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Abstract. In a rule-based approach the computation steps of a system
are specified by rules that completely define how the system’s state may
change. For open systems a more liberal approach is required, where the
state changes are only partly specified, and — interactively — other com-
ponents may contribute further information on how the transformation
is defined completely. In this paper we introduce a formal model for in-
teractive rule-based specifications, where states are modelled as partial
algebras and transformations are given by internal algebra rewritings
and arbitrary external components. As an application we discuss how
visual languages can be defined in this framework. Thereby the internal
(logical) representations of visual expressions are transformed by rewrit-
ing rules, whereas their layouts are obtained interactively by external
components like a constraint solver or a user working with a display and
a mouse.

1 Introduction

In a traditional rule-based specification of a system a set of rules is given to
describe the possible state changes of the system. Thereby the rules completely
describe the relation of the initial and final states of each transformation step.
For open systems, however, it is more adequate to specify the effect of a transfor-
mation step only partly by a rule. The transformation is determined completely
only in interaction with the environment the system is placed in. That means,
the impact of the environment on the local state changes has to be taken into
account.

In a software environment for a visual language, for example, there might
be an editor offering rules for creating items. Such an item would be offered
when the rule is applied, but not directly placed into the figure. The actual
position must be chosen (via a mouse click) by the user, or might be computed
by a constraint solver that chooses one of the possible positions that satisfies the
given constraints. In both cases the rule applied by the rule-based part of the
system just yields the existence of the item, usually together with a predefined
shape or other attributes, whereas the remaining attributes — like the concrete
position and size — are set externally, by the user, the constraint solver, or another
component.
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In this paper we introduce a formal algebraic approach for the precise spec-
ification of such interactive rule-based behaviours, where the effect of a rule is
determined by two components. The internal part is modelled by the rewriting
of algebras as formal models of states, as defined in [Gro99]. The basic idea for
the rewriting is to present algebras by their sets of elements and their functions,
where the latter are also considered as sets. Then simple set operations like sub-
traction, intersection and union can be used to rewrite the presentations, which
induces the rewriting of the algebras. The interactive, external part of the trans-
formation is embedded into this approach by designating parts of the algebras
to be defined by the external component. That means, the signature is divided
into an internal part that is updated by applying the algebra rewrite rules and
an external part that is updated by the external component.

As an important application domain we investigate environments for visual
languages in this framework. To treat visual languages properly it is important
to distinguish the logical (grammatical) structure of an expression and its visual
structure, given by its layout. Layout operations connect these two layers in
that each logical item is mapped to a graphical one. This basic structure is
used in [Bar00] to define a generic visual editor for the generation of visual
languages and manipulation of their expressions. It is generic in the sense that it
accepts language definitions as input and delivers concrete visual editors for these
languages as output. The distinctive feature of logical and visual structure is
that the semantics of a visual expression is completely determined by the logical
structure. If, for example, the crossing of lines expresses semantic information it
must be represented in the logical structure. If it occurs just due to lack of space
or cannot be avoided due to topological properties, the intersection point is only
present in the visual structure. Furthermore, the visual layout of an expression
may change without affecting its information (logical structure). For instance,
classes in a class diagram may be represented by rectangles in one style and
rectangles with rounded corners in another style.

The paper is organized as follows. In the next section presentations as tech-
nical means for the rewriting of algebras are introduced. In Sect. Bl then the in-
teractive transformation of algebras with internal algebra rewriting and external
transformation by some other component is discussed. For our main application,
visual languages, an example is given in Sect. [ that illustrates the formal con-
cepts. First an algebraic specification of class diagrams is given, containing their
logical structure, a graphics domain, and layout operations. Then their interac-
tive generation and manipulation with algebra rewrite rules for the logical part
and a constraint solver or a user acting with a mouse to determine the layout
is discussed. In Sect. Bl we give a conclusion, sketch further extensions of the
framework, and discuss the relation with other approaches.

2 Presentations

In this section we recall from [Gro99] the basic concepts concerning presenta-
tions of partial algebras that are the technical means to define the rewriting of
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algebras. The basic idea is to (re-) present partial algebras by a family of sets
(their carrier sets) and, in addition, a set (re-) presenting the functions of a
partial algebra via their input/output pairs. The latter are given in the form of
equations f(a1,...,a,) = b, where f is a function symbol and ay,...,a, and b
are elements of the corresponding carrier sets. According to the terminology of
universal algebra the elements of the carrier sets in such a presentation are called
generators and the equations are called relations. In general arbitrary equations
are allowed in a presentation, not only function entries f(ai,...,a,) =b.

Simple set operations like subtraction, intersection, and union can be used
then to transform presentations by removing or adding generators and/or re-
lations. As shown in Prop. [l each presentation induces a partial algebra. Thus
to rewrite an algebra it is first translated into a presentation, this presentation
is transformed via the set operations, and then the transformed presentation is
translated into a partial algebra again which yields the result of the rewriting.
(The rewriting procedure is discussed in the following section.)

Definition 1 (Presentation). Let ¥ = (S, F) be an algebraic signature. A
XY-presentation P = (Ps; Pg) is given by an S-indexed set Ps = (Ps)ses, the
generators, and a set Pg C Eqnsy,(Ps), the relations. A presentation is func-
tional if Pg is a set of function entries over Pg, i.e.,

P C{f(a)=b|f:w—v€EF, a€P,, be P} C Eqnss(Ps).

A morphism of X-presentations p : (Ps; Pg) — (P§; Pg) is an S-indexed func-
tion p = (ps : Ps — Pl)ses such that Pglp] C Pj, where _[p] denotes the
substitution of generators according to p. X-presentations and morphisms yield
the category Pres(X). Finally let Pres(I') = Pres(X) for each partial equa-
tional specification I’ = (X, CE) extending X by conditional equations CE w.r.t.
.

Presentations can be restricted to subsets of generators by deleting all rela-
tions that contain generators not contained in the subset. This will be used to
model the implicit removal of function entries containing elements that have been
deleted. On the other hand, presentations can be extended to larger signatures
by adding empty sets of generators for the new sorts.

Definition 2 (Restriction and Extension). Let P = (Ps; Pg) be a X-pre-
sentation.

1. Given an S-indexzed subset Qs C Ps the restriction P|gg is defined as the
X -presentation given by
Plgs = (@s; Pe N Eqns 5(Qs)).
2. Given a signature extension X' O X with ¥ = (S, F), X' = (8", F') the
extension P¥ = (PSE/;P}?) of P to X' is defined as the X' -presentation
given by

’ PS/ ZS/GS
PSZ,‘ - {@ e];se (Sl € S/)

Py = Pg.
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Consider now a partial equational specification I' = (X, CE) extending the
signature X' by some conditional X-equations CFE. To each I'-presentation P =
(Ps; Pg) there is a smallest (free generated) partial I'-algebra AT that contains
the generators Pg and satisfies the relations (equations) Pg. If P contains only
function entries f(a) = b as relations and these are consistent (in the sense that
(f(a) = b) € Pg and (f(a) = V') € Pg implies b = V') it yields the partial
Y-algebra A" given by

Af:Ps (565)7
fA%@)=b iff (fla)=b)ePy (feF).

If furthermore A" already satisfies the conditional equations CE this yields the
partial I'-algebra induced by P. If the equations are not satisfied, however, or if
there are inconsistent function entries, further elements may be generated and
some generators or generated elements may be identified.

This property is formally stated as the existence of a free functor from the cat-
egory of I'-presentations Pres(I") to the category of partial I'-algebras PAlg(I"),
i.e., a left adjoint to the presentation functor that maps partial I'-algebras to
I'-presentations.

Proposition 1. Let I' = (X, CE) be a partial equational specification. The pre-
sentation functor Presp : PAlg(I") — Pres(I"), given by

Presp(Ag, Ar) = (As, {f(a) =b| fA(a) = b}), and
Presp(h) =h

has a left adjoint PAlg : Pres(I") — PAlg(I") that satisfies PAlgy o Presp &
Idpaig(r)-

As mentioned above, if P is given by consistent function entries only and
conditional equations are not considered (or already satisfied) the partial algebra

induced by P carries exactly the same information as P itself. This is made
precise in the following corollary.

Corollary 1. Let X be an algebraic signature and P = (Ps; Pg) be a X -presen-
tation. If P is consistently functional, i.e., P is functional and satisfies

(fla)=b)e Pg A (f(a)=b)€ePg = b=10
forallf:w—veEF, ac Py, bb € P,,

then Presx(PAlgs.(P)) = P.

3 Interactive Transformation

In this section we describe the formal algebraic approach for the specification of
interactive rule-based behaviours, where the effect of a transformation is deter-
mined by the integration of an internal mechanism and an external one. More
precisely, the internal part of the transformation is modelled by the rewriting
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of partial algebras, while the external part is embedded into the transformation
by designating parts of the algebra to be defined by the external component.
This allows the formalization of the complete framework independently of any
particular mechanism to deal with the external part of the transformation.

A signature for interactive transformation reflects the distinction between
the internal and external mechanisms by designating two different algebraic sig-
natures: one designating the internal part (internal signature) and an extension
of it including also the parts of the algebra to be defined externally (complete
signature). Beyond these algebraic parts an interactive transformation signature
also provides names of actions with parameter type lists. The actions can be
used then to trigger the application of algebra rewrite rules.

Definition 3 (Interactive Transformation Signature). An interactive
transformation signature RY = (X;,, X, A) is given by algebraic signatures
Yin = (Sin, Fin), the internal signature, and X = (S, F), the complete sig-
nature, with X;, C X, and a family A = (Ay)wes+ of sets of action names,
called the action signature.

The sorts and functions in S—S;, and F— F, respectively are called external
sorts and functions. An action name a € A, is also denoted by (a : w) € A.

3.1 Internal Transformation by Algebra Rewriting

Partial algebras are rewritten via rules which are essentially given by pairs of
presentations. The left hand side of a rule specifies which elements and function
entries are to be removed from the algebra representing the actual state; therefore
it is required to be functional. Its right hand side specifies the elements and
relations that are to be added. The generators that occur in the left hand side
of a rule play the role of variables that are matched to the actual state. If a
variable occurs in both parts of a rule the corresponding element is preserved.
Such variables are used as context for the rewriting that describes how the right
hand side is embedded into the remainder of the actual state after the removal
of the left hand side. According to the distinction between internal and complete
signature described above, only elements and function entries belonging to the
internal signature can be used in the left and right hand sides of a rewrite rule.
In addition to the rule body, given by its left and right hand sides as discussed
just now, rules are equipped with a logical formula that specifies the positive
and/or negative conditions for the rule application. Moreover, a formal action
expression is added that binds the rule to the action whose behaviour is being
specified and instantiates to the label of the transformation step.

Definition 4 (Rewrite Rule). Let RY = (X}, X, A) be an interactive trans-
formation signature. A rewrite rule r = (a(z) = Cond = (P, — P,)) w.r.t. RY
is given by

— an action name a : S1...8, € A,
— a list of variables T = (x1,...,2,), the formal parameters of a,
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(this formal action expression yields the action label)

— a functional X;,-presentation P, = (X, Ey),
— an arbitrary X;,-presentation P, = (X, E,.),

(the left and right hand side of the rule)

— a condition Cond, given by a set of variables Xp and formula F with free
variables in Xp U X; U X, .

These components must satisfy the condition that
—x; € (XpUXj)s, foreachie{l,...,n},

i.e., the formal parameters of the action are contained in the sets of (free) vari-
ables of the condition and the left hand side.

Adding rewrite rules to an interactive transformation signature to specify the
behaviour of its actions yields an interactive transformation specification.

Definition 5 (Interactive Transformation Specification). An interactive
transformation specification RI" = ([;,, I, A, R) s given by algebraic speci-
fications Ty, = (Zin, CEw) and I' = (X, CE) with I, C I', and a set R of
R -rewrite rules, where the interactive transformation signature RX is given by
RY = (X, X, A).

Consider now the application of a rewrite rule r = (a(z) £ Cond = (P, —
P.)) to a partial Y-algebra A. First the free variables Xp of the condition
Cond = (Xp,F) and X; of the left hand side P, = (X, E;) must be instan-
tiated in A via a mapping m : X — A. Since the formal parameters x; of the
action expression a(Z) = a(x1,...,z,) are contained in X U X this yields also
a corresponding action instance a(m(z)) = a(m(z1), ..., m(x,)). The mapping
m is a match of r in A if the condition and the equations of the left hand side
are satisfied in A w.r.t. the instantiation m (i.e., A,m = Cond and A, m |= E}).
Only matches yield rewriting steps, other instantiations of the variables are not
admissible.

To describe the effect of the application of r w.r.t. a match m in A the
following symmetric differences and intersections are needed. They correspond to
the parts that shall be deleted (X?, EY), retained (X,, E.), and added (X2, E?)
respectively.

X=X -X, X.=XnX, X°=X,-X
EY=E —E, E.=ENE, EY=E, — E,

The internal rewriting step r/m : A =, iB rewrites then A into an intermediate
state iB in three steps:

1. the subtraction (deletion) of the image of (X!, EY) under m in the presen-
tation (Ag, Ag) of A,
2. the addition of (X?, E?), and
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3. the free construction of the partial X-algebra from this presentation. (Since
iB is only an intermediate state the conditional equations CE are not con-
sidered yet.)

The carrier sets ¢Bg of the intermediate result of the rewriting are thus given
by iBs = (As —m(X)) W X?. Its generating set of relations is given by iBp =
(Ag — EP[m]) U E2[m], corresponding to the subtraction of the function entries
E and the addition of the relations E?. Finally, all relations still containing
variables from Ag that do not belong to iBs must be removed in order to obtain
a well defined presentation again. Thus the deletion of an element a of A has
the side effect of removing all function entries containing a in any position.

Definition 6 (Internal Algebra Rewriting). Let RI" be an interactive trans-
formation specification and r = (a(z) £ Cond = (P, — P,)) be a rewrite rule
w.r.t. RY. Furthermore let A be a partial I'-algebra with Press(A) = (Ag; Ag)
and let m : P¥ — (As, Ag) be a X-presentation morphism such that A,m = F.
(That means, m is a match for r in A.)

Then the internal rewriting step a(m(Z)) : A =, iB rewrites A into the
partial X -algebra iB defined by

1B = PAlgE(’iBs, ZBE)
iBs = (As —m(X})) ¥ X
iBp = ((Ap = B[m]) U EY[m])|ins

3.2 External Transformation by Other Components

The internal algebra rewriting step only transforms (explicitly) the internal parts
of a given algebra, i.e., the ones corresponding to the internal signature. (There
may be side effects, however, induced by functions from the internal to the exter-
nal part.) The intermediate state iB obtained by this rewriting is then further
transformed by some external component. The final output of the transforma-
tion step is required to be a partial I'-algebra, i.e., the conditional equations
must hold. The external component might use all the information given in iB,
but may change only its external parts, i.e., the ones corresponding to ' — X;,,.
JFrom the most abstract point of view, the behaviour of an external component
is given thus by a mapping from PAlg(X) to PAlg(I") that preserves the ;-
reducts of partial Y-algebras. This transformation is appended to the internal
rewrite step.

Definition 7 (Interactive Transformation). Let RI' = (I;,, I, A, R) be an
interactive transformation specification and Ext : |PAlg(X)| — |[PAlg(l)| a
mapping with Vy, (Fxt(C)) = Vx, (C) for oll C € |PAlg(X)|. For each partial
I-algebra A, RY-rewrite rule r = (a(z) = Cond = (P, — P,)), and match
m of r in A, the interactive transformation step a(m(z)) : A = B transforms
A into the output state B € |PAlg(I")| given by B = Ext(iB), where iB is the
internal output state of the internal rewriting a(m(Z)) : A =, iB.
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Like the internal rewriting step the behaviour of the external component may
be defined in terms of presentations. That means, the presentation format can
be used as an interface to connect the external component with the interactive
transformation, as indicated in Fig. [Il

internal rewritin, external transformation
Al : iB| B
A A
PAlg 5, N Presy
PresFI ~ N | PAlg
N 1
(As, Ap) —— (iBs,iBg) (iBs,iBg)+ — — > (Bs, Bg)
{
é
input of the output of the
ext. comp. ext. comp.

Fig. 1. Transformation step with internal algebra rewriting, external transformation
by another component, and its interface to the presentation format

The decision to apply first the internal rewriting and then the external trans-
formation mechanism seems to be non-symmetric. It reflects the idea that the
transformation is guided by the rule-based component of the interactive system.
On the other hand, in a sequence of transformation steps just the alternation
of internal and external transformations remains, i.e. the order in which the
internal and external transformations are applied does not matter. Parallel exe-
cution of internal and external steps has not been taken into the definition since
it does not reflect interactivity, as desired in our applications. (Note that this
does not exclude independent sequential internal and external transformations
representing an interleavings of semantically independent or parallel steps.)

4 An Application: Specification of Visual Languages

In this section we discuss visual languages as an application domain for interac-
tive rule based specifications. This application can be used to provide a formal
basis for the construction of visual languages environments, as introduced in
[Bar(0].

Defining a visual expression (i.e., a sentence belonging to a visual language)
means to deal with the description of two different aspects: its logical structure
and its visual structure, i.e., its layout. These two aspects have to be connected
by layout operations associating each logical item with a graphical one. The
semantics of a visual expression is completely determined by its logical structure,
the layout makes it visual.

We proceed by showing how to apply the interactive rule based specification
framework to the definition of a concrete visual language, namely (a part of)
the UML class diagram language (see [BRJ99]), consisting of classes and associ-
ations. We present first the algebraic specification of the language together with
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some rewriting rules for the underlying logic structures, then we describe the
interactive generation of class diagrams where the visual layout is determined
by two possible external components.

4.1 Algebraic Specification of Class Diagrams

The specification of the class diagram language comprises the two parts discussed
in section Bl the internal and the complete specification, where the latter adds the
externally defined parts. In addition we distinguish a static part of the internal
signature to denote those parts of algebras that never change. In our case this
is basically given by the domain of graphic elements. ;From the formal point
of view this distinction of a static part is just a comment, because in general
rewrite rules might not preserve these parts.

— The static part provides the graphics elements, like rectangles, arrows, etc,

and operations for their construction and manipulation. Rectangles for ex-
ample are created by the operation rect with parameters for their left upper
corners (of type Point), width, and height (of type Real). This graphic do-
main should provide all operations to define the desired layouts of the logical
elements of the language and express relationships or constraints like: the
point lies on the border of the rectangle etc. When using concrete graphic
tools the signature should correspond of course to the interfaces of these
tools.
The sorts Real, Point, and Graphic are introduced in the static part, where
Graphic here stands for a general sort for graphical elements and Point
indicates positions on the display. Furthermore the static part provides built-
in data types like Strings to express attributes of the logical elements like
their names.

sorts:  Real, Point, Graphic, String, . ..

funs: (graphic operations and constructors)
width : Graphic — Real
height : Graphic — Real
rect : Point, Real, Real, — Graphic
line : Point, Point — Graphic

(predicates)
on_border : Point, Graphic

— The internal part of the signature includes the static part and extends it by
a specification of the logical structure of the language. The sorts Class and
Assoc are introduced, corresponding to the logical objects to be specified.
Moreover, the operations allow for assigning names to logical elements and
defining associations as structural relationships between classes.
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sorts:  Class, Assoc

funs: (logical: giving names to objects)
c_name : Class — String
a_name : Assoc — String

(logical: building structural relationships)
a_begin : Assoc — Class
a_end : Assoc — Class

The complete specification of the class diagram language extends the internal
part by an external part that specifies the layout functions. These have to
be defined by an arbitrary external component.

The basic idea thereby is to associate with each logical item some attach-
ment points that yield enough information to obtain the complete layout
by a corresponding parameterized layout operation. For instance, classes are
visualized by rectangles whose width and height is determined by the size
of the graphical representation of their names. Thus it suffices to specify a
point (the attachment point of the class) where the rectangle shall be posi-
tioned. For an association two attachment points are specified. Its layout is
then given by a line from the first to the second point.

To formulate the constraints the predicate on_border is used. It allows us to
specify that the association symbols are drawn in the correct way, i.e., that
the lines representing them graphically start and end at the border of the
corresponding class symbols.

Finally, the external part comprises the functions connecting the logical and
graphical structures: each logical element is associated with a layout, i.e., a
graphic element. These functions are defined in terms of conditional equa-
tions that use the graphics constructors and the attachment points of the
logical elements. (In the layout definitions the definedness predicate | is used.
Only if the attachment points are defined the layout can be computed.)

funs: (attachment points: to be set externally)
c_pos : Class — Point
a_bpos : Assoc — Point
a_epos : Assoc — Point

(graphical layout functions)
c_layout : Class — Graphic
a_layout : Assoc — Graphic
s_layout : String — Graphic
axioms: (constraints)
on_border(a_bpos(a), c_layout(a_begin(a)))
on_border(a_epos(a), c_layout(a_end(a)))
width(a_layout(a)) > width(s_layout(a-name(a)))

(layout definition)
c_pos(c) | =
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c_layout(c) = rect(c_pos(c), width(s_layout(c_name(c))),
height(s_layout(c_name(c))))
a_bpos(a)

1 Na_epos(a) | =
a_layout(a) =

line(a_bpos(a), a_epos(a))

This completes the specification of our class diagram language. Each visual
expression of the language is completely specified by an algebra of the given
specification.

Now we have to define the rewriting rules for the manipulation of the logical
structures of visual expressions. We present here just some of them. (Layouts
are considered in Sect. [12]).

The first rule allows the insertion of a new class object. There are no precon-
ditions to be fulfilled in order to add a new class into the logical structure: the
insert_class rule just specifies in the right-hand side the new class element, and
defines its associated name.

acts: insert_class : String
rule: insert_class(cn) = (0; true) =
(0;0) — (¢ : Class; c-name(c) = cn)

The insert_assoc rule is similar: the only precondition for its application is
the existence of two classes. Since these also yield the context where to insert
the new association (both logically and graphically) they are given both in the
left and the right hand side of the rule. That means that they will be preserved
by a rule application. The new association, its name and the connections with
the source and target classes are specified in the right-hand side.

acts: insert_assoc : Class, Class, String
rule: insert_assoc(cy, cz, an) = (0; true) =
(c1,co: Class; () —
(c1,ce : Class, a : Assoc;
a_name(a) = an, a_begin(a) = ¢y, a_end(a) = cg)

Conversely, when removing an association all relationships to other elements,
like its name, the beginning and the ending class, and its layout, are removed.
(These elements themselves are of course not removed.) This is due to the re-
striction step in the construction of the internal algebra rewriting that removes
all relations that contain removed elements (see Def. []).

acts: delete_association : Assoc
rule: delete_assoc(a) £ (0; true) = (a : Assoc; ) — (0;0)

The deletion of a class is more complicated, since a class can be removed from
a visual expression only if it is not related with any association. This is exactly
the application condition specified in the rule delete_class. If the condition holds,
the class element is deleted (by specifying it only in the left-hand side of the rule).
As above, the connection with its name is deleted automatically, too.
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acts: delete_class : Class

rule: delete_class(c) =
(c: Class; Aa € Assoc: a_begin(a) = ¢ V a_end(a) =c¢) =
(c: Class; 0) — (0;0)

All the above rules deal with the creation or deletion of logical objects. How-
ever, also rules for moving objects have to be provided. In our framework such
rules are empty, since the logical structure of the language does not change. For
instance, the move_class rule is defined as follows:

acts: move_class : Class
rule: move_class(c) 2 (0; true) = (0;0) — (0;0)

We conclude this section by showing an example of an internal algebra rewrit-
ing given by a rule application. Consider the insertion of an association as de-
picted in Fig. BTl

. insert_assoc(c1,c2,"make") . make
Client Order >— Client Order

Fig. 2. Insertion of an association

The visual expression on the left side of the figure can be represented by the
algebra defined as follows. We do not present the graphical part explicitly. The
logical structure and the layout are given by:

Class {z1,22} (there are two classes ...)

Assoc 0 (... and no association)

c-name c_name(zy) = “Client”, c.name(zz) = “Order”
(each class has a name)

a_name — (these functions are undefined ...)

a_begin — (... because there are no associations)

a_end —

c_pos c_pos(z1) = (0.75,2.25), c_pos(z2) = (3.75,2.25)

a_bpos —

a_epos -

c_layout c_layout(zy) = rect((0.75,2.25),
c_layout(zg) = rect((3.75,2.25),

a_layout —

2.5,1.5),
2.5,1.5)
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Applying the insert_assoc rule as shown in fig. Il yields the following algebra
as intermediate state of the transformation. A new association a is introduced,
corresponding to the variable a that appears only in the right hand side of the
rule. The corresponding equations connect a with its name “make” and the two
classes x1 and x5 given to the insert_assoc action as parameters. The external
parts are again defined as before. In particular, there is no attachment point and
no layout for the new association yet.

Class {z1, 22} (as before)
Assoc {a} (the new association)
c_name c_name(zy) = “Client”, c_.name(zg) = “Order”
(as before)
a_name a_name(a) =" make”
a_begin a_begin(a) = x;
a-end a_begin(a) = xo
(according to the equations in the rhs of the rule)
c_pos c_pos(z1) = (0.75,2.25), c_pos(z2) = (3.75,2.25)
a_bpos —
a_epos -
c_layout c_layout(zy) = rect((0.75,2.25),2.5,1.5),
c_layout(xg) = rect((3.75,2.25),2.5,1.5)
a_layout —

4.2 Interactive Definition of Visual Layouts

After the internal rewriting of the logical structure of a diagram its layout still
has to be determined. In the specification designated attachment points have
been introduced whose values completely determine the layout of the logical
elements via the layout functions. Thus it suffices to deliver the values for the
attachment points of all objects (classes and associations) that exist in a given
state. We discuss two external components here that can be used for this purpose,
a graphical constraint solver and a user interacting with the system via a display
and a mouse.

As mentioned in Sect. an external component can be connected to the
interactive transformation mechanism by plugging it into the interface given
by the presentation format (cf. Fig. [[l). That means, we must define how a X-
presentation yields an input for the component and how its output is translated
into a X-presentation. In the following we define this connection for the graphical
constraint solver and the clicking user.

The input of a constraint solver is given by a list of typed variables and
a set of constraints. In our example (and for the constraint solver PARCON
used in [Bar00|] for this purpose) all variables are of type Point or Real, and
the constraints are predicates or equations w.r.t. the functions provided by the
graphic domain. The output of the constraint solver is given by a binding of
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values to the variables that respects the constraints. Usually this is given by a
list of values that in comparison with the list of variables yields the association
of the values to the variables.

The basic idea for the connection now is to use ground terms corresponding
to the attachment points of the logical elements as names of the variables for
the constraint solver. That means, the terms c_pos(c) for all ¢ € iBgjqss and
a_bpos(a), a_epos(a) for all a € iBagsoc are used as variable names. On the other
hand, the output of the constraint solver, i.e., the binding, can be translated into
a set of X-equations {c_pos(c) = t,...}, where t. is a ground term w.r.t. the
graphics signature representing the value obtained by the binding for the variable
named c¢_pos(c). (Thereby we assume that the signature is sufficiently expressive
to obtain such a ground term for each value the constraint solver could possibly
deliver.) Now the old function entries (equations) for the attachment points and
layout operations are removed from the presentation (iBg, iBg) obtained by the
internal rewriting step and replaced by the equations {c_pos(c) = t.|c € iBciass }
and {a-bpos(a) = tq, a_epos(a) = t, | a € iBassoc} for the attachment points
obtained from the binding. In this way the missing information on the new
positions of the logical elements is added. Note, however, that at this point the
layout functions are completely undefined; the corresponding function entries
have been removed.

The replacement of the old function entries for the attachment functions
and layout operations by the new equations for the attachment points from
the binding defines the behaviour of the constraint solver as a mapping on X-
presentations, as required in Def. [ (implicitly) and shown in Fig. [dl.

The generation of the partial algebra B = PAlg(Bg, Bg) in the interactive
transformation step finally defines the layout functions according to the equa-
tions given in the specification I'. Since the binding delivered by the constraint
solver respects the constraints given in the specification, these are also satisfied
by construction. Note that in this construction the layout of the whole diagram
may be altered, since all attachment points are given to the constraint solver,
whence all positions are determined anew. This is realistic, since the constraints
are global w.r.t. the diagram. The introduction of a new association for example
might require to move another class, and the renaming of a class might lead to a
larger rectangle which might have side effects on its associations and the classes
positioned close to it.

Consider as example again the application of the rule insert_assoc(z;, z2,
“make”) shown in Fig. @Il The constraint solver must move at least one of
the two classes in order to display the association with its name properly in
between them, as specified in the last relation in the constraints part of the
specification. A possible output of the complete transformation step is given by
the following algebra, with corresponding updates in the attachment points and
layout functions.

Class {z1, 22}
Assoc {a}

c_name c_name(x;) = “Client”, c_.name(zg) = “Order”
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a_name a_name(a) =" make”

a_begin a_begin(a) = x;

a_end a_begin(a) = xo

c_pos c_pos(z1) = (0.75,2.25), c_pos(z2) = (6.75,2.25)
(new position for x4 !)

a_bpos a_bpos(a) = (3.25,1.5)

a_epos a_epos(a) = (6.75,1.5)

(attachment points for a)

c_layout c_layout(zy) = rect((0.75,2.25),2.5,1.5),
c_layout(xg) = rect((6.75,2.25),2.5,1.5)
(according to the new position of xs)

a_layout a_layout(a) = line((3.25,1.5),(6.75,1.5))
(the derived layout for a)

The embedding of a constraint solver into the interactive transformation can
be defined more generally as follows. First a set of functions from the external sig-
nature is designated to be defined by the constraint solver. In our example these
were the attachment points resp. the corresponding position functions, marked in
the signature as to be set externally. The input variables of the constraint solver
are then given by the set of all terms that consist of such a designated function
symbol applied to an element of the actual state. Thereby the functions have to
be compatible with the constraint solvers interface in the sense that their types
are accepted (PARCON accepts real numbers and points for example). Then an
appropriate set of equations is designated to obtain the constraints (marked as
constraints in our example specification). Again, these have to be compatible
with the input format of the constraint solver.

To let a user determine the positions of the logical elements is realized anal-
ogously to the connection of the constraint solver. In this case, however, we
assume that the layout is changed only locally. The basic idea is again to obtain
the new values of the attachment points for a logical element and replace the
corresponding equations in the presentation (iBg,iBg) obtained in the internal
rewriting step. In this scenario an internal rewrite rule is always triggered by
the user by pushing a button for one of the actions (insert_class etc.) and pro-
viding the parameters for this action. Then a preliminary (blinking or washy)
layout appears somewhere on the screen and the user has to designate one or
more points on the screen via her mouse to fix the layout. The number of points
thereby depends on the specification, i.e., the number of attachment points for
the concerned object (one for a class, two for an association etc.) Each mouse
click is then interpreted as an equation, analogous to the translation of bindings
to equations discussed above for the constraint solver.

5 Conclusion

In this paper we have introduced a formal model for interactive rule-based spec-
ifications of open systems. The states of a component are represented as partial
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algebras, their transformations are obtained in two consecutive steps. The in-
ternal transformation of a state of the considered component is specified by
rewriting the internal part of algebra by the application of algebra rewrite rules,
the external ones are added by an external mechanism whose behaviour is only
given abstractly as a mapping on algebras. In this framework we have discussed
a formal model of a generic editor for visual languages that uses a graphical con-
straint solver as external mechanism for the computation of graphical layouts.

5.1 Extensions

As already remarked in the discussion of the example some extensions to the
pure formal framework would support its applicability. In most applications it is
convenient for example to distinguish — beyond internal and complete signature
— further layers of the overall specification. Firstly, static parts may be distin-
guished by a subsignature Yy qtic C Xy, that designates all parts of the states
that are assumed to immutable, i.e., do not change when rules are applied. For
instance, built-in or pervasive data types like integers, strings, or booleans are
usually considered as static. In our example we used a graphics-algebra modelling
a real plane, points, and various figures, as well as corresponding operations. Ob-
viously, these sets and operations should always be the same. The designation
of a static subsignature (or specification) yields a proof obligation for the rules
since in general it cannot be assured that the rules indeed preserve the static
part. Thus their consistency has to be shown.

Secondly, some functions may be derivable from other more basic, but also
mutable functions. In our example the layout functions have been derived from
the attachment points. This derived part can be distinguished by a superspeci-
fication Ige, 2 I'. Usually it will have the same set of sorts as I" but introduce
further functions with conditional equations that define them w.r.t. the ones in
I'. The specification extension I' C I4., induces a free functor Fy., that yields
the semantics of the derived functions. Note that in this case the semantics are
always defined, since a free functor exists for each specification extension. Nev-
ertheless, consistency and completeness of the extension are not guaranteed in
general, which yields another proof obligation.

The interactive rewriting w.r.t. a stratified transformation specification
(Fstatic € Tip € I' C Lger, A, R) is then defined for partial I'ye,-algebras and
corresponding matches. It uses the interactive rewriting w.r.t. (I, C I') as de-
fined above and extends it as follows. At the beginning a partial [4.,-algebra
A is restricted to its I’ -part, which yields the input for the interactive transfor-
mation step, and at the end the free construction B + Fy..(B) = B is added
to obtain the final result. That means, all derived functions are computed anew
w.r.t. the new basic mutable functions, corresponding to the definitions given in
the specification I
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5.2 Related Work

One of the main sources for the development of the interactive transformation
specification framework has been the search for a complete and adequate for-
mal model of the generic interactive visual editor environment GENGED. The
GENGED environment proposed in [Bar00] has been developed for the visual
definition of visual languages and corresponding visual editors. The definition
of a visual language as well as the manipulation of visual expressions is based
there on algebraic graph transformation and graphical constraint solving. Simi-
lar to formal textual languages, a visual language is defined by an alphabet and
a grammar. The alphabet is represented by a graph structure signature, i.e., an
algebraic signature with unary operation symbols, and a constraint satisfaction
problem for the admissible layouts. Accordingly, the grammar is represented
by a graph structure grammar, where the constraint satisfaction problems de-
rived from the alphabet are satisfied for each visual expression in the gram-
mar.

The graph structure signature for the alphabet represents both the logical
and the visual part. The logical part is thereby defined by an attributed graph
structure signature. This is extended by an algebraic signature for the visual
part. The specification of the logical part of a visual language corresponds to
the internal part of an interactive transformation signature, whereas the speci-
fication of the visual part corresponds to the static part and the external part.
The approach using attributed graph structures and corresponding grammars,
however, imposed design decisions on the formal model that turned out not to
be feasible. In particular, in [Bar00] the connection between the visual part and
the external component could be treated semi-formally only.

In the GENGED environment, the graphical constraint solver PARCON [Gri96]
is used to give the values (positions and sizes) for the visual part, i.e., for the lay-
outs. Visual expressions are constructed by applying grammar rules according to
the so-called Single-Pushout approach of graph transformation (see [LKW93]).
The user of GENGED therefore is supposed to have some knowledge about the
treatment of side effects in this approach, which are not explicitly specified. In
contrast to that, everything is explicitly specified in the formal approach we pro-
pose here. The only side effect is the automatic removal of relations (function
entries) that contain elements that have been deleted. (In the single pushout
approach also elements with identities can be removed implicitly as a side effect
sometimes.)

In the literature one can find many approaches for specifying visual lan-
guages and creating editors for them ([MMWO9S]). These formalisms range from
early approaches like array and web grammars, positional grammars, relational
grammars, constraint multiset grammars, several types of graph grammars, logic-
based approaches and algebraic approaches. The existence of many formalisms
on the one hand gives rise to a lot of possible classification criteria [Schi98/Bur(1]
and, on the other hand, makes it difficult to decide about the best approach. Such
a decision depends on the purpose of the approaches, for example, whether a vi-
sual or textual definition of a VL is in the fore, or which kind of editing mode
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(frechand or syntax-directed editing) is supported in a graphical editor, or — if
available — which kind of formal representation model is used.

Most tools for creating freehand editors analyze diagrams directly and avoid
to create a formal representation model like a graph structure in [Bar00] or
an algebra as presented in this paper. Possibly, freehand editing is desired in
a graphical editor because a user can create and modify diagrams unrestrict-
edly; but these diagrams may contain errors that have to be recognized by a
parser. In contrast, syntax-directed editing provides a set of editing commands
which transforms correct diagrams into other correct diagrams; but the user is
restricted to these commands.

The main aim of this paper has been the (visual) specification of visual
languages which may be the basis for syntax-directed editing similar to [Bar00].
Furthermore, the approach presented here was motivated by |[Bar00] in order
to provide a formal approach for the logical part of a visual language and the
visual part as well. Moreover, in contrast to the graph transformation formalism
used in [Bar00] which has some side effects according to the formalism, in this
paper all the features of a visual language are specified explicitly. A further
difference between [Bar00] and our approach presented so far is given by the
kind of algebras. In [Bar00] the algebras describing the logical part of a visual
language are restricted to total algebras whereas we considered partial algebras.

A similar approach where expecially different kinds of graphics and graphical
constraints are investigated is presented in [CLOT97JCP00|. In relation with our
approach it can define an external device more concretely.

Beyond the several kinds of formalisms used for visual language specification,
we have to mention the VAs (visual algebraic specification) formalism proposed
in [DU96]. The VAS formalism is not only used for the specification of syntax but
also semantics of visual languages. However, in this approach relations are not
considered due to the logical part of a language and moreover, the semantics of a
language is defined by evaluating terms over an algebraic specification according
to conditional equations.

Concerning other formal approaches to the rule-based specification of open
systems the pull-back approach to graph rewriting (see [EHLO98/EHLO99]) must
be mentioned. Also in this approach the effect of a rule application is not com-
pletely specified. However, as opposed to the consecutive internal and exter-
nal substeps in the interactive transformation specification approach only single
global steps are considered, i.e., the impact of the environment is implicitly in-
corporated into the rule application in a parallel action. Moreover, this impact
cannot be specified. Instead, each rule gives rise to (infinitely) many possible
state transformations. Thus, beyond the use of graphs instead of algebras as
state representations, this approach can be considered as dual w.r.t. the treat-
ment of the other components.

The algebra rewriting formalism used for the internal rewriting steps is of
course similar to the abstract state machine (ASM) approach (see [BH9S|). We
have chosen the former since we have been looking for a clean formal model
incorporating function updates, creation and deletion of elements, and imposing
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constraints directly. In fact, algebra rewriting supports arbitrary transforma-
tions of algebras in classes defined by arbitrary sets of conditional equations. the
categorical approach allows us to reason about properties of transformation sys-
tems abstractly and avoid encodings of the desired structure. On the other hand,
ASMs are supported by tools for the specification, analysis, and simulation. Thus
to apply the interactive rule-based specification framework our abstract algebra
rewriting concepts should be mapped to the ASM framework to make use of this
tool support.
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