
Hierarchically Distributed GraphTransformation?Gabriele TaentzerComputer Science Department, Technical University of Berlin,Franklinstr. 28/29, Sekr. FR 6-1, D-10587 Berlin,e-mail: gabi@cs.tu-berlin.deAbstract. Hierarchically distributed graph transformation o�ers meansto model di�erent aspects of open distributed systems very intuitivelyin a graphical way. The distribution topology as well as local objectstructures are represented graphically. Distributed actions such as localactions, network activities, communication and synchronization can bedescribed homogeneously using the same method: graph transformation.This new approach to graph transformation follows the lines of algebraicand categorical graph grammars and �ts into the framework of double-pushout high-level replacement systems.Keywords: Graph transformation, distributed systems, communication, syn-chronization1 IntroductionGraphical representations are an obvious means to describe di�erent aspects ofsystems. Modeling distributed and concurrent systems graphs are often used todescribe the topological structure of the system. The graphical structure showsthen which parts are involved and what are the ways of communication. Graphtransformations can be used conveniently to model dynamic changes of the sys-tem structure. For example, the distribution of some local parts is rearranged orcommunication channels are created or deleted. Local states are typically codedin some speci�cation or programming text or not considered. This idea is fol-lowed, for example, in [3], by �-grammars in [9], in [13] and by actor graphgrammars in [11].Graphs can be used also to model complex object relations inside of local partsof a system as they arise, for example, in database systems (entity-relationshipmodels described in [2]) or software process modeling (development graphs asused in [12] or project ow graphs in [10]). Graph transformations are usefulthen on these lower levels to specify changes of object relations.The possibility to allow local actions to run concurrently can be modeled bydistributed graph transformation following the algebraic approaches in [5], [8]? This work has been partly supported by the ESPRIT Working Group 7183 \Com-puting by Graph Transformation (COMPUGRAPH II)"

and [15]. Here, some restricted types of network structures are allowed whichcan be changed by special operations, namely SPLIT and JOIN. SPLIT splits agraph into two or more local graphs with an interface graph between each twowhere the connection to the local graphs is described by graph morphisms. Alocal graph is not allowed to be split again, i.e. hierarchical network structurescannot be modeled. JOIN joins a distributed graph of such a kind again to onegraph.An approach which combines graph transformation on the network and onthe local level is the work of categorical graph grammars in [14]. This kind ofgraph grammar allows a exible change of network structures and a descriptionof local actions for example by graph transformation. Communication is notexpressed by means of graphs and graph morphisms, i.e. object identity has tobe coded into names, for example.With hierarchically distributed graph transformation the advantages of thecategorical and algebraic graph grammars for modeling distributed systems arecombined. It is possible to handle complex network structures, especially hier-archical ones. Communication and synchronization can be modeled by interfacegraphs which are connected to their local graphs by graph morphisms, i.e. objectidentities are described by graph morphisms between di�erent local states.This paper is organized as follows: In the next section the modeling of dis-tributed systems based on graph transformations is discussed. A simpli�ed exam-ple of distributed software development serves as illustration. All main featuresare introduced in that section. In section 3 the formal description of hierarchi-cally distributed graph transformation is presented following the double-pushoutapproach to graph transformation ([4]). It is shown that this new approach �tsinto the framework of HLR-systems introduced in [6]. For this section the readeris supposed to be familiar with basic notions of category theory as they arepresented, f. ex. in [1]. A reader not interested in the formal description of hier-archically distributed graph transformation can skip section 3 and gets a goodimpression of hierarchically distributed graph transformation anyway.2 Distributed SystemsModeled by Graph TransformationIn this section the main features for modeling of distributed systems by graphtransformations are presented. Distributed states are modeled by graphs andstate transitions, i.e. local actions, network activities or communication are mod-eled by graph transformation.Example 1 (Distributed software development). Several people developing a soft-ware system in parallel have to cooperate with each other. As an support de-velopment graphs (introduced in [12]) or project ow graphs (presented in [10])can be used which describe di�erent states of software development. These kindsof graphs have been introduced in order to assure software quality and possiblyspeed up the project. The developers are allowed to concurrently work on thesoftware. Every development step is described by a graph transformation, in the

following. All further examples are closely related to project ow graphs andtheir developments, although they are simpli�ed in some minor points.2.1 Distributed StatesUsually a state of a system can be described by a graph where the nodes representobjects and the edges relations between them. If the state is a distributed one itcan be reected by several graphs where each of them shows a local state. In thefollowing we call graphs describing a local state local graphs. The objects andrelations in such a local state are called local, too.Example 2 (Local software development graph). In so-called local developmentgraphs dependencies between di�erent units or, more concrete, documents, in-put and output relations of development tools and revisions of documents aremodeled. Such a graph stores about the same information as a revision andcon�guration management system together with a tool like \make". The localgraph in �gure 1 contains three nodes of type \doc" modeling documents, two\tool"-nodes modeling two di�erent development tools, i.e. editors, compilers,etc. and two \rev"-nodes standing for two revisions of documents. Furthermore,input and output relations are described by edges from \doc"-nodes to \tool"-nodes and vice versa. They are drawn as solid arrows. Edges drawn as dashedarrows model dependencies between di�erent documents. A \doc"-node with a\rev"-node at its lower right part represents a document which has a revision.Notice that there is not an arrow which explicitly shows this relation. Internallythe relation is modeled by an edge as all other relations, too.
doc

rev
doc

tool

rev
doc

toolFig. 1. A local development graphDi�erent local systems are usually connected by some kind of network. Theyinteract with each other by some interface. The interfaces as well as the localsystems are allowed to change their states. This means that we have not only localstates but also interface states and, moreover, network states. In the networkstates the current distribution structure of the whole system is stored. It changesif, for example, new local systems are added or connections are changed.Modeling the network structure of local systems by a network graph its nodesrepresent the local systems. These nodes are called network nodes. The edges ofthe network graph describe relations between local systems. These network edgescan model some kind of links that have to be hold consistent.

The whole distributed state is described by a so-called hierarchically dis-tributed graph, short HD-graph, which consists of a network graph where eachnetwork node is equipped with a local graph representing the current state ofits local system. Each network edge is equipped with a total graph morphismdescribing the relation between two local states. These total graph morphismsare the essential basis for interaction of local systems. They are used to describewhich local objects and relations correspond to each other in di�erent local parts.Local graphs which are the target of such a graph morphism are called targetgraphs. Analogously, the sources of graph morphisms are called source graphs.Example 3 (Development graph). Considering the development of a big softwaresystem it has to be determined �rst which groups and, more concrete, whichpersons have to do which parts. Such a distribution which is usually ratherhierarchical can be modeled by a network graph. In our example a \big project"in the state described in example 2 is modeled by a so-called node which containsthe local development graph in �gure 1. The \big project" is distributed in thoseportions which are handled by one developer each. Thus, the network graphin �gure 2 contains two \developer"-nodes which are connected with the \bigproject"-node by a network edge. It models how a developer part �ts into thewhole project shown by corresponding layout of local graphs.Both developers should cooperate via some interface modeled by an \interface"-node and two network edges from this node to the \developer"-nodes. The localdevelopment graphs in the \developer"-nodes show the local states in each casewhich are parts of the \big project"-graph. The interface between the develop-ers should contain those objects and relations which can be used or should behandled by both. These can be some kind of prereleases of produced documentswhich should be forwarded to other developers. All objects and relations whichdo not have a correspondence in the interface are considered as hidden for otherdevelopers, i.e. they do not have access.Furthermore, the developers can use di�erent views on their developmentparts, namely the \semantical view" and the \operational view" modeled bythree so-called nodes and their connections to the corresponding developer parts.The semantical view shows all documents as well as revisions and their in-terdependencies. The operational view is restricted to the connections betweentools and documents.In [5] and [8] distributed graphs with exactly two local graphs and one in-terface graph, i.e. a source graph which describes common parts are considered.This notion is extended in [15] to an arbitrary number of local graphs where aninterface graph has to be established between each two. In both approaches itis not possible to de�ne distribution hierarchies. This means, for example, thatthere can be an interface between interface graphs.Usually a hierarchy means some kind of tree or, more generally, a directedacyclic graph. In our case of hierarchically distribution it is not an essential stepto allow arbitrary graphs since loops or cycles model a distribution hierarchy,too, but in an abbreviated notation. For example, a network described by a

rev

rev

big project

developer

semantical view operational view

interfacedeveloper

doc doc

doc

doc

doc doc doc

doc

doc
doc

doc

tool

tool

rev

rev

rev

semantical view

doc

doc tool

doc
rev

doc

tool

doc
revrev

doc

doc
rev

tool

Fig. 2. An HD-graph for distributed software developmentgraph that consists of a node with an associated loop can also be modeled byone node and its copy with an edge in between.22.2 Local ActionsIn the graph grammar �eld actions are usually described by graph productionsand modeled by graph transformation. In this paper we use the double-pushoutapproach to graph transformation which characterizes some kind of cautiousrewriting of graphs. This means that for a production and its matching partin some graph the following conditions have to be satis�ed. Context edges arenot allowed to dangle, i.e. a node which is connected to a context node has tobe preserved, and two items (nodes or edges) are not allowed to be identi�ed ifat least one of them should be deleted. These conditions are combined in thewell-known gluing condition. If the gluing condition is satis�ed for a productionand a match of its left hand side in the current graph a new graph is derivedby deleting this occurrence and adding the right hand side of the production.(More details to this kind of graph transformation can be found in [4], etc.)Conceptually local actions are described by HD-graph productions which con-sist of a local production describing the local action and a network productionwhich is identical here, since the network graph is actually not changed. It istransformed by an identical production which preserves that network node wherethe local action took place.2 The property \hierarchical" does not belong to the levels of abstraction which havebeen invented to describe this kind of graph transformation. There are just twoabstraction levels, the network level and the local level.

Such an HD-graph production can be applied to an HD-graph if the localaction is somehow compatible with the context where it takes place. An action ona local graph which is a target graph is not permitted if it destroys the referencestructure to other local graphs, i.e. a source graph cannot be mapped totally toits target graphs any more.Applying an HD-graph production which describes a local action, �rst thenetwork production is applied to the current network graph. This just meansthat the matching of the only network node is replaced identically. The localproduction is applied to that local graph which is equipped with the matchednetwork node. The local production can be applied if the gluing condition issatis�ed for this local graph transformation. After the application the matchednetwork node is equipped with a new graph, the transformed one.Example 4 (Local development steps). Typical development steps are the intro-duction of new documents, merging documents, storing new revisions, mergingrevisions, introducing new tools and therefore changing processing relations orchanging dependency relations. These actions do not change the network struc-ture. Development steps of that kind are considered in the next section. Here,we consider for example the introduction of a new tool as a local developmentstep done by the \big boss" in the state of the \big project". The HD-graphproduction new tool in �gure 3 describes this local development step where atool requiring one input and one output document is introduced.
docdoc

new tool

big project big project

docdoc

toolFig. 3. Introduction of a new toolSince there is nothing deleted in this production it can be applied to thedevelopment graph in �gure 2. Otherwise a reference to an object or relationin the \big project" would be destroyed. Such destructions have to be arrangedwith the developers and, thus, are not local. A similar action as modeled in �gure3 cannot be performed by a developer since it has to be reported to the \bigboss", i.e. all objects and relations belonging to the \developer"-node have tobe totally mapped into the \big project".2.3 Network AdministrationModeling distributed systems by graph transformations means usually the de-scription of network activities. Changes of the network topology can be describedby transformation of the network graph. The deletion and creation of network

nodes and edges has to be done very cautious to avoid inconsistencies. Dele-tions may not destroy the reference structure. Creations have to �t into thereference structure, for example, a node in a new interface graph has to have acorrespondent in all the local graphs it is interface of.If such conditions are satis�ed the network actions can be done concurrently,i.e. connections can be changed, new local parts can be inserted and other localparts (possibly with connections) can be deleted. Moreover, connections can bedeleted and created, too.Altogether a network activity is also described by an HD-graph productionwhere its network production describes the changes of the network topology. Foreach network node which is preserved an identical production has to be appliedto its local state graph. Each network node (edge) which is deleted or createdis equipped with a local graph (morphism) on the left- or right-hand side ofthe HD-graph production, resp. The HD-graph production can be applied if theconditions for deletion and creation described above are satis�ed. Moreover, thegluing condition has to be satis�ed for the network part of the application.Example 5 (Network activities). In a software development process network ac-tivities can be the introduction of a new developer or a new interface, the es-tablishment or changing of connections between developers and the \big boss",etc. In �gure 4 the HD-graph production change connection is shown where theconnection between a developer and a \big project" is relaxed which releases thedeveloper from this \big brother is watching you"-situation modeled in example3. This means that the local state of the developer is no longer a part of that ofthe \big project".
tool

tool

doc
rev

tool

doc
rev

tool

developer

big project

developer

big project

doc
rev

doc
rev

doc
rev

doc
rev

doc
rev

doc
rev

connection
part

change

connectionFig. 4. Changing a connectionApplying this production to the HD-graph in �gure 2 the left \developer"-graph is then connected to the \big project"-graph by an empty \interface"-graph. The whole relation between the corresponding local graphs is completelydescribed in the HD-graph production and can be deleted.

2.4 Communication and SynchronizationSynchronization of di�erent local actions is modeled by such actions on networknodes connected with each other. In this case an action on a source graph has tobe a subaction in some sense of those on connected target graphs. This meansmore or less that the same actions on local items are allowed as in their adjoinedlocal graphs. But in the source graph items may be deleted whereas some of theirimages in the corresponding target graph are preserved. Furthermore, a localitem may be inserted in some source graph if its correspondents are preservedin all connected target graphs.Synchronization is modeled by an HD-graph production where the networkproduction is an identical production similarly to local actions. But here thewhole network part which is more than one node is identically replaced. Allnodes where a part of the synchronized action should be performed have to bedescribed in the network production. Moreover, all network edges which shouldbe used are identically replaced. For each local part a local production, whichmodels that action part of the synchronized action that should be performedthere, should be applied. As before, the application of an HD-graph productionshould not destroy the reference structure. For each local production applicationthe gluing condition has to be satis�ed.Asynchronous communication consists of at least two concurrent actions.They can be performed by using some interface graphs (as in the examples)for the description of channels or common memory. First one local part putssomething into the channel or memory and then the other gets it. Consideringthe interface as an independent local part the other local parts have to syn-chronize themselves with the interface. Thus, HD-graph productions modelingsynchronization can be used here, too.Example 6 (Communication between developers). Synchronous communicationbetween two developers can be described by an \interface"-graph and its con-nections to the \developer"-graphs. In �gure 5 HD-graph production sync newrevision is shown where a new revision of a document created by one developer isestablished in the interface and also in the current state of the other developer.
developer

developer

interface

developer

developer

interface
doc

rev

doc

doc

doc
rev

doc
rev

doc
rev

sync new

revisionFig. 5. Synchronous releasing of a new revision

The application of HD-graph production sync new revision to the HD-graphin �gure 2 leads for example to the slightly modi�ed HD-graph where new \rev"-nodes are established in the \interface"- and in the right \developer"-graphs.Additionally, the new \rev"-node in the \interface"-graph is mapped to its pen-dants in the \developer"-graph.An asynchronous releasing of a new revision may be modeled by HD-graphproduction async new revision in �gure 6. This action has not to be synchronizedwith actions of other developers. \New revision" just means the introduction ofa new revision in the interface which has a link to the original revision wherethe developer worked on.
developer

interface

developer

interface
doc

rev

doc

doc
rev

doc
revasync new

revisionFig. 6. Asynchronous releasing of a new revisionHD-graph production async new revision cannot be applied to the HD-graph in �gure 2 since a new \rev"-node in the \interface"-graph cannot bemapped totally into the other \developer"-graph. But such a partial mappingof the \interface"-graph into the \developer"-graph should be possible for asyn-chronous communication. This can be achieved by a pair of total mappings of anadditional \interface"-graph into the original \interface"- and the \developer"-graph. This additional interface graph would contain those objects and relationswhich should be mapped in any case, i.e. cannot be treated asynchronously. Ap-plying an HD-graph production similar to change connection to the HD-graphin �gure 2 an HD-graph as indicated in �gure 7 can be achieved. This HD-graphcan be transformed with HD-graph production async new revision yielding theHD-graph in �gure 7 with the di�erence that a new \rev"-node is established inthe left \interface"-graph. Additionally, this new node is mapped to the corre-sponding old \rev"-node in the left \developer"-graph.2.5 Distributed SystemsStarting with some network topology and local initializations the initial state ofa distributed system can be described by an HD-graph. Local actions, networkactivities, some kind of communicating actions and, moreover, also mixtures ofthese actions are allowed as state transitions. The whole distributed system isdescribed by a so-called HD-graph grammar consisting of the starting HD-graphand all HD-graph productions modeling distributed actions.Example 7 (Distributed software development system). A distributed softwaredevelopment system can be described by an HD-graph grammar consisting of

developer

doc

tool

rev

interface

doc developer

docdoc

doc
rev

doc

rev

rev
doc

toolconnection
partFig. 7. Section of development graph with changed developer connectiona start graph which could be the HD-graph depicted in �gure 2 and a set ofHD-graph productions modeling distributed development steps also allowed tobe performed concurrently. This set may contain the HD-graph productions newtool, change connection, sync new revision, async new revision, etc. As an exam-ple, a distributed development step may be the parallel application of new tooland async new revision to the state described in �gure 2.3 Formal Description of Distribution ConceptsThe distribution concepts presented in the previous section are formally de-scribed in the framework of the double-pushout approach to graph transforma-tion. This approach is comprehensively described in [4] for directed and labeledgraphs. The double-pushout approach has been generalized to so-called high-level replacement systems in [6] where the main results of the graph grammartheory are abstracted to arbitrary objects and morphisms. In the following weshow that HD-graph transformation �ts into the framework of HLR-systems.De�nition1. LetGRAPH be the category of labeled graphs and (total) graphmorphisms which are label preserving. Given a graph G 3of GRAPH which iscalled network graph a functor Ĝ : G ! GRAPH is called hierarchicallydistributed graph (HD-graph)4.A local graph is denoted Ĝ(i) for a network node i 2 GN . Given a networkedge e 2 GE the local graph Ĝ(s(e)) is an interface graph or source graph,Ĝ(t(e)) is called target graph and Ĝ(e) is a total graph morphism.Example 8 (HD-graph). In �gure 2 an HD-graph Ĝ : G ! GRAPH is shown.Graph G consists of all big ellipses with solidly drawn edges in between. Let d1be the left \developer"-node, its local graph which is drawn inside the ellipse is3 GN describes the set of nodes and GE the set of edges of G. s and t are the sourceand target mappings between GE and GN .4 Graph G and its induced small category are identi�ed.

called Ĝ(d1). Correspondingly the local graph of node b labeled by \big project"is called Ĝ(b). The network edge e with source node d1 and target node b isequipped with a graph morphism Ĝ(e) : Ĝ(d1) ! Ĝ(b) coded into the �ll andframe styles of local nodes, i.e. nodes which are mapped to each other are �lledand framed alike. Local edges are mapped in a structure compatible way.De�nition2. Given two HD-graphs Ĝ and Ĥ an HD-graph morphism f̂ =(�; f) : Ĝ ! Ĥ is a natural transformation � : Ĝ ! Ĥ � f = (f̂i)i2GN inGRAPH with f : G ! H being a graph morphism of GRAPH, called net-work morphism.If f is injective f̂ is called n-injective. If moreover, all f̂i with i 2 GN areinjective, f̂ is called injective, too.An HD-graph morphism f̂ assigns to each node i 2 GN a graph morphismf̂i : Ĝ(i) ! Ĥ � f(i), called local graph morphism such that 8e 2 GE wheres(e) = i and t(e) = j the diagram in �gure 8 commutes. More concretely, giventwo local graphs Ĝ(i) and Ĝ(j) which are connected by Ĝ(e) and these graphsare mapped by local graph morphisms f̂i and f̂j to graphs Ĥ � f(i) and Ĥ � f(j)the connection Ĝ(e) has to be adapted leading to Ĥ � f(e).
H o f(e)

i

j

G(i)

G(j)

H o f(i)

H o f(j)

e G(e) =

fi

fjFig. 8. HD-graph morphismExample 9 (HD-graph morphism). HD-graph morphisms are shown in �gures 3,5 and 6. In all �gures the network morphisms are not explicitly shown but givenby the layout of the source and target graphs. Nodes and edges at correspondingplaces are mapped to each others.De�nition3. The composition f̂ = (�f ; f) : Ĝ ! Ĥ of two HD-graphmorphisms ĝ = (�g; g) : Ĝ ! K̂ and ĥ = (�h; h) : K̂ ! Ĥ is de�ned byf = h � g and �f = �h � �g : Ĝ! K̂ � g ! Ĥ � h � g.Proposition4. All HD-graphs and HD-graph morphisms as de�ned above forma category DISTR(GRAPH).In the following we do not consider the existence of pushouts in the cat-egory DISTR(GRAPH) in general, but concentrate on those which can beconstructed component wise. Therefore, we need the following pushout condi-tions.

De�nition5. Two n-injective HD-graph morphisms â : Â ! Ĉ and b̂ : Â! B̂satisfy the pushout conditions (1) and (2) if (1) 8e 2 CE � a(AE) : 9y 2 ANwith a(y) = s(e) implies b̂y is bijective and (2) 8e 2 BE � b(AE) : 9y 2 AN withb(y) = s(e) implies ây is bijective.Proposition6. Given two n-injective HD-graph morphisms â : Â ! Ĉ andb̂ : Â! B̂ which satisfy the pushout conditions (1) and (2) the pushout of â andb̂ in DISTR(GRAPH) exists and can be constructed componentwise.Proof sketch: Let D with c : C ! D and d : B ! D be the pushout of aand b. (For pushouts in the category GRAPH compare [4], etc.) The pushoutgraph D̂ : D !GRAPH is constructed in the following way:5D̂(x) :=8>>>>>>><>>>>>>>:PO(ây; b̂y) = POx ; if 9y 2 AN with c � a(y) = xĈ(z) ; if 9z 2 CN � a(AN) with c(z) = xB̂(v) ; if 9v 2 BN � b(AN) with d(v) = xIND(POs(x); POt(x)) ; if 9e 2 AE with c � a(e) = xĉt(x) � Ĉ(e) � ĉ�1s(x) ; if 9e 2 CE � a(AE) with c(e) = xd̂t(x) � B̂(e) � d̂�1s(x) ; if 9e 2 BE � b(AE) with d(e) = xwhere IND(POs(x); POt(x)) is the induced morphism from pushout graphD̂(s(x)) to pushout graph D̂(t(x)) with ât(e) � Â(e) = Ĉ(a(e)) � âs(e) and b̂t(e) �Â(e) = B̂(b(e))� b̂s(e). Pushout morphisms ĉ : Ĉ ! D̂ and d̂ : B̂ ! D̂ are de�nedas follows: ĉx := � idĈ(x) ; if x 2 CN � a(AN)PO-morphism of POc(x) ; otherwised̂x := � idB̂(x) ; if x 2 BN � b(AN)PO-morphism of POd(x) ; otherwiseIt is straightforward to show that D̂ is an HD-graph (using the pushoutconditions) and ĉ as well as d̂ are HD-graph morphisms. Now, the pushout prop-erties have to be shown. Commutativity follows directly from the construction.For the universal property the induced morphism û consists of the induced mor-phisms for the underlying pushouts in GRAPH where they exist. Otherwise itis de�ned suitable to the comparing HD-graph morphisms. Well-de�nedness ofû follows from the universal property of local pushouts and the pushout condi-tions. The universal property can be obtained directly from the de�nition of û.2 A pushout as described above can be constructed in the following steps.First the pushout on network morphisms is created. For all network nodes in Awhich have images in B and C the pushout on their local graph morphisms isconstructed. All other local graphs of B̂ and Ĉ are carried over to D̂ unchanged.A network edge in D which has a preimage in A is equipped with the induced5 PO(ây; b̂y) is the pushout graph of the pushout of ây and b̂y

morphism between its source and target pushout graph. All other local graphmorphisms of B̂ and Ĉ are adapted to their new target graphs. The source graphshave to be mapped structure equivalent according to the pushout conditions.De�nition7. An HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) consists ofHD-graphs L̂, R̂ and Î , called left- and right-hand side and intermediate HD-graphs and two n-injective HD-graph morphisms l̂ and r̂.If all p̂x = (L̂(l(x)) l̂x � Î(x) r̂x�! R̂(r(x))) for x 2 IN are left-injective, i.e.all l̂x are injective, p̂ is called left-injective, too.Example 10 (HD-graph production). The HD-graph morphisms in �gures 3, 4,5 and 6 are all left injective HD-graph productions if they are interpreted inthe following way. Except �gure 4 the �gures mentioned show the right mor-phism Î r̂�! R̂ of an HD-graph production. For each of these examples theleft morphism Î l̂�! L̂ is the identity idÎ . As usually in graph transformationthis means that nothing is deleted. In �gure 4 HD-graphs L̂ and R̂ are givenexplicitly. Graph I can be constructed by all nodes and edges drawn alike, i.e.the \developer"- and the \big project"-nodes. All local graph morphisms of thisexample are identities. All local and HD-graph morphisms shown or constructedare injective.De�nition8. Given an HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) an n-injective HD-graph morphism m̂ : L̂ ! Ĝ is called HD-match of p̂ if thefollowing distributed gluing condition is satis�ed:1. m satis�es the gluing condition wrt. p2. 8x 2 IN : m̂l(x) satis�es the gluing condition wrt. p̂x = (L̂(l(x)) l̂x � Îx r̂x�!R̂(r(x))) (compare [4], etc.)3. connection condition: (a) 8e 2 GE � m((LE) � l(IE)) with t(e) = m � l(y)for y 2 IN :Ĝ(e)(Ĝ(s(e))�m̂l(x) (L̂(l(x))�l̂x(Î(x)))) � Ĝ(t(e))�m̂l(y) (L̂(l(y))�l̂y (Î(y)))where s(e) = m � l(x), x 2 IN or L̂(l(x)), Î(x), m̂l(x) and l̂x are empty(b) 8e 2 GE �m(LE) : 9y 2 IN with m � l(y) = s(e) implies l̂y and r̂y arebijective.4. network condition: (a) 8x 2 LN � l(IN) and 8x 2 l(IN) where 9e 2 LE �l(IE) with s(e) = x : m̂x is bijective(b) 8e 2 RE � r(IE) : 9y 2 IN with r(y) = s(e) implies m̂l(y) is bijective.The connection condition means the following: (a) An action on a targetgraph is not permitted to delete local items where some of their pendants inconnected source graphs are not deleted. (b) A local action on a source graphis not allowed to extend this graph since new items would not have images inconnected target graphs. Furthermore, such an action is not allowed to delete

local items without deleting references to items in target graphs. Lastly, localobjects in a source graph are not allowed to be glued together since this is notreected in the connected target graphs.The network condition is interpreted as follows: (a) The deletion of networknodes can be done if its local state graph is deleted as a whole in the sameproduction, i.e. if the current local state corresponds with that in the production.If a network edge should be deleted its source graph has to correspond bijectivelywith that of the production. (b) The other way around, if a new connection froman existing source graph should be established this graph has to be structuralequivalent with its correspondent given in the production.The conditions above are shortly discussed within examples 4 and 6.De�nition9. Given an HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) and anHD-match m̂ : L̂ ! Ĝ the following HD-graph Ĉ : C ! GRAPH is calledHD-context graph of p̂ and m̂. Let C = G�m(L� l(I)) be the context graphof p and m in GRAPH.Ĉ(x) := 8><>: Ĝ(x)� m̂l(y)(L̂(l(y)) � l̂y(Î(y))) ; if 9y 2 IN with m � l(y) = xĜ(x) ; if x 2 GN �m(LN)ĝ�1t(x) � Ĝ(x) � ĝs(x) ; if x 2 GE �m(LE � l(IE))where HD-graph morphisms ĝ : Ĉ ! Ĝ and ĉ : Î ! Ĉ are de�ned as follows.Let c = m � l and g = idGjC HD-graph morphism ĉ is de�ned by ĉy = m̂l(y) � l̂y ,8y 2 IN . ĝx := (idĜ(x)=Ĉ(x) ; if x 2 m(l(IN))idĜ(x) ; otherwise ; 8x 2 CNRemark: 8y 2 IN the PO-complement (Ĉ(c(y)); ĝc(y); ĉy) of m̂l(y) and l̂y inGRAPH is constructed.Proposition10 (Applicability of HD-graph productions). Given an HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) and an HD-match m̂ : L̂ ! Ĝ there arean HD-context graph Ĉ as well as HD-graph morphisms ĝ and ĉ as de�ned abovesuch that (Ĝ; m̂; ĝ) is the pushout of ĉ and l̂ in DISTR(GRAPH). Further-more, the pushout of ĉ and r̂ exists.Proof sketch: Ĉ is an HD-graph since the gluing condition for all local trans-formations and the connection condition (a) are satis�ed. Clearly, ĝ and ĉ areHD-graph morphisms. Next we construct the pushout of l̂ and ĉ (which is pos-sible since the distributed gluing conditions contain the gluing condition for mand p and the pushout conditions which are part of network condition (a) andconnection condition (b)) and have to show that the resulting pushout graphX̂ is isomorphic to Ĝ. According to pushout properties there is an HD-graphmorphism û : X̂ ! Ĝ. Vice versa, a suitable HD-graph morphism ŵ : Ĝ ! X̂can be de�ned using the local induced morphisms. ŵ is well de�ned accordingto pushout complement properties in category GRAPH and network condition(a). 2

De�nition11. Given an HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) and anHD-graph match m̂ : L̂ ! Ĝ an HD-graph transformation Ĝ =)hd Ĥ viap̂ and m̂, short Ĝ p̂;m̂=)hd Ĥ, from an HD-graph Ĝ to an HD-graph Ĥ is givenby the two pushout diagrams (1) and (2) in the category DISTR(GRAPH)shown in �gure 9.
L R

G C H

(1) (2)

r

m

g

c

l
IFig. 9. HD-graph transformationAn HD-graph transformation sequence Ĝ P=)�hd Ĥ is a sequence ofn � 0 HD-graph transformations Ĝ = Ĝ0 =)hd Ĝ1 =)hd : : : =)hd Ĝn = Ĥvia HD-graph productions of a set P . Ĥ is also called HD-derivable from Ĝby P .Proposition12 (Uniqueness of HD-graph transformation). Given a left-injective HD-graph production p̂ = (L̂ l̂ � Î r̂�! R̂) and an HD-match m̂ : L̂!Ĝ the HD-graph transformation G p̂;m̂=)hd H is unique up to isomorphism.Proof sketch: First, we have to show that Ĉ together with ĉ and ĝ as de�nedin 9 are unique. This is done similar to the proof of uniqueness of pushoutcomplements in GRAPH. Together with the fact that pushouts are unique upto isomorphisms we can state that G p̂;m̂=)hd H is unique up to isomorphism. 2De�nition13. Given two HD-graph productions p̂1 = (L̂1 l̂1 � Î1 r̂1�! R̂1) andp̂2 = (L̂2 l̂2 � Î2 r̂2�! R̂2) the HD-graph production p̂1 + p̂2 = (L̂1 + L̂2 l̂1+l̂2�!Î1 + Î2 r̂1+r̂2�! R̂1 + R̂2) de�ned by disjoint union of graphs and morphisms iscalled parallel (HD-graph) production of p̂1 and p̂2.De�nition14. An HD-graph grammar HDGG = (Ŝ; P) is given by an HD-graph Ŝ, called the start graph, and a set of HD-graph productions P .6Let P+ be the smallest extension of the set P including all parallel HD-graphproductions p̂1 + p̂2 for p̂1; p̂2 2 P+. The observation set O(HDGG) = fĜ jŜ P+=)�hd Ĝg of HDGG consists of all HD-graphs Ĝ HD-derivable from Ŝ by P+.6 Since we are not interested in classical language aspects here, we do not distinguishterminal and nonterminal graphs.

Since all matches have to be n-injective parallel productions can be applied todi�erent local graphs only, i.e. the matches of the original HD-graph productionsare not allowed to overlap. Thus, it seems to be possible to show that given anHD-graph transformation Ĝ p̂1+p̂2=)hd Ĥ where p̂1 and p̂2are applied in parallelthere is a corresponding HD-graph transformation sequence Ĝ p̂1=)hd X̂ p̂2=)hdĤ applying the original HD-graph productions p̂1 and p̂2 sequentially in someorder.(See also the analysis construction of the parallelism theorem in [6].) Thismeans that the observation set O(HDGG) is \closed under parallelism", i.e.there is not a graph in O(HDGG) which can only be derived by applying atleast one parallel production.4 Conclusion and Open ProblemsIn this paper hierarchically distributed graph transformation has been intro-duced to o�er the possibility of modeling the main aspects of open distributedsystems, such as distributed software development. This approach allows arbi-trary distribution topologies, especially hierarchical ones, which can be handleddynamically. The internal structures of local parts can be modeled in a graph-ical way, too, and consistent copies are indicated by graph morphisms betweenlocal graphs. By means of graph transformation the topological structure as wellas local object structures can be manipulated in an integrated way, i.e. graphtransformation is performed on both levels of description.It might be useful to increase the number of description levels to captureadditional aspects of system modeling. For example in our running example ofdistributed software development, the documents, revisions and tools describedby local nodes could be re�ned to graphs again showing their internal structures.Moreover, it might be useful to structure the local parts according to accessrights. This would yield some kind of encapsulated components with well-de�nedinterfaces. Such a concept for modular systems emphasizing encapsulation isdescribed in [16]. It builds up on HD-graph transformation.On the theoretical side HD-graph grammars are shown to �t into the frame-work of HLR-systems. Further results for HD-graph transformations such asindependence or embedding results can be easily achieved if so-called HLR-conditions can be proven. These condition are mainly based on the existence ofpushouts in the given category. In this paper we concentrated on that kind ofpushouts in DISTR(GRAPH) being built component wise because it reectsbest the distribution of local actions. The investigation of other kinds of pushoutsand the cocompleteness of DISTR(GRAPH) altogether will be further work.Allowing pushouts on HD-graph morphisms which need not to be n-injectivethe parallel execution of actions on one local graph can be modeled. This featurehas to be used to simulate the special operations SPLIT and JOIN of distributedgraph transformation in the algebraic approach by HD-graph transformation([5]).Acknowledgment: I thank Annika Wagner and the referees for their valuable

comments on this paper.References1. J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concerte Categories. Seriesin Pure and Applied Mathematics. John Wiley and Sons, 1990.2. I. Classen, M. L�owe, S. Wasserroth, and J. Wortmann. Static and dynamic seman-tics of entity-relationship models based on algebraic methods. to appear in proc.IFIP-Congress and GI-Fachgespr�ache, Hamburg, 1994.3. P. Degano and U. Montanari. A model of distributed systems based on graphrewriting. Journal of the ACM, 34(2):411{449, 1987.4. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,H. Ehrig, and G. Rozenberg, editors, 1st Graph Grammar Workshop, Lecture Notesin Computer Science 73, pages 1{69. Springer Verlag, 1979.5. H. Ehrig, P. Boehm, U. Hummert, and M. L�owe. Distributed parallelism of graphtransformation. In 13th Int. Workshop on Graph Theoretic Concepts in ComputerScience, LNCS 314, pages 1{19, Berlin, 1988. Springer Verlag.6. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph grammarsto High Level Replacement Systems. In Ehrig et al. [7], pages 269{291. LectureNotes in Computer Science 532.7. H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. 4th International Workshopon Graph Grammars and Their Application to Computer Science. Springer Verlag,1991. Lecture Notes in Computer Science 532.8. H. Ehrig and M. L�owe. Parallel and distributed derivations in the single pushoutapproach. TCS, 109:123 { 143, 1993.9. S.M. Kaplan, J.P. Loyall, and S.K. Goering. Specifying concurrent languages andsystems with �-grammars. In Ehrig et al. [7], pages 475{489. Lecture Notes inComputer Science 532.10. D. Kips and G. Heidenreich. Project ow graphs { a meta-model to support qualityassurance in software-engineering. to appear in proc. of IEPM'95, 1995.11. M. Kor�. Single pushout transformations of equationally de�ned graph structureswith applications to actor systems. In Proc. Graph Grammar Workshop Dagstuhl93, pages 234{247. Springer Verlag, 1994. Lecture Notes in Computer Science 776.12. P. Pepper and M. Wirsing. KORSO: A methodology for the development of correctsoftware. to be published in LNCS, 1995.13. G. Schied. �Uber Graphgrammatiken, eine Spezi�kationsmethode f�ur Programmier-sprachen und verteilte Regelsysteme. Arbeitsberichte des Institus f�ur mathematis-che Maschinen und Datenverarbeitung (Informatik), University of Erlangen, 1992.14. H.-J. Schneider. On categorical graph grammars integrating structural transfor-mation and operations on labels. TCS, 109:257 { 274, 1993.15. G. Taentzer. Towards synchronous and asynchronous graph transformations. ac-cepted for special issue of Fundamenta Informaticae, 1995.16. G. Taentzer and A. Sch�urr. DIEGO, another step towards a module concept forgraph transformation systems. to appear in proc. of SEGRAGRA'95 " GraphRewriting and Computation", published in Electronic Notes of TCS, 1995.This article was processed using the LATEXmacro package with LLNCS style

