
Confluence of Typed Attributed Graph
Transformation Systems

Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer

University of Paderborn, Paderborn, Germany
Technical University of Berlin, Berlin, Germany

reiko|jkuester@upb.de, gabi@cs.tu-berlin.de

Abstract. The issue of confluence is of major importance for the suc-
cessful application of attributed graph transformation, such as auto-
mated translation of UML models into semantic domains. Whereas ter-
mination is undecidable in general and must be established by carefully
designing the rules, local confluence can be shown for term rewriting and
graph rewriting using the concept of critical pairs. In this paper, we dis-
cuss typed attributed graph transformation using a new simplified notion
of attribution. For this kind of attributed graph transformation systems
we establish a definition of critical pairs and prove a critical pair lemma,
stating that local confluence follows from confluence of all critical pairs.

1 Introduction

Graph transformation is increasingly popular as a meta-language to specify and
implement visual modelling techniques, like the UML. It may be used for pars-
ing visual languages [1] and for automated translation of visual models into code
or semantic domains [6, 19], or as a semantic domain itself [13, 9]. Often, it is
important to know whether the graph transformation system shows a functional
behavior (is terminating and confluent) or if there are conflicts between rule ap-
plications that lead to true non-determinism. For example, functional behavior
avoids the overhead of backtracking in the case of parsing and semantic ambi-
guity in the mapping of models to semantic domains.

For term rewrite systems confluence can be shown using the concept of critical
pairs. Critical pairs which can be detected and analyzed statically, represent
potential conflicts in a minimal context. If the rewrite system is terminating,
confluence follows if all critical pairs can be joined [15].

This theory of critical pairs and confluence has been transferred to trans-
formation systems on term graphs and hyper graphs [17, 18]. However, in most
applications of graph transformation to visual modelling techniques, attributed
graphs are used to represent diagrams with textual, numerical, or layout infor-
mation, semantic annotations, etc. To develop the theory of critical pairs and
confluence in this case is the aim of this paper.

In particular, we shall be motivated by the problem of translating diagrams
into a formal specification language for automatic verification. Such a mapping

can be described by attributed graph transformation rules based on the graph-
ical presentation of the abstract syntax of the diagrams extended by semantic
attributes that contain the results of the translation [10]. The translation has to
be functional, i.e., terminating and confluent in order to ensure the existence of a
unique result. As an example we present a translation of simple UML statecharts
into CSP [11] for automated verification by means of a CSP model checker [8].

For this purpose, we introduce typed, vertex-attributed graph transformation
systems. A critical pair lemma is established which states that a graph trans-
formation system is locally confluent if all critical pairs are confluent. Thus,
confluence can be shown by computing all critical pairs and demonstrating their
confluence.

In the following, we first introduce typed attributed graph transformation
and present, as a running example, rules for translating UML statecharts to
CSP. Thereafter, critical pairs are defined and the critical pair lemma is stated.
Lastly, the critical pairs in our example are discussed and the available tool
support is described.

2 Typed attributed graph transformation

Next, we present the algebraic double-pushout (DPO) approach [5] to the trans-
formation of typed attributed graphs [2]. The two basic ingredients are graphs,
representing object structures, and algebras representing pre-defined abstract
data types. Attributed graphs occur at two levels: the type level (modelling a
schema or class diagram) and the instance level (modelling an individual system
snapshot).

Attributed graphs. By a graph we mean a directed unlabelled graph G =
〈GV ,GE , srcG , tarG〉 with a set of vertices GV , a set of edges GE , and func-
tions srcG : GE → GV and tarG : GE → GV associating to each edge its source
and target vertex. A graph homomorphism f : G → H is a pair of functions
〈fV : GV → HV , fE : GE → HE 〉 preserving source and target.

To speak about algebras throughout the paper, we assume a many-sorted
signature Σ = 〈S ,OP〉 consisting of a set of sort symbols s ∈ S and a family of
sets of operation symbols op : s1 . . . sn → s ∈ OP indexed by their arities.

Definition 1 (attributed graphs and morphisms). An attributed graph
(over Σ) is a pair AG = 〈G ,A〉 of a graph G and a Σ-algebra A such that
| A |⊆ GV , where | A | is the disjoint union of the carrier sets As of A, for all
s ∈ S, and such that ∀ e ∈ GE : src(e) 6∈| A |. Let Attr(AG) = {e ∈ GE |
tar(e) ∈| A |}, Graph(AG) = G \ (| A | +Attr(AG)) and Alg(AG) = A.

An attributed graph morphism f : 〈G1,A1〉 → 〈G2,A2〉 is a pair of a Σ-
homomorphism fA = (fs)s∈S : A1 → A2 and a graph homomorphism fG =
〈fV , fE 〉 : G1 → G2 such that | fA |⊆ fV , where | fA |=

⋃
s∈S

fs .

2

Attributed graphs and graph morphisms form a category of Σ-attributed graphs
AGraph(Σ). Often, we will fix the data algebra A in advance—in this case we
also speak of a graphs and graph morphisms attributed over A.

Summarizing, data values are represented as vertices of graphs, henceforth
called data vertices d ∈| A | to distinguish them from object vertices v ∈ GV \ |
A |. Object vertices are linked to data vertices by attributes, i.e., edges a ∈ GE

with src(a) = v and tar(a) = d . Edges between object vertices are called links.
We have assumed that there are no edges from data vertices.

Compared with other notions of attributed graphs, like [14], where special
attribute carriers are used to relate graph elements and data values, our pre-
sentation is simpler because attributed graphs are regarded as a special case of
ordinary graphs. However, this limits us to attributed vertices.

Typed graphs. The concept of typed graphs [2] captures the well-known di-
chotomy between classes and objects, or between database schema and instance,
in the case of graphs. Below, it is extended to attributed graphs.

Definition 2 (typed attributed graphs). An attributed type graph over Σ
is an attributed graph ATG = 〈TG ,Z 〉 over Σ where Z is the final Σ-algebra Z
having Zs = {s} for all s ∈ S.

An attributed instance graph 〈AG , ag〉 over ATG is an attributed graph
AG (over the same signature) equipped with an attributed graph morphism
ag : AG → ATG.

A morphism of typed attributed graphs h : 〈AG1, ag1〉 → 〈AG2, ag2〉 is a
morphism of attributed graphs which preserves the typing, that is, ag2 ◦ h = ag1.

Thus, elements of Z represent the sorts of the signature which are included
in TG as types for data vertices. In general, vertices and edges of TG rep-
resent vertex and edge types, while attributes in ATG are, in fact, attribute
declarations. Given an attribute declaration a ∈ ATG and an object vertex
v ∈ AG such that ag(v) = src(a) we write a(v) to denote the set of v ’s a-values
{d ∈| A | | ∃ e ∈ AGE . src(e) = v ∧ tar(e) = d}.

Instance graphs will be usually infinite, e.g. if the data type IlN of natural
numbers is present, each n ∈ IlN will be a separate vertex. However, since the
data type part will be kept constant during transformation, there is no need to
represent this infinite set of vertices as part of the current state. The examples
shown contain only those data vertices connected to some object vertex.

Sample type and instance graphs. For the translation of statecharts to CSP,
the UML metamodel has to be flattened and inheritance must be removed by
simulating it through additional attributes. In Fig. 2, an abridged metamodel
for statecharts is shown as attributed type graph where types of model elements
are depicted by rectangles while data types are shown as ellipses. Note that
the inscriptions of the nodes and edges are the node and edge identities and no
labels. The inscriptions of the data types such as String refers to the sort symbols
in the signature given in Fig. 1.

3

SORTS � � � � � � �
CSPEq

�
CSPExpr

�
Char

OPNS
empty � ->String
concat � � � � � � � � � � � � � �

- � � � � � � �
concat � � � � � � � �

Char - � � � � � � �
empty � - � CSPExpr
stop � - � CSPExpr	
 � - � CSPExpr
- � � string

�
CSPExpr - � CSPExpr� � � � � � string - � CSPExpr

 � CSPExpr
�
CSPExpr - � CSPEq

Fig. 1. Signature for CSP translation

State

Transition

StateMachine

source

target
internal

top

Event

trigger

1

1

*

*

1

� � � �

� � � �

*

subvertex

� � � �

� � � �

� � � �

*

String

name

String

name

String

kind

String

name

� � � �

� � � �

� � � �

� � � �

*

*

*

Fig. 2. Type graph for statecharts, derived
from the UML metamodel

The type graph contains cardinality constraints in UML-like notation, which
restrict the number of in and outgoing edges of vertices. The formal treatment
of such constraints, however, is beyond the scope of this paper.

In Fig. 3, a simple instance graph for a statechart is shown. On the left,
the formal representation is depicted with attribute values being modelled as
vertices of the graph whereas on the right the UML-like syntax is given with the
short-hand for attributes modelled inside a compartment of a class vertex. In
the following, we will use this short-hand for space reasons and conformity with
UML syntax.

Graph transformation. The DPO approach to graph transformation has origi-
nally been developed for vertex- and edge-labeled graphs [5]. Here, we present
the typed version [2] extended to attributed graphs.

According to the DPO approach, graph transformation rules (also called
graph productions), are specified by pairs of injective graph morphisms (L l←−
K r−→ R), called rule spans. The left-hand side L contains the items that must be
present for an application of the rule, the right-hand side R those that are present
afterwards, and the gluing graph K specifies the “gluing items”, i.e., the objects
which are read during application, but are not consumed. The transformation
of graphs is defined by a pair of pushout diagrams, a so-called double pushout.

Definition 3 (DPO graph transformation). Given an attributed type graph
ATG and fixing a sort-indexed family of sets of variables X = (Xs)s∈S , an ATG-
typed graph transformation rule over X is a span of injective graph morphisms
p = (L l←− K r−→ R) over ATG such that L,K ,R are attributed over TΣ(X)
and l , r are identities on TΣ(X). If we are not interested in the gluing graph K
we write p : Ly R.

A double-pushout (DPO) diagram o is a diagram like below where (1), (2)
are pushouts and top and bottom are rule spans. Given a rule p a (direct DPO)

4

:StateMachine
� � � � � � sm“

:State
� � � � � � � � � �

	
 � � � � � � � � �
 � � �

:State
� � � � � “s0	
 � � � �
 � � � � �

:State
� � � � � “s1“	
 � � � �
 � � � � �

:Transition

:Event
� � � � � “e”

subvertex subvertex

event

targetsource

top

:StateMachine

:State

:State :State

“top“
name

“s1“

name

“s0“

name

:Transition

:Event

event

targetsource

“e“
name

“composite“
kind

“ simple“
kind“ simple“

kind subvertexsubvertex

top

“sm”
name

Fig. 3. Instance graph: formal vs UML-like syntax

transformation from G to H , denoted by G
p(o)
=⇒ H , is given by a DPO diagram

where g , h are identities on Alg(D).

L

(1)oL

²²

K

(2)

loo r //

oK

²²

R

oR

²²
G Dg

oo
h

// H

The DPO diagram o is a categorical way of representing the occurrence of
a rule in a bigger context. Operationally, it formalizes the replacement of a
subgraph in a graph by two gluing diagrams, called pushouts. The left-hand
side pushout (1) is responsible for removing the occurrence of L \ l(K) in G ,
resulting in graph D . The right-hand side pushout (2) adds a copy of R \ r(K)
to D leading to the derived graph H .

The construction of pushout (1) requires that only objects in the image of
K may be merged or (in the case of vertices) connected to edges in the context.
This is reflected, respectively, in the identification and the dangling condition of
the DPO approach, i.e. the gluing condition. Given a rule p = (L l←− K r−→ R)
and an occurrence oL : L → G of the left-hand side, the existence of the pushout

complement (1), and hence of a direct derivation1 G
p(o)
=⇒ H is characterized by

the satisfaction of the gluing condition. The identification condition states that
objects from the left-hand side may only be identified by the match if they also

1 Pushout (2) always exists, since category aGraphTG is cocomplete due to the co-

completeness of category aGraph.

5

belong to the interface (and are thus preserved). The dangling condition ensures
that graph D obtained by removing all objects that are to be deleted from G , is
indeed a graph, i.e. no edges are left “dangling” without source or target node.

Definition 4 (graph transformation system). A graph transformation sys-
tem GTS = (Σ,ATG ,X ,R) consists of a data type signature Σ, an attributed
type graph ATG over Σ, a family of variables X over Σ, and a set of attributed
graph transformation rules R over ATG and X .

A transformation sequence G0
∗=⇒ Gn = G0

p1(o1)=⇒ · · · pn(on)
=⇒ Gn in GTS is

a sequences of consecutive transformation steps such that G0 is typed over ATG
and all rules pi come from R.

Rules for mapping statecharts to CSP. Mapping rules for statecharts to the pro-
cess algebra of Communicating Sequential Processes (CSP [11]) can be described
by attributed graph transformation rules [6]. Such a rule consists of a UML meta-
model instance extended by semantic attributes and control attributes. Within
the semantic attributes, the actual computation of CSP expressions for the stat-
echart is performed. Control attributes drive the order of rule applications. If an
attribute is changed applying a rule, we use an assignment notation.

:StateMachine
name � � �
exp � �
expDef � false

:State� � � � � � 	

top

:StateMachine
name � � �
exp � � Protocol(sm � � State(top)
expDef � � true

:State� � � � � � 	

top

top

:State � � � � � � � �
 � � �
� � � � � �
� � � � �
expDef � � � � � �
extBeh � �
extBehDef � � � � �

:State � � � � � � � �
 � � �
� � � � � �
� � � � � State(s � � �
expDef � � � � � �
extBeh � �
extBehDef � � � � �

simple

:State� � � � � � 	 �
 � � � � � composite”� � � � �
expDef � � � � � �

:State� � � � � � � � � � � � � �
 � � � � 	 � :Transition

:State� � � � � � � � � � � �

:State� � � � � � 	 �
 � � � � � � 	 �
 	 � � � � �
exp � � State(comp� � State(default)
expDef � � � � � �

:State� � � � � � � � � � � � � �
 � � � � 	 �
:Transition

:State� � � � � � � � � � � �

source source

target targetcomp

(1)

(2)

(3)

Fig. 4. Mapping rules for states

Consider, for example, rule (3) in Fig. 4 which defines the semantics of a
composite (OR) state in terms of the semantics of its default state. The orig-
inal attributes from the metamodel are represented in plain font whereas the

6

semantic and control attributes are printed in italics. In this case, the composite
state is annotated with a semantic attribute exp and a control attribute expDef.
Application of this rule leads to an exp set to a CSP expression defining the
behavior of the composite state to be the behavior of the default state, and
a change in the control attribute expDef from false to true, thereby hindering
another application of this rule to the same composite state.

:StateMachine

top:State
extBeh � �
extBehDef � � � � � �

top extBeh_top

:StateMachine

top:State
extBeh � � � 	
 �
extBehDef � � � � �

top

:State� � � � � � � � � � � � � � � �
extBeh � �
extBehDef � � � �

:State
directBeh � �
directBehDef � � � �
extBeh � �
extBehDef � � � � � �

subvertex

:State� � � � � � � � � � � � � � � �
extBeh � �
extBehDef � � � �

:State
directBeh � �
directBehDef � � � �
extBeh � � � � � �
extBehDef � � � � �subvertex

extBeh_comp

:State� � � � �
count � s(x)
directBeh � �
directBehDef � � � � � �

directBeh

:Transition

:State� � � � �

:Event� � � � �
� � � � ! � � � � " # � �

:State� � � � �
count := x
directBeh := � - $ State(t % � � �
directBehDef � � � � � �

:Transition

:State� � � � �

:Event� � � � �
� � � � ! � � � � � & ! �

:State' (�) � � *
directBehDef � � � � � �

directBeh_e
:State' (�) � = 0
directBehDef := true

source source

target target

(4)

(5)

(6)

(7)

Fig. 5. Mapping rules for the behavior

In general, termination is undecidable for graph transformation systems.
However, concerning our mapping rules, termination results from the follow-
ing argument: Each rule is annotated with a finite number of control attributes.
These control attributes take on a number of finite values (mostly true or false or
a natural number). As each rule application either decreases a control attribute
or changes its value from false to true, after a finite number of rule applications no
rule will be applicable anymore, leading to termination of the mapping process.

3 Critical Pairs and Confluence

Independent transformations. The definition of parallel independence demands
that the occurrences of two independent transformations do only share items
which are preserved by both steps. Under this assumption, the local Church-
Rosser theorem states that the two steps can be executed in any order with the
same overall result [4].

7

Given two transformations G
p1(o1)=⇒ H1 and G

p2(o2)=⇒ H2, G
p1(o1)=⇒ H1 is

(weakly) parallel independent of G
p2(o2)=⇒ H2 if the occurrence o1(L1) of the

left-hand side of p1 is preserved by the application of p2. This is the case if
o1(L1) ∩ o2(L2 \ g2(D2)) = ∅, that is, o1(L1) does not overlap with objects that
are deleted by p2. If the two transformations are mutually independent, they
can be applied in any order yielding the same result. In this case we speak of
parallel independence. Otherwise, if one of two alternative transformations is not
independent of the second, the second will disable the first. In this case, the two
steps are in conflict.

Proposition 1 (local Church-Rosser theorem). Given two parallel inde-

pendent transformations H1
p1(o1)⇐= G

p2(o2)=⇒ H2 with H1
h1←− C1

g1−→ G
g2←− C2

h2−→
H2, there are transformations H1

p2(o
′
2)=⇒ X and H2

p1(o
′
1)=⇒ X with o′1 = h2 ◦g−1

2 ◦o1

and o′2 = h1 ◦ g−1
1 ◦ o2.

The local Church-Rosser theorem has been shown for colored graphs in [4].
Simply rephrasing its proof for typed graphs would lead to the proof of propo-
sition 1.

In the case of attributed graph transformation, where attribute values are
modelled as vertices and attribute links are edges, any modification of an at-
tribute corresponds to a deletion of an attribute link and the generation of a
new one. Therefore, two steps which modify the same attribute, are in conflict.

Critical pairs. A system is locally confluent if all conflicting pairs are confluent,
that is, they are extendible by transformation sequences leading to a common
successor graph. In order to check this in finite time, the potentially infinite set
of conflicting pairs has to be reduced to a finite set of representatives. This is
the aim of the construction of critical pairs, which produces all conflicting pairs
of steps. A critical pair is minimal, i.e., it does not contain unnecessary context.
It is also syntactic, meaning that it is attributed over a term algebra TΣ(X) or
a quotient term algebra TΣ(X)/≡ for congruence relation ≡ specified by a set of
equational axioms or implemented by an equality predicate of an abstract data
type.

Definition 5 (critical pairs). Assume a graph transformation system GTS =
(Σ,ATG ,X ,R), a congruence ≡⊆ TΣ(X)×TΣ(X), and two rules p1 : L1 y R1

and p2 : L2 y R2 of R using disjoint subsets of variables of X in their attribute
terms.

A critical pair candidate for p1 and p2 wrt. ≡ is a pair of non-parallel in-

dependent transformations CP(p1, k1,K , p2, k2) = P1
p1(k1)⇐= K

p2(k2)=⇒ P2, with K
attributed over the quotient term algebra TΣ(X)/≡.

A critical pair for p1 and p2 wrt.≡ is a minimal element among the candidates
w.r.t. the partial order v defined by CP(p1, k1,K , p2, k2) v CP(p1, k ′1,K

′, p2, k ′2)
iff there exists a morphism k : K → K ′, injective on Graph(K) and Attr(K)
(but not necessarily on Alg(K)), such that k ′1 = k ◦ k1 and k ′2 = k ◦ k2.

8

For the graph structure, minimality means that no unnecessary context is
present, i.e. k1 and k2 are jointly surjective. For the algebra part, the minimality
condition generalizes the idea of a most general unifier, that is, a substitution
σ : X → TΣ(X) with as little instantiation of variables as needed to equate two
terms. Thus, v always has a set of minimal elements.

Next we consider three cases where the set of critical pairs for two given rules
is finite (up to isomorphic copies) and can be effectively computed. In each case,
we assume as given an overlapping Graph(K) of the graph structures Graph(L1)
and Graph(L2) of L1 and L2 with two graph morphisms kiG : Graph(Li) →
Graph(K). The set of these overlappings is finite (up to isomorphism) if the
graphical parts of L1 and L2 are both finite. The problem consists in checking if
such an overlapping can be extended to the data type part, i.e., if a TΣ(X)/≡-
attributed graph K exists with Σ-homomorphisms kiA : TΣ(X) → TΣ(X)/≡
such that 〈kiG , kiA〉 : Li → K form attributed graph morphisms. We restrict our
considerations to the case of single-valued (rather than multi-valued) attributes.

Case 1. First, we assume that the congruence ≡ is trivial, i.e., it contains only
the syntactic identities. In this case, TΣ(X)/≡ = TΣ(X), that is, K is attributed
over terms with variables of X . The attribute term for a vertex v in K is obtained
by computing the most general unifier of all pre-images of v under k1 and k2.

More precisely, call U (a, v) ⊆ TΣ(X) the unification set for an attribute a
of object vertex v ∈ K , given by U (a, v) = {t | (v = k1(v1) ∧ a(v1) = t) ∨ (v =
k2(v2)∧ a(v2) = t)}, and enumerate the unification sets for all vertices v and all
relevant attributes a as U1, . . . ,Un .

Now, a candidate CP(p1, k1,K , p2, k2) is attribute unifiable if there ex-
ist substitutions σi such that σ1 = mgu(U1) and, for all j ∈ {2, . . . ,n},
σj = mgu(σj−1(Uj)) where mgu(Ui) computes the most general unifier of the
set of terms Ui , if it exists.

If CP(p1, k1,K , p2, k2) is attribute unifiable, the value of an attribute a for
a vertex v in K is σn(t) for any t ∈ U (a, v). The algebra homomorphism part
of both k1 and k2 is the free homomorphic extension to TΣ(X) of the same
σn : X → TΣ(X). If CP(p1, k1,K , p2, k2) is not attribute unifiable, there is no
critical pair based on this gluing of graphs.

Case 2. A second, more general variant allows a congruence ≡ specified by a set
of equational axioms, represented computationally by a confluent and terminat-
ing term rewrite system. In this case, the normal forms of this rewrite system can
be used as unique representatives of their equivalence classes so that, effectively,
a graph attributed over TΣ(X)/≡ can be represented as a TΣ(X)-attributed
graph. Since for normal forms, equivalence coincides with syntactic equality, we
can reuse the construction of Case 1 by transforming the attributes terms in
L1 and L2 to their normal forms, performing the unification, and attributing
the graph K with the representatives of the equivalence classes of the resulting
terms.

9

Case 3. Finally, we may allow any congruence which can be decided on ground
terms, like the equivalence on CSP processes which is checked by the FDR
tool [8]. In this case, attributes in the left-hand sides of the rules have to be
restricted to ground terms and variables, and to merge two attribute values we
may either check their equivalence, if both are ground terms, or apply a substi-
tution, if one is a variable.

The three cases can occur in combinations. In general we may use a different
implementation for every sort of the algebra, and each of these implementations
determines certain restrictions for the terms in the left-hand sides of rules. It
shall be noted that these restrictions are not only relevant to the effective con-
struction of critical pairs, but also to the transformation of graphs attributed
over equivalence classes of terms. Here, unification is replaced by pattern match-
ing of terms in the rules with (equivalence classes of) terms in the graphs to
be transformed and, depending on the implementation of this equivalence, this
pattern matching may be limited to purely syntactic matching in case 1, up to
checking for equivalence of ground terms in case 3.

A sample critical pair. In Fig. 6, two conflicting transformations on an overlap-
ping graph of rule directBeh with itself are shown. Note that there are further
overlapping graphs of rule directBeh with itself. In the present case, the gluing

s:State� � � � �
n

count � s(x)
directBeh � �
directBehDef � � � 	
 �

:Transition

:State� � � � �
t2

source
target

:Transition

:State� � � � �
t1

e:Event� � � � � �
� � � � � � � � � � � � �

target

source

s:State� � � � �
n

count � x
directBeh � � - � � � � � � � � � � � � �
directBehDef � � � 	
 �

directBeh directBeh

:Transition

:State� � � � �
t2source

target

:Transition

:State� � � � �
t1

e:Event� � � � � �
� � � � � � � �

true

target
source

s:State� � � � � �
count � x
directBeh � � - � � � � � � � � � � �� �
directBehDef � � � 	
 �

:Transition

:State� � � � �
t2source

target

:Transition

:State� � � � � t1

e:Event� � � � � �
� � � � � � � �

true

target

source

Fig. 6. A critical pair

condition is satisfied as only attribute values are changed by the application of
these rules. Furthermore, the transformations are not parallel independent, be-
cause the two rules overlap in state s and event e. Attribute count is changed
(i. e. deleted and created), and therefore this is clearly a critical pair as far as

10

the graphical structure is concerned. In order to decide whether this extends to
the attribute part one has to consider the underlying equivalence relation on
terms. In our case, for sort CSPEq, we assume an equivalence of CSP processes
like failures equivalence of processes, which can be checked by the FDR tool [8],
thereby leading to case 3. We further assume for sort Bool that the equivalence
relation is trivial (case 1) and for sort Nat a terminating and confluent term
rewrite system (case 2). By construction of the overlapping graph, the critical
pair candidate is minimal with respect to object vertices. We now compute the
attributes of K. Concerning attribute computed of event e and directBehDef of
state s, this is clearly the term false. Concerning attribute count, s(x) and s(y)
are unified to s(x). Finally, with respect to attribute directBeh, the two terms d
and f are unified to d .

Embedding and completeness. Critical pairs cover all possible conflicting sit-
uations, which can be obtained by embedding the critical pairs into a larger
context and instantiating their attributes. That means, to apply the same rules
at essentially the same occurrence in a bigger graph.

Proposition 2 (completeness of critical pairs). Assume a graph transfor-
mation system GTS = (Σ,ATG ,X ,R), a congruence ≡⊆ TΣ(X) × TΣ(X),

and two conflicting transformation steps H1
p1(o1)⇐= G

p2(o2)=⇒ H2 in GTS with
Alg(Hi) = Alg(G) = A such that there exists a Σ-homomorphism m :

TΣ(X)/≡ → A. In this case, there exists a critical pair P1
p1(k1)⇐= K

p2(k2)=⇒ P2

over ≡ which embeds into the conflicting steps H1
p1(o1)⇐= G

p2(o2)=⇒ H2.

Proof. Sketch: Transformations H1
p1(o1)⇐= G

p2(o2)=⇒ H2 can be replayed on terms
of TΣ(X)/≡ according to Σ-homomorphism m, since morphism c : TΣ(X) →
TΣ(X)/≡ is unique and m ◦ c is equal on the algebra part of all occurrence
morphisms in the given conflicting steps. Furthermore, composition and decom-
position properties for pushouts in category aGraph have to be used [4]. The
conflicting transformations can be further reduced by cutting off unneeded con-

text such that k1 and k2 are jointly surjective. That leads to P1
p1(k1)⇐= K

p2(k2)=⇒ P2

where Alg(Pi) = Alg(K) = TΣ(X)/≡ and Pi ⊆ Hi , K ⊆ G . P1
p1(k1)⇐= K

p2(o2)=⇒ P2

is a critical pair due to the minimality of graph and algebra parts.

An embedding theorem [3, 12] answers the question, under which conditions
a given transformation sequence K0

∗=⇒ Kn can be replayed in a bigger context.
In the double-pushout approach it is well-known that this is the case whenever
the morphism m : K0 → G0 satisfies the gluing condition wrt. the derived rule
K0 y Kn summarizing the effect of the overall transformation sequence.

Definition 6 (derived production). Given two spans s = (G
g←− D h1−→ H)

and t = (H h2←− E i−→ I), their composition s; t = (G
g◦h′1←− C

i◦h′2−→ I) is defined

up to isomorphism by the pullback D
h′1←− C

h′2−→ E of D h1−→ H h2←− E.

11

For a direct transformation g = G
p(o)
=⇒ H as in Def. 3, its derived production

der(g) is defined by the bottom span of the DPO diagram (G
g←− D h−→ H).

Given a transformation sequence h = (G0
p1(o1)=⇒ . . .

pn(on)
=⇒ Gn) with der(hi)

the derived production of hi = (Gi−1
p1(o1)=⇒ Gi). The derived production of the

sequence h is defined as der(h) = der(h1); . . . ; der(hn).

It is obvious that the derived production is properly typed over ATG , if all
original productions and graph G0 are. Note that both morphisms of der(g) are
identities on the data algebras and that the derived production is unique up
to isomorphism due to the pullback construction. The definition of derived pro-
ductions can easily be generalized to transformation sequences of length greater
than 2.

Proposition 3 (embedding of transformations). Given a transformation

sequence k = (K0
p1(k1)=⇒ · · · pn(kn)

=⇒ Kn) and a graph morphism m : K0 → G0,

then there is a transformation sequence g = (G0
p1(o1)=⇒ · · · pn(on)

=⇒ Gn) with oi =
m ◦ ki , if and only if, der(k) is applicable at m, i.e. there is a transformation

G0
der(k)(m)

=⇒ Gn .

The embedding theorem above has been shown in [16] for n = 2, but can be
generalized to n > 2 straight forward. Moreover, it has been shown for colored
graphs. The proof of proposition 3 would be a simple rephrasing for typed graphs.

Confluence. Embedding is relevant in the proof of the critical pair lemma below
where it is shown that a graph transformation system GTS is locally confluent
if all its critical pairs showing conflicting situations can be joined.

Definition 7 (confluence). Two transformation sequences H1
∗⇐= G ∗=⇒ H2

are confluent if there are transformation sequences H1
∗=⇒ X and H2

∗=⇒ X .
Two transformations H1

p1⇐= G
p2=⇒ H2 with der(G

pi=⇒ Hi) = (G
gi←−

Di
hi−→ Hi) are strongly confluent if for (D1

d1←− D d2−→ D2) being the pullback
of (D1

g1−→ G
g2←− D2) and der(G

p1=⇒ Hi
∗=⇒ X) = (G ci←− Ci

xi−→ X) there are
morphisms ei : D → Ci with gi ◦ di = ei ◦ ci for i = 1, 2.

A graph transformation system GTS = (Σ,ATG ,X ,R) is confluent w.r.t. a
congruence ≡⊆ TΣ(X)× TΣ(X) if for any Σ-algebra A satisfying this congru-
ence,2 all pairs of transformations H1

∗⇐= G ∗=⇒ H2 in GTS attributed over A
are confluent. GTS is locally confluent w.r.t. A if the same holds for all pairs
of the form H1

p1⇐= G
p2=⇒ H2.

Strong confluence means that those graph objects preserved by transforma-
tions G =⇒ Hi , are not deleted by transformations Hi

∗=⇒ X for i = 1, 2. The
congruence ≡ plays the role of an equational specification for the data algebra
A. However, it also covers cases where the congruence is not given in terms of
equations, or where it is not equationally axiomatizable.
2 An algebra A satisfies a congruence over terms with variables in X if for all assign-

ments α : X → A, the free extension to ᾱ : TΣ(X)/≡ → A is a homomorphism.

12

Confluence of a sample critical pair. The critical pair in Fig. 6 is not confluent:
Assume that first the left hand rule application of directBeh is followed, setting
attribute computed of the event to true. Thereby, any further application of rule
directBeh to this event is not possible and as directBeh is the only rule adding
term e → State(t2), there is no possibility of joining the two rules. Hence, we
have found that our rule set is not confluent. This critical pair can be made
confluent if we move attribute computed to the transitions.

Proposition 4 (critical pair lemma). A graph transformation system
GTS = (Σ,ATG ,X ,R) is locally confluent w.r.t. a congruence ≡⊆ TΣ(X) ×
TΣ(X) if, for all pairs of rules p1, p2 in R, each critical pair P1

p1(k1)⇐= K
p2(k2)=⇒ P2

over ≡ is strongly confluent.

Proof. Consider two direct transformations H1
p1(o1)⇐= G

p2(o2)=⇒ H2 with rules
pi = Li y Ri for i = 1, 2. There are the following cases:

1. H1
p1(o1)⇐= G

p2(o2)=⇒ H2 is parallel independent. Thus, there are transformations
H1

p1=⇒ X and H2
p2=⇒ X due to Proposition 1.

2. H1
p1⇐= G

p2=⇒ H2 is not parallel independent. According to Proposition 2

there is a critical pair P1
p1(k1)⇐= K

p2(k2)=⇒ P2 which embeds into H1
p1⇐= G

p2=⇒
H2 with morphisms g : K → G and hi : Pi → Hi for i = 1, 2. Assuming
that all critical pairs are confluent, there are two transformation sequences
K =⇒ P1 =⇒ X and K =⇒ P2 =⇒ X .
Let der(K =⇒ Pi) = (K di←− Di

pi−→ Pi), der(K =⇒ Pi =⇒ X) = (K ci←−
Ci

xi−→ X), and (D1
dd1←− D dd2−→ D2) being the pullback of (D1

d1−→ K d2←−
D2). Due to strong confluence and the construction of derived productions,
there are morphisms ei : D → Ci with ci ◦ ei = di ◦ ddi and fi : Ci → Di .
Furthermore, let Boundary be all nodes of K being in touch with edges
of G − K . der(G =⇒ Hi) and der(K =⇒ Pi) contain3 Boundary , since
the gluing condition is satisfied for these transformations. Thus, there is a
morphism Boundary → D due to pullback properties and der(K =⇒ Pi =⇒
X) contain Boundary , i.e. it satisfies the gluing condition. By Proposition 3

there are transformations G
p1(o

′
i)=⇒ H ′

i =⇒ Y with o′i = g ◦ ki , thus o′i = oi

and hence H ′
i is isomorphic to Hi .

As local confluence and termination imply confluence according to Newman’s
lemma [15], confluence of a terminating consistent graph transformation system
can be shown by proving for all critical pairs the property of being confluent.

Restricting to vertex-preserving transformations and morphisms which are
injective up to data vertices, the gluing condition is always satisfied for any
transformation. Of course, this provides us with unrestricted embedding. More-
over in this case, confluence means always strong confluence. This restricted kind
of transformations is the only one used in the running example. Thus, the critical
pair lemma can easily be used.
3 A production contains a graph G if there is a morphism m : G → K .

13

Confluence of the example GTS. Computing critical pair candidates can be done
by constructing all overlapping graphs of left hand sides of all combinations of
rule pairs. In the following, we will check the example rule set for critical pairs.

Note that in this case the graph transformation system is vertex-preserving.
We first recall that so far the cardinality constraints specified in Fig. 2 have

not been part of the formal treatment. However, such cardinality constraints
can be seen as negative constraints as they require a certain structure not to
be existent (i. e. that an object has more than one link to another object). The
given graph transformation system is preserving these constraints because it only
changes attribute values.

As a consequence, we do not have to show confluence for those critical pairs
that do not have an overlapping graph fulfilling all negative constraints because
those critical pairs will never be subgraphs of G . This simplifies tremendously
the following discussion of critical pairs. However, it is important to note that
in the case of positive constraints the set of critical pairs cannot be reduced
to those where the overlapping graph fulfills the constraints. In order to show
confluence of the complete rule set, we have to compute all critical pairs and
show that each critical pair is confluent.

We first note that critical pairs only occur if two rules change the same
attributes. Rule top changes only attributes of the state machine which are not
changed or read by any other rule. Due to the constraints there is only one top
state and therefore top cannot be overlapped with itself in the top state. Rules
simple and comp change attributes exp and expDef, which are only changed by
comp as well. However, there is no overlapping graph because a state cannot
be a composite and simple state at the same time. Both rules extBehtop and
extBehcomp change attributes extBeh and extBehDef. Due to the constraint that
the top vertex is not a subvertex of any other state, there exists no overlapping
graph. Rules directBeh and directBehe do not overlap because s(x) cannot be
unified with 0. Overlapping directBeh with itself at their transitions or target
states is confluent (under the assumption that the attribute computed is shifted
to the Transition class).

Tool support The complexity of computing critical pairs and proving their join-
ability arises the need for tool support. Currently, AGG [7] supports the com-
putation of critical pairs for attributed graphs: All possible overlapping graphs
are constructed and two rules are critical if they change the same attribute.

The attributed graph transformation implemented in AGG allows variables
and constants in left-hand rules sides only. But this is not a restriction, since
attribute conditions can be stated separately. However, unification on attribute
values is not supported.

Furthermore, proving confluence by showing that all critical pairs are con-
fluent also requires support. Here, an interactive approach that enables stepwise
rule applications to a common successor graph could be followed, thereby avoid-
ing the complexity of automated derivations.

Currently, AGG does not support type graphs and constraints. An additional
possibility to specify graph constraints which can be used to check graphs and

14

to provide rules with post conditions such that consistent transformations are
performed only, is under development. Having graph constraints available, the
critical pair analysis can be made more efficient in the sense, that only those
overlapping graphs are computed which satisfy the negative constraints. For most
application we can expect that the set of critical pairs will become considerably
smaller.

4 Conclusion

Confluence and termination of attributed graph transformation are important
issues whenever attributed graph transformation is to be used in an automated
way. In this paper, we have shown how confluence can be ensured for typed
attributed graph transformation systems. Motivated by the translation of UML
statecharts to CSP, typed attributed graph transformation systems have been
introduced in order to represent transformations of diagrams based on a meta
model-like representation. Then, the theory of critical pairs has been extended
to typed attributed graph transformation systems. We have shown that an at-
tributed graph transformation system is locally confluent if all its critical pairs
are confluent. The concept of critical pairs has been applied to a concrete set of
translation rules, thereby discovering an error leading to a non-confluent critical
pair. Moreover, the issue of tool support based on AGG has been sketched.

Having now the critical pairs analysis technique for attributed graph trans-
formation at hand, also the other applications mentioned in the introduction
already, can be checked for functional behavior in future. In [9], functional re-
quirements are described by UML use cases refined by activity and collaboration
diagrams. Using graph transformation as semantic domain here, graph rules for-
malism the functional requirements to a system. The critical pair analysis can
be used to find out conflicts and dependencies between different use cases.

Another application of graph transformation where functional behavior is
of importance, is parsing of visual diagrams. Allowing free editing of visual di-
agrams, they have to be parsed to be sure that they belong to some visual
language. Analyzing the critical pairs of parsing rules, and applying conflict-free
rules first, increases the efficiency of graph parsing [1].

References

1. P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of Visual Languages
based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In Proc. IEEE Symposium on Visual Languages, September 2000. Long version
available as technical report SI-2000-06, University of Rom.

2. A. Corradini, U. Montanari, and F. Rossi. Graph processes. In Fundamenta In-
formaticae, volume 26 (3,4), pages 241–266, 1996.

3. H. Ehrig. Embedding theorems in the algebraic theory of graph grammars. In
LNCS 56, pages 245–255. Springer, 1977.

15

4. H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A Survey). In
Graph Grammars and their Application to Computer Science and Biology. Springer
LNCS 73, 1979.

5. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

6. G. Engels, R. Heckel, and J. M. Küster. Rule-based specification of behavioral
consistency based on the UML meta-model. In M. Gogolla and C. Kobryn, editors,
Proc. 4th Intl. Conference on The Unified Modeling Language (UML ’02), Toronto,
Canada, October, 2001, volume 2185 of LNCS, pages 272–287. Springer, 2001.

7. C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approach: Language and Tool
Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, volume
2: Applications, Languages and Tools, pages 551–603. World Scientific, 1999. See
also http://tfs.cs.tu/berlin.de/agg.

8. Formal Systems Europe (Ltd). Failures-Divergence-Refinement: FDR2 User Man-
ual, 1997.

9. J. H. Hausmann, R. Heckel, and G. Taentzer. Detection of Conflicting Functional
Requirements in a Use Case-Driven Approach. In Proc. 24th Intl. Conference on
Software Engineering, Orlando, FL, 2002. ACM/IEEE Computer Society.

10. R. Heckel, J.M. Küster, and G. Taentzer. Towards automatic translation of UML
models into semantic domains. In H.-J. Kreowski, editor, Proc. ETAPS’02 Work-
shop on Application of Graph Transformation (AGT’02), Grenoble, France, April
2002.

11. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, FB13, 1978.
13. S. Kuske. A formal semantics of UML state machines based on structured graph

transformation. In M. Gogolla and C. Kobryn, editors, Proc. UML 2001, Toronto,
Kanada, volume 2185 of LNCS. Springer-Verlag, 2001.

14. M. Löwe, M. Korff, and A. Wagner. An algebraic framework for the transformation
of attributed graphs. In Term Graph Rewriting: Theory and Practice, pages 185–
199. John Wiley & Sons Ltd, 1993.

15. M. H. A. Newman. On theories with a combinatorial definition of ’equivalence’.
In Annals of Mathematics, 43 (2), pages 223–243, 1942.

16. J. Padberg and G. Taentzer. Embedding of derivations in high-level replacement
systems. Technical Report 93/9, Technical University of Berlin, Computer Science
Department, 1993.

17. D. Plump. Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.
In M.R Sleep, M.J. Plasmeijer, and M. C.J.D. van Eekelen, editors, Term Graph
Rewriting, pages 201–214. Wiley, 1993.

18. D. Plump. Term graph rewriting. In G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 2: Applications, Languages, and Tools, pages 3 – 62. World Scientific, 1999.

19. D. Varro, G. Varro, and A. Pataricza. Designing the Automatic Transformation
of Visual Languages. Science of Computer Programming, 44(2), 2002.

16

