill good of the clerk should depend
on the previous execution of the action select good of the
customer. One important integration problem is to fix these
interactions. More dramatically, there may be conflicts be-
tween the use cases resulting from different opinions of the
stakeholders about the intended behavior or the scope of
their responsibility. The next section is devoted to the anal-
ysis of such conflicts and dependencies.

4. CONFLICTS AND DEPENDENCIES
BETWEEN FUNCTIONAL REQUIRE-
MENTS

Our analysis is based on the notion of independence of
graph transformations which captures the idea that, in a
given situation, two transformations are neither causally de-
pendent nor in conflict. We distinguish parallel indepen-
dence (absence of conflicts) and sequential independence

1This notion can be extended to include the possibility for
renaming, extension, or refinement of types and rules. These
issues, which are studied, for example, in [16, 14], are ignored
here for simplicity.

G
p1(o1)

z� ||
||

||
|

||
||

||
|

p2(o2)

�$
BB

BB
BB

B

BB
BB

BB
B

H1

p2(o2) �$
BB

BB
BB

B

BB
BB

BB
B H2

p1(o1)z� ||
||

||
|

||
||

||
|

X

Figure 8: Independence of transformation steps

:Customer
cash = 50

:Cart

:Shop

:Bill
total = 40

:Cash Box
amount = 1000

:Good
value = 10

:Good
value = 30

ownsowns

:Customer
cash = 10

:Cart

:Shop

:Bill
total = 40

:Cash Box
amount = 1000

:Good
value = 10

:Good
value = 30

:Customer
cash 50

:Cart

:Shop

:Bill
total = 40

:Cash Box
amount = 1040

:Good
value = 10

:Good
value = 30

owns

owns

owns

owns

settle Billpay Bill
H1 H2

G

Figure 9: A conflict between pay bill and settle bill

(absence of causal dependencies). For both notions there
exist a weak, asymmetric, and a strong, symmetric version
(see, e.g., [5] for a recent survey).

Parallel Independence.Given two transformations

G
p1(o1)
=⇒ H1 and G

p2(o2)
=⇒ H2 like in Figure 8, G

p1(o1)
=⇒ H1

is (weakly parallel) independent of G
p2(o2)
=⇒ H2 if the occur-

rence o1(L1) of the left-hand side of p1 is preserved by the
application of p2. This is the case if o1(L1)∩o2(L2\R2) = ∅,
that is, o1(L1) does not overlap with objects that are deleted
by p2. If the two transformations are mutually independent,
they can be applied in any order yielding the same result.
In this case we speak of parallel independence. Otherwise, if
one of two alternative transformations is not independent
of the second, the second will disable the first. In this case,
the two steps are in conflict.

An example of a conflict between transformations of pay
bill and settle bill is given in Figure 9: Both transformations
destroy the owns links between the goods and the shop.
Thus, they overlap in items that are deleted. As a conse-
quence, each of the two disables the other one, i.e., they
cannot be part of the same transformation sequence. This
is unfortunate because both transformations capture impor-
tant aspects of the intended overall behavior. For example,
pay bill updates the cash attribute of the Customer while set-
tle bill does the same for the amount attribute of the Shop.
We will see in the next section how these different sides of
the same coin can be integrated.

Sequential Independence.Given a sequence of two trans-

formations G
p1(o1)
=⇒ H1

p2(o2)
=⇒ X like in Figure 8, H1

p2(o2)
=⇒ X

is (weakly sequential) independent of G
p1(o1)
=⇒ H1 if the

occurrence o2(L2) of the left-hand side of p2 is already
present before the application of p2. This is the case, if
o2(L2) ∩ o1(R1 \ L1) = ∅, that is, o2(L2) does not over-
lap with objects that are created by p1. Otherwise, if the
second transformation is not independent of the first, the
first causes the second.

If, moreover, p2 does not delete objects that are needed
for the application of p1, that is, o1(L1) ∩ o2(L2 \ R2) = ∅,
the two applications can be exchanged without affecting the
overall result of the sequence. In this case, we say that the
two steps are sequentially independent.

We observe for future reference that the notions of par-
allel and sequential independence as well as conflict and de-
pendency are exchangeable. Due to the symmetry of both
rules and transformations (which is clearly visible in the set-
theoretic formulation in Section 3), for each rule p : L → R
an inverse rule p−1 : R → L can be build so that every

transformation G
p(o)
=⇒ H has an “undo” H

p−1(o)
=⇒ G. Using

this, transformations G
p1(o1)
=⇒ H1

p2(o2)
=⇒ X are sequentially

independent if and only if H1

p−1
1 (o1)
=⇒ G and H1

p2(o2)
=⇒ X are

parallel independent. For example, the sequence pay bill−1;
settle bill is not sequentially independent because the first
step creates two owns links which are consumed by the sec-
ond.

The above conditions for parallel and sequential indepen-
dence, resp. their negations, have to be checked for given
graphs and occurrences, that is, at run-time. This could be
done, for example, in a simulation environment for debug-
ging purpose. The focus of this paper, however, is on static
analysis of potential conflicts and dependencies, rather than
on run-time analysis. Therefore, the above notions have to
be lifted to the level of rules.

Potential conflicts and dependencies.For two given rules
p1 : L1 → R1 and p2 : L2 → R2 we say that

• p1 may be disabled by p2 if there exist transformation

steps G
p1(o1)
=⇒ H1 and G

p2(o2)
=⇒ H2 like in Figure 8, such

that G
p1(o1)
=⇒ H1 is not independent of G

p2(o2)
=⇒ H2,

• p1 may cause p2 if there exist transformation steps

G
p1(o1)
=⇒ H1

p2(o2)
=⇒ X like in Figure 8, such that

H1
p2(o2)
=⇒ X is not independent of G

p1(o1)
=⇒ H1.

Thus, a potential conflict or dependency is witnessed by a
pair of transformations, either alternative or consecutive,
which provide a counterexample to parallel or sequential in-
dependence, respectively.

The essence of such a counterexample is a pair of objects
or links 〈x1, x2〉 with x1 ∈ p1 and x2 ∈ p2 such that o1(x1) =
o2(x2) and

• x1 ∈ L1 and x2 ∈ L2 \ R2, in this case 〈x1, x2〉 repre-
sents a conflict, or

• x2 ∈ L2 and x1 ∈ R1 \ L1, in this case 〈x1, x2〉 repre-
sents a dependency.

In the next sections, we will show how potential conflicts
and dependencies between two (sets of) rules can be detected
by a tool and presented to the modeler.

5. STATIC ANALYSIS OF CONFLICTS
AND DEPENDENCIES

Given two use cases, we are interested in potential con-
flicts and dependencies between their functional specifica-
tions. In technical terms this amounts to compute for two
graph transformation systems G1 and G2 all pairs of rules of
p1 ∈ G1 and p2 ∈ G2 such that p1 may be disabled by p2, or
p1 may cause p2, or vice versa (cf. Section 4). The results of
the analysis shall be presented to the modeler via an anno-
tation of the model. If further explanations are requested,
minimal counterexamples can be provided.

The computation of conflicts and dependencies is based on
the idea of critical pair analysis which is known from term
rewriting. Usually, this technique is used to check whether a
rewriting system has a functional behavior, i.e., if it is conflu-
ent. Critical pairs have been generalized to graph rewriting
in [28]. They formalize the idea of a minimal example of a
conflicting situation. From the set of all critical pairs we can
extract the objects and links which cause conflicts or depen-
dencies. In the following, we discuss the analysis technique
and its implementation in the AGG tool.

Critical pair analysis. A critical pair is a pair of transfor-
mations

H1
p1(o1)⇐= G

p2(o2)
=⇒ H2

which are in conflict, and such that graph G is minimal, i.e.,
a gluing G = o1(L1) ∪ o2(L2) of the left-hand sides of the
rules p1 and p2. This ensures that the set of all critical pairs
for two given rules p1 and p2 is finite. It can be computed
by overlapping L1 and L2 in all possible ways, such that
the intersection o1(L1) ∩ o2(L2) ⊆ G contains at least one
item that is deleted by one of the rules and both rules are
applicable to G at their respective occurrences.

The set of critical pairs represents precisely all potential
conflicts, that is, there exists a critical pair like above if,
and only if, p1 may disable p2 or, vice versa, p2 may disable
p1. The (obvious) reason is that every pair of conflicting
transformations contains a critical pair consisting of all links
and objects that are matched by the rule’s left-hand sides.

As we have mentioned in Section 3, a collaboration rule
containing a multi object is interpreted as a rule schema
yielding an infinite number of graph transformation rules.
Apparently, this presents an obstacle to an exhaustive pair-
wise analysis. However, since rules resulting from the same
schema differ only in the number of copies of the correspond-
ing multi object, it is enough to consider the instance where
the multi object is represented by one normal object. It can
be shown that every critical pair using a rule with more
copies can be reduced to one with just a single representa-
tive.

Consider, for example, the critical pair in Figure 9 be-
tween two instances of pay bill and settle bill each containing
two copies of the multi object Good. The pair can be re-
duced by dropping, in all three graphs, e.g., the Good object
with value = 30 together with its links. The resulting trans-
formations still represent a critical pair because they still
share one owns-link in G that is deleted.

By means of the duality between conflicts and dependen-
cies noticed in Section 4, we can also use critical pair analysis
to find all potential dependencies among rules. In fact, a rule
p1 may cause p2 (or vice versa) if, and only if, there exists
a critical pair

G
p−1
1 (o1)
⇐= H1

p2(o2)
=⇒ X

using the inverse of p1. This follows from the discussion in
Section 4 and the analogous statement for critical pairs and
potential conflicts above.

Tool support.Critical pair analysis is implemented in the
graph transformation engine AGG (see http://tfs.cs.

tu-berlin.de/agg). The tool provides several graphical edi-
tors to create and manipulate graph transformation systems,
an interpreter for executing the systems and animating the
transformation process, and a debugger. Recently, an ini-
tiative has been started to implement static analysis tech-
niques for graph transformation. The critical pair analysis is
offered through a graphical user interface to browse through
the computed pairs. In Figure 10, a screen dump of AGG
shows all critical pairs of the rules pay bill and settle bill.
The left-hand sides of both rules are depicted in the upper
part, while three overlapping graphs are shown in the lower
part. Note, that AGG is not an UML tool, i.e., although the
graph representation looks similar, it does not strictly follow
the UML notation. Nevertheless, presentational differences,
like directed edges vs. undirected links (whose ends could be
named in order to distinguish them) do not affect the results
of the analysis.

For the overlapping graph in the lower right, the occur-
rences of the left-hand sides in this graph are indicated by
numbers. Of the three critical pairs shown in Figure 10, only
this one is actually relevant: The other two violate the neg-
ative constraint that each Good must have at most one link
to a Bill (cf. the class diagram in Figure 1). As discussed in
Section 3, such negative constraints, once violated, remain
so under embedding into bigger context. Thus, all conflict-
ing situations containing these critical pairs will also violate
the multiplicity constraint.

To allow the exchange with other tools, graph transforma-
tion systems and critical pairs are stored in the XML-based
Graph Transformation Exchange Language (GTXL) and
Critical Pair Exchange (CPX) format, respectively. These
formats are part of an initiative to integrate graph-based
tools via common exchange formats for graphs (GXL) and
graph transformation systems (GTXL) (see http://tfs.

cs.tu-berlin.de/projekte/gxl-gtxl.html).
To apply AGG for the static analysis of UML use case

models, transformations between GTXL/CPX and the XML
Metadata Interchange (XMI) format shall be provided based
on the Extensible Stylesheet Language (XSL). Then, models
defined in a UML CASE tool with XMI export can be trans-
formed into graph transformation systems in GTXL format
following the formalization in Section 3. These provide in-
put for the AGG tool performing the critical pair analysis.
Although the computed pairs can be inspected within the
tool itself, it is more natural to visualize the analysis results
directly on the original models. For this purpose, the com-
puted pairs have to be exported in CPX format and further
transformations have to be performed in order to annotate,
e.g., use case diagrams with the conflicts and dependencies
shown in Figure 11 and 12.

Figure 10: Critical pair interface of AGG

take cart

select good

pay bill

create bill

bill good

settle bill

<<disables>>
<<disables>>

Customer Clerk

buy goods

sell goods

<<refine>><<refine>>

<<disables>>

Figure 11: Conflicts between use cases buy goods and
sell goods

The modeler can then browse these annotated models
with the original CASE tool, changing the model, ignor-
ing or deferring detected conflicts according to their priority
and interpretation.For the time being the feasability of auto-
matic conflict detection is shown. A smooth tool integration
based on XML technology is under development.

The next section is devoted to the interpretation of the
analysis results in the case of our shopping example.

6. APPLICATION TO THE EXAMPLE
In Section 2, when introducing the shopping example we

have sketched two possible conflicts between the use cases
buy goods and sell goods. Now, we discuss the results of
the analysis in detail and consider possible iterations of the
model.

Analysis.Figures 11 and 12 show the use case diagram of
Figure 2 enriched by potential conflicts and causal depen-
dencies between activities, as well as their abstractions at
the level of use cases. The inter-use case conflict captures
exactly the two conflicts we already noticed in Section 2 be-
tween bill good and pay bill as well as between pay bill and
settle bill. As discussed in Section 5, in the case of pay bill vs.
settle bill only one “real” critical pair exists, which is shown
in the lower right graph of Figure 10. In a larger context the
same overlapping is shown in the graph G of Figure 9. The
essence of this critical pair is the owns-link between the Shop
and the Good which is deleted by both transformations. This
formalizes the expectations of Section 2.

Figure 12 shows the causal dependencies within and be-
tween the two use cases. The dependencies between activi-
ties inside each of the use cases follow largely the specified
control flow, except of the iteration of selecting and billing
goods. These activities are required to be performed sequen-
tially although there are no causal dependencies. Thus, they
could also be executed in parallel. Figure 12 also shows inter-
use case dependencies. For example, the customer has to
take a cart and to select goods before the goods are billed
and the bill is settled. Moreover, all goods have to be billed
before the bill is payed. Since no further dependencies have
been found, this means that, e.g., a bill may be created even
if the customer has not yet selected any good. Whether or
not this is a mistake depends on the intention of the modeler,

Customer

take cart

select good

pay bill

Clerk

create bill

bill good

settle bill

buy goods

sell goods

<<refine>><<refine>>

<<causes>>

<<causes>>

<<causes>>

<<causes>>

<<causes>>

<<causes>>

<<causes>>

Figure 12: Causal dependencies between use cases
buy goods and sell goods

:Customer
cash = y

:Cart :Good

:Bill
total = x

:Customer
cash = y-x

:Cart :Good

:Bill
total = x

pay bill 2

Figure 14: Revised version of pay bill

how the activities of the two use cases should be interleaved
to perform the overall task.

In order to understand better the results of the analysis,
the modeler might be interested in the objects and links re-
sponsible for the causal dependencies. For this purpose, a
combined presentation of control flow and data dependen-
cies is helpful. Consider, for example, the use case diagram
in Figure 13 where the causal dependencies between activi-
ties are depicted together with the essential objects or links
where these dependencies manifest themselves. The notation
is similar to Petri nets with read arcs where activities play
the role of transitions while objects and links act as places.
Thus, a dashed arrow from an activity like take cart to a
link like the one between Customer and Cart represents the
fact that this link is created by this activity. Symmetrically,
an edge from a link or object to an activity indicates that
the item is deleted. Read access is denoted by dashed lines
without arrow heads. Thus, the customer first has to take
a cart, producing the corresponding link, before goods may
be selected or billed, where the link is required, etc. Like
the annotations of the use case diagrams in Figure 11 and
Figure 12, also these annotations can be extracted from the
critical pairs produced by the analysis.

Interpretation. Surveying the results of the analysis, the
modeler has to decide which dependencies or conflicts do
actually represent errors or inconsistencies in the model. Due
to the semi-formal and incomplete nature of use case models,
this decision is based on the intention of the modeler and
cannot be taken mechanically. Nevertheless, such a walk-
through can give valuable hints for changing the model in
the next iteration, or for documenting better the relevant
decisions.

For example, the conflict between the use cases buy goods
and sell goods contradicts the intuition that both use cases

Customer

take cart

select good

pay bill

Clerk

create bill

bill good

settle bill

buy goods

sell goods

<<refine>><<refine>>

<<causes>>

:Bill

:Customer

:Cart

:Good

Figure 13: Causal dependencies between activates and essential objects and links

have to be performed in combination to achieve the desired
effect. Having decided that there should be no conflicts be-
tween these two use cases, we have to correct this at the level
of the associated activities pay bill and bill good as well as
pay bill and settle bill, respectively. In our case, the conflicts
can be resolved by assigning the responsibilities for the dele-
tion of the link between Cart and Good and for the deletion
of the owns link exclusively to the operation settle bill of the
clerk. The revised rule pay bill2 is shown in Figure 14.

Note that not every conflict must represent an error. If the
modeler decides that two use cases or activities are meant
to happen alternatively, the conflict simply reflects this re-
quirement at the object level. In this case, an absence of a
conflict would indicate possible errors in the specification.
In our example, the analysis revealed that the execution of
pay bill does not disable select good. So a customer could
be able to continue shopping even though he or she already
paid. As this is regarded as unwanted behavior, we prevented
this case by deleting the link between Customer and Cart in
our improved rule (Figure 14). Thus, the activity of paying
includes the returning of the cart.

Concerning the dependencies visualized in Figure 12, im-
provements of the model may be proposed whenever the
dependencies defer from the control flow. While most of the
dependencies follow the control flow specified in the activity
diagram, three edges run between activities of different use
cases. This indicates that the use cases may be interrelated,
and it has to be re-considered if the separation chosen for the
use case model fits the problem domain. On the other hand,
two control flows (the two loops) are not accompanied by
corresponding dependencies. This could either indicate that
the activities may be performed concurrently (which even
advanced buyers can only do to a certain degree) or that
the specification could be enhanced by explicitly modeling
the restrictions that lead to a rather sequential execution.
It is thus possible to gain valuable hints for improving the
model both from the presence and the absence of conflicts
and dependencies.

7. CONCLUSION
In this paper, basic concepts from the theory of graph

transformation have been used to specify and analyze the
functional aspect of UML use case models. The interest-
ing tension in this approach is between semi-formal and in-

complete requirements on the one hand, and their formal
analysis on the other hand. This leads to a trade-off be-
tween understandability and expressivity of modeling con-
cepts which has led us to limit ourselves to basic transfor-
mation rules without sophisticated application conditions
(which are also supported by the analysis technique imple-
mented in the AGG tool).

For the same reason, we have resisted the temptation to
propose extensions of use case diagrams to specify relations
between use cases or with the underlying static model, as
it is done, for example, in use case maps [1]. Instead, we
use relations between use cases solely for visualization of
analysis results.

Focusing on the functional aspect, our approach is com-
plementary to other formalization of use case models.
Stevens [31], for example, uses labeled transition systems
to capture the essence of the dynamic aspect in terms of
sequences of activities. The paper also mentions the issue of
interference between different use cases but does not inves-
tigate it further.

More generally, our analysis approach complements ex-
isting model checking techniques which are also aimed at
verifying dynamic properties of systems rather than prop-
erties of data transformations. It should be interesting to
understand if these two views can be combined.

Further work at this topic will include investigation on the
impact of use case relations and use case inheritance and the
handling of inheritance in the underlying static model. An
issue that has to be evaluated in forthcoming larger case
studies is the necessary selection of useful information from
the set of all detected conflicts. Moreover, model inherent
information like structural constraints, has to be identified
that decreases the number of detected conflicts considerably
and leads to more efficient tool support, though.

8. REFERENCES
[1] D. Amyot and G. Mussbacher. On the extension of

UML with use case maps concepts. In A. Evans,
S. Kent, and B. Selic, editors, Proc. UML 2000, York,
UK, volume 1939 of LNCS. Springer, 2000.

[2] B. W. Boehm. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[3] D. Coleman, P. Arnold, S. Bodof, C. Dollin,
H. Gilchrist, F. Hayes, and P. Jeremes. Object

Oriented Development, The Fusion Method. Prentice
Hall, 1994.

[4] A. Corradini, U. Montanari, and F. Rossi. Graph
processes. Fundamenta Informaticae, 26(3,4):241–266,
1996.

[5] A. Corradini, U. Montanari, F. Rossi, H. Ehrig,
R. Heckel, and M. Löwe. Algebraic approaches to
graph transformation, Part I: Basic concepts and
double pushout approach. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations, pages
163–245. World Scientific, 1997.

[6] W. Damm and D. Harel. Breathing life into message
sequence charts. In P. Ciancarini, A. Fantechi, and
R. Gorrieri, editors, Proc. Formal Methods for Open
Object Based Distributed Systems (FMOODS’99),
Florence, Italy, 1999. Kluwer.

[7] D. D’Souza and A. Wills. Components and
Frameworks with UML: The Catalysis Approach.
Addison-Wesley, 1998.

[8] H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors. Proc. 6th Int. Workshop on
Theory and Application of Graph Transformation
(TAGT’98), Paderborn, November 1998, volume 1764
of LNCS. Springer-Verlag, 2000.

[9] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi
Presicce. Parallelism and concurrency in high-level
replacement systems. Math. Struct. in Comp. Science,
1:361–404, 1991.

[10] H. Ehrig, M. Pfender, and H. Schneider. Graph
grammars: an algebraic approach. In 14th Annual
IEEE Symposium on Switching and Automata Theory,
pages 167–180. IEEE, 1973.

[11] H. Ehrig and A. Tsioalikis. Consistency analysis of
UML class and sequence diagrams using attributed
graph grammars. In H. Ehrig and G. Taentzer, editors,
ETAPS 2000 Workshop on Graph Transformation
Systems (GraTra), Berlin, Germany, March 2000.

[12] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A
combined reference model- and view-based approach
to system specification. Int. Journal of Software and
Knowledge Engeneering, 7(4):457–477, 1997.

[13] P. Fradet, D. Le Métayer, and M. Périn. Consistency
checking for multiple view software architectures. In
Proc. ESEC/FSE’99, volume 1687 of LNCS, 1999.

[14] M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni.
Refinement of graph transformation systems via rule
expressions. In Ehrig et al. [8].

[15] D. Harel and H. Kugler. Synthesizing state-based
object systems from LSC specifications. TR
MCS99-20, Dept. of Comp. Sci. and Applied Math.,
The Weizmann Institute of Science, Rehovot, Israel,
Apr. 2000.

[16] R. Heckel, A. Corradini, H. Ehrig, and M. Löwe.
Horizontal and vertical structuring of typed graph
transformation systems. Math. Struc. in Comp.
Science, 6(6):613–648, 1996.

[17] R. Heckel and S. Sauer. Strengthening UML
collaboration diagrams by state transformations. In
H. Hußmann, editor, Proc. FASE’2001, Genova, Italy,
volume 2185 of LNCS. Springer-Verlag, 2001.

[18] R. Heckel and A. Wagner. Ensuring consistency of

conditional graph grammars – a constructive
approach. In Proc. of SEGRAGRA’95 “Graph
Rewriting and Computation”, volume 2 of Electronic
Notes in TCS, 1995.

[19] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison Wesley, 1999.

[20] Kennedy-Carter. eXecutable UML.
http://www.kc.com/html/xuml.html.

[21] H. Köhler, U. Nickel, J. Niere, and A. Zündorf.
Integrating UML diagrams for production control
systems. In Proc. of the 22th International Conference
on Software Engineering (ICSE), Limerick, Irland.
ACM Press, 2000.

[22] S. Kuske. A formal semantics of UML state machines
based on structured graph transformation. In Proc.
UML 2001, Toronto, Kanada, volume 2185 of LNCS.
Springer-Verlag, 2001.

[23] A. Lamsweerde. Requirements engineering in the year
00: A research perspective. In Proc. International
Conference on Software Engineering (ICSE 2000),
Limerick (Ireland). ACM Press, 2000.

[24] M. Löwe, M. Korff, and A. Wagner. An algebraic
framework for the transformation of attributed
graphs. In M. R. Sleep, M. J. Plasmeijer, and M. van
Eekelen, editors, Term Graph Rewriting: Theory and
Practice, chapter 14, pages 185–199. John Wiley &
Sons Ltd, 1993.

[25] T. Mens. Conditional graph rewriting as a
domain-independent formalism for software evolution.
In Proc. Int. Agtive ’99 Workshop: Applications of
Graph Transformations with Industrial Relevance,
volume 1779 of LNCS. Springer-Verlag, 2000.

[26] B. Nuseibeh, J. Kramer, and A. Finkelstein. A
framework for expressing the relationships between
multiple views in requirements specification. Software
Engineering, 20(10):760–773, 1994.

[27] Object Management Group. UML specification version
1.4, 2001. http://www.celigent.com/omg/umlrtf/.

[28] D. Plump. Hypergraph Rewriting: Critical Pairs and
Undecidability of Confluence. In M. Sleep,
M. Plasmeijer, and M. C. van Eekelen, editors, Term
Graph Rewriting, pages 201–214. Wiley, 1993.

[29] S. Spaccapietra and C. Parent. View integration: A
step forward in solving structural conflicts. IEEE
Transactions on Software and Data Engineering,
6(2):258–274, 1994.

[30] Standish Group. Software chaos.
www.standishgroup.com/chaos.html.

[31] P. Stevens. On Use Cases and their relationships in
the Unified Modelling Language. In H. Hussmann,
editor, Proc. FASE 2001, Genova, Italy, volume 2029
of LNCS. Springer-Verlag, 2001.

[32] G. Taentzer. Parallel and Distributed Graph
Transformation: Formal Description and Application
to Communication-Based Systems. PhD thesis, TU
Berlin, 1996. Shaker Verlag.

