Attributed Graph Transformations
with Controlled Application of Rules*

Reiko Heckel, Jiirgen Miiller, Gabriele Taentzer, Annika Wagner

Technical University of Berlin
Computer Science Department
Sekr. FR 6 - 1, Franklinstr. 28/29, D-10587 Berlin
e-mail: {heckel,jolli,gabi,aw}@cs.tu-berlin.de

ABSTRACT

We present a combination of recent extensions to sin-
gle pushout graph transformations, as there are attri-
bution, application conditions and amalgamated graph
transformations and add a simple transaction concept
on top of this formalism. Thereby, we provide the for-
mal basis for several examples, where these concepts are
used in combination.

1 Introduction

Graph transformations [Ehr79], [Low93] are a good
means for describing the development of structured
states in elementary steps. However, for the specifica-
tion of more complex operations we have to provide
some mechanism to control the transformation process.
Several suggestion concerning different levels of control
have been made up to now as there are for example

— conditional rules
— amalgamated graph transformations
— transactions.

On the level of direct transformations, applicability
of rules can be controlled by application conditions.
Synchronisation of parallel transformations is achieved
using common subrules and amalgamation and pro-
grammed graph transformations are used to control or-
der and frequency of rule applications.

On the other hand, most of the problems in computer
science do not have only structural but also arithmetic
or, more generally, data type aspects. The right means
to cover this kind of applications are attributed graphs
and their transformation.

Recently, an (informal) combination of these concepts
has been used for specifying the AGG graph editor
[CDGT94], [BT93], [Tae92], feature recognition in the

* This work has been partly supported by the ESPRIT
Working Group 7183 “Computing by Graph Transforma-
tion (COMPUGRAPH II)”

area of CIM [Hof93] and other examples. Both attri-
bution and amalgamation are used to describe aspects
of the operational semantics of Troll light, which is an
object-based specification language, in [WG94].

The aim of this paper is to combine all these differ-
ent extensions of pure the single pushout approach to
graph transformations into a single formalism that is
intended to be sufficiently powerful for the specification
of software systems as, for example, the AGG system.

We start in section 2 with the transformation of at-
tributed graphs as it was introduced in [LKW93]. Then
attributed graph transformations are combined with the
concept of application conditions [HHT94]. Section 4 is
concerned with amalgamated transformation as devel-
oped in [Tae94], [BT93], but using attributed graphs
and conditional rules. Finally, section 5 provides a sim-
ple transaction concept and defines its semantics in
terms of basic transactions introduced in [Sch94a]. All
extension steps are illustrated by a small example of
constructing Petri nets and firing transitions.

The reader 1s assumed to be familiar with basic no-
tions of category theory (see for instance [HS73]) and
algebraic specifications ([EM85]).

2 Attributed Graph Transformations

This section introduces the concept of attribution.
Graph rewriting reaches a greater flexibility if standard
operations (for example arithmetic operations for inte-
ger or real numbers) are directly applicable and need not
artificially be coded into graphical structure. As running
example throughout the paper we use Petri nets. Their
structure is normally given by a graphical representa-
tion. But their firing mechanism is somehow based on
arithmetic operations since the tokens on the places can
be counted. So the idea is to assign as an attribute to
each place the number of tokens laying on the place and
to each pre- resp. postcondition it’s weight for firing.
The transitions are typed with the number of their pre-
and postconditions. Figure 1 shows a sample petri net
with two transitions and four places.

Page 1

. J

Fig. 1. Sample Petri-net

In the following we formally introduce the single
pushout approach to the transformation of attributed
graphs.

Definition1 (Signature). A signa-
ture SIG = (S,0P) consists of a set of sorts S and
a family of sets OP = (OPy s)wes+ ses of operation
symbols. For op € OF, ; we also write op : w — s.
A signature is called graph structure signature if it
contains unary operator symbols only. An attributed
graph signature consists of three parts: a graph struc-
ture signature G.S = (S1,0P1), an arbitrary signature
SIG = (52,0P2) and a family of operator symbols
called the STG-attribution ATTROP = (ATTROP; :
s — $2;)ses where S C S1 and s2; € S2.

Note that the attributed graph signature ATTR =
GS + SIG 4+ ATTROP is a signature. It is not really
a restriction that graphical objects may only have none
or one attribute. More than one attribute for the same
object can be expressed using tuples.

An algebra A w.r.t. a signature SIG = (S,0P) is an
S-indexed family (A;)ses of carrier sets together with an
OP-indexed family of mappings (op®)spcop such that
op? Ay x .o x Ay, — As ifop € OPs, 5, 5. A special
example for a SIG-algebra is the term algebra Tsre(X)
over a sort-indexed family of sets of vartables X. For
this algebra the carrier sets are the sets of all terms
over the variables. The operations are assigning to some
argument terms the term built of the operation symbol
and the argument terms.

A morphism between two SIG-algebras is a sort-
indexed family of total mappings which 1s compat-
ible with the operations. All SIG-algebras and the
morphisms between them build a category, denoted

Alg(SIG) in the following.

Definition2 (Attributed graph). An
attributed graph G is an algebra with respect to an at-
tributed graph signature. We denote the graphical part

of G by Ggs and the attribute part by Ggsrg, which
is formally a restriction to a subsignature i.e. we use
the object part of the forgetful functor associated with
the signature inclusion GS C GS + SIG + ATTROP
resp. SIG C GS 4+ SIG 4+ ATTROP. A morphism be-
tween two attributed graphs f : A — B is a partial
GS-morphism f1 : Ags — Bgs together with a to-
tal SIG-morphism f2 : Ag;¢ — Bsig satisfying for all
operators (attr : s1 — s2) € ATTROP and all # €
dom(fl)s1 11 f2(attr(z)) = attr®(f1(z)). We call a
morphism a- (¢-) injective, surjective, isomorphic, iden-
tical or totalif 1t 1s at least injective, surjective, isomor-
phic, identical or total on the attribute (graphical) part.
f: A— Biscalled a-quasi-identicalif Asrg = Ts1¢(X)
and Bgrg = Tsrg(Y) where Vo € X @ forq(2) = y with
yey s.th. fgjg(l‘) = fgjg(l‘/) == =2

If we define composition of these morphisms by com-
position of the components and identities as pairs of
component identities, the objects and morphisms with
respect to definition 2 form a category, denoted by
AGRAPH ,ppp in the following. If we restrict the mor-
phisms to total ones the corresponding category is de-

noted by AGRAPH 7.

Examplel (Petri net). Each Petri net can be de-
scribed as an algebra w.r.t. the following signatures:

GS = Sorts P, T, PRE, POST, Pattr, Tattr
Opns sprg : PRE — P
"~ tprp : PRE—T
SpOosST - POST — T
tPOST : POST — P
pattr : Pattr — P
tattr : Tattr — T

SIG = N AT is the wellknown signature of natural num-
bers including the sort of pairs of natural numbers.

ATTROP = attriopen : Pattr — Nat
atlryeignt - PRE — Nat
attryeighs - POST — Nat
attrariry « Tattr — pair(Nat)

Note that pre- and postconditions are attributed di-
rectly. Since attributions must be preserved by mor-
phisms, they cannot be changed during the transfor-
mation process. In contrast the number of tokens laying
on a place may change. Expressing this change means
to delete the attribution to the old value and to insert
an attribution to the new one. Hence attributions are
objects as vertices and edges (see Tattr for example).

! dom(f1) denotes the definedness area of f1 which is a
subalgebra of A.

Page 2

For our notion of transformation based on pushouts
which are special colimites it is essential to know that
AGRAPH 4ppp 1s finally cocomplete. We prove this
by showing that the category has an initial object and
pushouts.

Proposition3 (Initial object in AGRAPH ,77r).
For each attributed graph signature ATTR the category
AGRAPH 4ppp has an wnetial object, which s the ine-
tial object in the category Alg(ATTR) of algebras and
total morphisms with respect to the signature ATTR.

Proof. Since Alg(ATTR) has initial objects and all ob-
jects in AGRAPH ,rrp are also objects in Alg(ATTR)
it remains to show that for each attributed graph G
the induced morphism from the initial object I in
Alg(ATTR) is also a morphism in AGRAPH ,prp-
But this is trivial due to the fact that total mor-
phisms are special partial ones and that morphisms in
Alg(ATT R) must be homomorphic for all operator sym-
bols i.e. especially for all SIG-attributions. The unique-
ness follows from the fact that every morphism from 7 to
another attributed graph is total and from the universal
property of initial objects in Alg(ATTR).

Proposition4 (Pushouts in AGRAPH ,77r).
Fach pair f + A — B, g : A — C of morphisms in
AGRAPH ,rrg has a pushout (D, f* : C — D,g¢* :
B — D).

For the proof of this proposition we refer to [LKW93].

Corollary 5 (Colimits in AGRAPH ,rrr). The
category AGRAPH ,prg 15 finttely cocomplete.

The proof follows directly from proposition 3 and 4.
We do not want to construct these colimits here in gen-
eral. But by defining (simple) graph transformations to
be special colimits, namely pushouts, we will give a set-
theoretic characterization of the resulting graph of a
transformation later on.

Definition6 (Transformation). A simple rule r

L — R is a morphism in AGRAPH ,ppp whose SIG-
component is an isomorphism. r is called assignment
controlled if rgr 1s the identity morphism on the term
algebra Tsrg(X) over variables. A match m : L — G
of r in an attributed graph G i1s a morphism whose
GS-component is total. (r,m) is called application pair.
The transformation of GG with the rule r at a match m
is the pushout of r and m in AGRAPH ,77p written

G2 H.

Construction 1 (Result of transformation)

Let r : L — R be a simple rule and m : L — G be a
match for r in a graph G. Then the resulting attributed
graph H of the transformation of G with the rule r at
the match m can be constructed in three steps:

1. Construct the pushout of rqs and mggs n the cat-
egory of graphs and partial morphisms GS by

(a) Construction of the gluing object: Let dom be
the greatest subalgebra of dom(rgg) which is
closed under the congruence induced by rgs and
mags.

(b) Construction of the definedness area of ri g :
GGS — HGS and m*GS RGS — HGSf
Let dom(rig) be the greatest subalgebra of
Ggs whose carriers are contained in Ggs —
mas(Lgs — dom). Symmetrically, dom(m)
is the greatest subalgebra in Rgs — rgs(Las —
dom).

(¢) Gluing: Let Hgs = (dom(r§q)Wdom(myg)/=,
where = s the least equivalence relation con-
taining ~, with x ~ y if there is z € dom with
res(z) =« and mas(z) = y.

(d) Pushout morphisms: v g is defined for all x €
dom(rgs) by rig(z) = [x]=. The morphism
mgg s defined symetrically.

2. Taking the attribute algebra Gsrg as the pushout
of rsie and mgrg in the category Alg(SIG).

3. Defining the attributions: Let (attr : sl — s2) €
ATTROP. Then define attr? by

attrH(a:) =
{attrG(y) cife=rie(y)
msia(rsiq(attr®(y)) , if v = mg(y)

Note that attr® is welldefined due to properties of
the pushout Hgs and the rule r.

In the following we give a simple example for the
transformation of an attributed graph.

Example 2 (Firing in Petri nets). Figure 2 shows a
transformation simulating the firing of a Petri net as it is
described for example in [Rei85]. By using a syntactical
algebra 1.e. the term algebra over variables as attribute
algebra in the rule and a semantical algebra i.e. the well-
known algebra of natural numbers in the graph to be
transformed we get a pattern matching mechanism in-
cluded into the formalism. Because the attribute alge-
bras are not finite in general they are not represented
in the graph. All variables occuring in the rule build
its variable set. Attribution objects are not represented
graphically. Note that although there are two possibilies
to match the graphical part of the left hand side of the
rule in figure 2 we have only one match because of the
pattern matching.

If we want to model the firing of Petri nets in general
we need a family of rules indexed by the type of the
transition to make sure that a transition can only fire if
all pre- and all postconditions are fullfilled.

Page 3

Fig. 2. Simple transformation: Firing in a Petri net

3 Conditional Rules and Transformations

In this section we extend attributed graph transforma-
tions by application conditions which are similiar to the
ones, introduced in [HHT94] for the non-attributed case.
Beside contextual conditions, concerning the graphical
part of the match, these application conditions can ex-
press equational conditions, that have to be satisfied by
its attribute part. After the basic definitions we give
some technical results that are needed in the following
section, extend the notion of a conditional rule-derived
rule to conditional rules and show, how to get rid of
positive application conditions by replacing a rule with
positive and negative conditions by a set of rules with
negative ones, only. Finally, we explicitly compare appli-
cation conditions to equations for the attribute part and
extend our Petri-net example by capacities to illustrate
the new concepts.

Definition7 (Application conditions). 1.
An application condition A(r) = (AP(r), AN(r))
for a simple rule L — R consists of two finite sets
of total morphisms starting from L, that contain
positive and negative constraints respectively. A(r)
is called positive (negative) if AN(r) (AP(r)) is
empty.

@ nl
O b

H
2

3 Ney 1t
4

2. Let L —— I be a positive or negative constraint

and L = G a total morphism. We say that m P-
satisfies |, written m |Ep [, if there exists a total
morphism L = G such that n ol = m. Further-
more, we say that m N-satisfies | if it does not
P-satisfy {, i.e. m Exy | <= m [£Ep (.

. Let A(r) = (AP(r), AN(r)) be an application con-

dition and . — G a total morphism. Then m
satisfies A(r), written m = A(r), if it P-satisfies
at least one positive constraint and N-satisfies all
negative constraints from A(r), i.e. if

1€ AP(r).mpEpl AN VYkeAN(r). mEnk.

. A conditional rule is a pair # = (r, A(r)) consisting

of a simple rule r and an application condition A(r)
for r.

. Given a conditional rule # = (I - R, A(r)) and a

match [== G for r, (#,m) is called an application
pair if m satisfies A(r). 7 is applicable if there is an
application pair (7, m).

. Given 7 and L =+ G s.t. # is applicable to G via

m the direct conditional transformation G == H
is the simple direct transformation G = H.

Page 4

In extension of the corresponding notion for simple
rules,; a conditional rule 7 is called assignment-controlled
if r is assignment-controlled, i.e. Lgr¢ = Rsig =
Top(X).

Note, that definition 7.3 implies that 7 is applica-
ble, only if AP(r) is not empty, i.e. if we don’t want
to specify extra positive conditions beside from L, we
have to take AP(r) = {idr}. It is also possible, to con-
sider AP(r) = () as an extra case in definition 7 but we
want to keep this basic definition as simple as possible.

The following proposition shows, how to check appli-
cability of conditional rules, i.e. how to find out, wether
there is any match that satisfies a given application con-
dition or not.

Proposition8 (Applicability of conditional rules).
A conditional rule # = (r, (AP(r), AN(r))) is applicable
if and only if there is some | € AP(r) s.t. | N-satisfies
all negative constraints in AN(r).

K ~—1
(1 !

n_ m
(2)

L= G

Fig. 3. Characterization of applicability.

Proof. Let L —— L € AP(r) s.t. l [En k for some k €
AN (r), i.e. there is a morphism n_ s.t. (1) in figure 3
commutes. Now, if a match L =~ G |=p , we have n,
s.t. (2) commutes and therefore (ny on_)ok = m, i.e.
m N k. Conversely, if | satisfies AN(r), # is applicable
to L via l.

By definition 7.3. an application condition consists of
a disjunction of positive constraints and a conjunction of
negative ones. We show below how to express conjunc-
tions of positive and disjunctions of negative constraints
and how this can be extended to whole application con-
ditions.

Definition9 (Conjunction and disjunction).
A L; for i = 1,2 are positive (negative) con-
straints, their conjunction Iy Als (disjunction {; V {5) is
given by the single constraint { = I3 oy s.t. (1) in the
left diagram of figure 4 becomes a pushout.

Given two application conditions

Ai(r) = (APi(r), ANy (r)) for L = R and i = 1,2, we

define their conjunction by A;(r)AAs(r) = ({l1AL| L €
AP;(r)}, AN1(r) U AN3(r)) and their disjunction by
Al(r)\/Az(?“) = (APl(T)UAPQ(T), {ll\/lz| lz € ANZ(T)})

. I
/ ‘w
i (1) L m (1) m
‘\l;‘ I
N N g9
Ly G G
m
n2 (2) .
n
n
G K

Fig.4. Combination and translation of constraints.

Proposition10 (Conjunction and Disjunction).
Let [1 L, Ai(r) fori=1,2 and [be given as above.
Then for all matches L -~ G we have

1. m':pll A m':Plz < m':pl,

2. m':Nll vV m':le < m':Nl,

3. mE Ai(r) AmE As(r) <= mE Ai(r) A As(r)
and

4. mEA(r)VmE Ai(r) <= mE Ai(r)V Aa(r).

Proof. 1./2.: We show that 3 L —— G. nol=m <
3 L; 2% G.ngol; = mfor i = 1,2. Then proposition
10.1./2. follows from definition 7. Given n as above we
have ny = nolj and na = nolj, where m = nol =
nolyoly =nyoly (and similarily for ny). Given nq, ng
as above, the left hand side of the equivalence follows
from the universal property of L.

3./4:m E APi(r)Vm |E APy(r) iff m = AP(r) U
APy(r) and m | AN1(r) Am = ANa(r) iff m |
AN1(r) U ANa(r) by definition of satisfaction. Since
AP(r) represents a digjunction and AN(r) a conjunc-
tion, m | APi(r) Am | AP(r) iff m E{li Ala] l; €
AP;(r)} m |E AN1(r)vm = ANa(r) iff m = {l1Vils| ; €
AN;(r)} by distributivity of V over A and vice versa.

Definition11 (Translation). If . = G is a match

and L LN

L a constraint, the translation of I
along m is given by m#({) = g such that (1)
in the right diagram of figure 4 is a pushout. Us-
ing this, the translation of an application condition
A(r) = (AP(r), AN(r)) for a rule . —— R is given
by m#(A(r)) = (m#(AP(r)),m#(AN(r))), where
m#(A) = {m#(l)| | € A} if A is a suitable set of con-
straints.

Page 5

Translation of application conditions is compositional
due to the compositionality of pushouts. Therefore, all
application conditions build a category together with
their translations where the identity i1s given by the
translation along ¢dp .

Proposition12 (Translation). Let + = (I ——
R, A(r)) be a conditional rule and I =~ G a match
for r. Then, for all matches G —— K, e = m#(A(r))
iff eom = A(r).

Proof. We show that there exists a total morphism

G = K s.t.nog = e if and only if there exists L =~ K
s.t. n’ ol = mo e. This implies, that for every positive
(negative) constraint [we have that e |=p(n) m# (1) iff
com ':P(N) l.

Assume n as above. Then we have n’ = nom and the
required commutativity by commutativity of (1) and (2)
in the right diagram of figure 4. Now let »’ be given as
above. Then (¢ - K with nog = e exists by universal
property of G.

This allows us to consider the transformation mor-
phism 7* of a direct transformation G == H together
with the translated application condition m# (A(r)) as a
conditional rule, too. Actually, we can omit the positive
part of this application condition because in contrast to
the general case of translation we have m | A(r) by
existence of the direct conditonal derivation.

Definition13 (Conditional rule-derived rule).

Let # = (L - R,(AP(r), AN(r))) be a conditional
rule and G % H a transformation via 7. Then, the
conditional rule 7 = (G Ll H, A(r*)) is called rule-

derived via GG % H if r* 1s the transformation mor-
phism of the direct transformation from G to H and

A(r) = ({idg}, m¥* (AN(1)))).

The conditional rule-derived rule behaves just like the
usual rule-derived rule as defined in [Low93].

Lemma 14 (Conditional rule-derived rule).

Let G % H be a direct conditional transformation,
P = (G Ll H, A(r*)) the corresponding conditional
rule-derived rule and G —— K a match for v*. Now,

e = A(r*) iff eom |= A(r) and K TR G s isomorphic

Ak

to K =5 S,

Proof. m satisfies A(r) by existence of G L H, ie.

there is [—— I € AP(r) st. nol = m for some
L -2 . This implies that every match moe also satis-
fies AP(r). On the other hand, every match for r* sat-
isfies the identity constraint i¢dg. For the negative part
equivalence follows directly from lemma 12.

Finally, (the transformation morphisms of) K LS

S and K = S are isomorphic, due to decomposition
and composition properties of pushout diagrams (see for

example [HS73]).

Positive application conditions for a rule can be ex-
pressed directly by expanding this rule into a set of con-
ditional rules, 1.e. a conditional rule with positive and
negative conditions can be seen as a rule scheme for
rules with negative conditions only.

Definition15 (Expansion set of conditional rule).
Given a conditional rule # = (r,(AP(r), AN(r))), we
define its expansion set by

Exp(#) = {#*| 7" is rule-derived via [b R,l€ AP(r)}.

Corollary 16 (Expansion set of conditional rule).
Let 7 = (r, A(r)) be a conditional rule. Then for each

direct transformation G 22 H there is a direct trans-

formation G =2 H for some #* € Exp(#) and wvice
versa such that both transformations are isomorphic.

Proof. Starting with G % H, we take 7" to be the

conditional rule-derived rule of L f:’l> R for L L €
AP(r) with m |zp [, ie. there is L = G st. nol =

m. Then #* is applicable to G via n and G 2L s
isomorphic to G 22 H by lemma 14. Given G = H
we define m = nol if #* is rule-derived via L T:’l> R. 7 is
applicable to G and the corresponding transformations
are ismorphic by lemma 14 again.

Note however, that there is no bijective correspon-
dence between transformations by 7 and transforma-
tions by #* € Fup(#) because in general there is more
than one [€ AP(r) that satisfies m.

In the remaining part of this section we explain,
how to use positive resp. negative constraints to ex-
press equational application conditions concerning the
attribute part of the match.

Definition17 (Equations). Let . -2~ G be an at-
tributed graph morphism. Then, a set of equations F
for L is a set of pairs (a = b) s.t. a and b are elements of

the same domain of Lgrg. Moreover, mgrg 1s a solution
for E if mgrg(a) = msrg(b) for all (e =b) € E.

Proposition18 (Equational constraints). Let

L -~ R be a simple rule, E a set of equations for L
and L =~ L a g-isomorphic, a-surjective constraint s.t.
the congruence Fq(csrg) induced by csrg and the con-
gruence =g generated by FE are equal. Then, given a
match L = G for r, m P-satisfies (N-satisfies) c if
and only if msye is (not) a solution for F.

Page 6

Proof. If mgrg is a solution for E, =gC Fq(msrg).
Then by the homomorphism theorem (see [EM85]) we
have m* s.t. m* o ¢ = m. For the converse assume an
equation | = r € F s.t. mgsrg(l) # msre(r). Then
mire o esig(l) # miq o csrg(r) by the required com-
mutativity and since cgra(l) = esra(r) mi; o is not a
homomorphism.

If r 1s assignment-controlled, 1.e. if L and R are at-
tributed with the term algebra Tsra(X), Lsra is (iso-
morphic to) the quotient term algebra Tsrg(X)/=, and
ls1¢ 1s the natural homomorphism.

Corollary 19 (Finite representation). Given a
simple rule [—— R, sets of equations E; for L and
positive (negative), g-isomorphic and a-surjective con-
strainis [—— ﬁi, s.t. BEq((¢i)s1¢) = =g, fori=1,2.
Moreover, let ¢ = ¢4 0 ¢1 be their conjunctive (disjunc-

tive) combination by the pushout L Iy Ly of
L <& L &£ [, Then, for L = G, msre is (not)
a solution for £ = E1 U E5 of and only if m P-satisfies
(N-satisfies) ¢, i.e. ¢ is represented by a finite set of
equations if c1 and co are.

Proof. mgie is a solution for E iff mgrg 1s a solution
for Fy and Es iff m P-satisfies ¢; and co (prop.18) iff m
P-satisfies ¢ (prop.10).

Similarily, mgra is no solution for F iff mgra is no so-
lution for By or for Fs iff m N-satisfies ¢ or ¢s (prop.18)
iff m N-satisfies ¢ (prop.10).

Example 3 (Petri nets with capacities).

In this section we extend our Petri net representation
to model capacities of places. Therefore, we extend our
signature N AT by a constant symbol w :— Nat to al-
low infinite capacities and introduce a new attribution
attrp : P — Nat assigning to each place its capacity.

mkplace c
=

mktrans
%

mkpre : mkpost
w — w WL | —= w
WX o)

Fig. 5. Rules that build Petri nets.

The graph gram-
mar GG = (me’ {mktrans, mkplace, mkpre, mkpost})
in figure 5 generates all attributed graphs that prop-
erly represent Petri nets, where me denotes the empty
graph, attributed with the natural numbers including
w.

Negative constraints in mkpre, mkpost ensure that
there is at most one arc between two given nodes. The
non-equations in mkplace, mkpre and mkpost make
sure, that weights of arcs and markings of places are
finite.

G- and a-injective constraints are distinguished by
dotted borders, i.e all nodes and edges outside these
borders form the left-hand side and the graphical com-
ponent of a constraint is given by the left-hand side plus
one of the dashed bordered parts and the corresponding
embedding. Variables are declared for the left-hand side
or for one of the constraints, depending on where they
occur in the graphical representation. G-isomorphic and
a-surjective constraints are written as (non-)equations
at the bottom of the left-hand side of the rule. Con-
straints are negative if they are crossed through. If
no positive constraint is given for a rule I —— R,
AP(r) = {idr}. The combination of both types of ap-
plication conditions is graphically represented by dotted
bordered parts with equations inside the border. An ex-
ample 1s shown in the next section inside of rule trans
in the example 4.

Using this interpretation mkpre = (L LN
R, ({idr}, {l1,12})). L and R are attributed with
Tyar(X) for X = {i,0,w} while L, is attributed with
Tynar(XU{wl}) and Ly with Tyar(X)/=,,_,, - Thisis
equivalent to the non-equation of figure 5 due to propo-
sition 18.

cl

c| fire

C=® V c=y+m+r,

Fig. 6. Firing of transitions of arity (2,1) wrt. capacities.

Firing of transitions wrt. capacities is modeled by
rules similiar to fires; in figure 6. There, we have to
consider two cases. If ¢ = w, the capacity is unbounded.
Otherwise we have to make sure, that y+m < ¢ which is
done by the equation ¢ = y+m+r. These equations are
expressed by positive constraints and their disjunction
is reflected by the digjunction of constraints in AP(r).

Page 7

4 Amalgamation of rules

In this section, we describe a concept how (possibly in-
finite) sets of rules which have certain regularity can be
described by a finite set of rules modeling the elemen-
tary actions. For the description of such rule schemata
the concept of amalgamating rules at subrules is used
([BFHS8T]).

Graph transformations on such amalgamated rules
combine parallel and sequential concepts of graph
rewriting and can be regarded as an extension of the
parallel graph grammar approach ([EK76]) offering ad-
ditional features.

The concept of amalgamating rules can be used to
describe complex embedding of rule applications in un-
kown context as well as parallel specification of so-called
forall-operations. Moreover, it provides a general con-
cept to describe parallel actions with the possibility of
synchronization.

To model interaction between different parallel ac-
tions the concept of subrules is used. The well-known
definition of a subrule as in [L6w93] is extended to con-
ditional rules in the following definition.

Definition20 (Conditional subrule). Given
two conditional, assignment-controlled rules # = (L -
R,A(r)) and s = (Ly > Ry, A(s)) 5 is called (condi-
tional) subrule of # if there are total a-quasi-identical
morphisms a : Ly — L and b : Ry — R called cond:-
tional subrule embedding se = (a,b) of § into 7 (short
$ 2% 7) such that bos =roa.

A so-called application pair (8, m;) is embedded into
the application pair (#,m) if, additionally, m o a = m;,.

All conditional rules on objects in AGRAPH ,rrp
and conditional subrule embeddings describe a cat-
egory RULE. Furthermore, all application pairs to
a graph G with their embeddings form a category
APAIR;. Identities and compositions in these cate-
gories are reduced to those of morphisms. Forgetful
functors Vo, V3 : RULE — AGRAPH ,ppp are defined
by Vo(L — R) = L, Vu((a,b)) = a,Vi(L — R) = R
and V3((a,b)) = 6.V, : APAIR, — RULE is de-
fined by V.((#,m)) = # and V,(se) = se whereas V,, :
APAIR; — (AGRAPH 175 | G)? by Vi((#,m)) =
m and Vi, ((a,b)) = a. In further settings, we need also
application pairs of rules without conditions and their
matches. The corresponding functor V, : APAIR, —
APAIR, is defined by V.(((r, A(r)),m)) = (r,m). All
functors are summarized in figure 7.

For the description of a complex operation, the ele-
mentary rules which can be applied in principle are sum-
merized in so-called presynchronisation rules. Moreover,

2 (AGRAPH?TTR | G) denotes the category of all arrows
in AGRAPH™ . with codomain G.

-

RULE G

RULE (AGRAPH ATTRV)
N /
A Va
AGRAPH o

Fig. 7. Forgetful functors

all interaction possibilities with other elementary rules
are described by specifying the subrule embeddings al-
lowed. One of the interaction possibilities has to be used
for synchronizing the elementary rules. If interaction is
not required the empty rule has to be subrule of the
corresponding rules.

Definition21 (Presynchronization rule). Let SG
be a graph to the graph structure signature GS =
(S, T,E),(s : B — St : F — T)), called synchro-
nization graph. A presynchronization rule SR 1s a graph
SG wrt. S where all T-nodes are labeled with rules; all
S-nodes with subrules of them and all edges with corre-
sponding subrule embeddings. Shortly, SR is a diagram
SR : SG — RULFE in the category RULE. For all
r € SGr : I(SR(z)) = {SR(e)|t°“(e) = z,e € SGg}
describes the interface of an elementary rule SR(z).

SR is called simple if Vé € SR(SGr) the cardinality
1(e)[= 1.

If the embedding of subrule § into an elementary rule
é is permitted to be arbitrary all possible subrule em-
beddings s — € are included in SR.

The concept of presynchronization rules can be com-
pared with that of tables in other approaches to parallel
rewriting of graphs (f.ex. in [NA83], [DDK93]) but it is
more expressive because the set of possible interfaces be-
tween productions can be specified additionally, which
cannot be done using tables.

Applying a presynchronization rule to a given graph
there are a lot of possibilities to get a covering of the
graph, at least a partial. Such a partial covering clears
up which elementary rules are applied and how often.
Moreover, 1t determines which matches and subrules
are used and what are the corresponding subrule em-
beddings. Note that these coverings are called partial,
because, in general, not the whole graph is covered by
elementary matches but these single matches have to be
total also in the following.

Definition22 (Partial covering). Let CG be a
graph to the graph structure signature GS in defi-

nition 21, called covering graph such that Vi;,¢{, €
CGrAt, <= 5 2 1y) € CG.

Page 8

A partial covering C'OV of an attributed graph G
is then a covering graph C'G where all nodes of C'Gs
and CGrp are labeled by application pairs to G and
all edges of C'Gg are labeled by subrule embeddings,
shortly COV is a diagram COV : CG — APAIR; in
category APAIR .

Given a presynchronization rule SR : SG — RULE
COV(SR, () denotes the set of all coverings of G by
SR for which there is a graph morphism ¢ : CG — SG

such that the following diagram commutes.

cov
CG—= APAIR G

c Vl’

SR
SG— RULE

Fig. 8. Partial coverings

Some coverings which are interesting with regard to
the examples that have been investigated so far are de-
scribed in the following definition.

Definition23 (Special covering constructions).
Let all following partial coverings COV be defined as in
definition 22. We distinguish the following special sets
of coverings which are subsets of COV(SR, G):

1. Basic coverings: All COV € COVP**(SR, G) sat-
isfy the condition: |C'Gr| = 1.

2. Complete coverings: All COV € COV" (SR, G)
satisfy the condition: The colimit of V, o V. o COV
yields G.

3. Fully synchronized coverings:
All COV € COVH™ (SR, () satisfy the condition:
Vp=(t1 <=5 2 1y) € CG : (Vo(V(COV(P))as
is the pullback of (Vi (COV (¢1)), Vi (COV (¢2))) s
in the category AGRAPHZ 3

4. Different-match-coverings:

All COV € COVHIT (SR, G) satisfy the condition:
—3ty, 82 € CGr : Vi (COV (1)) =2 Vi (COV (1)) if
Vi (COV(ty)) 2V, (COV(ta)).

5. All-match-
coverings: Let C(’)Va”(SR,G) c coydits (SR, ()
such that YCOV € COV*(SR,G) : ~3COV’ €
COVHII (SR, G) such that
Vm € Vi, (COV(CG)) : m € Vi (COV/(CGY)) and
Im' € Vi, (COV!(CG)) :m! @ Vi (COV(CQH)).

? The index ’GS’ denotes the restriction of the diagram to
the graph structure part. For the existence of pullbacks of
total graph structure morphisms see [Low90].

6. Local-different-match-coverings: Let
COV'etiIN (SR, G) € COVHII(SR,G) such that
for all COV € C(’)Vdiff(SR,G) Vei, e € CGp -
t9%(e1) = 19 (eq) implies) = es.

7. Local-all-match-coverings: Let COV'¢! (SR,G) C

COV'*UII(SR,G) such that YCOV €
coV'e (SR, G) : ~ACOV’ € COV' U (SR, G)
such that Ym € V,(COV(CG)) @ m €
Vi (COV(CG")) and Im’ € V,(COV(CE"))
m' & Vi, (COV(CG)).

Definition24 (Synchronization rule).

A presynchronization rule SR together with a cover-
ing construction
cc € basic,comp, sync,dif f,all locdif f,local, arb}
where arb allows all possible coverings, (SR, cc) is called
synchronization rule. Given a graph G the set of cover-

ings COV“(SR, () is described.

A basic covering is exactly one application pair con-
sisting of a conditional rule and its match to a graph
G.

Complete coverings cover the whole graph G| thus,
they are real coverings.

In coverings which are fully synchronized, the images
of all subrules in G describe exactly the overlapping of
images of corresponding elementary rules.

Different-match-coverings are not allowed to contain
isomorphic matches for isomorphic elementary rules.

The algorithmic way of constructing all-match-
coverings for a given presynchronization rule SR and
a graph G is the following:

Look first for all matches of all elementary rules of
SR(SGr) in G. For each two distinct matches of el-
ementary productions r; and rs find then a common
subrule s in SR(SGg) with subrule embeddings into rq
and ro such that the left hand sides of v and ry overlap
in the mapping of the left hand side of s in G which has
to be covered. The covering of GG consists of as many
copies of all elementary rules as different matches have
been found together with their matches in G. Further-
more, for each two copies of them a copy of the right
subrules is joined. All elementary rules with matches in
G that do not have common subrules do not belong to
the covering of G

All subrules of local-all-match-coverings have to be
the same for fullfilling the correponding condition.

The types of covering given are only some examples
of covering the mother graph. Other types of coverings
are imaginable.

Considering somehow simplified synchronization
rules, uniqueness can be stated for some covering con-
structions.

Corollary 25 (Uniqueness of covering construction).

Let SR be a presynchronization rule and G a graph.

Page 9

1. If SR is simple |COV* (SR, G)| = 1.
2. IfVé € SR(SGT) : no two subrule embeddings in
I(é) have subrules with isomorphic left hand sides

|COVY™ (SR, G) N COV* (SR, G)| = 1.

Proof. These results follow directly from the assump-
tions chosen above.

Given a partial covering, an amalgamated graph
transformation i1s performed in two steps. First a new
rule, the so-called amalgamated rule, is generated. This
rule models the synchronization of all elementary ac-
tions at their interface actions. The synchronization is
done by gluing the left hand sides and right hand sides
of all elementary rules at their interfaces. The amalga-
mated rule is then applied to the actual graph by con-
structing the usual single-pushout as described above.

Definition26 (Amalgamated graph transformation).

Given a partial covering COV of a graph G as defined
in 22, an amalgamated graph transformation G — G’
over COV consists of the following two steps:

1. Construction of the amalgamated rule 7 = (v, A(r)):

(a) (r,m) is the colimit object of V,(COV(CG))

with (as,b;) : COV(t) — (r,m) for all t €
CGr.

(b) Let v, = V.(COV(t)) for all t € CGr and
5. = V. (COV(s“Y(e))), t. =t (e) and a, =
Va(Vo(COV (e))) for all e € CGg. The ap-
plication condition of r is defined by A(r) =

Niecar aff A(re) A Neccaylar o ac)# Ase).

Is,

LSe e RSe
a
\ae, be \be,
r
Lt N : I Rt
L t ! R.,
Ao g
L R
m t m mt
G G

Fig.9. Amalgamated graph transformation

2. Application of the amalgamated rule 7 to graph G
with match m by a simple graph transformation

G = G

Obviously, 7 is a conditional rule in the sense as de-
fined above.

The colimit of COV(CG) is obtained by constructing
the colimits of covy = Vi (V. (COV(CG))) and covyp =

V3 (V- (COV(C@))). Morphisms r and m exist uniquely

by the universal property of covy such that roa; = r;
and moa; = my, ¥t € CGrp.

Definition27 (Gluing of graphs). The colimit of
morphism stars M.S = (G, L Gs. I Gi.)eelecin
as they are used for the construction of colimits of covy,
and covg can be constructed in the following way. M S
consists of attributed graphs Gy,, G;_, and G, and to-
tal a-quasi-identical morphisms g. : G5, — Gy, . The
colimit of M Sgg in category GST 4 is constructed by
the following steps. Let I; be the equivalence relation
generated by the relation Ig = {(ge(z), 9. (2)) | ® €
Gs.,e, ¢’ € CGg}. The colimit graph Ggg of MSgs is
then defined by Ggs = (L’!’JeeCGE (Gte)GS)/fG, the quo-
tient set of the disjoint union of all (G4,)gs. Functions
(9:.)as : (Gi)as — Gas send each element of (G4,)gs
to 1ts equivalence class in Ggs.

The attribute algebra Ggrg = Tsrg(X) where X =
(Wiecar (X))1s if (ri)sic = Tsia(Xe). All (g4)s16
send each element of Tgrg(X:) to its equivalence class
n TSIG (X)

Proposition28 (Special colimits in AGRAPH 7 r)-

Given a morphism star M .S as above, the graph G and
morphisms (g:)tecay constructed above form the colimit

of MS.

Proof. 1. (Gas,((9t)es)iecay) 1is the colimit of
MSgs in GS*. g1, 0 9. = Gt © Yel Ve,e' € CGp,
follows directly from the construction of all g;_.
Given GS-morphism k;, : (Gi)gs — Kgg with
ki, 0 ge = ki, 0 ger, Ve, e/ € CGE, there is a GS-
morphism ugs : Ggs — Kgs with u([z]) = ki_(2)
for # € (G4,)gs. Tt is straight forward to check that
u is well-defined and that wog;, = k¢, Ve € CGE.
Assuming another v : Ggs — Kgg with vo ¢g;, =
k. 1t follows that v has to be defined the same way
as u. Hence, u 1s unique.

2. All variable sets X;, ¢t € CGp, can be in-
terpreted as graphs to the graph structure sig-
nature NODES consisting of one sort. There-
fore, X as constructed above 1s a colimit object
in Alg(NODES). Since free constructions® pre-
serve colimits (Tsrq(X), ((91)s16)teca,) as de-
fined above is the colimit of M Ssr¢ in Alg(SIG).

3. All attributions attr® are well-defined since they
are induced morphisms out of Ggg such that
attr® o (gt)GS = (gt)SIG o attrG’, Vi € CGr.

Proposition29 (Applicability of amalgamated rule).

* GST is a subcategory of GS allowing only total
morphisms.

°® Tora(X) is the free SIG-algebra over X, see [EM85].

Page 10

Let COV as defined in 22 and notions ry, s., t. and
a. as in definttion 26. An amalgamated rule r as con-
structed above is applicable to a graph G by a match m
as defined above iff all rules of COV are applicable at
their matches in Vi, (COV(CG)).

Proof. Let ¥t € CGr : my |E A(ry) and Ve € CGg :
ms, | A(se). According to colimit properties of [=
Vo (r) this is equivalent to ¥t € CGr : moa; = A(ry) and
Ve € CGg :moay, oa. = A(se). Using proposition 11
we get Vi € CGrp :m = a¥ A(ry) and Ve € CGp :m =
(ar, o a.)#* A(s.). With proposition 9 this is equivalent

tom E Aiccar aff A(re) A Neecay (@ o ac)# A(s.).

Embedding of rule application into unknown context
is modelled by a simple synchronization rule with the
same subrule for all elementary rules. This subrule de-
scribes the essential action that has to be embedded into
unknown context. In each elementary rule this basic ac-
tion is then extended by a part of the embedding spec-
ified. All local-all-match-coverings are allowed as input
for amalgamated graph transformations.

Example4 (Firing of arbitrary transitions). The
firing of arbitrary transitions is described by the fol-
lowing two elementary rules in and out modelling the
actions on input and output places. Since one transi-
tion fires these actions have to be synchronized at this
transition. Thus, there is a subrule trans of in and out
just holding the transition. (See figure 10.) The negative
application condition of trans prohibits its application
in a context where in- and out-places do not satisfy the
firing conditions. These application conditions are not
necessary in example 3 since the attribute attrg,;¢y of
transitions is used there.

Fig. 10. Elementary rules for the firing of transitions

As conditonal subrule embeddings we allow all pos-
sible embeddings from trans to in and out which are

exactly two, one to in and one to out. The corre-
sponding presynchronization rule SR consists of rules
tn, out and trans with the obvious embeddings. To
fire one transition we are interested in local-all-match-
coverings. Thus, we define the synchronization rule
fire = (SR, locall).

Given a net N as in figure 11 we find four differ-
ent matches ml, m2, m3, m4 of in and out which over-
lap all in the left transition of N. Similarly, we would
find two matches for our elementary rules if we want to
fire the right transition. Since all subrule embeddings
are clear we get the covering C'OV over synchroniza-
tion rule SR shown in figure 12. Obviously, COV is
a local-all-match-covering. If we would allow all-match-
coverings the whole graph would be covered. Note that
the corresponding amalgamated rule would not model
the parallel firing of transitions.

Fig.11. Example place/transition-net N

Fig. 12. Covering COV of N by SR

Gluing all rules according to the partial covering
COV(CG@G) we get the amalgamated rule in figure 13
which models the firing of a transition with two input-
and two output-places.

For-all-operations are modelled by using general all-
match-coverings. If interaction should be performed
only via subrules fully-synchronized-coverings are the
right means.

Page 11

.

fire

Ryt Sht Ll

J .

3= Vv c3=y3+03+r3

A= v cd=yd+o04+rd

Fig. 13. Amalgamated rule for firing of transitions with arity
(2,2)

5 A simple transaction concept

Up to now, we could only control the application of
a graph rule by its local context; this effects only the
transformation with this rule. Moreover, we can con-
trolle the parallel application of rules by certain syn-
chronizations which are more or less local. To control the
sequentual applicability in a global context, 1. e. the or-
der and the frequency of rule application for more than
one rule, we introduce the notion of a simple transaction
concept. This concept allows to define imperative con-
trol structures for graph transformation using popular
syntactical constructions often found in programming
languages. The choice of these constructions is origi-
nated in a students project [CDG94].

Additionally, we introduce a denotational semantic
for these transactions based on the semantic defined in
[Sch94b]. The application of a transaction to a graph
could either succeed and will return another graph or it
fails and leave the graph unmodified.

First of all, we make an abstraction of the concrete
types of graph rules and graph transformations by the
following definitions:

Definition30 (Rule). A rule is a simple rule or a con-
ditional rule or a synchronization rule.

Definition31 (Transformation). A transformation
(G =, H 1s a simple graph transformation or a condi-
tional graph transformation or an amalgamated graph
transformation with rule r.

Now we can define the simple transaction concept for
graphs based on rules and transformations:

Definition32 (BNF for transactions). A transac-
tion is defined by the BNF-form in table 1.

Our intention of the above defined syntactical construc-
tors:

— A; B 1s the sequential composition of the actions A
and B

— case(Ay, ..., Ap) is the sequential working out of
the actions A3 to A,, 1. e. if A; fails then try A;41

— {A, B} is the representation of a nondeterministical
choice between the action A and B

— O is an operator to indicate that an action should
be active as long as possible

— Leom are operators to define that an action should

happen 1,...,n times

For the definition of the denotational semantic for our
transactions we will first of all introduce here the BCF-
form (basic control flow) from [Sch94b] in table 2.

Now we shortly describe the intention of the BCF-form:

— skip represents the identity operator

— loop which represents the nonterminating looping
construction

— def(A) returns a graph G if the action A is appli-
cable to G

— undef(A) is the complement of de f(A)

— (A; B) is the same as 4; B -

— (A[]B) is the same as {4, B}.

In [Sch94b] there is a fixpoint semantic defined for the
BCF-form on an underlying semantic domain D :=
26x(9U{ee}) | whereby G is a set of graphs, we adapt
that to G C Obj(AGRAPH ,77r) and oo represents
potentially nonterminating computations.

If we want to apply fixpoint theory to recursively de-
fined transactions we have to construct a suitable par-
tial order for our semantic domain D. This is done in
[Sch94b] and the partial order ”<“ for R,R' € D is
defined as follows:

R <R VGG eg: (G,G)e R= (G =
oA (G,G") e R)V(G,0) ¢ R= (G,G') € R&
(G,G") e R).

Obviously ”<“ is a partial order and it is shown that
its 7 chains have joins“ condition holds:

Let (R*)aeordinal © D be achain, i. e. for any ordinals
a and § holds: R® < RP. Then the join of the given
chain is defined as follow: R := U(R®) := {(G,) |G’ #
coVda: (G,G"YeE R* NG =coVVa: (G, 00)€ R}

Now, a semantic function R is defined from the syn-
tactical domain of BCF expressions or transactions onto
the semantic domain D. Let A, B €< BCF — Ezp >
and R :< BCF — Exp >— D and P is a set of rules
which is adapted to P C Obj(RULES) a set of rules.

1. (G,@) € R[skip] = G =G

2. (G,G" € R[loop] & G' = .

3. (G,G") € R[r] & G =, G', for any rule r € P.

4. (G,G") € Rldef(A)] = 3G" # o : (G,G") €
RIAIANG =GV (G, 00) € RIAIA G = 0.

Page 12

< transaction >
< transactionbase >

n= < transactionld > ¢ =|| “ < transactionbase > “||
= < elementary — transaction >

| < elementary — transaction >

“case(“ < transactionbase > “ ¢

= < transactionbase >

| < transactionbase > < othercase >;
< elementary — transaction > ::= “{“ < actionsel > “}¢ < application frequency >;
< application frequency > = Cbefede) e
< actionset > = < action > | < action > < actionset >;
< action > s=<ruleld > | < transactwn[d >;

“ ¢ < transactionbase >

< othercase > “)%
< othercase >

[T

[T

Table 1. BNF of transactions

< Transaction > = < Transactionld > “= “ < BCF — Fxp >;

< BCF — Exp > 1= < BasicAction > | < ActionCall > | < BCF — Term >;
< BasicAction > = “skip“|“loop*,
< ActionCall > =< Ruleld > | < Transactionld >;

< BCF —Term > == “def““(“< BCF — Exp > “)¢|
((me‘fﬁ(“(((< BCF_E:EP> (()((|
“(“< BCF — Exp > “ “< BOF — Exp>)|
“(“ < BOF — Exp > “[|“ < BOF — Eap >)

Table 2. BCF-form of transactions

semantics for transactions with and without recursion.

5. (G,G") € Rlundef(4)] = (36" : (G,G") € — Sem(r) := R[r].
RIADANG =GV (G,00) € RIA]A G = o0, o)]
6. (G,G') € R[(A;B)] & 3G" # 00 : (G,G") € n [Sch94b] it is shown that R is a monotonic func-
R[:‘l]/\(G” G ’ER[B]\/(G 00) € R[A]/\(’;/ - . tion. There is also shown that there exists a fixpoint
(

7. (G, G') € R[(A]B)] - (G, G") € R[A] v
R[B.

(G,G" €

To develop a fixpoint semantics for recursively defined
transactions we will use the following version of a fix-
point theorem:

Let F' be a monotonic function(al) on a partially or-
dered set in which every chain has a join, and let f?,
for ordinal «, be defined inductively by F® = (Ug.p<a :
f(f?)). Then F has a least fixpoint given by f<, for
some ordinal «.

Definition 33 (Semantic for transactions).
Let A, B €< transactionbase >. The semantic function
Sem :< transactionbase >— D is defined as follows:

— Sem(A1; Ag;.. 3 An) = R[(A;Th)] with T, =
(Aiy1;Tigr) fori=1,...,n—1land T,_1 = A,
- Sem({A1 ; Az, .. A }) = R[(Al []Tl)] with E =

(Ai1Ti41) forz_ 1,...,n—1and T,,_1 = A,
- Sem(M(Al,Az,...,An)) =
R[((def(A1); A1)[(undef(A1); T1)] with T

((def(Aig1); Aig1)[J(undef(Aipr); Tigr) for i =

1,...,n—1 and
Tr-1 = ((def(An); An)[lundef(Ay))
— Sem(AD) := R[T] with T :((A, Mundef(A
- fem(A”) :1— RI(A;T1)] with T; = (A; T;41) for i =

Therefore, the semantic function R is expanded to
R[E] : D* — D whereby E denotes a BCF expression
containing transaction identifiers 71, ...,7,. Provided
with the semantics R[Th], ..., R[Ty] of T1 to T, the se-
mantics of F is given by the definition of the semantics
for BCF expressions above and is denoted as follows:
RIE]RIT1], ..., R[Tx]]. Then in [Sch94b] it is shown
that the following construction defines fixpoint seman-
tics for transactions: Let 77 to 7,, be transactions of the
form Ty = Eq[Ty,...T,),...,Tn = En[Th,...,T,] then
the following holds: (1) T3,...,7, have least fixpoints
RI[T1],...,R[T,] € D and (2) approximantions of these
fixpoints may be constructed as follows: R := D x {oo}
and REFL .= R[E[RY,...RE] for i = 1...n where
R[E;] : D" — D takes approximations for T1,...,T,
and yields a new approximation for 7; by applying R
to expression Fj;.

Now we are able to define a semantic for recursively
transactions in our sense:

Definition 34 (Semantic for recursively transactions).

Let E be a transaction as defined in 32 which contains
transaction idenitfiers 77 to 7;,. Then the semantic func-

tion Sem[E] : D™ — D is defined by Sem[E] := R[FE].

Now, we are able to show that our semantic function

Page 13

Sem is monoton and has a fixpoint semantics:

Corollary 35 (Fixpoint semantics for transactions).

Let T be a transaction and

Sem :< transactionbase >— D 1is the semantic func-
tion defined above, then Sem s a monotonic function
and Sem(T) € D has a least firpoint.

Proof. That Sem is a monotonic function follows direct
from the definition of it and the fact that R 1s monoton.
A least fixpoint Sem(T) € D exist because the transac-
tions defined in [Sch94b] have a fixpoint semantics.

Example 5 (Deadlocks in a Petri net). Using the
rule fire as specified above to describe deadlocks in a
Petri net we can define the following simple transac-
tion: Find-deadlocks := || fired||. Note, if we regard the
semantics of Find-deadlocks the resulting set of graphs
describe all situations with a deadlock in the given Petri
net.

6 Conclusion

Combinig attribution concepts and control mechanisms
in one graph transformation formalism the question
arises if this formalism is adequate to specify software
systems such as the AGG-system. Adequacy means here
convient and powerful concepts without being over-
loaded. Comparing our formalism with logic based pro-
grammed structure rewriting presented by A. Schirr
in [Sch94b, Sch94a] we may get a first answer. The
extensions we made in this paper bring the algebraic
graph grammar approach close to programmed struc-
ture rewriting systems. That approach functions as the
underlying formalism of PROGRES ([Sch91]), a rule
and graph based language for the specification of soft-
ware systems. Similarily to PROGRES, it seems to be
more convient to develop a useful syntax for our control
concepts. For all extensions some proposals concerning
graphical and textual notation are made and have to
be worked out. A graphical description of control often
increases clearness, consider for example Petri nets.
All extensions of the single-pushout approach to
graph transformations made in this paper are relatively
young, moreover, the approach itself is not old. Thus,
first steps in those directions are made and a lot of ex-
tensions of each of the concept are imaginable. For ex-
ample, a change of the underlying category to that of
partial algebras with partial homomorphisms such that
graph objects can be considered as attributes is inves-
tigated in [WG94]. Application conditions may cover
also cardinality restrictions concerning the number of
edges or nodes in certain parts of a graph, path expres-
sions, etc. Amalgamation of rules should be classified
according to different embedding and synchronization

problems and interesting structures of synchronization
and covering graphs should be examined.

A big and difficult task is to carry over theoretical re-
sults known for the pure SPO approach to our new for-
malism as, for example, concepts of independence and
parallelism of graph transformations, embedding, con-
currency, etc. First results are present for attribution,
application conditions and amalgamated graph trans-
formations but have to be extended and combined.

REFERENCESREFERENCESREFERENCES

[BFH87] P. Bohm, H.-R. Fonio, and A. Habel, Amal-
gamation of graph transformations: a syn-
chronization mechanism, Journal of Com-
puter and System Science 34 (1987), 377-
408.

M. Beyer and G. Taentzer, Amalgamated
graph transformation systems and their use
for specifying AGG - an algebraic graph
grammar system, Accepted for Proceedings
of Graph grammar workshop in Dagstuhl 93,
1993.

[CDG194] M. Conrad, J. Demuth, M. Gajewsky,
R. Holl, M. Rudolf, and S. Weber, Spe-
ztfizieren mit Graphtransformationen und
Petrinetzen am Beispiel eines Graph-FEdi-
tier- und Transformations-Systems, stu-
dents project report, May 1994.

G. David, F. Drewes, and H.-J. Kreowski,
Hyperedge replacement with rendezvous, to
appear in proc. of 12th conf. of FST and
TCS92, 1993.

H. Ehrig, Introduction to the algebraic the-
ory of graph grammars, 1lst Graph Grammar
Workshop, Lecture Notes in Computer Sci-
ence 73, 1979, pp. 1-69.

H. Ehrig and H.-J. Kreowski, Parallel graph
grammars, Automata,Languages, Develop-
ment (A. Lindenmayer and G. Rozenberg,
eds.), Amsterdam: North Holland, 1976,
pp. 425-447.

H. Ehrig and B. Mahr, Fundamentals of al-
gebraic specification 1: Equations and ini-
tial semantics, EATCS Monographs on The-
oretical Computer Science, vol. 6, Springer,
Berlin, 1985.

Annegret Habel, Reiko Heckel, and Gabriele
Taentzer, Graph grammars with negative ap-
plication conditions, submitted to special is-
sue of Fundamenta Informaticae, 1994.

L. Hofmann, Anwendung
algebraischer Graphgrammatiken zur Werk-
stuckerkennung tm Rahmen von CIM, Stu-

dienarbeit, TU Berlin, 1993.

[BT93]

[DDK93]

[Ehr79]

[EK76]

[EMS5]

[HHT94]

[Hof93]

Page 14

[HS73]

[LKW93]

[Léw90)]

[Lw93)]
[NAS83]
[Rei85]
[Sch9l]

[Sch94a]

[Sch94b]

[Tae92)

[Tae94]

[WG94]

H. Herrlich and G. Strecker, Category The-
ory, Allyn and Bacon, Rockleigh, New Jer-
sey, 1973.

M. Lowe, M. Korff, and A. Wagner, An al-
gebraic framework for the transformation of
attributed graphs, Term Graph Rewriting:
Theory and Practice (M.R. Sleep, M.J. Plas-
meijer, and M.C. van Eekelen, eds.), John
Wiley & Sons Ltd, 1993, pp. 185-199.

M. Lowe, Extended algebraic graph transfor-
mation, Ph.D. thesis, TU Berlin, 1990.

M. Lowe, Algebraic approach to single-
pushout graph transformation, TCS 109
(1993), 181-224.

A. Nakamura and K. Aizawa, On a rela-
tionship between graph l-systems and picture
languages, TCS 24 (1983), 161-177.

W. Reisig, Petri nets, Springer Verlag, 1985.
A. Schurr, Progress: A vhi-language based on
graph grammars, LNCS532, Springer, 1991.
A. Schurr, Logic based programmed structure
rewriting systems, submitted to special issue
of Fundamenta Informaticae, 1994.

A. Schurr, Logic based structure rewriting
systems, Graph Transformations in Com-
puter Science (H.-J. Schneider and H. Ehrig,
eds.), Springer, 1994.

G. Taentzer, Parallel high-level replacement
systems, Tech. Report 92/10, TU Berlin,
1992.

Gabriele Taentzer, Synchronous and asyn-
chronous graph transformations, submitted
to special issue of Fundamenta Informaticae,
1994.

A. Wagner and M. Gogolla, Defining oper-
ational behavior of object specifications by
attributed graph transformations, submitted
to special issue of Fundamenta Informaticae,

1994.

This article was processed using the IATpX macro package
with LLNCS style

Page 15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

