Technische Universitat Berlin

Forschungsberichte
der Fakultat IV -

Elektrotechnik und Informatik

, Visual OCL: ,
A Visual Notation of the Object

Constraint Language

Christiane Kiesner, Gabriele Taentzer, Jessica Winkelmann

Bericht—Nr. 2002/23
ISSN

Forschungsberichte
Fakultat IV - Elektrotechnik und Informatik
Franklinstrale 28/29 o D-10587 Berlin

Contents

1 Overview 3
1.1 Brief Description of OCL00 e 3
1.2 Brief Description of VOCL 000 4
1.3 Basic Requirements on the Concrete and Abstract Syntax 4

2 VOCL Language Description 5
2.1 Introduction L 5

2.1.1 Legend L e 5
2.1.2 Class Diagram L e 6
2.2 Relation to the UML Meta Model 6
221 Self . . . e 6
2.2.2 Specifying the UML Context 6
2.2.3 Invariants oL Lo 8
2.24 OperationsidandisIno 8
2.2.5 Pre- and Post Conditions of Operations or Methods 8
2.2.6 Basic Values, Basic Types and Enumeration Types 9
2.2.7 TImplies Expressions L 10
2.2.8 If-Then-Else Expressions 11
2.2.9 Let Expressions and Definition Constraints 11
2.2.10 Type Conformance, Re-typing or Casting 14
2.3 Objects and Properties 14
2.3.1 Objects e 14
2.3.2 Properties: Attributes L 14
2.3.3 Properties: Operations 16
2.3.4 Properties: Association Ends and Navigation 17
2.3.5 Navigation to Association Classes 21
2.3.6 Navigation from Association Classes 22
2.3.7 Navigation through Qualified Associations 23
2.3.8 Accessing overridden Properties of Supertypes 23
2.3.9 Predefined Properties on All Objects 24
2.3.10 Features on Classes Themselves 25
2.3.11 Collections e 27
2.3.12 Previous Values in Post Conditions 29
2.4 Collection Operations 31
2.5 MesSages L e 38
2.6 Tuple e 40
2.7 Composition of Constraintso 43

3 The OCL Standard Library

3.1 OclAny and OclVoid
311 OclAny
3.1.2 OclMessage
313 OclVoid

3.2 ModelElement Types
3.2.1 OclModelElement
322 OcType oo
323 OclStateo

3.3 Primitive Types

3.3.1 Real, Integer and String

3.32 Boolean,
3.4 Collection-Related Types
3.4.1 Collection
342 Set
343 Bago
344 Sequence

3.5 Predefined Ocllterator Library

3.5.1 Collection L.
352 Set
353 Bag
3.54 Sequence

A Meta Model Instances

CONTENTS

Chapter 1

Overview

The Object Constraint Language (OCL) is a formal language which was developed as extension of the
Unified Modeling Language (UML) [3]. OCL is used to specify invariants, pre- and post conditions
of operations, methods or state changes. In contrast to UML, OCL is a pure expression language;
therefore, the notation of an OCL expression has a completely different notation of model elements as
the UML. This document introduces a visualization of OCL based on the OCL meta model which will
be part of the UML version 2.0. So the notation of Visual OCL(VOCL) is meant as an alternative
solution to the textual OCL.

Chapter 2 describes the visualisation of OCL considering a variety of examples. Chapter 3 (page
45) includes the visualized OCL standard library. For each operation in OCL this chapter describes
the visualized notation. The appendix represents instances of the meta model describing some VOCL
constraints used in Chapter 2.

This work is done in the context of a student’s project on visual languages which took place at
Technische Universitéit Berlin under the guidance of Gabriele Taentzer in summer 2002. This document
is based conceptually on the language description of Bottoni, Koch, Parisi-Presicce und Taentzer in

[1].

1.1 Brief Description of OCL

OCL is an abbreviation for Object Constraint Language and is an extension of the language UML.
OCL is a formal language which can be used to specify invariants of classes and types in an UML class
diagram or invariants of stereotypes, to describe pre- and post conditions of operations and methods,
to describe guards or to denote any expression in an UML model. UML has no language elements
to formulate such conditions other than in OCL and therefore in UML you can only add textual
annotations in natural language to a diagram to describe additional constraints. These annotations
are often ambiguous and cannot be interpreted by a machine. OCL removes this deficiency by a textual
syntax which formulates the constraints adequately. In OCL you can write unambiguous constraints,
since it is an object oriented and typed language (i.e. every expression has a type with well-defined
semantics). Thereby it is easier to verify the expressed conditions by a parser or a constraint checker.
OCL is based on the OCL meta model which describes the abstract syntax. The OCL meta model
is defined in class diagrams and contains well-formedness rules which divide the set of all possible
expressions in valid notations and invalid ones. The union of UML and OCL leads to the difficulty
that the user has to learn two different languages to represent common model elements such as objects,
links, etc.

4 CHAPTER 1. OVERVIEW

1.2 Brief Description of VOCL

VOCL is a graphical representation of OCL and is trying to dispose the handicap described above.
Based on the OCL meta model, VOCL follows the UML notation and its graphical representation as
far as possible. This makes a direct integration of OCL in UML diagrams easier. Like OCL, VOCL is a
formal, typed and object oriented language. The user doesn’t need to learn another textual language,
an advantage over the textual OCL. New data types and operations such as collections and operations
like forall, select, union,etc. are represented by simple but meaningful graphics. Logical expressions
are dentoted as Peircian graphs using different kinds of box to express disjunctions and conjunctions.

1.3 Basic Requirements on the Concrete and Abstract Syntax

The abstract syntax of OCL is oriented at the OCL meta model. Since VOCL describes the same
language, VOCL is based on the same meta model. Thus, a transformation from textual OCL to
VOCL and back is possible using the OCL meta model.

The visualization of OCL should follow as much as possible the visualization of UML. Where new
visualizations are necessary we are following the recommendations of the UML standard and avoid e.g.
colors and special types, to express semantic meaning. Furthermore, we offer the options to restrict
the size of a diagram in the way that sub-conditions can be formulated in own diagrams.

Chapter 2

VOCL Language Description

This chapter introduces VOCL, a visual language to describe OCL models, conceptually and by exam-
ples. Chapter 3 (page 45) contains the standard library in which all operations of OCL are visualized.
Therefore this chapter describes not all of the operations OCL offers.

2.1 Introduction

2.1.1 Legend

Figure 2.1: Principle representation of a constraint

An OCL constraint is visualized as a rounded rectangle with two sections, the section of the context
and the section of the body which can contain a condition.

The context section(above) contains the keyword context followed by the typename of the model
element (mostly a class or method) of the constraint followed by the kind of the constraint e.g. inv,
pre, post or def.

In the body section the body of the constraint is visualized.

In the condition section are the conditions of the constraint declared, using variables defined in the
body. If there is a condition section it is separated from the rest of the body by a dashed line.

6 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

2.1.2 Class Diagram

In the following examples of this chapter, the class diagram below is used.

Bank
<<enumeration>>
Sex
male
accountNumber: Integer female
0.1
customer
manager managedCompanies
Person Company
1 0..* -
isMarried: Boolean name: String
isUnemployed: Boolean numberOfEmployees: Integer
birthl?atte: Date employee employer stockPrice(): Real
age. Integer etMoney(amount
firstName: String 0.* 0.x L9 y(amount)
lastName: String
sex: Sex
income(Date): Integer wife Job
giveSalary(Integer) 0.1 title: String
startDate: Date
husband | 0..1 salary: Integer
Marriage
place: String
date: Date

Figure 2.2: Class diagram

2.2 Relation to the UML Meta Model

2.2.1 Self

The variable self is used like in OCL and is always an instance of the type of the context. At this
instance the constraint starts.

If it is clear where the constraint starts, self could be left out. This is the case exactly if there is only
one instance of the type of the context.

2.2.2 Specifying the UML Context
The context can be specified like in OCL.

e context Company inv: self.numberOfEmployees > 50

2.2. RELATION TO THE UML META MODEL

e .
context Company inv:

self: Company

numberOfEmployees = x

Figure 2.3: Specification of the context

This constraint specifies that the number of employees must always exceed 50.

In the context, a different name can be defined as an alternative to self.

e context c:Company inv: c.numberOfEmployees > 50

e .
context c: Company inv:

c: Company
numberOfEmployees = x

Figure 2.4: Constraint with a context name

In the body, this name is used instead of self. In this case, the constraint starts at this object.

A constraint can be given a name, this name occurs behind the declaration of the constraint kind.

8 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e context c:Company inv enoughEmployees : c.numberOfEmployees > 50

context c: Company inv enoughEmployees:

c: Company
numberOfEmployees = x

Figure 2.5: Constraint with a name

Abstract Syntax

The abstract syntax of a constraint is an OclConstraint whose attributes name and kind match the
name and kind of the constraint. (In Figure 2.5, name="enoughEmployees” and kind="inv".) Each
constraint has a body which is an OclExpression and a ConstraintElement which is a Model Element
with the name of the constraint context. (In Figure 2.5 the constrainedElement is a Class with the
name "Person” and the body is an OperationCallEzp which refers to a type and a referredOperation
which has an argument. The type is the return type of the operation (in the example "Boolean”), the
name of the referredOperation is the name of the operation (in the example ”7>”) and the arguments
are OclEzpressions). A detailed description of the abstract syntax of the constraint in Figure 2.5 is
shown in the meta model instance on page 75.

2.2.3 Invariants

In the previous examples, the constraint kind always was inv, hence these constraints describe invari-
ants. Other kinds are pre and post which specify pre- and post conditions of operations as well as def
whereby definitions of variables or operations are introduced.

2.2.4 Operations id and isIn

Operation id describes the identity of two objects. It is a helper operation which exists only in VOCL
and not in OCL. It simplifies the visualization of identical instances of objects. The representation is
a link labeled by id. See Figure 2.8 on page 10 for an example.

Two instances are also identical if they have the same name. See Figure 2.10 on page 12.

The operation isIn is applied to a collection and returns true if the collection contains the object. This
operation doesn’t exist in OCL, too. See Figure 2.32 on page 26. The collection Person contains pl
and p2. This is represented by an isIn link.

2.2.5 Pre- and Post Conditions of Operations or Methods

If a pre- or post condition of a method or operation is visualized, self is an instance of the type that
provides this method or operation. An operation call is visualized as in collaboration diagrams.

2.2. RELATION TO THE UML META MODEL 9

If the operation has a return type which is not a primitive data type (e.g. a collection), this is visualized
by an arrow from the instance on which the operation is called to the instance which is returned.
The following constraint specifies the post condition of operation income of a person, the return type
of this operation is of type Integer. Its value is 5000.

e context Person::income(d : Date) : Integer post: result = 5000

context Person::income(d:Date): Integer post:)
result = income(d)
self: Person
resut=so00
- J

Figure 2.6: Post condition of an operation

result is a predefined value, it is the return value of an operation if there is one. Therefore, the
assignment to the variable result can also be left out.
Abstract Syntax

At post conditions the attribute kind of an OclConstraint in the abstract syntax is "post”. The
operation call corresponds to an OperationCallEzp. A detailed description of the abstract syntax of
the constraint in Figure 2.6 is shown in the meta model instance on page 76.

2.2.6 Basic Values, Basic Types and Enumeration Types

As in OCL the basic types are Boolean, Real, Integer and String. The predefined operations on these
types are described in the standard library.
Enumeration types like male or female of data type Sex can be used as follows:

e context Person inv: sex = Sex::male

(context Person inv Zj

self: Person
sex = 'male’

Figure 2.7: Enumeration types

10 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

The constraint above states that the sex of a person is male.

Abstract Syntax

The basic types Boolean, Real, Integer and String are abstractly mapped on BooleanLiteral Exzp, Real-
LiteralExp, IntegerLiteralFxzp and StringLiteralEzp. The elements of an enumeration type are Enum-
LiteralEzps abstractly which reference EnumlLiteral refering to an Enumeration. At Figure 2.7, the
name of the EnumLiteral is "male” and the name of the Enumeration is "Sex”. A detailed description
of the abstract syntax of the constraint in Figure 2.7 is shown in the meta model instance on page 77.

2.2.7 Implies Expressions

An implies expression is visualized in an implies frame. Anything above the keyword implies describes
the premise. When this premise is true, it implies the inclusion denoted below implies. Both sections
can have their own condition section.

e context Person inv: self.isMarried = true implies self.age >= 18

4 .
context Person inv:

self: Person
isMarried = true

implies
id

self: Person

Figure 2.8: Implies constraint

This smplies constraint specifies: If a person is married, the person is elder than 18 years.
The id link describes that the persons above and below the keyword implies are the same.

Abstract Syntax

In the abstract syntax an implies is an Operation. The usage of an implies expression is an Opera-
tionCallEzp, the referenced Operation has the name "implies”, the referenced type is "Boolean”. The
arguments are OclEzpressions which are visualized above and below implies. A detailed description of
the abstract syntax of the constraint in Figure 2.8 is shown in the meta model instance on page 78.

2.2. RELATION TO THE UML META MODEL 11

2.2.8 If-Then-Else Expressions

The If-Then-Else frame contains three sections, the if section describes the if condition, the then
section describes the then part and the else section describes the else part. Each of these sections can
have a condition section.

e context Person inv:
if (self.isUnemployed = false and self.isMarried = true)
then income >= 3000
else income < 3000

- .
context Person inv:
if

self: Person
isMarried = true
isUnemployed = false

then else

income >= 3000 | income < 3000

Figure 2.9: If-Then-Else constraint

This If-Then-Else constraint specifies: If a working person is married, its income is at least 3000 else
the income is less than 3000.

Abstract Syntax

The abstract syntax of an If-Then-FElse expression is an IfEzp. It refers to a condition, a thenFxpression
and an elseEzpression, if there is one. These three are OclEzpressions. A detailed description of the
abstract syntax of the constraint in Figure 2.9 is shown in the meta model instance on page 79. In
this the second of the if conditions is left out.

2.2.9 Let Expressions and Definition Constraints

A let expression defines a variable or an operation which can be used in a constraint after its definition.
There are two frames, a let frame and an in frame. The let frame contains the visualized definition of
the variables and operations. Each variable is defined in an own frame where the name of the variable
is depicted in the upper left corner and below the definition of the variable value follows; for operations
analogously. If more than one let expression has to be visualized, then each let expression has its own
frame. If just one let expresssion has to be visualized, the frame is optional.

Inside the #n frame a normal constraint is described which uses the variables and operations defined
above. A let expression is only known in the constraint in which it was defined.

12 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e context Person inv:
let income : Integer = self.job.salary->sum()
let hasTitle(t : String) : Boolean = self.job->exists(title = t) in
if isUnemployed = true then
income < 100
else income >= 100 and hasTitle (“manager”)
endif

context Person inv:

let

income: Integer

|

:Job X
salary=x ||

income =>

hasTitle(t: String): Boolean

self. Person| ——{Company |

I
I

:Job Eli‘
itle ='t' |

—

l

self: Person
isUnemployeed = true

then else

x = hasTitle('manager’)

:Person

income < 100 income > 100, x = true

Figure 2.10: A let constraint

In the let constraint above a variable income which is the sum of incomes of all the jobs one person
has, and an operation hasTitle which has a String as input and returns a Boolean value, are defined.
hasTitle returns true if the person has a job with the given title.

The in section of the constraint specifies: If a person doesn’t work he/she has an income less than 100
else the person has an income of at least 100 and is a manager.

In this constraint operations sum and ezists are used which are described in the Section 2.3.11.

2.2. RELATION TO THE UML META MODEL 13

A definition constraint contains only let expressions. Variables and operations which are defined in a
definition constraint, are also known and usable in other constraints.

e context Person def:
let income : Integer = self.job.salary->sum()
let hasTitle(t : String) : Boolean = self.job->exists(title = t)

(context Person def:

let

income: Integer

I

income =

hasTitle(t: String): Boolean

self: Person| | : Company |
|
L

:Job k 5

title ='t’ |

result = x

Figure 2.11: A definition constraint

Abstract Syntax

The abstract syntax of a let expression is a LetExp that refers to the defined variable, a VariableDecla-
ration, and to the in section which is an OclEzpression. The VariableDeclaration has an initExpression
which is also an OclEzpression. The definition of more than one variable, operations or methods is
not supported by the abstract syntax of OCL. A detailed description of the abstract syntax of the
constraint in Figure 2.10 is shown in the meta model instance on page 80. In this meta model instance,
the operation hasTitle is not been considered, because it is not supported in the abstract syntax.

14 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

2.2.10 Type Conformance, Re-typing or Casting

The basic value types of VOCL are organized in the same type hierarchy as the basic value types in
OCL.
Re-typing or casting is done by using the operation oclAsType(Type2).

object: Typel

Typel

with

oclAsType(Type?2)

object: Type2 Type2

Figure 2.12: Re-typing or casting

The operation oclAsType re-types an object of type Typel to an object of type Type2. An object can
only be re-typed to one of its subtypes: therefore, Type2 must be a subtype of Typel.

Abstract Syntax
The abstract syntax of OclAsType(Type2) is an OperationCallEzp with argument Type2.

2.3 Objects and Properties

2.3.1 Objects

The visualization of an object is the same as the visualization of objects in collaboration diagrams.
2.3.2 Properties: Attributes

The attribute value of an object is referred by a variable.

e context Person inv : self.age

2.3. OBJECTS AND PROPERTIES 15

e .
context Person inv:

self: Person
age = x

Figure 2.13: Attributes of objects

The variable z refers to the age of a person. In the condition section, expressions about the value of z
can be stated, e.g. the age of a person is always greater than zero:

e context Person inv : self.age > O

(context Person inv: h
self: Person
age =X

X >0)

Figure 2.14: Properties of an objects attribute

Abstract Syntax

In the abstract syntax the attribute value of objects is an Attribute CallExp which refers to an Attribute
with the same name. This Attribute refers to its type. An AttributeCallEzp can have a source, from
which it was called. This source is an OclEzpression. In Figure 2.14, the name of the referred attribute
is "age”, source of the AttributeCallEzp is a VariableEzp, which refers to the variable self. A detailed
description of the abstract syntax of the constraint in Figure 2.14 is shown in the meta model instance
on page 81.

16 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

2.3.3 Properties: Operations

An operation is visualized as follows:

operation(paraml, ..., paramN)

object: oclAny

Figure 2.15: An abstract operation call

Operation operation with the parameters paramli,...,param N is applied to an object object of any
type. The object that is returned, can be referred to by the reserved variable result. Expressions about
the value of result can be made in the condition section of a constraint.

The return value can also be named differently:

X = operation(paraml, ..., paramN)

object: oclAny

Figure 2.16: An abstract operation call, with x as return value

An example for an operation call:

e context Person::income (d: Date) : Integer post: result = age -1000

~
context Person::income(d:Date): Integer post:
result = income(d)
self: Person
age = X
result = x-1000
- J

Figure 2.17: Operation call with assignment

2.3. OBJECTS AND PROPERTIES 17

This post condition specifies that the income of a person is equal to the age of the person times 1000.
To refer to an operation without parameters, parentheses with an empty argument list are mandatory:

e context Company inv: self.stockPrice() > 0

- ™
context Company inv:

X = stockPrice()

self: Company

Figure 2.18: Operation without parameters

This constraint defines that the stock price of a company is always greater than zero.

If the operation has a return type, which is not a primitive type, e.g. a collection, this is visualized by
an arrow starting at the instance on which the operation is called, and goes to the returned instance.
An example is the operation including(z), which is shown in Figure 2.38 on page 30.

Abstract Syntax

The abstract syntax of an operation call is an OperationCallEzp that refers to the return type, to the
arguments of the operation which are OclEzpressions, and to the Operation. A detailed description of
the abstract syntax of the constraint in Figure 2.17 is shown in the meta model instance on page 82.

2.3.4 Properties: Association Ends and Navigation

The navigation on an association is visualized by a link between the instances of the classes (as in
UML). If the name of a navigation is left out, the role name of the opposite association end can be
used. In the case of unambiguous navigation, the name of the navigation can be left out. This is
exactly then the case, if there exists only one navigation between the classes. The expression result is
the set of objects on the opposite end of the association and has the multiplicity defined in the class
diagram. The navigation on any numbered associations always starts at object self if it exists, or
otherwise at the object defined in the context section. Else it starts at the only object of the context

type.

18 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

(context Company inv: B
[
manager [.
lself: Company | d . Person J
' isUnemployeed = false
N J
(context Company inv: h
Self C | employee
self: Compan >,
: pany | : Person | |# 0|
N J

Figure 2.19: Association ends and navigation

(If several inv-, post-, or pre expressions have to be visualized within one context, they are visualized
as single constraints.)
The upper constraint in Figure 2.19 specifies: The manager of a company is not unemployed. The
lower one says: A company has at least one employee.
In this constraint, the operation notEmpty() which is applied to an collection, is visualized. The
operation is denotated by # () at the collection which should be known as an operation on sets.
Collections, like sets, bags, and sequences, are predefined types in OCL. They have a large number of
predefined operations, e.g. operation size(), which is visualized as follows:

e context Person inv: self.employer->size() < 3

-) N
context Person inv:

employer]

self: Person | Ploy | :Company u_#jn_l

n<3]

N J

Figure 2.20: Association ends and navigation

The constraint specifies: A person has less than 3 employers.
Operation size() is applied to a collection (in this example a set) of employers. The variable n contains
the number of elements in that collection.

2.3. OBJECTS AND PROPERTIES 19

Other operations are isEmpty() which tests if a collection is empty, and operation notEmpty() which
returns true, if a collection is not empty.

e context Person inv: self.employer->isEmpty()

L/

(context Person inv:

employer —=
self: Person lF : Company | [=0'!

ey

Figure 2.21: Operation isEmpty

This constraint specifies that a person has no employers.

Abstract Syntax

The abstract syntax of a navigation along an association is an AssociationEndCallExp which refers to
both association ends. A detailed description of the abstract syntax of the constraint in Figure 2.20 is
shown in the meta model instance on page 83.

Navigation over Associations with Multiplicity Zero or One

e context Person inv: self.wife->notEmpty() implies self.wife.sex = Sex::female

e . N
context Person inv:
wife -
self: Person : Person |£g!
—
implies i
P id
: Person
sex = 'female’
N J

Figure 2.22: Navigation along associations with multiplicity zero or one

20 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

This constraint defines: A person has a wife implies that the wife is female.
Since the multiplicity of association end wife is zero or one, a navigation along this end results in only
one element which is visualized in that way.

Combining Properties

Subexpressions which are visualized side by side or below each other are automatically combined by
and.

e context Person inv:
self .wife->notEmpty() implies self.wife.age >= 18
and self.husband->notEmpty() implies self.husband.age >= 18

s) ™
context Person inv:
self: Person wife : Person Y
)) ’f//gj
implies %
: Person
age = X
Cx>18
husband - —
self: Person : Person |1
1
implies %
: Person
age =y
y>18
N J

Figure 2.23: Combining properties by “and”

The constraint expresses: Married persons are at least 18 years old.

Combining properties by or is visualized by an or frame. The expressions left and right (or above and
below) of or are combined by or.

2.3. OBJECTS AND PROPERTIES 21

e context Person inv: self.isMarried = true implies
[(self.wife.age > = 18) or (self.husband.age >= 18)]

e . ™
context Person inv:
self: Person
isMarried = true
implies
wife husband
self: Person self: Person
or
age = x age = X
x>=18]
_ J

Figure 2.24: Combining properties by "or”

The constraint above specifies: If a person is married, then the spouse is at least 18.

Abstract Syntax

Considering the abstract syntax, combining properties by and or or is done by an OperationCallExp.
The referred operation has the name "and” or "or” and the OperationCallEzp is of "Boolean” type. A
detailed description of the abstract syntax of the constraint in Figure 2.24 is shown in the meta model
instance on page 84.

2.3.5 Navigation to Association Classes

The navigation to association classes is visualized like the navigation to other classes (if the role name
is missing the class name can be used as well).

e context Person inv: self.birthDate < self.marriage.date

22 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e ™
context Person inv:
self:Person - Person
birthDate=x | —
|
:Marriage
date=y
- _X_<_y ______________________________
N Y

Figure 2.25: Navigation to association classes

The constraint specifies that a person’s marriage is after the person’s birthdate.

Abstract Syntax

The navigation to association classes is abstracted to an AssociationClassCallExp that refers to an
AssociationClass with the name of the association class. A detailed description of the abstract syntax
of the constraint in Figure 2.25 is shown in the meta model instance on page 85.

2.3.6 Navigation from Association Classes

The navigation from association classes is visualized analogously to the navigation from normal classes.

e context Job inv: self.employer.numberOfEmployees >= 1

/context Job inv: B
— employer
:Person | POy :Company
: numberOfEmployees = x
|
self: Job
Coxs=1
_ J

Figure 2.26: Navigation from association classes

The constraint defines that a job is done by at least one employee of the company.

2.3. OBJECTS AND PROPERTIES 23

Abstract Syntax

The abstract syntax of a navigation from an association class does not differ from the abstract syntax
of a "normal” navigation. A detailed description of the abstract syntax of the constraint in Figure 2.26
is shown in the meta model instance on page 86.

2.3.7 Navigation through Qualified Associations

e context Bank inv: self.customer[8764423]

e] ™\
context Bank inv:

:Bank

accountnumber = 764423

:Person

Figure 2.27: Navigation through qualified associations

The navigation through qualifier accountnumber results in one person having accountnumaber 8764423.
The qualifier and its value are denoted as in UML object diagrams.
Abstract Syntax

The abstract syntax of a navigation through qualified associations is an AssociationFEndCallEzp which
refers to the association end, an AssociationEnd and to the qualifier. The qualifier is an OclEzpression
(in Figure 2.27 an IntegerLiteralEzp). A detailed description of the abstract syntax of the constraint
in Figure 2.27 is shown in the meta model instance on page 87.

2.3.8 Accessing overridden Properties of Supertypes

The next example applies to the following class diagram.

24 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

source | *

ModelElement | target

4}

*kkk

Note Dependency
"value: Uninterprete |
d

Figure 2.28: Class diagram

A property of a supertype can be accessed using operation oclAsType(Type2) which is visualized as
follows:

e context Dependency inv: self.oclAsType(ModelElement).source

e .
context Dependency inv:

|self: Dependency |

oclAsType(ModelElement)

:ModelElement |

source

:ModelElement |
N J

Figure 2.29: Properties of supertypes

After re-typing an object of type Dependency to an object of supertype ModelElement the navigation
along association source can be used.

Abstract Syntax
The abstract syntax of oclAsType(Type2) is an OperationCallExp with argument Type2.

2.3.9 Predefined Properties on All Objects

Predefined properties on all objects are visualized as follows:

2.3. OBJECTS AND PROPERTIES 25

ocllsTypeOf() oclinState()

oclisKindOf() oclisNew() oclAsType()

Figure 2.30: Predefined properties on all objects

If we want to specify that every instance of class Person is of type Person and not of type Company
we write:

e context Person
inv: self.oclIsTypeOf (Person) = true
inv: self.oclIsTypeOf(Company) = false

-) N [) N
context Person inv: context Person inv:
x = IsTypeOf(Person) x = IsTypeOf(Company)
self: Person self: Person
Cx=true]l x=false
N VAN Y,

Figure 2.31: Predefined properties on all objects

Abstract Syntax

In the abstract syntax, a predefined property is an OperationCallEzp. A detailed description of the
abstract syntax of the left sub-constraint in Figure 2.31 is shown in the meta model instance on page
88.

2.3.10 Features on Classes Themselves

All properties discussed until now, are properties on class instances.
It is possible to use features defined on the types/classes themselves. One example is feature alllnstances.

e context Person inv:
Person.alllnstances()->forall(pl, p2 | pl <> p2 implies pl.name <> p2.name)

26 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e .
context Person inv:
S
p:Person || P

) isin
isln

\
z
pl:Person p2:Person

implies
id

-Person ‘Person ——1
name = x

name =y

Figure 2.32: Features on classes themselves

Feature alllnstances() results in a set of all instances of the type which exists at the specific time when
the expression is evaluated. It is visualized by a set of type of the class name with an iterator variable
depicted on the right of the set inside a dashed box.

In the constraint above the navigation starts at this set, since there is no instance self from which
could be started. After this a forall operation is applied to that set and inside the forall an implies
operation. forall is defined on collections and has one or two iterators. It has a frame which contains
the expression which has to be true for each collection element. By isin all instances of the set of all
persons can be accessed. These instances corresponds to the iterator/iterators.

The constraint specifies that all instances of type Person have unique names.

The link labeled by #s/n visualizes that single objects are contained in the collection.

Abstract Syntax

The usage of class features is abstracted to an OperationCallEzp. In the meta model instance on page
89 the abstract syntax of the constraint in Figure 2.32 is shown.

2.3. OBJECTS AND PROPERTIES 27

2.3.11 Collections

The collection type defines a large number of predefined operations, a complete reference of this
operations is in the VOCL standard library (in Chapter 3 starting on page 45).

The collection type is an abstract type with three concrete collection types as its subtypes: Set, Bag
and Sequence. These types are visualized as follows:

Set:

Bag:

e

Sequence: /
-

A simple navigation results in a Set,

e context Company inv: self.employee

ﬁ:ontext Company inv:

employee
self: Company ploy :Person

Figure 2.33: Simple navigation

a combined navigation in a Bag,

e context Company inv: self.employee->collect(birthDate)

28 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e _ N
context Company inv:

employee
self:Company | PIOYE€ I berson

isin

‘Person X |

birthDate = x colie Et:I

Figure 2.34: Combined navigation

and a navigation along an association adorned with sortedBy results in a Sequence.

e context Company inv: self.employee->sortedBy(age)->asSequence()

/ -
context Company inv:
employee X
self: Company : Person | |—/———-—— -
age = x |/sortedBy |

:Person ||

Figure 2.35: Navigation along an association adorned with sortedBy

Operations on collections may result in new collections, as e.g. the union of two collections:

e collectioni->union(collection2)

2.3. OBJECTS AND PROPERTIES

29

collection3:Collection

collection 1:Collection

collection 2:Collection

—— -

U |

—_1

Figure 2.36: Operations on collections

The resulting collection can get a name which is denoted at the upper left corner of the union frame,
the mathematical union symbol is put to the right of the union frame.

Abstract Syntax

The abstract syntax of a navigation to a collection does not differ from the navigation to other classes,
so it is a NawvigationCallExp with two navigation-ends (navigationSource and referredAssociationEnd

or referredAssociationClass).

2.3.12 Previous Values in Post Conditions

To refer to a value of an attribute at the start of the operation, the attribute name with the postfix

@pre is used.

The following visualization specifies, that the age of a person is incremented by 1 on its birthday.

e context Person::birthdayHappens() post: age = age@pre + 1

-
context Person::birthdayHappens() post:

:Person
age = X

X = age@pre+1
-

Figure 2.37: Previous values in post conditions

To refer to a value of a navigation at the start of an operation, the role name with the postfix @pre is

used.

e context Company::hireEmployee(p: Person)
post: employees = employee@pre->including(p)
and stockprice() = stockprice@pre() + 10

30 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

(" context Company::hireEmployee(p: Person) post: h
‘ hireEmployee(p: Person)
p: Person self: Companyg———
X = stockprice()
employee@pre
: Person
employee including(p: Person)
N
: Person = : Person
| x = stockprice@pre +10
\x stockprice@pre + 10)

Figure 2.38: Navigation to previous objects in a post condition

In this example the predefined operation including is demonstrated. including unifies the set of em-
ployees of a company before the employment of a new employee with the new employee. The operation
including is applied to a collection and gets an object name. It returns a new collection.

The constraint specifies the following: After the employment of a new employee the set of employees
contains the new employee and the stock price of the company is incremented by 10.

Abstract Syntax

The value of an attribute at the start of an operation is accessed by an AttributeCallEzp, the navigation
to objects which exist at the start of the operation is a NavigationCallExp. A detailed description of
the abstract syntax of the constraint in Figure 2.37 is shown in the meta model instance on page 90.

2.4. COLLECTION OPERATIONS 31

2.4 Collection Operations

In this chapter only some of the collection operations are described. All operations are described in
the standard library (Chapter 3 on page 45).

The Select Operation

The operation select specifies a subset of a collection. All elements in this subset have the properties
visualized in the select frame. The evaluation of the select frame results in a Boolean value. On the
right of the select frame the iterator and the keyword select are depicted.

If several operations are executed, the names of the operations and the iterators are denoted sequentially
(top down) on the right of the frame.

e context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

e) ™
context Company inv:
employee
self:Company :Person
isIn
p:Person 7
age =X | E N
select :
_______________ =
X >50 _{g |
N /)

Figure 2.39: A select operation

The constraint specifies that at least one employee of a company is elder than 50.
The iterator is of type Person, the select property states that the age of a person has to be greater
than 50.

32 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

The Reject Operation

The operation reject specifies a subset of a collection. All elements in this subset have not the properties
visualized in the reject frame. The evaluation of the expression in the reject frame results in a Boolean
value. On the right of the reject frame the iterator and the keyword reject are depicted.

e context Company inv:
self.employee->reject(iMarried) ->isEmpty()

4 _ N
context Company inv:
employee
self:Company :Person
isIn
:Person
isMarried = X o
reject :
————————————— — gl
X =true - —q I
N J

Figure 2.40: A reject operation

This reject operation returns all persons that are not married. The constraint specifies that the
collection of employees not married, is empty.

The iterator is of type Person, the attribute isMarried is checked. If the iterator is obvious, it can be
omitted.

2.4. COLLECTION OPERATIONS 33

The Collect Operation

The select and reject operations always result in a sub-collection of the original one.

The collect operation results in a collection which is derived from some other collection, but which
contains different objects from the original collection (i.e., it is not a sub-collection). In the collect
frame of the collect operation, a new variable is defined, which has the type of the new collection. This
variable is denoted on the right of the collect frame above the keyword collect.

The set of birthdates of all employees of a company is specified as follows:

e context Company inv:
self.employee->collect(birthdate)->asSet ()

. :
context Company inv:

employee
self:CompanvI oy :Person

isIn

:Person X,
birthDate = x _CBII_eEt]

:Date
asSet()
:Date

Figure 2.41: A collect operation

The operation asSet() applied to a bag results in a set. All multiple objects in the bag are removed.

34 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

The Forall Operation

The operation forall checks a constraint for all elements of a collection. It has one or two iterators and
a forall frame in which the property of the forall operation is visualized. The forall operation returns
a Boolean value. All elements of the collection must fullfil this property. On the right of the frame the
V-operator and the iterators are depicted.

e context Company inv:
self .employee->forall (el, e2: Person | el <> e2 implies
el.firstname <> e2.firstname)

e _ ™
context Company inv:
R
employee
:Person bloy self: Company
isin isin
\ -
el:Person e2:Person
implies
id id
-Person :Person ol |
firsthname = x : = '
firstname =y o2 J'
_______________________________ — 1
X2y |V
N J

Figure 2.42: A forall operation

The constraint specifies that the firstnames of all employees of a company have to be different.

2.4. COLLECTION OPERATIONS 35

The Exists Operation

The operation exist checks if a constraint is satisfied for at least one element of a collection. It has
one iterator and an ezrist frame in which the property of the exist operation is visualized. The ezists

operation returns a Boolean value. On the right of the frame the J-operator and the iterator are
depicted.

e context Company inv:

self.employee->exists (p: Person | p.firstname = “Jack’)
(" context Company inv: h
employee
:Person H self: Company
isin
— 1
p:Person p I
firstname = 'Jack’ ==
31
R
N J

Figure 2.43: An exists operation

The constraint specifies that at least one employee of a company has the firstname ”Jack”.

36 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

The Iterate Operation

The operation iterate has a frame in which properties are visualized, and an iterator. Additionally
it has an accumulator with an initial value. The definition of the accumulator is visualized by the

operation isNew().
The operations reject, select, forall, exists, collect, can all be described in terms of iterate.

e context Company inv:
self.employee->iterate (p: Person, acc: Set= Set()|
acc->including(p| p.age > 50))->notEmpty

e] A\
context Company inv:
employee
:Person [+ POy self: Company
isIn - isNew()
ace |
p-Person ;p:J__1 acc:Person J
age = x iterate |
________________ ::_:I— -
x> 50 _‘_/ql
N J

Figure 2.44: An iterate operation

This constraint specifies that in a company, the set of employees which are elder than 50, is not empty.

2.4. COLLECTION OPERATIONS 37

The Sum Operation

The operation sum has a frame in which the element whose values are summed up, is visualized. This
element is depicted at the frame above the) symbol. To use the result of the sum in the condition
section, the) symbol is used.

e context Person inv:
self.job.salary->sum() > 50

N
context Person inv:
self:Person | : Company
-
:Job ey
salary=x > |
2 >50
. J

Figure 2.45: A sum operation

This constraint specifies that the sum of all job salaries of a person, is greater than 50.

Abstract Syntax

Calls of the operations select, reject, forall and exists are abstracted to IteratorEzps with corresponding
names. In the case of select or reject the type of this IteratorEzp is the corresponding collection type
(Set, Bag or Sequence), in the case of forall and exists it is "Boolean” and in the case of sum it is the
type of elements summed up. An lteratorEzp refers to an iterator which is a VariableDeclaration with
the name of the iterator as variable name. The referred type is the type of the iterator. Moreover, an
IteratorEzp has a reference to the body of the iteration which is an OclEzpression. The use of several
iterators has to be done by nested iterations in the abstract syntax.

The abstract syntax of an iterate operation is an [terateExzp which refers to an iterator like the ltera-
torEzp and additionally it refers to an accumulator, a VariableDeclaration. This accumulator variable
is initialized by an OclEzpression.

The abstract syntax of the select operation in Figure 2.39 (page 31) is shown on page 91, the abstract
syntax of Figure 2.32 (page 26) is shown on page 89.

38 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

2.5 Messages

e context Subject::hasChanged() post:
let message : OclMessage = observer”update(12, 14) in
message.isSent ()

(context Subject::hasChanged() post :

let
message: OclMessage

update(12, 14)

: Observer

isSent()

message: OclMessage

Figure 2.46: Messages

observer “update(12, 14) results in an instance of OclMessage which is defined in the let section of the
constraint. isSent() is a standard operation on objects of type OclMessage and is visualized like any
other operation.

e context Subject::hasChanged() post:
let messages : Set[OclMessage] = observer->forall(o| o”"update()) in
messages->forall(isSent())

2.5. MESSAGES 39

[context Subject::hasChanged() post :

let
messages: Set[OcIMessage]

o: Observer | self: Subject

|
0

update()
0: Observer _V_:

in

message: Set[OclMessage]

isln

isSent()
m: OclMessage v ‘l

Figure 2.47: Messages

update() applied to all objects of type observer results in a set of OclMessages, defined in the let
section. The in section of the constraint specifies that all of these messages are sent.

e context Person::give Salary(amount: Integer) post:
let message: OclMessage = company getMoney(amount) in
message . hasReturned()
and message.result() = true

40 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

/context Person::giveSalary(amount: Integer) post :

let
message: OclMessage

getMoney(amount)

in
hasReturned()
X = result
message: OclMessage k——— 0
X = true
- Y,

Figure 2.48: Messages

Operation getMoney(amount) of the class Company results in an OclMessage. The in section defines
that hasReturned() and result() return true. Please note that if an operation returns a Boolean value
and this value is left out in the visualization of the constraints body, it has to be true.

Abstract Syntax

The abstract syntax of a message is an OclMessageEzp which either refers to a SendAction or to a
CallAction. Again these action refers to a Signal or to an Operation. A detailed description of the
abstract syntax of the constraint in Figure 2.46 is shown in the meta model instance on page 92.

2.6 Tuple

The definition of a tuple is visualized by a frame, the tuple name is depicted in the upper left corner
of the frame. If only one tuple is defined the frame is optional. Inside this tuple frame, every tuple
element gets its own frame (a rounded rectangle), where the element name, the element type, and the
element value are denoted in the upper left corner. Inside the frame, the definition of the element value
is represented.

2.6. TUPLE

e context Person def:
let stats = managedCompanies->collect(c |
{company: Company = c,
numEmployees: Integer = c.employee->size(),
wellpaidEmployees: Set(Person) =
c.job->selection(salary > 10000) .employee,

totalSalary: Integer = c.job.salary->sum()}
)

context Person def:

let
stats:{company, numEmployees, wellpaidEmployees, totalSalar
@} managedCompanies . Company
P
company: Company = ¢ isin
c: Company c: Company

S

[numEmployees: Integer = n

=
c: Company employee [person [#_nJ

wellpaidEmployees: Set[Person] = p
lp: Set[Person]|
[
isin
pl: Person employeel c: Company o1
| L1
: Jo -
- select |
salary = x T
x>10000 | |
A
totalSalary: Integer = >
: Person employeel c: Company -
| _ c
[. | _ _|
salary=x ||2 | Eo_llgc_t|
-

Figure 2.49: A tuple definition

42 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

A tuple stats is defined in the context Person. It contains four elements: the company company, the
number of employees numEmployees, the best paid employees wellpaidEmployees and the total salary
costs totalSalary of each company a person manages. This tuple is defined in a constraint of kind def,
it is also known in the next constraint.

In this constraint, all tuples of type stats are sorted by its total salary which results in a collection.
The operation last() returns the last element of a collection which is the tuple of type stats with the
highest total salary. The tuple element wellpaidEmployees contains the person that is visualized by
the operation includes(self). includes returns true if the collection contains the assigned element. It is
enough to represent in the tuple only the elements used, the others could be left out.

e context Person inv:
stats->sortedBy(totalSalary)->last() .wellpaidEmployees->includes(self)

4] N
context Person inv:

stats: Tuple tataléz;l;&]|

______ d

totalSalary sortedBy |

last()
stats:Tuple

numEmponeesj

=

lx = includes(self)

(WellpaidEmponeesj

totalSalary

Figure 2.50: A tuple

The constraint specifies that each person being an instance of class Person is one of the best-paid
employees of the company with the highest total salary.

Abstract Syntax

The abstract type of a tuple is Tuple Type which refers to its defined attributes which are Attributes.
Those have a name and refer to the corresponding type.

2.7. COMPOSITION OF CONSTRAINTS 43

2.7 Composition of Constraints

A constraint can be composed of other constraints defined before. It specifies the composition of all
constraints inside a composition frame by “and”. The constraints inside the frame are refered by their
names, thus the constraints used have to be defined first.

The constraint that all employees of a company have different names and one of them has the firstname
”Jack”, can be expressed by the composition of the following two constraints:

e context Company inv differentFirstnames:
self .employee->forall (el, e2: Person | el <> e2 implies
el.firstname <> e2.firstname)

(" context Company inv differentFirstnames: A
employee
:Person H self: Company
isin isIn
\ -
el:Person e2:Person
implies
-Person :Person Pt
firsthname = x : - I
firstname =y e2:
_______________________________ — 1
xzy Y
N y

Figure 2.51: First constraint

44 CHAPTER 2. VOCL LANGUAGE DESCRIPTION

e context Company inv oneJack:
self.employee->exists (p: Person | p.firstname = “Jack”)

(" context Company inv oneJack:

employee
:Person H self: Company

isln

p:Person _p_J
firstname = 'Jack’ 1

Figure 2.52: Second constraint

The composed constraint:

(" context Company inv:

@ifferentFirstnamesj

Figure 2.53: Composition constraint

Abstract Syntax

The abstract syntax of a composition constraint is a combining of the bodys of the single constraints
by the operation "and”. A detailed description of the abstract syntax of the constraint in Figure 2.53
is shown in the meta model instance on page 93.

Chapter 3

The OCL Standard Library

3.1 OclAny and OclVoid

3.1.1 OclAny
e object = (object2: OclAny): Boolean

| object: OclAny |

The test on equality of two objects of type OclAny is visualized by a link labeled by a = sign between
the objects. OclAny is an abstract type, so the objects have to be substituted by the visualization of

the corresponding type.

e object <> (object2: OclAny): Boolean

| object2: OclAny |

object: OclAny

object2: OclAny

The test on inequality of two objects of type OclAny is visualized by a link labeled by a # sign.

e object.ocllsNew(): Boolean

X = oclisNew()

object: OclAny

ocllsNew() is an operation that can only be used in a post condition. It evaluates to true if the
object is created during performing the operation. The operation is visualized by an arrow labeled
by z=ocllsNew() heading to the object; z contains the return value. The return value can be left out

(what means that it is true in that case) if it is not used again.

45

46 CHAPTER 3. THE OCL STANDARD LIBRARY

e object.ocllsUndefined(): Boolean

x = ocllsUndefined()

object: OclAny

Applying ocllsUndefined() to an object of type OclAny returns true, if the object is equal to OclUn-
defined. The operation is visualized by an arrow labeled by z=ocllsUndefined().

3.1.2 OclMessage

e message.isSent(): Boolean

X = IsSent()

message: OclMessage

isSent() is visualized like an operation on an object. It is true if message has been sent to the target.

e message.hasReturned(): Boolean

x = hasReturned()

message: OclMessage

hasReturned() returns true if message is an operation call and the called operation has returned a
value. This implies the fact that the message has been sent.

e message.result(): <<The return type of the called operation>>

X = result()

message: OclMessage

result() returns the result of the called operation.

e message.isSignalSent(): Boolean

x = isSignalSent()

message: OclMessage

3.2. MODELELEMENT TYPES 47

isSignalSent() returns true if the OclMessage message represents the sending of an UML signal. The
signal is visualized like an operation.

e message.isOperationCall(): Boolean

X = isOperationCall()

message: OclMessage

isOperationCall() returns true if the OclMessage message represents the sending of an UML operation
call.

3.1.3 OclVoid
e OclUndefined.oclIsUndefined(): Boolean

x = ocllsUndefined()

object: OclVoid

Applying OcllsUndefined() to an object of type OclAny returns true if object is equal to OclUndefined.
This operation is visualized by an arrow labeled by OcllsUndefined().

3.2 ModelElement Types

3.2.1 OclModelElement

e object = (object2: OclType): Boolean

object: OclModelElement object2: OclType

The test on identity of an object of type OclModelElement and an object of type OclAny is visualized
by a link labeled by a = sign between the objects.

e object <> (object2: OclType): Boolean

object: OclModelElement object2: OclType

The test on inequality of an object of type OcIModelElement and an object of type OclType is visualized
by a link labeled by a # sign between the objects.

48 CHAPTER 3. THE OCL STANDARD LIBRARY

3.2.2 OclType
e object = (object2: OclType): Boolean

| object: OclType ——— object2: OclIType |

The test on equality of two objects of type OclType is visualized by a link labeled by a = sign between
the objects.

e object <> (object2: OclType): Boolean

object: OclType object2: OclType

The test on inequality of two objects of type OclType is visualized by a link labeled by a # sign between
the objects.

e ocllsTypeOf(t: OclType): Boolean

x = ocllsTypeOf(t)

object:OclType

oclls Type Of() returns true if ¢ and object have the same type. The operation is visualized by an arrow
labeled by oclls TypeOf() ending at object.

e oclIsKindOf(t: OclType): Boolean

x = ocllsKindOf(t)

object:OclType

ocllsKindOf() returns true if type ¢ is equal to the object’s type or a supertype of the object’s type.
The operation is visualized by an arrow labeled by oclIsKindOf() heading to object.

e oclAsType(t: OclType): instance of OclType

object: OclType

oclAsType(t)

:OclType

A property of a supertype can be accessed using oclAsType(Type2) which is visualized by an arrow
labeled by oclAsType() from object to the resulting object.

3.3. PRIMITIVE TYPES 49

3.2.3 OclState
e object = (object2: OclState): Boolean

object: OclState object2: OclState

The test on equality of two objects of type OclState is visualized by a link labeled by a = sign between
the objects.

e object <> (object2: OclState): Boolean

object: OclState object2: OclState

The test on inequality of two objects of type OclState is visualized by a link labeled by a # sign
between the objects.

e oclInState(s: OclState):Boolean

x = ocllsState(s)

object:OclState

ocllsInState(s) returns true if the object is in state s. s is the name of a state in a state diagram. The
operation is visualized by an arrow labeled by ocllsInState(s) heading to object.

3.3 Primitive Types

3.3.1 Real, Integer and String

The standard types Real and Integer represent the mathematical concepts of real and integer and their
properties. String represents strings and their properties. They are only used textual in the condition
section of a constraint, so they are not visualized here.

3.3.2 Boolean

This type can be visualized and can also be used textually in the condition section of a constraint. In
the following subsection, the textual followed by the visual representation is shown.

e b or (b2: Boolean): Boolean

b: Boolean

or

b: Boolean | or | b2: Boolean b2: Boolean

50 CHAPTER 3. THE OCL STANDARD LIBRARY

Combining sub expressions by “or” is visualized by an “or” frame, the expressions left and right or
above and below the keyword or respectively, are combined by "or”.

e b xor (b2: Boolean): Boolean

b: Boolean
xor
| b2: Boolean
b: Boolean | Xor | b2: Boolean

Combining sub expressions by "xor” is visualized by an "xor” frame, the expressions left and right or
above and below the keyword zor respectively, are combined by an exclusive or.

e b and (b2: Boolean): Boolean

| b: Boolean |

| b: Boolean || b2: Boolean | | b2: Boolean |

Combining sub expressions by "and” is not explicitly visualized. Drawing expressions within one frame,
they are automatically combined by “and”.

e not b: Boolean

b:Eb&één

The negation of an expression is visualized by crossing out the expression.

e b implies (b2: Boolean): Boolean

| b: Boolean |

——implies—

| b2: Boolean |

An implies expression is visualized in an implies frame. Anything above the keyword implies describes
the premise. When this premise is true it implies the conclusion denoted below implies.

3.4. COLLECTION-RELATED TYPES 51

3.4 Collection-Related Types

3.4.1 Collection

This section describes all general operations on collections that can be applied to each of the collection
types, i.e. Set, Bag and Sequence. The frame containing collection:Collection must be replaced by the
corresponding frame of the used subtype.

e collection->size(): Integer

collection:Collection |- 7
—

size is applied to a collection, the variable n contains the number of elements in the collection. This
operation is visualized by a frame, #n is depicted on the right of the frame inside a dashed box.

e collection->includes(object: T): Boolean

X = includes(object)

collection:Collection(T)

object.T

includes(object) returns a Boolean value. It is true if the object object is an element of the collection
collection. This is visualized by an arrow labeled by z=includes(object) heading to collection. x is true
or false.

e collection->excludes(object: T): Boolean

x = excludes(object)

collection:Collection(T)

object:T

excludes(object) returns a Boolean value. It is true if the collection collection does not contain the
object object. This is visualized by an arrow labeled by z=excludes(object) heading to collection. z is
true or false.

e collection->count(object: T): Integer

52 CHAPTER 3. THE OCL STANDARD LIBRARY

: , “object |
collection:Collection(T) S
#X

|

object: T

count(object) returns the number of occurrences of object in collection. z is an integer. This operation
is visualized by a frame, the counted object and #z are depicted on the right of the frame, each inside
a dashed box.

e collection-> includesAll(c2: Collection(T)): Boolean

x = includesAll(c2)

collection:Collection(T)

c2:Collection(T)

includesAll(c2) returns true if all elements of collection c¢2 are elements of collection collection. It is
visualized by an arrow labeled by z=includes(object) heading to collection.

e collection->excludesAll(c2: Collection(T)): Boolean

x = excludesAll(c2)

collection:Collection(T)

c2:Collection(T)

excludesAll(c2) returns true if the collection collection contains no elements of collection ¢2. Tt is
visualized by an arrow labeled by z=ezcludes(object) heading to collection.

e collection->isEmpty(): Boolean

collection:Collection [~ g]

isEmpty() is applied to a collection and expresses that the collection contains no element. This op-
eration is visualized by a frame, = () is depicted on the right of the frame inside a dashed box. The
visualization uses the set-theoretic representation of an empty set.

e collection->notEmpty(): Boolean

3.4. COLLECTION-RELATED TYPES 53

collection:Collection [> 1

notEmpty() is applied to a collection and expresses that the collection is not empty. This operation is
visualized by a frame, # () is depicted on the right of the frame inside a dashed box.

e collection->sum(): T

collection:Collection |-

Lo

sum() sums up the values of attributes of all elements in the collection collection. This operation is
visualized by a frame, the attribute z which is summed up, and the) sign are depicted on the right
of the frame, each inside a dashed box.

The following sections contain the operations that are typical for particular collection types and are
not defined for the other collection types.

3.4.2 Set

e set->union(set2: Set(T)): Set(T)

slet:T J set2:T

u

—d

The union of two sets is represented by a frame that contains the name of the resulting set in the
upper left corner. The sets that are unified are also placed into the frame. On the right of the frame
the mathematical union sign is depicted inside a dashed box.

e set->union(bag: Bag(T)): Bag(T)

slet:T J blﬂi J U

The union of a set and a bag is represented by a frame that contains the name of the resulting bag in
the upper left corner. The set and bag that are unified are also placed into the frame. On the right of
the frame the mathematical union sign is depicted inside a dashed box.

54 CHAPTER 3. THE OCL STANDARD LIBRARY

e set = (set2: Set(T)): Boolean

_
set:T —set2:T]

The test on equality of two sets is visualized by a link labeled by a = sign between the sets.

e set->intersection(set2: Set(T)): Set(T)

[
st || e Y

nl

The intersection of two sets is represented by a frame that contains the name of the resulting set in
the upper left corner. The two sets are also placed into the frame. On the right of the frame the
mathematical intersection sign is depicted inside a dashed box.

e set->intersection(bag: Bag(T)): Set(T)

|
x:T

[|A
setT |paaT || | |41

The intersection of a set and a bag is represented by a frame that contains the name of the resulting
set in the upper left corner. The set and bag are also placed into the frame. On the right of the frame
the mathematical intersection sign is depicted inside a dashed box.

o set-(set2: Set(T)): Set(T)

diff(set2)

]

The difference of two sets results in a new set. This is represented by an arrow labeled by diff(set2)
from set set to the resulting set. The set set2 is subtracted from set.

e set->including(object: T): Set(T)

3.4. COLLECTION-RELATED TYPES 55

I J object:T

’J including(object)

]

including(object) unifies a set set with the object object, represented by an operation arrow labeled by
including(object) between the original set set and the resulting set.

e set->excluding(object: T): Set(T)

' J object: T

excluding(object)

:

excluding(object) returns a set containing all elements of set without object, represented by an operation
arrow labeled by ezcluding(object), between the original set set and the resulting set .

o set->symmetricDifference(set2: Set(T)): Set(T)

[
xT

setT || [e2T IJ;«—)F;:

The symmetric difference of two sets is represented by a frame that contains the name of the resulting

set in the upper left corner. The set and the bag are also placed into the frame. On the right of the
frame XOR is depicted inside a dashed box.

e set->count(object: T): Integer

object:T

56 CHAPTER 3. THE OCL STANDARD LIBRARY

count(object) returns the number of occurrences of object object in set set. On the right of the frame
the object to be counted and #z is depicted, each inside a dashed box. z contains the number of

counted objects.

o set->flatten(): Set(T2)

2]
D
—
—

flatten()

>
T2

Applying flatten() to a set set returns a set that may contain elements of another type as the set type
T and is represented by an arrow labeled by flatten() from the original set set to the resulting set.

o set->asSet(): Set(T)

n
D
—
—

asSet()
wal
set.T

Applying asSet() to a set returns the same set and is represented by an arrow labeled by asSet() from
the original set set to the resulting set set.

e set->asSequence(): Sequence(T)

asSequence()

/]T_j

Applying asSequence() to a set returns a sequence that contains all elements of the set. This is
represented by an arrow labeled by asSequence() from the set set to the resulting sequence.

e set->asBag(): Bag(T)

3.4. COLLECTION-RELATED TYPES 57

[92]
D
—r
—

asBag()

s

T

Applying asBag() to a set returns a bag that contains all elements of the set. This is represented by
an arrow labeled by asBag() from the set set to the resulting bag.

3.4.3 Bag
e bag = (bag2: Bag(T)): Boolean

bag:T n bag2:T

The test on equality of two bags is visualized by a link labeled by a = sign between the bags.

e bag->union(bag2: Bag(T)): Bag(T)

N N

@1 J blag2:T J !

The union of two bags is represented by a frame that contains the name of the resulting bag in the
upper left corner. The bags that are unified are also placed into the frame. On the right of the frame
the mathematical union sign is depicted inside a dashed box.

e bag->union(set: Set(T)): Bag(T)

|
X:T

ag:T set:T Ul

b

:

The union of a bag and a set is represented by a frame that contains the name of the resulting bag
in the upper left corner. The bag and the set that are unified are also placed into the frame. On the
right of the frame the mathematical union sign is depicted inside a dashed box.

58

CHAPTER 3. THE OCL STANDARD LIBRARY

e bag->intersection(bag2: Bag(T)): Bag(T)

xT
| N | N
bag:T J bagZT J F]_i

The intersection of two bags is represented by a frame that contains the name of the resulting bag

in the upper left corner, The two bags are also placed into the frame. On the right of the frame the
mathematical intersection sign is depicted inside a dashed box.

e bag->intersection(set: Set(T)): Set(T)

bagT _ |Jfet |

The intersection of a bag and a set is represented by a frame that contains the name of the resulting

set in the upper left corner. The bag and set are also placed into the frame. On the right of the frame
the mathematical intersection sign is depicted inside a dashed box.

e bag->including(object: T): Bag(T)

o
F
:|

including(object)

T

including(object) unifies a bag bag with an object object, represented by an arrow labeled by includ-
ing(object) from the original bag bag to the resulting bag.

e bag->excluding(object: T): Bag(T)

3.4. COLLECTION-RELATED TYPES 59

N
' object:T
bag:T

excluding(object)

=

excluding(object) returns a bag containing all elements of bag without object, represented by an arrow
labeled by ezcluding(object) from the original bag bag to the resulting bag.

e bag->count(object: T): Integer

b_agi #Xl

count(object) returns the number of occurrences of the object object in the bag bag. On the right of
the frame the object to be counted and #z are depicted, each inside a dashed box. z contains the
resulting number.

o bag->flatten(): Bag(T2)

bag:T]

flatten()

e

Applying flatten() to a bag bag returns a bag that may contain elements of another type as the bag
type T and is represented by an arrow labeled by flatten() from the original bag bag to the resulting
bag.

e bag->asBag(): Bag(T)

60 CHAPTER 3. THE OCL STANDARD LIBRARY

bag:T

asBag()
'_gj
bag:T

Applying asBag() to a bag bag returns the same bag and is represented by an arrow labeled by asBag()
from the original bag bag to the resulting bag bag.

e bag->asSequence(): Sequence(T)

bag: T

asSequence()

A J
T i

Applying asSequence() to a bag bag returns a sequence that contains all elements of the bag. This is
represented by an arrow labeled by asSequence() from the bag bag to the sequence.

e bag->asSet(): Set()

5
J

Applying asSet() to a bag bag returns a set that contains all elements of the bag with duplicates
removed. This is represented by an arrow labeled by asSet() from the bag bag to the resulting set.

3.4.4 Sequence

e sequence->count(object: T): Integer

3.4. COLLECTION-RELATED TYPES 61

' o_bj?:‘aﬂ

sequence:T |
Seduence-~ |#x,

count(object) returns the number of occurrences of the object object in the sequence sequence. On the
right of the frame, the object to be counted and #x are depicted, each inside a dashed box. z contains

the resulting number.

e sequence = (sequence2: Sequence(T)): Boolean

A K _ A —
sequence:T = sequence2:T J

The test on equality of two sequences is visualized by a link labeled by a = sign between the sequences.

e sequence->union(sequence2: Sequence(T)): Sequence(T)

|

A

sequence:T sequence2:T

union(sequence2)

A 7

T

union(sequence2) returns a sequence consisting of all elements in the sequence sequence followed by
all elements in the sequence sequence?, represented by an arrow labeled by union(sequence2) from the

original sequence sequence to the resulting sequence sequence?.

e sequence->flatten(): Sequence(T2)

A 7
sequence:T J

flatten()

12 -

Applying flatten() to a sequence sequence returns a sequence that may contain elements of another
type as the sequence type T and is represented by an arrow labeled by flatten() from the original

sequence sequence to the resulting sequence.

62 CHAPTER 3. THE OCL STANDARD LIBRARY

e sequence->append(object: T): Sequence(T)

"1 J object:T

sequence:T

append(object:T)
T ,

append(object) appends an object to a sequence sequence, represented by an arrow labeled by ap-
pend(object) from the original sequence sequence to the resulting sequence.

e sequence->prepend(object: T): Sequence(T)

1 J object:T

sequence:T

prepend(object:T)
i %
T 1

prepend(object) prepends an object to a sequence sequence, represented by an arrow labeled by prepend(object)
from the original sequence sequence to the resulting sequence.

e sequence->subSequence(lower: Integer, upper: Integer): Sequence(T)

A G
sequence:T J

subSequence(x: Integer,y: Integer)

A
T

Applying subSequence(z, y) to a sequence sequence returns a subsequence containing the objects of
the sequence starting at number z, up to and including element number y. This is represented by an
arrow labeled by subSequence(z, y) from the original sequence sequence to the resulting sequence.

e sequence->at(i: Integer): T

/'I %
sequence:T J

at(i: Integer)

T

3.4. COLLECTION-RELATED TYPES 63

Applying at(i) to a sequence sequence returns the i-th element of the sequence, represented by an
arrow labeled by a#(i) from the sequence sequence to the returned object.

e sequence->first(): T

A %
sequence:T J

first()

T

first() returns the first element of the sequence sequence, represented by an arrow labeled by first()
from the sequence sequence to the returned object.

e sequence->last(): T

A %
sequence:T J

last()

T

last() returns the last element of the sequence sequence, represented by an arrow labeled by last() from
the sequence sequence to the returned object.

e sequence->including(object: T): Sequence(T)

A 7)
object:T
sequence:T J

including(object)
A 7
T J
including(object) unifies a sequence sequence with an object, represented by an arrow labeled by in-
cluding(object) from the original sequence sequence to the resulting sequence.

e sequence->excluding(object: T): Sequence(T)

A 7
object:T
sequence:T J ODIeCt

excluding(object)

A 7
T

64 CHAPTER 3. THE OCL STANDARD LIBRARY

excluding(object) returns the sequence containing all elements of sequence without object, represented
by an arrow labeled by ezcluding(object) from the original sequence sequence to the resulting sequence.

e sequence->asBag(): Bag(T)

A %
sequence:T J

asBag()
’_Clj
T

Applying asBag() to a sequence sequence returns a bag that contains all elements of the sequence.
This is represented by an arrow labeled by asBag() from the sequence sequence to the resulting bag.

e sequence->asSequence(): Sequence(T)

-1 %
sequence:T J
asSequence()
A J
sequence: T _

Applying asSequence() to a sequence sequence returns the same sequence and is represented by an
arrow labeled by asSequence() from the original sequence sequence to the resulting sequence.

e sequence->asSet(): Set(T)

A ,
sequence:T _J

asSet()

=

Applying asSet() to a sequence sequence returns a set that contains all elements of the sequence, where
duplicates are removed. This is represented by an arrow labeled by asSet() from the sequence sequence
to the set.

3.5 Predefined Ocllterator Library

3.5.1 Collection

The operations in the following section are defined on all collection types. The collection elements
have type T. The collection frame has to be substituted by the frame of the corresponding collection
subtype.

3.5. PREDEFINED OCLITERATOR LIBRARY 65

e Collection(T)->iterate(i: T; acc: T2; expression: OclExpression):Boolean

:Collection(T)

isln

[iT] o]

===

il
— —

iterate 1|

acc:T2

The iterate operation is applied to a collection and has an iterator, an accumulator and a body. The
expression inside the body is visualized in a frame at which the accumulator, the iterator and the
keyword iterate are depicted, each inside a dashed box. The accumulator gets an initial value. In the
figure above acc is initialized by a new created instance of type T2 (generally it can be an initial value
of a variable of any type). The iterate operation returns the accumulator acc. The operations ezxists,
forall, select, reject, collect can all be described in terms of iterate.

If the value over which is iterated is just an attribute of a collection element, the following shortcut
for iterator operations can be used:

e Collection(T)->iterate(i: T; acc: T2; expression: OclExpression):Boolean

|
T acc

———— iIsSNew()
iterate |
attr=acc -———

acc:T2

In the figures above the result which may be used in further subexpressions, is represented. It can be
a collection, a Boolean value etc. If it is not further used, it can be left out, e.g. it is not needed if
just the number of elements is interesting using operation size(). (In the previous and in the following
visualizations, the resulting collection is left out for the purpose of clearness and better understanding
of the representations.)

66 CHAPTER 3. THE OCL STANDARD LIBRARY

e Collection(T)->exists(expression: OclExpression):Boolean

:Collection(T)

isln

L_lvL_1

The exists operation is applied to a collection and has an iterator and a body. The expression inside
the body is visualized in a frame at which the iterator and the 3 operator are depicted, each inside a
dashed box. The return value of exists is of type Boolean and the expression inside the body has to be
satisfied for at least one element in the collection. The application of the expression inside the body
to a collection element is represented by the helper operation isIn. Inside the frame all conditions one
element has to satisfy, can be visualized; the frame can have its own condition section.

e Collection(T)->forall(expression: OclExpression):Boolean

:Collection(T)

isin isin

The forall operation is applied to a collection and has one or two iterators and a body. The expression
inside the body is visualized in a frame at which the iterator/iterators and the V operator are depicted,
each inside a dashed box. The return value of forall is of type Boolean and the expression inside the
body has to be satisfied for all elements in the collection. The application of the expression inside
the body to each collection element is represented by the helper operation isIn. Inside the frame all
conditions each collection element has to satisfy, can be visualized; the frame can have its own condition
section.

e Collection(T)->isUnique(expression: OclExpression):Boolean

3.5. PREDEFINED OCLITERATOR LIBRARY 67

:Collection(T)

isln

isUnique

The 4sUnique operation is applied to a collection and has one iterator and a body. The expression
inside the body is visualized in a frame at which the iterator and the keyword isUnique are depicted,
each inside a dashed box. The return value of isUnique is of type Boolean and is true if the expression
inside the body evaluates to a different value for each element in the collection. The application of
the expression inside the body to each collection element is represented by the helper operation #sin.
Inside the frame all conditions can be visualized, the frame can have its own condition section.

e Collection(T)->sortedBy(x:T2):Collection(T)

:Collection(T)

isIn

—————— 1
I

sortedBy

The sortedBy operation is applied to a collection and has an iterator and a body. The expression
inside the body is visualized in a frame at which the iterator and the keyword sortedBy are depicted,
each inside a dashed box. The collection elements are sorted by the iterator and the sorted collection
is returned. Generally the return value of sortedBy is a sequence. isIn is used here, too.

e Collection(T)->any(expression: OclExpression):T

68 CHAPTER 3. THE OCL STANDARD LIBRARY

:Collection(T)

isIn

T

The any operation is applied to a collection and has an iterator and a body. The expression inside the
body is visualized in a frame at which the iterator and the keyword any are depicted, each inside a
dashed box. any returns one collection element which satisfies the condition in the body, or an object
of type OclUndefined if no such element exists. isIn is used here, too.

o Collection(T)->one(expression: OclExpression):Boolean

:Collection(T)

isln

The one operation is applied to a collection and has an iterator and a body. The expression inside the
body is visualized in a frame at which the iterator and =1 are depicted, each inside a dashed box. one
returns true if exactly one collection element satisfies the condition inside the body. isIn is used here,
too.

e Collection(T)->collect(expression: OclExpression):Collection(T2)

3.5. PREDEFINED OCLITERATOR LIBRARY

:Collection(T)

isln

69

The collect operation is applied to a collection and has one or two iterators and a body. The expression
inside the body is visualized in a frame at which the iterator/iterators and the keyword collect are
depicted, each inside a dashed box. All elements that satisfy the condition in the collect frame are
returned as collection of the iterator type.

The following operations are defined for each collection subtype and have different results.
All these operations use the isIn operation to visualize the properties of the body.

3.5.2 Set

o Set(T)->select(expression: OclExpression)->Set(T)

isln

T

Applying operation select to a set returns a subset with elements having the specified properties. These
selecting properties are visualized in the select frame. On the right of the frame, the iterator and the
keyword select are depicted, each inside a dashed box. The evaluation of the select expression results

in a set of type T.

o Set(T)->reject(expression: OclExpression)->Set(T)

70 CHAPTER 3. THE OCL STANDARD LIBRARY

isln

Applying operation reject to a set returns a subset with elements not having the specified properties.
These rejecting properties are visualized in the reject frame. On the right of the frame, the iterator
and the keyword reject are depicted, each inside a dashed box. The evaluation of the reject expression
results in a set of type T.

e Set(T)->collectNested (expression: OclExpression)->Bag(T2)

|—|'
|

isln

Operation collectNested is visualized as the operation collect. Applyin collectNested to a set results in
a bag.

3.5.3 Bag
o Bag(T)->select(expression: OclExpression):Bag(T)

3.5. PREDEFINED OCLITERATOR LIBRARY 71

Applying operation select to a bag returns a subbag with elements having the specified properties.
These selecting properties are visualized in the select frame. On the right of the frame, the iterator
and the keyword select are depicted, each inside a dashed box. The evaluation of the select expression
results in a bag of type 7.

e Bag(T)->reject(expression: OclExpression):Bag(T)

Applying operation reject to a bag returns a subbag with elements not having the specified properties.
These rejecting properties are visualized in the reject frame. On the right of the frame, the iterator
and the keyword reject are depicted, each inside a dashed box. The evaluation of the reject expression
results in a bag of type T.

e Bag(T)->collectNested(expression: OclExpression):Bag(T2)

Operation collectNested is visualized as the operation collect. collectNested applied to a bag results in
a bag.

3.5.4 Sequence

e Sequence(T)->select(expression: OclExpression): Sequence(T)

72 CHAPTER 3. THE OCL STANDARD LIBRARY

isln

- — — — "

select |

Applying operation select to a sequence returns a subsequence with elements having the specified
properties. These selecting properties are visualized in the select frame. On the right of the frame, the
iterator and the keyword select are depicted, each inside a dashed box. The evaluation of the select
expression results in a sequence of type T.

e Sequence(T)->reject(expression: OclExpression): Sequence(T)

/ -
. /
,
.

isln

[

Applying operation reject to a sequence returns a subsequence with elements not having the specified
properties. These rejecting properties are visualized in the reject frame. On the right of the frame, the
iterator and the keyword reject are depicted, each inside a dashed box. The evaluation of the reject
expression results in a sequence of type 7.

o Sequence(T)->collectNested(expression: OclExpression): Sequence(T2)

/ -
. /
,
.

isln

[

3.5. PREDEFINED OCLITERATOR LIBRARY 73

Operation collectNested is visualized as the operation collect. collectNested applied to a sequence
results in a sequence.

74

CHAPTER 3. THE OCL STANDARD LIBRARY

Appendix A

Meta Model Instances

In this section, some meta model instances of constraints of Chapter 2 are represented. For better
understanding some of them are changed a little. Therefore, the textual constraint is depicted above
each meta model instance.

Fach OclEzpression has a type. It is partially left out in the following representations for reasons of
clearness.

e context c: Company inv enoughEmployees: c.numberOfEmployees > 50

:OclConstraint
" N constrainedElement .Class

name="enoughEmployees

kind="inv" name="Company"
DataTyp body Operat
:DataType . :Operation

type -OperationCallEx referredOperation

name="Boolean" name =">"

argumenjs{1}

- rguments{2}
. IntegerLiteralExp source
. AttributeCallExp : VariableExp
name="50"
type referredAttribute referredVvariable
| :DataType _-Attribute :VariableDeclaration
name="Integer" name ="numberOfEmployees" varName ="c¢"
type type
:DataType .Class
name="Integer" name="Company"

75

APPENDIX A. META MODEL INSTANCES

e context Person::income(d:Date):Integer post: result = 5000

:OclConstraint

constrainedElement

:OperationCallExp

kind="post"
type referredQperation
:DataType ~Operation
name="Integer" name ="Person:iincome
parameter
:DataType type :Parameter
name="Date" name="d"
:DataType i body
ype :OperationCallExp
name="Boolean"]
referredOperation
:Operation
arguments arguments{1} name ="="
. IntegerLiteralExp
: VariableExp
name="5000"
type referredyariable
‘DateType :VariableDeclaration

varName ="result"

name="Integer"

type

:DataType

name="Integer"

e context Person inv: sex = Sex::male

:OclConstraint constrainedElement :Class
kind="inv" name="Person"
:DataType type body ; 40 i :Operation
:OperationCallExp reterredoperation
name="Boolean" name ="="

argumenis{2}
: EnumLiteralExp

rguments{1}

. AttributeCallExp

referredEnumLiteral

:EnumLiteral referredAttribute
:Attribute
name="male"
name ="sex"
enumeration
:Enumeration
- type

name="Sex"

APPENDIX A. META MODEL INSTANCES

e context Person inv:

self.isMarried = true implies self.age >= 18

:OclConstraint

. |:.Class
constrainedElement

kind="inv"

name="Person"

) body
:DataType type

"O crationCallEx referredOperation_-2Peration
:Op p
name="Boolean" |

name ="implies"

:OperationCallExp

referredOperation
referredOperation :DataType -
P :Operation
HOperation name="Boolean" o
name =">=!
name ="="

arguments{2}

argumants{1}

arguments{1}
:BooleanLiteralExp

arguments{2}

Attri At :IntegerLi p
:AttributeCallExp :AttributeCallExp IntegerLiteralEx
|

name ="true" name ="18"

type referredAttribute referredAttribute type
L:DataType type _Attribute Attribute YD&) pataType
name="Boolean" name="isMarried" name="age" name="Integer"

source source

:VariableExp

referredVariable

:VariableDeclaration

varName="self"

Lope

:Class
name="Person"

e context Person inv:

if (self.isUnemployed =false) then income >= 3000 else income < 3000

:OclConstraint

constrainedElement

:Class

kind="inv"

body

name="Person"

AfExp

condition

:OperationCallExp

thenExpression

:OperationCallExp

elseExpression

:OperationCallExp

79

type L .
referredOperation . t e referredOperation
:DataType :Operation referredQperation ype .
Operation :Operation
-Operation :DataType
name="Boolean" name ="=" —oaatvbe e
name =">=" ="Bool " name =<
argunfents{1} argupents{2} name=boolean
" :BooleanLiteralEx
:AttributeCallExp ~booleantiteral=xp arguments{2} |arguments{1} ar%umen s{1} arguments{2}
name="false" :IntegerLiteralExp ‘VariableExp :IntegerLiteralExp
referredAttribute
-Attribute name="3000" name="3000"
) P type referredVYariable
name="isUnemployed"

_:DataType type |-VariableDeclaration type
source name="Boolean” ‘DataType name="income" ‘DataType
—|:VariableEx name="Integer" M name="Integer"

referredyariable

:VariableDeclaration

varName="self"

type

:.Class

name="Person"

APPENDIX A. META MODEL INSTANCES

e context Person inv: let income:Integer=self.job.salary->sum()
in if isUnemployed then income < 100 else income > 100

:OclConstraint . .
constrainedElement-C12sS
kind="inv" name="Person"
body X
’7 variable
:LetExp
:VariableDeclaration W :DataType
pe.

varName="income" name="Integer"

initExpression

:DataType _ |:Operation
type -OperationCallEx referredOperation|
name="Integer" name ="sum"

source|

referredAttribute. -Altribute typ -Datalype

:AttributeCallExp

name="salary" name="Integer"

source

:AssociationClassCallExp referredAssociationClass

:VariableDeclaration type| :Class

:AssociationClass

name="job"

referredVariable

varName="self" name="Person"

condition

elseExpression

:OperationCallExp b—

:OperationCallExp

type referredQperation)
. _ : type| type referredOperation
:DataType :Operation referredQperation .
Operation :Operation
|:Operation :DataType
name="Boolean" name ="=" I o
name ="<" ="Boolean" name =>=
arguments{1} arguNients{2} name="Soolean
Ny :BooleanLiteralEx|
:AttributeCallExp (-BooleanLiteralxp arguments{?} larguments{1} arF aments{1} argumenﬁs{Z}
) name="true" IntegerLiteralExp ‘ VariableExp ‘ IntegerLiteralExp
referredpttribute
-Attribute name="100" name="100"
type type)
name="isUnemployed" referredVYariable
:DataType Vari i
|-DataType typd :VariableDeclaration type
name="Boolean" :DataType name="income" ‘DataType

name="Integer" M name="Integer"

e context Person inv: self.age >= 0

:OclConstraint

constrainedElement

:Class

kind="inv" name="Person"
DataType body Soarat
: type ; _Operation
yp -OperationCallEx referredOperation
name="Boolean" name =">="
arguments{Z} rguments{1}
. IntegerLiteralExp
. AttributeCallExp source . VariableExp
name="0"
type referredAttribute referredVariable
‘DataType :Attribute :VariableDeclaration
name="Integer" name ="age" varName ="self"
type type
:DataType _Class

name="Integer"

name="Person"

81

APPENDIX A. META MODEL INSTANCES

e context Person::income(d:Date):Integer post:
result = age * 1000

:OclConstraint .
constrainedElement -OperationCallEx
kind="post"
type
:DataType :Operation
name="Integer" name ="Person::income”
parameter
:DataType type :Parameter
name="Date" name="d"
DataTyp body 0 i
:DataType tvpe . :Operation
yp -OperationCallEx referredOperation
name="Boolean" hame ="="
arguments{2} a ents{1}
:OperationCallExp :VariableExp
type
referredOperation
i :DataType
:Operation
name="Integer"
name ="*"
argurents{2} argumeNts{1} referredVvariable
- : :VariableDeclaration
:IntegerLiteralExp .
:AttributeCallExp
name ="1000" name ="result
type referredAttribute type
:DataType :Attribute ~Datalype

type
" " oAl name="Integer"
name="Integer name="age

e context Person inv: self.employer->size() < 3

constrainedElement

:.Class

:OclConstraint
kind="inv"
DataT body
:DataType type

name="Boolean"

arguments{1}

:OperationCallExp

name="Person"

referredOperation -Operation

referredQperation

:OperationCallExp

name ="<"

arguments{2}

type

:Operation

name ="size"

source

:DataType

:IntegerLiteralExp

name="Integer"

name ="3"

:AssociationEndCallExp

source

:VariableExp

referredVariable

:VariableDeclaration

varName="self"

type

:Class

name="Person"

type

:DataType

name="Integer"

eferredAssociationEnd

:AssociationEnd

name="employer"

participant

:.Class

name="Company"

83

84 APPENDIX A. META MODEL INSTANCES

e context Person inv: self.isMarried = true
implies ((self.wife.age >= 18) or (self.husband.age >= 18))

:OclConstraint . .
constrained Element%

name="Person"

kind="inv"

body -
:DataType i :Operation
type -OperationCallEx referredOperatio
name ="implies"

name="Boolean"

arguents{2}
- - :Operation
:Operation |, : .
eferredOperation| ., o ationcallExp :OperationCallExp [[eferredOperatio
name ="or"

name ="="
:DataType
—"Boolean”
arguments{2} arguments{1} name=Boolean
:BooleanL iteralEx :AttributeCallExp % :OperationCallExp
name="true"
referredQperation referredOperation
:Operation :DataType :Operation
typel referredAttribute ——
' = 0 name =">="
:DataType :Attribute name="Boolean
type
name="Boolean" name="isMarried" argumeénts{l} argumentd{2} arguments{2} arguments{1}
:AttributeCallExp IntegerLiteralExp — :AttributeCallExp
name="18"
referredAttribute type referredAttribute
:Attribute type :DataType type :Attribute
name="age" name="Integer" name="age"
source sourc
:AssociationEndCallExp :AssociationEndCallExp
referredAssociationEnd referredAsspciationEnd
| :AssociationEnd :AssociationEnd
name="husband" Class name="wife"
*'7 |ziGoo
participant name="Person" participant
source|
:VariableExp source

source

referredVariable

:Class :VariableDeclaration
type

varName="self"

name="Person"

:OclConstraint

constrainedElement

e context Person inv: self.birthDate < self.marriage.date

:Class

. AttributeCallExp

referredAttribute

:Attribute

name ="birthDate"

type

:DataType

name="Integer"

. AttributeCallExp

source

: AssociationClassCallExp

source ource

: VariableExp

referredVariable

kind="inv" name="Person"
:DataType body 0 ti
: . :Operation
type -OperationCallEx referredOperation
name="Boolean" name ="<"
arguments{1} arguments{2}

referredAttribute

:Attribute

name ="date"

referredAssociationClass

:AssociationClass

name ="marriage"

:VariableDeclaration

varName ="self"

type

:Class

name="Person"

85

86 APPENDIX A. META MODEL INSTANCES

e context Job inv: self.employer.numberOfEmployees >=1

: i :.Class
_OclConstraint constrainedElement
kind="inv" name="Job"
:DataType body " :Operation
type -OperationCallEx referredOperation [~
:Op p
name="Boolean" name =">="
arguments{2} arguments{1}
. IntegerLiteralExp : AttributeCallExp
name="1"
eferredAttribute
sourc
type -Attribute
.) . AssociationEndCallExp
-DataTYpe AssociationEndCallEx
name ="numberOfEmployees"

name="Integer"

referreddssociationEnd type
source Y
:AssociationEnd :DataType
: VariableExp
name ="employer" name="Integer"
referredVariable o
:VariableDeclaration participant
:Class
varName ="self"

name="Company"

type

:Class

name="Job"

e context Bank inv: self.customer[8764423].age > O

: i . :.Class
-OclConstraint constrainedElement
kind="inv" name="Bank"
:DataType body :Operation
’ type -OperationCallEx referredOperation ~=peration
:Op p
name="Boolean" name =">"
argumenfs{2} arguments{1} A
p : ferredAttribute -~Alribute
. IntegerLiteralExp . AttributeCallExp re
name ="age"
name="0"
type
type source|
:DataType
:DataTYpe : AssociationEndCallExp

name="Integer"

sourci

: VariableExp

referredVariable
:VariableDeclaration

varName ="self"

type

:Class

name="Bank"

qualifier

. IntegerLiteralExp

name="8764423"

type

:DataType

name="Integer"

name="Integer"

referredAssaciationEnd

:AssociationEnd

name ="cu

stomer"

participant

:Class

name="Person"

87

APPENDIX A. META MODEL INSTANCES

e context Person inv: self.oclIsTpeOf(Person) = true

. ;) :.Class
_OclConstraint constrainedElement
kind="inv" name="Person"
DataT body
:DataType . :Operation
type .OperationCallExp referredOperation
name="Boolean" name ="="
type
uments{2}
arguments{1} : BooleanLiteralExp
:OperationCallExp referredOperation o
name="true
:Operation
name ="OcllsTypeOf"
sourc type
. :DataType
: VariableExp argumeqts{1} ~=alalype

. StringLiteralExp

name="Boolean"

referredVariable . .
name="Person

‘VariableDeclaration

varName ="self"

type
:DataType

type
_:Class name="String"

name="Person"

e context Person inv:

Person.alllnstances()->forall(pl, p2 | pl<>p2 implies pl.name<>p2.name)

:OclConstraint

:Class

constrainedElement]

:OperationCallExp

:OperationCallExp

refery
referredOperation

edOperation

kind="inv" name="Person"
bod
‘lteratorExp iteratorl -variableDeclaration
:DataType type
P name="forall" lvarName ="p1"
name="Boolean" type referredVariable
:Class
:VariableExp
name="Person"
bod arguments{1
:DataTYpe IteratorExp :Vari i
type iterator :VariableDeclaration
name="Boolean" name="forall" varName ="p2"
type.
type type .
:Class referrddVariable
.
name="Person" FanableExp
body! argumems(z
:Operation

name ="implies"

:OperationCallExp

name ="name"

type

name ="name"

type

argum arguments{2} :Operation P
:DataType
‘ :AttributeCallExp ‘ :AttributeCallExp g
name ="<>
name="Boolean"
referredAttribute referreqAttribute source
:Attribute :Attribute
source

:DataType

name="String"

:OperationCallExp

referredOperation
:Operation

name ="allinstances"

source

:VariableExp

referredVariable

elementType

:VariableDeclaration

varName ="Person"

type

:Class

name="Person"

89

APPENDIX A. META MODEL INSTANCES

e context Person::birthdayHappens() post:
age = ageQpre + 1

OclConstraint constrainedElement

:OperationCallExp

kind="post" ‘
type referredOQperation
:DataType :Operation
name="OclVoid" name="Person::birthdayHappens"
:DataType body :Operation
] type -OperationCallExp referredOperation |~
name="Boolean" name ="="
rguments{1} arguments{2}
. :Operation
:AttributeCallExp -OperationCallExp —eferredOperation
name ="+"
referredAttribute
- Attribute arguments{1} uments{2}
- L AttributeCallExp IntegerLiteralExp
name="age
name="age@pre" name="1"
type referredAttribute type
type :DataType type | Attribute ‘DataType
name="Integer" name="age" name="Integer"

e context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

_OclConstraint) _Class
constrainedElemen
kind="inv" name="Company"
:DataType body :Operation
type } -OperationCallEx } referredOperatio
name="Boolean" name ="notEmpty"
souch
.IteratorExp . :VariableDeclaration
-SetType type iterator|
name="select" varName ="p"
elementType]
type referredVariable
:Class

:.Class
" " :VariableExp
name="Person

name="Person"

source
sotfce body R
] - . [-Operation
—{ :AssociationEndCallEx ‘ ‘ -OperationCallEx } referredOperatio
name =">"

referredAssociationEnd
:AssociationEnd

arguments{2}

name ="employee"

:IntegerLiteralExp -AttributeCallEx
: p
participant name ="50"

:Class

m type referredAttribute

e :DataType type :Attribute
source| name="Integer" name ="age"
‘ :VariableEx ‘

referreJ/Variable

:VariableDeclaration

varName ="self"

type

:Class

name="Company"

92 APPENDIX A. META MODEL INSTANCES

e context Subject::hasChanged() post:
let message : OclMessage = observer update(12, 14) in
message.isSent ()

:OclConstraint :
kind="post"
type
referredOperation
_DataType
| :Operation
name="OclMessage"
="Subject::hasCh d
I name="Subject::hasChanged()
type
body

:LetExp variable :VariableDeclaration

varName="message"

initExpression

:OperationCallExp

% :AssociationEndCallExp referredOperation

target
referredAssociationEnd

:Operation

name="update"

L :AssociationEnd arguments{l} arguments{2}
name="observer" :IntegerLiteralExp :IntegerLiteralExp
name="12" name="14"
partigjpant
:Class \ /
type type
name="Observer" :DataType

name="Integer"

in
:OclMessageEXx| ‘ SOUICe | .v/arjableEx
sentSignal referredVariable
| :SendAction _VariableDeclaration
name="message"
. type
signal yp
:DataType
:Signal -Latalype

" name="OclMessage"
name="isSent

e context Company
inv: self.employee->forall(el, e2 | el<>e2 implies el.firstname<>e2.firstname)

inv: self.employee->exists (p: Person | p.firstname = “Jack’)

arguments{1} _
:IteratorExp iterator | :VariableDeclaration referredvariable
name="forall" [varName ="e1"
type
:Class
name="Person"
type
body type
:DataType type IteratorExp iterator :VariableDeclaration

name="Boolean" name="forall" [varNam:
referredVariable

type type
referredOperation \’W‘
Tname =rmpies |

arguments{1}

:OperationCallExp

arguments{2} |-DataType
type |~

K ionCallExp
:Operation *'—1 name="Boolean"
referredOperation |5 e =v<>" | referredOperation

arguments{2;

(

arguments{2}

:AttributeCallExp source | :VariableExp M
arguments{1} — arguments{1}|
Source }:Var\ableExg ‘
source .
P — :AssociationEnd
referredAttribute referredAttribute B \EndCallExp
‘:Amibute ‘ ‘:Atmbute ‘ source | | referred, 1End [name="employee"
Ny - source
name ="firstname" name ="firstname"
:VariableExp participant
type type
. <Class
-DataType referredVariable
:VariableDeclaration :Class name="Person”
name="String" type
varname="self" name="Company"
referredOperation
Operation P :OperationCallExp
type,
arguments{2} :DataType :OcIConstraint
. . iterator["variableDeclaration
:DataType type :IteratorExp Iname="Boolean" kind = "inv"
name="Boolean" name="exists" type varName ="p"
type |.Class referredvariable constrainedElement

name="Person" :Class

body

name="Company"

:Operation
referredOperation |ame =

:OperationCallExp

arguments{2}
:StringLiteralExp arguments{1}

name="Jack" ttributeCallExp e
type referredAttribute type
:DataType :Attribute type |-DataType

name="String" name="firstname" name="String"

94

APPENDIX A. META MODEL INSTANCES

Bibliography

[1] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A Visualization of OCL using Collabo-

rations. In UML 2001 — The Unified Modeling Language, LNCS 2185, pages 257 — 271. Springer,
2001.

[2] OCL 2.0 nttp: //www. klasse. nl/ocl, 2002. OMG.

[3] Unified Modeling Language — version 1.4, 2002. Available at http://www.omg.org/technology/
documents/formal/uml.htm.

95

