Working on OCL with graph transformations *

Paolo Bottoni', Manuel Koch?2,
Francesco Parisi-Presicce', Gabriele Taentzer?
! Universitd di Roma “La Sapienza Italy - 2 Free University of Berlin -
3 University of Paderborn

Abstract. The Object Constraint Language (OCL) provides an impor-
tant complement to visual formalisms used in the definition of UML lan-
guages. Yet, its usage is limited by two major drawbacks. The first is the
limited availability of tools for the automatic verification of constraints
against model diagrams. The second is the difficulty of amalgamating
a textual formalism such as OCL with the visual languages used in the
rest of UML. We attack these problems with methods deriving from
a graph-transformation based approach. We propose a visualisation of
OCL, based on a recently proposed metamodel for it, which provides a
declarative way to represent OCL constraints, and then we discuss how
an operational semantics for OCL can be based on transformation units
which guide the application of graph-transformation rules.

1 Introduction

The Object Constraint Language (OCL) provides an important complement to
visual formalisms used in the definition of UML languages. It is used both as a
textual counterpart to UML models, and to constrain extensions of UML using
metamodels. Yet, its usage is limited by two major drawbacks. The first is the
limited availability of tools for the automatic verification of constraints against
model diagrams. The second is the difficulty of amalgamating a textual formalism
such as OCL with the visual languages used in the rest of UML.

Both problems can be attacked based on the existence of some formal se-
mantics for OCL. In particular, the existence of a metamodel, as introduced in
[RG99], allows us to devise some form of visualisation, conforming to the meta-
model, but which is better suited to integration with the UML diagrammatic
languages. A visual formalism such as that of graph rewriting rules can also be
used to provide an operational semantics for OCL, which can be applied both to
its visual and to its textual representation. Such an operational semantics can
be realised on top of existing tools for graph rewriting.

The paper first presents the main concepts behind the proposed visualisa-
tion and then discusses how an operational semantics can be achieved in terms
of transformation units defining a strategy in the application of graph transfor-
mation rules. The conclusions illustrate some benefit of the approach

* Partially supported by the EC under Esprit Working Group APPLIGRAPH.

2 Visualisation of OCL Constraints

In the following, we consider two main issues when visualizing OCL. One is the
visualization of navigation expressions, ubiquitous in UML. Another important
issue is the visualization of collections and their operations. The visualization
concepts for both issues are illustrated by examples taken from an industrial
project on "E-Government’. The project objective is to replace the existing soft-
ware system used in the residents’ offices in Berlin by a new software system
that supports and facilitates both the business process within one or among
several authorities and the business processes between the authority and the
citizen by exploiting Internet technologies. The main responsibilities of the res-
idents’ registration office are the registration of inhabitants, the maintenance
and preparation of the inhabitants data for other authorities like police or fire
department, and the certification of passports and ID cards. The underlying
business object model contains classes like NaturalPerson which describes nat-
ural persons as opposed to legal persons, and Inhabitant containing data of
natural persons being inhabitants. Additional constraints must be checked to
insure the consistency of the data base with the intended application. A more
detailed presentation of the business model can be found in [BKPPTO01]. In the
same paper, the interested reader can also find a discussion on the principles
behind the proposed visualization.

2.1 Constraints on Navigation Expressions

OCL constraints involve complex navigation expressions to reach object prop-
erties. A user trying to follow these expressions incurs in the cognitive cost of
having to reformulate an object structure, given in some static structure diagram,
in a different, textual, syntax. Hence, visualizing navigation paths would help
the developer to maintain an overview of the structure while reasoning about
the constraints. We propose to express object navigation in a visual, declarative
way through collaboration diagrams.

The following is a simple OCL constraint stating that the birth date of a
natural person comes before the date of moving into an apartment; the constraint
is stated textually in the usual OCL syntax.

context NaturalPerson inv:
self.birth.attrBirthDate < self.address.attrDateOfMoveln

The visualized form of this constraint, in Figure 1, contains three classi-
fier roles, two of which present attributes. The attribute values, x and y, are
compared in the bottom compartment. The kind of constraint is indicated by
shortcuts ’inv’, ’pre’ or 'post’ (for invariants, pre- or postconditions, respectively)
in the upper left corner. Four alternative versions for visualizing this constraint
could be employed, as navigation to Birth and Address objects can be per-
formed on named as well as on anonymous associations.

: Address birth : Birth

/self: NaturalPerson

attrDateOfMoveln = x attrBirthDate = y

Fig. 1. The birth date comes before the date of moving into an apartment.

2.2 Collections and Their Operations

OCL supports three different types of collections: sets, bags and sequences. Sets
are represented using the convention for multi-objects in UML. Under this con-
vention, a multi-object represents all the objects, possibly an empty collection,
reached by a navigation expression. We call this visual form set boz. The other
types of collections are represented by adorning the set box with details recall-
ing the collection type, i.e. connecting the corners of the shifted rectangles with
dots (to remind of a series) for a sequence, and placing a semi circle, reminding a
handle, over the upper rectangle of the collection element for a bag. The concrete
element type of a collection is in the front rectangle. Basing the visualization on
collaborations, the application of an operation is described by an interaction.

We use the select operation to describe how a collection operation can
be visualized. Usually, the selecting expression is framed by a set box. Such a
representation is employed in Figure 2 to select all the addresses of a natural
person who is a resident or a non-resident with a known address. The number
of addresses must be greater than 0. The corresponding textual OCL constraint
is:

context NaturalPerson inv:
self.address—select(naturalPerson.inhabitant.attrState = #resident |
#known)— size > 0

self: NaturalPerson

: Inhabitant

attrState = #resident | #known

Fig. 2. A select statement

2.3 Logical expressions

The use of the alternative operator (|) in Figure 2 is a shortcut for a disjunction
involving duplication of the classifier role to present the possible alternative
values. A more general visualization has been devised for logical expressions. In
particular, logical expressions on object navigation are represented by framing
expressions in order to reproduce the nesting of logical AND and OR operators,
where each level is alternately read as an AND or an OR, starting from an
outermost AND frame. In case the original OCL formula had disjunctions at the
top level, a new fictitious top node is first inserted to constitute the A ND-labeled
root, and then the translation process is started. Dashed diagram parts are used
for negation.

If-then-else expressions can be depicted by frames with different compart-
ments. The if compartment is above the then compartment on the left, and the
else compartment on the right.

2.4 OCL Metamodel

As we base the visualization of OCL on collaborations, we perform some adap-
tation of the OCL meta model introduced in [RG99] and further elaborated in
[Bod00] to make it consistent with the meta model for collaborations. The idea is
to use collaborations to describe properties of objects. This is natural, since the
description of object properties is based on classifier and association roles which
are used to describe navigation paths. The dynamic aspects of collaborations are
exploited to represent the calling of methods to determine object properties.

As in [Bod00], a special package UML_OCL contains basic data types and
collections. Abstract collections are thought to be incorporated in this package
as data types. They have to be instantiated by concrete element types, which is
done in a special profile which introduces typed collections with a link back to
classifiers to capture the collected type. Special OCL operations are integrated
by offering special data types in the UML_OCL package as described above.

3 Graph Transformations for Checking Constraints

The main motivation to develop OCL has been the definition of well-formedness
rules in the context of the UML semantics, but it may also be used for precise
modeling of user applications. To express OCL semantics by graph transforma-
tion, a function tr : Set(OclExpression) — Rules U Set(Trans formationUnit)
is defined. An OCL constraint is an expression, with a boolean return value, sat-
isfied by an instance model, if the corresponding rule or transformation unit can
be applied to the instance graph. The evaluation of the rule or unit does not
modify the graph on which the constraint is checked.

3.1 The Graph Transformation Approach

We work on directed, typed, and attributed graphs. Rule application follows
the single-pushout approach to graph transformation [Léw93,EHK96]. A rule

may also contain a set of negative application conditions (NAC) to express that
something must not exist for a rule to be applicable [HHT96]. The negative
condition can refer to values of attributes [TFKV99]. Rules can also employ set
nodes, which can be mapped to any number of nodes in the host graph, including
zero. The matching of a set node is in any case exhaustive of all the nodes in the
host graph satisfying the condition indicated by the rule. Set nodes have to be
preserved between the left and right context, but new set nodes can be created.
This implies that it is not possible to use a rule to destroy a set of nodes, but
the nodes in the set have to be removed individually from it. Finally, set nodes
must not occur in NAC’s.

Transformation units are used to further control rule application. In the
following example, the denotation of transformation units is mainly reduced to
the containing rules and control conditions. Initial and terminal configurations
are all instances of the given UML model. The import relation of units remains
implicit. The control condition is specified by expressions over rules.

Given a set Names of rule names from which rule expressions are constructed,
a rule expression E as we will use it, is a term generated by the following syntax:

— basic operators:
E ::= Names | Ey and E, | E, or Ey | Ey; E> | a(E) | na(E) |
null | if F; then F- else E3 end | while FE; do F» end
— derived operators:
E ::= E, implies E5 | E; = E, | E; xor E, | asLongAsPossible E end

Most of the operators presented above have the obvious meaning: operators
a and na test the applicability and non-applicability, resp. Each rule expression
is either applicable or non-applicable, i.e. it has a boolean return value. In case,
it is applicable, the unit it controls can also produce a value, a node, or a set
node, according to the declaration of the arguments for the unit. In the operators
if-then-else and while-do-end, the rule expression FE; is tested for applicabil-
ity (without being applied). The result of this test determines how to proceed
with application in the usual way. Operator asLongasPossible applies a rule
expression to a graph as long as it is applicable. A detailed formal definition of
rule expressions as presented above can be found in [BKPPT00].

3.2 Checking simple OCL constraints

An OCL constraint over navigation expressions can be translated into a graph
rule, easily derivable from the visualization of such OCL constraints by static
collaboration diagrams. Such diagrams can be interpreted as identical graph
rules, i.e. both sides are equal and the rule morphism is the identity (e.g. the
OCL constraint in Figure 1 which can be interpreted as an identical graph rule).

If a rule which is the translation of a constraint can be applied to some
instance graph, the constraint is satisfied for this instance. The non-applicability
of a rule can have two causes: either there is no total mapping of the left-hand
side to the instance graph or no mapping satisfies all the additional application

conditions. In both cases, this can be reported to the user helping him/her to
find the inconsistency. After the user has performed further editing steps on the
UML model, the checking can be started again. Thus, the rule-based character
of inconsistency checking could be advantageously used to perform constraint
checking any time the user so wishes.

3.3 Checking advanced OCL constraints

The proposed visualisation does not always have a direct procedural counterpart
and direct matching is not sufficient when some strategy has to be followed in
constraint checking. For example, checking a constraint expressed as a nesting
of logical connectives, or navigation expressions involving a universal quantifier
requires following a precise sequence of actions.

The translation from OCL constraints to rule expressions can be performed
systematically, as the translation to the declarative visualisation. We consider
here again the example in Figure 2. We assume that the predefined operations,
such as select, have already been translated into suitable transformation units.
Then, the whole constraint is translated again into a transformation unit which
uses the select unit.

createSet (out s: Set) choose (in set: Set, out t: T)

done

‘ set: Set };{ t:T ‘

L=R

select ¢ [expr](in s:Set,s’:Set)

createSet(s’);

while choose(s,t) do
if tr (expr)
then selectE(s,s’,t)
else deselectE(s,t)
end

end

Fig. 3. Translation of pre-defined operation select

The select operation is directly dependent on the evaluation of the selecting
expression. The selecting expression is part of the resulting transformation unit,
thus the unit name is dependent of the expression. (Consider the translation of
select in Figure 3.) In the body of this transformation unit, the operation is
first initialized by creating an additional structure (here a Set node) and then
the select action is performed. Note that the dotted box in the left-hand side

of rule createSet indicates that the set s must not be already present in the
diagram for the rule to be applicable. For each element chosen from the given set
(and not already visited, i.e. without an adjacent done edge), we have to select
or deselect it, depending on the selecting expression. The chosen element is used
as input parameter of the selecting expression.

Having the translation of select available, the translation of the OCL con-
straint in Figure 2 is depicted in Figure 4. The first rule navigates to all the
addresses. Then two transformation units are called, performing the selection of
addresses of residents or known persons and counting them. The last rule checks
if there is at least one of those addresses.

isResidentOrKnown (in n: NaturalPerson)

self: NaturalPerson

addresses(out set: Set)

self: NaturalPerson self: NaturalPerson
1

1

: Inhabitant | 2

attrState = x

L=R | x = #resident or x = #known

isGreaterZero(in x: Integer)

inhabitantAddresses(): addresses(s);se]ecta [isResidentOrKnown(n)](s,s’);

x>0 L=R size(s’,x); isGreaterZero(x)

Fig. 4. Translation of OCL constraint in Figure 2

During a constraint check, the instance graph may be augmented by addi-
tional objects and links. These objects, which may be collection nodes and ad-
ditional done edges, have to be deleted by additional rules collected in a special
transformation unit which is invoked after each check.

3.4 An example on an instance diagram

As an example of consistency check of an instance diagram, consider the object
diagram in Figure 5, showing a portion of the data base in the E-Government
project. We want to check the OCL constraint in Figure 2 on the two instances
of NaturalPerson there.

To test the well-formedness of a diagram or model, we have to look for the
applicability of a set of rules and/or transformation units. Looking at our sample
model in Fig. 5, the transformation unit in Fig. 4 can be applied fully to the
portion of the diagram relative to Manuel, but not to the portion relative to
Gabi. Indeed, the transformation unit in Figure 4 will start by constructing the
set of addresses, which results empty for Gabi. Now the select transformation
unit will start by constructing the new set to accommodate the selected address,
but it will not enter the while loop, as the rule defining the looping condition
is not applicable. Hence, the select transformation unit will end by returning

Manuel:NaturalPerson

:Inahbitant

attrFamilyName = "Koch")
attrState = #resident

attrSex = "Male"

attDateOfDeath = #none

Gabi:NaturalPerson

attrFamilyName = "Taentzer'
attrSex = "Female"
attrDateOfDeath = #none

:Address

attrStateof Apartment = #sole
attrDateOfMOveln = 22/02/2001
attrDateOfMoveOut = #none

:Inhabitant

attrState = #known

Fig. 5. An object diagram not satisfying a constraint

an empty set. The inhabitantAddresses transformation unit will then proceed
to compute the size of this set and finally the rule for isGreaterZero is not
applicable, making the whole unit to fail. Conversely, when applying the unit to
Manuel’s portion, the selected set contains the only address present for Manuel,
so that it is not empty, and its size is greater than zero, testifying to that the
constraint is satisfied.

3.5 Discussion

The identification of the transformation units translating a textual OCL con-
straint can proceed in parallel with the translation to a visual counterpart, pro-
viding an operational reading of the declarative visual representation. The two
visual forms of management of OCL constraints, i.e. visual OCL constraints and
graph transformations, share some commonalities at the base level, presenting
elements from the UML syntax, namely, classifiers, associations, multi-objects
and attributes. However, the composition of complex constraints is expressed
through ad hoc visualisations in one case and through rule sequences in the
other. In general, rule expressions can be employed to govern the application
of rules for complex constraints, in a way which can be inferred by the struc-
ture of the visualisation. Conversely, the visualisation provides suitable graphical
constructs to express the iteration and alternative operators of rule sequences.
Using graph transformation to give OCL an operational semantics is rather
closely related to the dynamic metamodeling approach by Engels et al. who
provide a graphical approach to the operational semantics of behavioural UML
diagrams [EHHS00]. To this end, they use collaboration diagrams, which can
be interpreted as graph rules. The two approaches mainly differ in the way rule
application is controlled. While in the metamodeling approach rule applications
can be controlled by sequential and parallel composition as well as the usage of
other transformation units, we allow a larger variety of control constructs.

4 Conclusions

We have proposed to exploit forms of visualisation to achieve a smoother in-
tegration and use of OCL in the context of the UML diagrammatic languages,
both from a declarative and from a procedural point of view. To this end the pa-
per has illustrated how visual representation of constraints exploiting the UML
visual syntax can be achieved, and how graph rules can be used to support
consistency checking of OCL constraints on target diagrams. Two systematic
translations from the textual OCL syntax to the two forms of visual syntax
(static visualization and executable graph transformation units) preserving the
semantics of the constraints can be realized. These visual syntaxes admit some
amount of hybridization with textual syntaxes, as conditions on properties or
primitive OCL operators (such as size or isOCLKind0f) are more simply left
in the textual form (see for instance the realization of isGreaterZero in Figure
4). The presented visualisation is based on collaborations, and is consistent with
the metamodel for OCL proposed in[RG99]. It introduces a limited amount of
new core notation, but offers a variety of visual shortcuts for convenient visual
notation, favouring a greater readability and amenability to reasoning of OCL
constraints. The combination of the visualisation of OCL and the application
of rule expressions has the advantage of allowing an intuitive representation to
the user, who can perform direct checking on the model, and of getting a formal
semantics, in terms of transformation units.

Based on the proposed translation, an OCL evaluator can be implemented
on top of a graph transformation machine like AGG or PROGRES ([EEKR99)])
and later integrated into a UML CASE tool. These tools support a step by step
evolution of the underlying host graphs. An OCL evaluator based on such a
graph transformation machine can help to understand the implemented OCL
semantics by following the stepwise evaluation on instance diagrams visually.
An editor for visual OCL constraints is currently being implemented for the
open source CASE tool ArgoUML. The graph transformation-based approach to
checking inconsistencies can easily support automatic repair actions, by defining
suitable graph rules to solve them, if possible. This approach relies on the idea of
living with inconsistencies during software development presented in [GMT99],
also on the basis of graph transformation.

References

[BKPPTO00] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Consistency
checking and visualization of OCL constraints. In A. Evans and S. Kent,
editors, UML 2000, number 1939 in LNCS, pages 294-308. Springer, 2000.

[BKPPTO01] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization
of OCL using collaborations. In M. Gogolla and C. Kobrin, editors, UML
2001, number 1939 in LNCS, pages 257-271. Springer, 2001.

[Bod00] M. Bodenmiiller. The OCL Metamodel and the UML-OCL package. Proc.
of OCL Workshop, Satellite Event of UML 2000, York, October 2000, 2000.

[EEKR99)]

[EHHS00]

[EHK 96]

[GMT99)]

[HHT96]

[Léw93)]
[RG99)]

[TFKV99]

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2:
Applications, Languages and Tools. World Scientific, 1999.

G. Engels, J. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling:
A graphical approach to the operational semantics of behavioral diagrams
in uml. In A. Evans and S. Kent, editors, UML 2000, number 1939 in
LNCS, pages 323-337. Springer, 2000.

H. Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wagner, and A. Cor-
radini. Algebraic approaches to graph transformation II: Single pushout
approach and comparison with double pushout approach. In G. Rozen-
berg, editor, The Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, pages 247-312. World Scientific,
1996.

M. Goedicke, T. Meyer, and G. Taentzer. ViewPoint-oriented Software
Development by Distributed Graph Transformation: Towards a Basis for
Living with Inconsistencies. In Proc. Jth IEEE Int. Symposium on Re-
quirements Engineering (RE’99), June 7-11, 1999, University of Limerick,
Ireland. IEEE Computer Society, 1999. ISBN 0-7695-0188-5.

A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Ap-
plication Conditions. Special issue of Fundamenta Informaticae, 26(3,4),
1996.

M. Loéwe. Algebraic approach to single-pushout graph transformation.
TCS, 109:181-224, 1993.

M. Richters and M. Gogolla. A metamodel for OCL. In R. France and
B. Rumpe, editors, UML’99, pages 156-171. Springer LNCS 1723, 1999.
G. Taentzer, I. Fischer, M. Koch, and V. Volle. Visual Design of Dis-
tributed Systems by Graph Transformation. In H. Ehrig, H.-J. Kreowski,
U. Montanari, and G. Rozenberg, editors, Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 3: Concurrency, Par-
allelism, and Distribution, pages 269-340. World Scientific, 1999.

