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Abstract. Hierarchically distributed graph transformation offers means
to model different aspects of open distributed systems very intuitively
in a graphical way. The distribution topology as well as local object
structures are represented graphically. Distributed actions such as local
actions, network activities, communication and synchronization can be
described homogeneously using the same method: graph transformation.
This new approach to graph transformation follows the lines of algebraic
and categorical graph grammars and fits into the framework of double-
pushout high-level replacement systems.
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1 Introduction

Graphical representations are an obvious means to describe different aspects of
systems. Modeling distributed and concurrent systems graphs are often used to
describe the topological structure of the system. The graphical structure shows
then which parts are involved and what are the ways of communication. Graph
transformations can be used conveniently to model dynamic changes of the sys-
tem structure. For example, the distribution of some local parts is rearranged or
communication channels are created or deleted. Local states are typically coded
in some specification or programming text or not considered. This idea is fol-
lowed, for example, in [3], by A-grammars in [9], in [13] and by actor graph
grammars in [11].

Graphs can be used also to model complex object relations inside of local parts
of a system as they arise, for example, in database systems (entity-relationship
models described in [2]) or software process modeling (development graphs as
used in [12] or project flow graphs in [10]). Graph transformations are useful
then on these lower levels to specify changes of object relations.

The possibility to allow local actions to run concurrently can be modeled by
distributed graph transformation following the algebraic approaches in [5], [8]
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and [15]. Here, some restricted types of network structures are allowed which
can be changed by special operations, namely SPLIT and JOIN. SPLIT splits a
graph into two or more local graphs with an interface graph between each two
where the connection to the local graphs is described by graph morphisms. A
local graph is not allowed to be split again, i.e. hierarchical network structures
cannot be modeled. JOIN joins a distributed graph of such a kind again to one
graph.

An approach which combines graph transformation on the network and on
the local level is the work of categorical graph grammars in [14]. This kind of
graph grammar allows a flexible change of network structures and a description
of local actions for example by graph transformation. Communication is not
expressed by means of graphs and graph morphisms, i.e. object identity has to
be coded into names, for example.

With hierarchically distributed graph transformation the advantages of the
categorical and algebraic graph grammars for modeling distributed systems are
combined. It 1s possible to handle complex network structures, especially hier-
archical ones. Communication and synchronization can be modeled by interface
graphs which are connected to their local graphs by graph morphisms, i.e. object
identities are described by graph morphisms between different local states.

This paper is organized as follows: In the next section the modeling of dis-
tributed systems based on graph transformations is discussed. A simplified exam-
ple of distributed software development serves as illustration. All main features
are introduced in that section. In section 3 the formal description of hierarchi-
cally distributed graph transformation is presented following the double-pushout
approach to graph transformation ([4]). Tt is shown that this new approach fits
into the framework of HLR~systems introduced in [6]. For this section the reader
is supposed to be familiar with basic notions of category theory as they are
presented, f. ex. in [1]. A reader not interested in the formal description of hier-
archically distributed graph transformation can skip section 3 and gets a good
impression of hierarchically distributed graph transformation anyway.

2 Distributed Systems Modeled by Graph Transformation

In this section the main features for modeling of distributed systems by graph
transformations are presented. Distributed states are modeled by graphs and
state transitions, i.e. local actions, network activities or communication are mod-
eled by graph transformation.

Ezample 1 (Distributed software development). Several people developing a soft-
ware system in parallel have to cooperate with each other. As an support de-
velopment graphs (introduced in [12]) or project flow graphs (presented in [10])
can be used which describe different states of software development. These kinds
of graphs have been introduced in order to assure software quality and possibly
speed up the project. The developers are allowed to concurrently work on the
software. Every development step is described by a graph transformation, in the



following. All further examples are closely related to project flow graphs and
their developments, although they are simplified in some minor points.

2.1 Distributed States

Usually a state of a system can be described by a graph where the nodes represent
objects and the edges relations between them. If the state is a distributed one 1t
can be reflected by several graphs where each of them shows a local state. In the
following we call graphs describing a local state local graphs. The objects and
relations in such a local state are called local, too.

Ezxample 2 (Local software development graph). In so-called local development
graphs dependencies between different units or, more concrete, documents, in-
put and output relations of development tools and revisions of documents are
modeled. Such a graph stores about the same information as a revision and
configuration management system together with a tool like “make”. The local
graph in figure 1 contains three nodes of type “doc” modeling documents, two
“tool”-nodes modeling two different development tools, i.e. editors, compilers,
etc. and two “rev”-nodes standing for two revisions of documents. Furthermore,
input and output relations are described by edges from “doc”-nodes to “tool”-
nodes and vice versa. They are drawn as solid arrows. Edges drawn as dashed
arrows model dependencies between different documents. A “doc”-node with a
“rev’-node at its lower right part represents a document which has a revision.
Notice that there is not an arrow which explicitly shows this relation. Internally
the relation is modeled by an edge as all other relations, too.

Fig. 1. A local development graph

Different local systems are usually connected by some kind of network. They
interact with each other by some interface. The interfaces as well as the local
systems are allowed to change their states. This means that we have not only local
states but also interface states and, moreover, network states. In the network
states the current distribution structure of the whole system is stored. It changes
if, for example, new local systems are added or connections are changed.

Modeling the network structure of local systems by a network graph its nodes
represent the local systems. These nodes are called network nodes. The edges of
the network graph describe relations between local systems. These network edges
can model some kind of links that have to be hold consistent.



The whole distributed state is described by a so-called hierarchically dis-
tributed graph, short HD-graph, which consists of a network graph where each
network node is equipped with a local graph representing the current state of
its local system. Each network edge is equipped with a total graph morphism
describing the relation between two local states. These total graph morphisms
are the essential basis for interaction of local systems. They are used to describe
which local objects and relations correspond to each other in different local parts.
Local graphs which are the target of such a graph morphism are called target
graphs. Analogously, the sources of graph morphisms are called source graphs.

Ezample 3 (Development graph). Considering the development of a big software
system 1t has to be determined first which groups and, more concrete, which
persons have to do which parts. Such a distribution which is usually rather
hierarchical can be modeled by a network graph. In our example a “big project”
in the state described in example 2 is modeled by a so-called node which contains
the local development graph in figure 1. The “big project” is distributed in those
portions which are handled by one developer each. Thus, the network graph
in figure 2 contains two “developer”’-nodes which are connected with the “big
project”-node by a network edge. It models how a developer part fits into the
whole project shown by corresponding layout of local graphs.

Both developers should cooperate via some interface modeled by an “interface”-
node and two network edges from this node to the “developer”-nodes. The local
development graphs in the “developer”-nodes show the local states in each case
which are parts of the “big project”-graph. The interface between the develop-
ers should contain those objects and relations which can be used or should be
handled by both. These can be some kind of prereleases of produced documents
which should be forwarded to other developers. All objects and relations which
do not have a correspondence in the interface are considered as hidden for other
developers, 1.e. they do not have access.

Furthermore, the developers can use different views on their development
parts, namely the “semantical view” and the “operational view” modeled by
three so-called nodes and their connections to the corresponding developer parts.

The semantical view shows all documents as well as revisions and their in-
terdependencies. The operational view is restricted to the connections between
tools and documents.

In [5] and [8] distributed graphs with exactly two local graphs and one in-
terface graph, 1.e. a source graph which describes common parts are considered.
This notion is extended in [15] to an arbitrary number of local graphs where an
interface graph has to be established between each two. In both approaches it
1s not possible to define distribution hierarchies. This means, for example, that
there can be an interface between interface graphs.

Usually a hierarchy means some kind of tree or, more generally, a directed
acyclic graph. In our case of hierarchically distribution it is not an essential step
to allow arbitrary graphs since loops or cycles model a distribution hierarchy,
too, but in an abbreviated notation. For example, a network described by a



semantical view semantical view operational view

Fig. 2. An HD-graph for distributed software development

graph that consists of a node with an associated loop can also be modeled by
one node and its copy with an edge in between.?

2.2 Local Actions

In the graph grammar field actions are usually described by graph productions
and modeled by graph transformation. In this paper we use the double-pushout
approach to graph transformation which characterizes some kind of cautious
rewriting of graphs. This means that for a production and its matching part
in some graph the following conditions have to be satisfied. Context edges are
not allowed to dangle, i.e. a node which is connected to a context node has to
be preserved, and two items (nodes or edges) are not allowed to be identified if
at least one of them should be deleted. These conditions are combined in the
well-known gluing condition. If the gluing condition is satisfied for a production
and a match of its left hand side in the current graph a new graph is derived
by deleting this occurrence and adding the right hand side of the production.
(More details to this kind of graph transformation can be found in [4], etc.)

Conceptually local actions are described by HD-graph productions which con-
sist of a local production describing the local action and a network production
which is 1dentical here, since the network graph is actually not changed. It is
transformed by an identical production which preserves that network node where
the local action took place.

2 The property “hierarchical” does not belong to the levels of abstraction which have
been invented to describe this kind of graph transformation. There are just two
abstraction levels, the network level and the local level.



Such an HD-graph production can be applied to an HD-graph if the local
action is somehow compatible with the context where it takes place. An action on
a local graph which is a target graph is not permitted if it destroys the reference
structure to other local graphs, i.e. a source graph cannot be mapped totally to
its target graphs any more.

Applying an HD-graph production which describes a local action, first the
network production is applied to the current network graph. This just means
that the matching of the only network node is replaced identically. The local
production is applied to that local graph which is equipped with the matched
network node. The local production can be applied if the gluing condition is
satisfied for this local graph transformation. After the application the matched
network node is equipped with a new graph, the transformed one.

Ezxample 4 (Local development steps). Typical development steps are the intro-
duction of new documents, merging documents, storing new revisions, merging
revisions, introducing new tools and therefore changing processing relations or
changing dependency relations. These actions do not change the network struc-
ture. Development steps of that kind are considered in the next section. Here,
we consider for example the introduction of a new tool as a local development
step done by the “big boss” in the state of the “big project”. The HD-graph
production new tool in figure 3 describes this local development step where a
tool requiring one input and one output document is introduced.

new tool

TR

big project big project

Fig. 3. Introduction of a new tool

Since there is nothing deleted in this production it can be applied to the
development graph in figure 2. Otherwise a reference to an object or relation
in the “big project” would be destroyed. Such destructions have to be arranged
with the developers and, thus, are not local. A similar action as modeled in figure
3 cannot be performed by a developer since 1t has to be reported to the “big
boss” | i.e. all objects and relations belonging to the “developer”-node have to
be totally mapped into the “big project”.

2.3 Network Administration

Modeling distributed systems by graph transformations means usually the de-
scription of network activities. Changes of the network topology can be described
by transformation of the network graph. The deletion and creation of network



nodes and edges has to be done very cautious to avoid inconsistencies. Dele-
tions may not destroy the reference structure. Creations have to fit into the
reference structure, for example, a node in a new interface graph has to have a
correspondent in all the local graphs it is interface of.

If such conditions are satisfied the network actions can be done concurrently,
i.e. connections can be changed, new local parts can be inserted and other local
parts (possibly with connections) can be deleted. Moreover, connections can be
deleted and created, too.

Altogether a network activity is also described by an HD-graph production
where its network production describes the changes of the network topology. For
each network node which is preserved an identical production has to be applied
to its local state graph. Each network node (edge) which is deleted or created
is equipped with a local graph (morphism) on the left- or right-hand side of
the HD-graph production, resp. The HD-graph production can be applied if the
conditions for deletion and creation described above are satisfied. Moreover, the
gluing condition has to be satisfied for the network part of the application.

Ezample 5 (Network activities). In a software development process network ac-
tivities can be the introduction of a new developer or a new interface, the es-
tablishment or changing of connections between developers and the “big boss”,
etc. In figure 4 the HD-graph production change connection is shown where the
connection between a developer and a “big project” is relaxed which releases the
developer from this “big brother is watching you”-situation modeled in example
3. This means that the local state of the developer is no longer a part of that of
the “big project”.

change ; .
_______ b1g project
connection
connection
developer developer part

Fig.4. Changing a connection

Applying this production to the HD-graph in figure 2 the left “developer”-
graph is then connected to the “big project”-graph by an empty “interface”-
graph. The whole relation between the corresponding local graphs is completely
described in the HD-graph production and can be deleted.



2.4 Communication and Synchronization

Synchronization of different local actions is modeled by such actions on network
nodes connected with each other. In this case an action on a source graph has to
be a subaction in some sense of those on connected target graphs. This means
more or less that the same actions on local items are allowed as in their adjoined
local graphs. But in the source graph items may be deleted whereas some of their
images in the corresponding target graph are preserved. Furthermore, a local
item may be inserted in some source graph if its correspondents are preserved
in all connected target graphs.

Synchronization is modeled by an HD-graph production where the network
production 1s an identical production similarly to local actions. But here the
whole network part which is more than one node is identically replaced. All
nodes where a part of the synchronized action should be performed have to be
described in the network production. Moreover, all network edges which should
be used are identically replaced. For each local part a local production, which
models that action part of the synchronized action that should be performed
there, should be applied. As before, the application of an HD-graph production
should not destroy the reference structure. For each local production application
the gluing condition has to be satisfied.

Asynchronous communication consists of at least two concurrent actions.
They can be performed by using some interface graphs (as in the examples)
for the description of channels or common memory. First one local part puts
something into the channel or memory and then the other gets it. Considering
the interface as an independent local part the other local parts have to syn-
chronize themselves with the interface. Thus, HD-graph productions modeling
synchronization can be used here, too.

Ezample 6 (Communication between developers). Synchronous communication
between two developers can be described by an “interface”-graph and its con-
nections to the “developer”-graphs. In figure 5 HD-graph production sync new
revision is shown where a new revision of a document created by one developer is
established in the interface and also in the current state of the other developer.

sync new
R

revision

developer developer

interface interface

developer developer

Fig. 5. Synchronous releasing of a new revision



The application of HD-graph production sync new revision to the HD-graph
in figure 2 leads for example to the slightly modified HD-graph where new “rev”-
nodes are established in the “interface”- and in the right “developer”-graphs.
Additionally, the new “rev’-node in the “interface”-graph is mapped to its pen-
dants in the “developer”-graph.

An asynchronous releasing of a new revision may be modeled by HD-graph
production async new revision in figure 6. This action has not to be synchronized
with actions of other developers. “New revision” just means the introduction of
a new revision in the interface which has a link to the original revision where
the developer worked on.

async new
———————

revision interface

developer developer

Fig. 6. Asynchronous releasing of a new revision

HD-graph production async new revision cannot be applied to the HD-
graph in figure 2 since a new “rev’-node in the “interface”-graph cannot be
mapped totally into the other “developer”-graph. But such a partial mapping
of the “interface”-graph into the “developer”-graph should be possible for asyn-
chronous communication. This can be achieved by a pair of total mappings of an
additional “interface”-graph into the original “interface”- and the “developer”-
graph. This additional interface graph would contain those objects and relations
which should be mapped in any case, i.e. cannot be treated asynchronously. Ap-
plying an HD-graph production similar to change connection to the HD-graph
in figure 2 an HD-graph as indicated in figure 7 can be achieved. This HD-graph
can be transformed with HD-graph production async new revision yielding the
HD-graph in figure 7 with the difference that a new “rev’-node is established in
the left “interface”-graph. Additionally, this new node is mapped to the corre-
sponding old “rev”-node in the left “developer”-graph.

2.5 Distributed Systems

Starting with some network topology and local initializations the initial state of
a distributed system can be described by an HD-graph. Local actions, network
activities, some kind of communicating actions and, moreover, also mixtures of
these actions are allowed as state transitions. The whole distributed system is
described by a so-called HD-graph grammar consisting of the starting HD-graph
and all HD-graph productions modeling distributed actions.

Example 7 (Distributed software development system). A distributed software
development system can be described by an HD-graph grammar consisting of



developer

\developer

Fig. 7. Section of development graph with changed developer connection

interface

a start graph which could be the HD-graph depicted in figure 2 and a set of
HD-graph productions modeling distributed development steps also allowed to
be performed concurrently. This set may contain the HD-graph productions new
tool, change connection, sync new revision, async new reviston, etc. As an exam-
ple, a distributed development step may be the parallel application of new tool
and async new revision to the state described in figure 2.

3 Formal Description of Distribution Concepts

The distribution concepts presented in the previous section are formally de-
scribed in the framework of the double-pushout approach to graph transforma-
tion. This approach is comprehensively described in [4] for directed and labeled
graphs. The double-pushout approach has been generalized to so-called high-
level replacement systems in [6] where the main results of the graph grammar
theory are abstracted to arbitrary objects and morphisms. In the following we
show that HD-graph transformation fits into the framework of HLR-systems.

Definition1. Let GRAPH be the category of labeled graphs and (total) graph
morphisms which are label preserving. Given a graph G 3of GRAPH which is
called network graph a functor G : G — GRAPH is called hierarchically
distributed graph (HD-graph)*.

A local graph is denoted G’(z) for a network node i € GV. Given a network
edge e € G¥ the local graph G(s(e)) is an interface graph or source graph,
G(t(e)) is called target graph and G(e) is a total graph morphism.

Example 8 (HD-graph). In figure 2 an HD-graph G : G — GRAPH is shown.
Graph G consists of all big ellipses with solidly drawn edges in between. Let dy
be the left “developer”-node, its local graph which is drawn inside the ellipse is

3 G describes the set of nodes and G the set of edges of G. s and t are the source
and target mappings between GF and G¥.
* Graph G and its induced small category are identified.



called é’(dl). Correspondingly the local graph of node b labeled by “big project”
is called é’(b) The network edge e with source node d; and target node b is
equipped with a graph morphism G’(e) : G’(dl) — G’(b) coded into the fill and
frame styles of local nodes, i.e. nodes which are mapped to each other are filled
and framed alike. Local edges are mapped in a structure compatible way.

Definition2. Given two HD-graphs G and H an HD-graph morphism f =
(n, f) : G — H is a natural transformation n : G — H o f = (fl)leGN in
GRAPH with f : G — H being a graph morphism of GRAPH, called net-
work morphism.

If f is injective f is called n-injective. If moreover, all f; with i € GV are
injective, f is called injective, too.

An HD-graph morphism f assigns to each node i € GV a graph morphism
ﬁ : G’(l) S Ho f(i), called local graph morphism such that Ve € G¥ where
s(e) =1 and t(e) = j the diagram in figure 8 commutes. More concretely, given
two local graphs G’() and G’( j) which are connected by G( ) and these graphs
are mapped by local graph morphisms fZ and f] to graphs Ho f(%) and Ho f)
the connection G( ) has to be adapted leading to Ho f(e).

A
1 G(i)) — Ho f(i)
A N
e G(e) = H o f(e)
A
A~ fJ N
J GG ——= Hof()

Fig. 8. HD-graph morphism

Ezxample 9 (HD-graph morphism). HD-graph morphisms are shown in figures 3,
5 and 6. In all figures the network morphisms are not explicitly shown but given
by the layout of the source and target graphs. Nodes and edges at corresponding
places are mapped to each others.

Definition3. The composition f = (77f ) G — H of two HD-graph
morphisms § = (5,,9) : G = K and h = (9n, h) - K — H is defined by
f=hogand ny =npong: G—Kog—Hohog.

Proposition4. All HD-graphs and HD-graph morphisms as defined above form
a category DISTR(GRAPH).

In the following we do not consider the existence of pushouts in the cat-
egory DISTR(GRAPH) in general, but concentrate on those which can be
constructed component wise. Therefore, we need the following pushout condi-
tions.



Definition5. Two n-injective HD-graph morphisms a : A= Candb:A— B
satisfy the pushout conditions (1) and (2) if (1) Ve € C¥ — a(AF) : Jy € AN
with a(y) = s(e) implies I;y is bijective and (2) Ve € BY —b(A¥) : Jy € AN with
b(y) = s(e) implies @, is bijective.

Proposition6. Given two n-injective HD-graph morphisms a : A = C and
b: A — B which satisfy the pushout conditions (1) and (2) the pushout of a and
b in DISTR(GRAPH) ezists and can be constructed componentwise.

Proof sketch: Let D with ¢ : €' — D and d : B = D be the pushout of a
and b. (For pushouts in the category GRAPH compare [4], etc.) The pushout
graph D : D — GRAPH is constructed in the following way:®

PO(ay,by) = PO, , if 3y e AN with coa(y) ==
C’(z) ,if 32 € ON —a(AV) with e(z) =z
, if Jv € BY — b(AN) with d(v) = =
[ND(PO (x ),POt(x)) , if 3e € AF with coale) =x
ey o Cle)o é;(lx) if 3e € CF — a(AF) with ¢(e) = =
1 if 3e € BY — b(AF) with d(e) = =

where [N D(POq ), POt( y) is the induced morphism from pushout graph
D(s(x)) to pushout graph D( (x)) with ay(e) 0 Ae) = Cla(e)) o as(ey and bye) o
A( ) = B(b(e))o bs(e). Pushout morphisms ¢ : C' — D and d : B — D are defined
s follows:

o idé(x) ,if x € OV —a(AN)

o= PO-morphism of PO, ;) , otherwise

i, =4 sey ifw e BY = b(4%)
PO-morphism of POy, , otherwise

It is straightforward to show that D is an HD-graph (using the pushout
conditions) and ¢ as well as d are HD-graph morphisms. Now, the pushout prop-
erties have to be shown. Commutativity follows directly from the construction.
For the universal property the induced morphism u consists of the induced mor-
phisms for the underlying pushouts in GRAPH where they exist. Otherwise it
is defined suitable to the comparing HD-graph morphisms. Well-definedness of
u follows from the universal property of local pushouts and the pushout condi-
tions. The universal property can be obtained directly from the definition of .
O

A pushout as described above can be constructed in the following steps.
First the pushout on network morphisms is created. For all network nodes in A
which have images in B and C' the pushout on their local graph morphisms is
constructed. All other local graphs of B and C are carried over to D unchanged.
A network edge in D which has a preimage in A is equipped with the induced

® PO(Gy,by,) is the pushout graph of the pushout of &, and b,



morphism between its source and target pushout graph. All other local graph
morphisms of B and ' are adapted to their new target graphs. The source graphs
have to be mapped structure equivalent according to the pushout conditions.

Definition7. An HD-graph production p = (ﬁ VAL SN R) consists of
HD-graphs L, R and I, called left- and right-hand side and intermediate HD-
graphs and two n-injective HD-graph morphisms ! and 7.

If all p, = (ﬁ(l(x)) Lo f(x) Ty R(r(x))) for € IV are left-injective, i.e.
all [, are injective, p is called left-injective, too.

Example 10 (HD-graph production). The HD-graph morphisms in figures 3, 4,
5 and 6 are all left injective HD-graph productions if they are interpreted in
the following way. Except figure 4 the figures mentioned show the right mor-

phism I - R of an HD-graph production. For each of these examples the

left morphism I L> L is the identity id;. As usually in graph transformation
this means that nothing is deleted. In figure 4 HD-graphs L and R are given
explicitly. Graph I can be constructed by all nodes and edges drawn alike, i.e.
the “developer”- and the “big project”-nodes. All local graph morphisms of this
example are identities. All local and HD-graph morphisms shown or constructed
are injective.

Definition8. Given an HD-graph production p = (ﬁ LI SN R) an n-
injective HD-graph morphism m : L — G is called HD-match of p if the
following distributed gluing condition is satisfied:

1. m satisfies the gluing condition wrt. p

2. Ve e IV : my(yy satisfies the gluing condition wrt. p, = (ﬁ(l(x)) Lo I, Ty
R(r(x))) (compare [4], etc.)

3. connection condition: (a) Ye € GF¥ — m((LT) — ((IF)) with t(e) = mol(y)
for y € IV:

G(e)(G(s(€)) =gy (L(U(x)) =L (1(x)))) C G(t(e)) =1y (LU(y) Ly (1(9))

where s(e) =mol(z), x € IV or ﬁ(l(x)), f(x), my(yy and I, are empty
(b) Ve € GE —m(LE) : Jy € IV with mol(y) =
bijective.
4. network condition: (a) Va € LY — [(IV) and Vz € [(I") where Je € LF —
[(I¥) with s(e) = = : M, is bijective
(b) Ve € RE — (1P : Jy € IV with r(y) = s(e) implies my(y) is bijective.

xr
s(e) implies iy and 7, are

The connection condition means the following: (a) An action on a target
graph 1s not permitted to delete local items where some of their pendants in
connected source graphs are not deleted. (b) A local action on a source graph
i1s not allowed to extend this graph since new items would not have images in
connected target graphs. Furthermore, such an action is not allowed to delete



local items without deleting references to items in target graphs. Lastly, local
objects in a source graph are not allowed to be glued together since this is not
reflected in the connected target graphs.

The network condition is interpreted as follows: (a) The deletion of network
nodes can be done if its local state graph is deleted as a whole in the same
production, i.e. if the current local state corresponds with that in the production.
If a network edge should be deleted its source graph has to correspond bijectively
with that of the production. (b) The other way around, if a new connection from
an existing source graph should be established this graph has to be structural
equivalent with its correspondent given in the production.

The conditions above are shortly discussed within examples 4 and 6.

Definition9. Given an HD-graph production p = (ﬁ VAR LN R) and an
HD-match m : [ — G the following HD-graph C : C - GRAPH is called
HD-context graph of p and . Let C = G —m(L—I(I)) be the context graph
of pand m in GRAPH.

G(x) = gy (L(1(y) = by (I(y)) , if Fy € IV with mol(y) =z

Clx) =< G(z) ,ife e GN —m(LY)

ﬁt_(i) o G(x) ° Js(a) ,if x € GF — m(LF —[(I7))
where HD-graph morphisms ¢ : C = G and ¢ : I = C are defined as follows.
Let c =mol and g = idg|. HD-graph morphism ¢ is defined by ¢, = 1y ofy,
vy e IV,

Jo = {idé(x)/ém i e € m(U(I™)

idé(x) , otherwise ,Vz € CN

Remark: Yy € IV the PO-complement (C’(c(y)),ﬁc(y),éy) of 1y, and [y in
GRAPH is constructed.

Proposition10 (Applicability of HD-graph productions). Given an HD-
graph production p = (ﬁ PRI SN R) and an HD-match i : L — G there are

an HD-context graph C as well as HD-graph morphisms g and ¢ as defined above
such that (G,m, g) is the pushout of ¢ and | in DISTR(GRAPH). Further-

more, the pushout of ¢ and v exists.

Proof sketch: C'is an HD-graph since the gluing condition for all local trans-
formations and the connection condition (a) are satisfied. Clearly, ¢ and ¢é are
HD-graph morphisms. Next we construct the pushout of { and ¢ ( which is pos-
sible since the distributed gluing conditions contain the gluing condition for m
and p and the pushout conditions which are part of network condition (a) and
connection condition (b)) and have to show that the resulting pushout graph
X is isomorphic to G. According to pushout properties there is an HD-graph
morphism @ : X — G. Vice versa, a suitable HD-graph morphism w : G =X
can be defined using the local induced morphisms. w is well defined according
to pushout complement properties in category GRAPH and network condition
(a). O



Definition11. Given an HD-graph production p = (L P SN R) and an
HD-graph match m : L — G an HD-graph transformation G =g H via

p and m, short G £, H, from an HD-graph G to an HD-graph H is given
by the two pushout diagrams (1) and (2) in the category DISTR(GRAPH)

shown in figure 9.

L 1 R
ﬁ‘ (1) ?‘ @) \
/N /g\ /N /N
G C H

Fig. 9. HD-graph transformation

An HD-graph transformation sequence G :>hd H is a sequence of
n > 0 HD-graph transformations G = Go —ha G1 =ha - =ha G = f[
via HD-graph productions of a set P. H is also called HD- derivable from G

by P.

Proposition12 (Uniqueness of HD-graph transformation). Given a left-
injective HD-graph production p = (ﬁ PRI SN R) and an HD-match i : L —
G the HD-graph transformation G =254 H is unique up to isomorphism.

Proof sketch: First, we have to show that C together with ¢ and ¢ as defined
in 9 are unique. This is done similar to the proof of uniqueness of pushout
complements in GRAPH. Together with the fact that pushouts are unique up

to isomorphisms we can state that G =2, ; H is unique up to isomorphism. O

Definition13. Given two HD-graph productions p; = (ﬁl A I AT Rl) and

Py = (ﬁz 2 I LEN Rz) the HD-graph production p; + py = (L1 S Lt
P1472

L+ ™™ R+ Rz) defined by disjoint union of graphs and morphisms is
called parallel (HD-graph) production of p; and ps.

Definition14. An HD-graph grammar H DGG = (S, P) is given by an HD-
graph S, called the start graph, and a set of HD-graph productions P.°

Let Pt be the smallest extension of the set P including all parallel HD-graph
productions py + p2 for p1,p2 € PT. The observation set O(HDGG) = {G]

pt
S =74 G} of HDGG consists of all HD-graphs G HD-derivable from S by P*.

5 Since we are not interested in classical language aspects here, we do not distinguish
terminal and nonterminal graphs.



Since all matches have to be n-injective parallel productions can be applied to
different local graphs only, 1.e. the matches of the original HD-graph productions
are not allowed to overlap. Thus, it seems to be possible to show that given an
HD-graph transformation G E225% H where p; and poare applied in parallel
there is a corresponding HD-graph transformation sequence G :pﬁhd X :pghd
H applying the original HD-graph productions p; and ps sequentially in some
order.(See also the analysis construction of the parallelism theorem in [6].) This
means that the observation set O(HDGG) is “closed under parallelism”, i.e.
there is not a graph in O(H DGG) which can only be derived by applying at
least one parallel production.

4 Conclusion and Open Problems

In this paper hierarchically distributed graph transformation has been intro-
duced to offer the possibility of modeling the main aspects of open distributed
systems, such as distributed software development. This approach allows arbi-
trary distribution topologies, especially hierarchical ones, which can be handled
dynamically. The internal structures of local parts can be modeled in a graph-
ical way, too, and consistent copies are indicated by graph morphisms between
local graphs. By means of graph transformation the topological structure as well
as local object structures can be manipulated in an integrated way, 1.e. graph
transformation is performed on both levels of description.

It might be useful to increase the number of description levels to capture
additional aspects of system modeling. For example in our running example of
distributed software development, the documents, revisions and tools described
by local nodes could be refined to graphs again showing their internal structures.
Moreover, it might be useful to structure the local parts according to access
rights. This would yield some kind of encapsulated components with well-defined
interfaces. Such a concept for modular systems emphasizing encapsulation is
described in [16]. Tt builds up on HD-graph transformation.

On the theoretical side HD-graph grammars are shown to fit into the frame-
work of HLR-systems. Further results for HD-graph transformations such as
independence or embedding results can be easily achieved if so-called HLR-
conditions can be proven. These condition are mainly based on the existence of
pushouts in the given category. In this paper we concentrated on that kind of
pushouts in DISTR(GRAPH) being built component wise because it reflects
best the distribution of local actions. The investigation of other kinds of pushouts
and the cocompleteness of DISTR(GRAPH) altogether will be further work.

Allowing pushouts on HD-graph morphisms which need not to be n-injective
the parallel execution of actions on one local graph can be modeled. This feature
has to be used to simulate the special operations SPLIT and JOIN of distributed
graph transformation in the algebraic approach by HD-graph transformation

([5)-
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