
Towards a Compositional Approach to Define
Graphical Animation of Software Applications

�

Roswitha Bardohl
TU-Berlin, Germany
rosi@cs.tu-berlin.de

Leila Ribeiro
UFRGS, Porto Alegre, Brazil

leila@inf.ufrgs.br

Abstract

The PLATUS simulation environment allows for a modu-
lar description of simulation models, clearly separating as-
pects of behavior, statistics and animation. Each component
of a model in PLATUS has its own animation interface, that
describes when and which messages will be sent to a cor-
responding animation module. The GENGED environment
was originally developed for the visual definition of visual
languages and the generation of language-specific graphi-
cal editors. Here we will extend GENGED in order to define
several animation modules which can be connected via ani-
mation interfaces to PLATUS modules, allowing for a visual
animation of the application being simulated.

1. Introduction

A typical application where animation is needed is simu-
lation. The main aims of simulating a system are to validate
and recognize behavior and performance aspects. The first
step to do a simulation is to build a model of the system to
be simulated. Such models usually include descriptions of
behavior, statistics gathering procedures and visualization
(or animation) procedures. A visualization of the simula-
tion (or animation of a model) may be quite important to
validate the model, to have a visual feedback of the activi-
ties that are being executed in the simulation, and also may
serve as a first version of an user interface for managing this
system.

Typically, there are many different views of the simula-
tion that may be shown in different animation windows at
the same time. Moreover, to be really useful, an animation
view shall be as close as possible to the visual language of
the application domain being simulated. However, most of
the existing simulation tools do not offer the possibility of
constructing nice animation windows that may be reused
for other simulations or even for the system under consider-
ation. This has been the main motivation for our approach.

�
Research partially supported by the German Research Council (DFG),

and the projects PLATUS (CNPq and Fapergs) and GRAPHIT (CNPq and
DLR).

2. Simulation and Animation

The PLATUS simulation environment [2, 3] is based on
the formal calculus of graph transformation. Each compo-
nent of a simulation model in PLATUS is represented by
a graph grammar that is itself a composition of three graph
grammars describing the behavior, the statistics and the ani-
mation. The statistics and animation grammars describe
very abstractly when and which messages this component
will send to a corresponding concrete statistics/animation
module. These messages (together with the dependencies
among them) are collected in statistics and animation inter-
faces which serve as abstract specifications of the statist-
ics/animation expected for this component. Furthermore,
the animation interface can be used as a basis to define sev-
eral animation modules using GENGED [1].

Like PLATUS, also GENGED, an environment support-
ing the visual definition of visual languages (and corres-
ponding editors), is based on graph transformation. We are
going to extend GENGED in order to provide a user with a
flexible way to define, use and change animation modules
for the system being designed. Therefore we investigate
the kind of composition needed, and how far the existing
composition operators fulfill these needs. In particular, we
investigate the kind of formal composition operator needed
to allow a component-wise construction of the animation of
a software application.

According to the PLATUS concepts, for each component
of the simulation model, there may be several animation
modules (a library), all of them being implementations of
the animation interface of the component. Using GENGED,
such an animation module is defined by an alphabet and a
grammar, represented by a type graph and a graph grammar,
respectively. For each simulation component needed in a
certain application the user can choose an animation mod-
ule from the library. As a simulation model is composed by
various components, there may be also various animation
modules that have to be composed accordingly. Once all
animation modules are chosen and composed, the anima-
tion is triggered by corresponding messages sent from the
simulation component to the application-specific animation

Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments (HCC’01)
0-7695-0474-4/01 $17.00 © 2001 IEEE

environment during the simulation of the system.
In general, to build an animation view for an application

composed by many different animation modules requires
a way to suitably compose these animation modules into
one view. As each animation is described by a graph gram-
mar, we have to compose graph grammars. Moreover, this
composition shall be semantics preserving, assuring that the
animation of each component will be preserved when com-
ponents are put together. An approach to composing graph
grammars that preserves the semantics was presented in [7].
There, the composition was defined as a pullback construc-
tion (in a category of graph grammars). This construction
was obtained component-wise by a gluing of type graphs
(pushout in a category of graphs), a gluing of initial graphs
(pushout in a category of typed graphs), and a combina-
tion of rule sets (pullback in a category of sets) where the
rules in the composed grammar are obtained from the rules
of the components by amalgamation, parallel composition
or by just retyping rules of the component according to the
type graph of the composed grammar. Our idea is to use
this kind of composition to compose animation grammars.
However, the definitions in [7] did not consider generalized
graph structures nor attributes, they were defined for typed
graphs [6]. Therefore we need to extend that definitions to
consider the class of graphs we are using, that is, attributed
graph structures.

We have done the first step: we analyzed the suitability
of the main gluing construction of attributed graph struc-
tures (namely pushouts) to define the type and initial graphs
of a composed animation grammar. Although this compo-
sition seems to be suitable, in general it is too restrictive: it
would only allow to compose modules of attributed graphs
having the same types (same graph structure signature) and
attribute algebras to the same signature. Therefore, we need
to consider more general categories of graph structures and
algebras. This would lead to categories of generalized alge-
bras [4]. Additionally, the considered attributed graphs may
have different attribution functions, that is, the target cate-
gory SetP shall be substituted by one that allows as mor-
phisms families of functions indexed by different sets 1 .

3. Conclusion

The idea of combining PLATUS and GENGED is to have
one common specification formalism to specify the behav-
ior and animation of an application. In particular, with
GENGED we expect to construct a library of animation
modules that can be used to visualize the behavior of several
software applications. We use graph grammars and graph

1Due to the modular definition of attributed graphs used here, it will
be possible to exchange the used categories by the general ones without
losing the composition definition, as long as the general categories have
some basic characteristics (like existence of pushouts).

transformation as the basis formalism.
The basic composition operator of attributed graphs

(pushouts) is modeled in a way that it can be obtained
component-wise. Moreover, there is a clear distinction be-
ween the graph, the attribute algebra and the connection be-
tween them (separating abstract and concrete syntax, as re-
quired for the definition of visual languages [1]). Although
the existing composition operator does not offer the power
we need to compose modules, the modular structure of the
definition (using generalized graph structures) gives us a
good basis.

There are already many module concepts for graph trans-
formation systems (graph grammars, however, without re-
garding initial graph), see [5] for a comparison. We hope to
be able to use the main ideas of one of these concepts for
adaptation to our composition operator (it is not possible to
use standard composition operator for graph transformation
systems to compose graph grammars because they are not
compositional with respect to a graph grammar semantics).
Another subject of future work is to allow different anima-
tion windows for the same application executed in parallel
(one may want to visualize the same information in differ-
ent ways).

References

[1] R. Bardohl. Visual Definition of Visual Languages based on
Algebraic Graph Transformation. PhD thesis, TU Berlin,
1999.

[2] B. Copstein, M. da Costa M’ora, and L. Ribeiro. An En-
vironment for Formal Modeling and Simulation of Control
Systems. In Proc. 33rd Annual Simulation Symposium, pages
74–82. SCS, 2000.

[3] L. Ribeiro and B. Copstein. Compositional Construction of
Simulation Models using Graph Grammars. In Proc. Appli-
cation of Graph Transformations with Industrial Relevance
(AGTIVE’99), LNCS 1779, pages 87–94. Springer, 2000.

[4] H. Ehrig, M Baldamus, and F. Orejas. New Concepts for
Amalgamation and Extension in the Framework of Specifi-
cation Logics. In Proc. ADT-Workshop, LNCS 655, pages
199–221. Springer, 1991.

[5] H. Ehrig, G. Engels, R. Heckel, and G. Taentzer. Classifi-
cation and Comparison of Modularity Concepts for Graph
Transformation Systems. In H. Ehrig, G. Engels, H.-J. Kre-
owski, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, Vol-
ume 2: Applications, Languages and Tools. World Scientific,
pages, 669–689, 1999.

[6] M. Korff. True Concurrency Semantics for Single-Pushout
Graph Transformations with Applications to Actor Systems.
In R. J. Wieringa and R. B. Feenstra, editors, Information
Systems - Correctness and Reusability, pages 33–50. World
Scientific, 1995.

[7] L. Ribeiro. Parallel Composition of Graph Grammars. Ap-
plied Categorical Structures, 7(4):405–430, 1999.

Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments (HCC’01)
0-7695-0474-4/01 $17.00 © 2001 IEEE

