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2 Visualisation of OCL ConstraintsIn the following, we onsider two main issues when visualizing OCL. One is thevisualization of navigation expressions, ubiquitous in UML. Another importantissue is the visualization of olletions and their operations. The visualizationonepts for both issues are illustrated by examples taken from an industrialprojet on 'E-Government'. The projet objetive is to replae the existing soft-ware system used in the residents' oÆes in Berlin by a new software systemthat supports and failitates both the business proess within one or amongseveral authorities and the business proesses between the authority and theitizen by exploiting Internet tehnologies. The main responsibilities of the res-idents' registration oÆe are the registration of inhabitants, the maintenaneand preparation of the inhabitants data for other authorities like polie or �redepartment, and the erti�ation of passports and ID ards. The underlyingbusiness objet model ontains lasses like NaturalPerson whih desribes nat-ural persons as opposed to legal persons, and Inhabitant ontaining data ofnatural persons being inhabitants. Additional onstraints must be heked toinsure the onsisteny of the data base with the intended appliation. A moredetailed presentation of the business model an be found in [BKPPT01℄. In thesame paper, the interested reader an also �nd a disussion on the priniplesbehind the proposed visualization.2.1 Constraints on Navigation ExpressionsOCL onstraints involve omplex navigation expressions to reah objet prop-erties. A user trying to follow these expressions inurs in the ognitive ost ofhaving to reformulate an objet struture, given in some stati struture diagram,in a di�erent, textual, syntax. Hene, visualizing navigation paths would helpthe developer to maintain an overview of the struture while reasoning aboutthe onstraints. We propose to express objet navigation in a visual, delarativeway through ollaboration diagrams.The following is a simple OCL onstraint stating that the birth date of anatural person omes before the date of moving into an apartment; the onstraintis stated textually in the usual OCL syntax.ontext NaturalPerson inv:self.birth.attrBirthDate < self.address.attrDateOfMoveInThe visualized form of this onstraint, in Figure 1, ontains three lassi-�er roles, two of whih present attributes. The attribute values, x and y, areompared in the bottom ompartment. The kind of onstraint is indiated byshortuts 'inv', 'pre' or 'post' (for invariants, pre- or postonditions, respetively)in the upper left orner. Four alternative versions for visualizing this onstraintould be employed, as navigation to Birth and Address objets an be per-formed on named as well as on anonymous assoiations.



: Address

attrDateOfMoveIn = x

/self: NaturalPerson

y < x

inv

attrBirthDate = y

birth : Birth

Fig. 1. The birth date omes before the date of moving into an apartment.2.2 Colletions and Their OperationsOCL supports three di�erent types of olletions: sets, bags and sequenes. Setsare represented using the onvention for multi-objets in UML. Under this on-vention, a multi-objet represents all the objets, possibly an empty olletion,reahed by a navigation expression. We all this visual form set box. The othertypes of olletions are represented by adorning the set box with details reall-ing the olletion type, i.e. onneting the orners of the shifted retangles withdots (to remind of a series) for a sequene, and plaing a semi irle, reminding ahandle, over the upper retangle of the olletion element for a bag. The onreteelement type of a olletion is in the front retangle. Basing the visualization onollaborations, the appliation of an operation is desribed by an interation.We use the selet operation to desribe how a olletion operation anbe visualized. Usually, the seleting expression is framed by a set box. Suh arepresentation is employed in Figure 2 to selet all the addresses of a naturalperson who is a resident or a non-resident with a known address. The numberof addresses must be greater than 0. The orresponding textual OCL onstraintis: ontext NaturalPerson inv:self.address!selet(naturalPerson.inhabitant.attrState = #resident j#known)! size > 0
self: NaturalPerson

n > 0

#n
a: Address a

: Inhabitant

attrState = #resident | #knownFig. 2. A selet statement



2.3 Logial expressionsThe use of the alternative operator (j) in Figure 2 is a shortut for a disjuntioninvolving dupliation of the lassi�er role to present the possible alternativevalues. A more general visualization has been devised for logial expressions. Inpartiular, logial expressions on objet navigation are represented by framingexpressions in order to reprodue the nesting of logial AND and OR operators,where eah level is alternately read as an AND or an OR, starting from anoutermost AND frame. In ase the original OCL formula had disjuntions at thetop level, a new �titious top node is �rst inserted to onstitute the AND-labeledroot, and then the translation proess is started. Dashed diagram parts are usedfor negation.If-then-else expressions an be depited by frames with di�erent ompart-ments. The if ompartment is above the then ompartment on the left, and theelse ompartment on the right.2.4 OCL MetamodelAs we base the visualization of OCL on ollaborations, we perform some adap-tation of the OCL meta model introdued in [RG99℄ and further elaborated in[Bod00℄ to make it onsistent with the meta model for ollaborations. The idea isto use ollaborations to desribe properties of objets. This is natural, sine thedesription of objet properties is based on lassi�er and assoiation roles whihare used to desribe navigation paths. The dynami aspets of ollaborations areexploited to represent the alling of methods to determine objet properties.As in [Bod00℄, a speial pakage UML OCL ontains basi data types andolletions. Abstrat olletions are thought to be inorporated in this pakageas data types. They have to be instantiated by onrete element types, whih isdone in a speial pro�le whih introdues typed olletions with a link bak tolassi�ers to apture the olleted type. Speial OCL operations are integratedby o�ering speial data types in the UML OCL pakage as desribed above.3 Graph Transformations for Cheking ConstraintsThe main motivation to develop OCL has been the de�nition of well-formednessrules in the ontext of the UML semantis, but it may also be used for preisemodeling of user appliations. To express OCL semantis by graph transforma-tion, a funtion tr : Set(OlExpression)! Rules [ Set(TransformationUnit)is de�ned. An OCL onstraint is an expression, with a boolean return value, sat-is�ed by an instane model, if the orresponding rule or transformation unit anbe applied to the instane graph. The evaluation of the rule or unit does notmodify the graph on whih the onstraint is heked.3.1 The Graph Transformation ApproahWe work on direted, typed, and attributed graphs. Rule appliation followsthe single-pushout approah to graph transformation [L�ow93,EHK+96℄. A rule



may also ontain a set of negative appliation onditions (NAC) to express thatsomething must not exist for a rule to be appliable [HHT96℄. The negativeondition an refer to values of attributes [TFKV99℄. Rules an also employ setnodes, whih an be mapped to any number of nodes in the host graph, inludingzero. The mathing of a set node is in any ase exhaustive of all the nodes in thehost graph satisfying the ondition indiated by the rule. Set nodes have to bepreserved between the left and right ontext, but new set nodes an be reated.This implies that it is not possible to use a rule to destroy a set of nodes, butthe nodes in the set have to be removed individually from it. Finally, set nodesmust not our in NAC's.Transformation units are used to further ontrol rule appliation. In thefollowing example, the denotation of transformation units is mainly redued tothe ontaining rules and ontrol onditions. Initial and terminal on�gurationsare all instanes of the given UML model. The import relation of units remainsimpliit. The ontrol ondition is spei�ed by expressions over rules.Given a setNames of rule names from whih rule expressions are onstruted,a rule expression E as we will use it, is a term generated by the following syntax:{ basi operators:E ::= Names j E1 and E2 j E1 or E2 j E1;E2 j a(E) j na(E) jnull j if E1 then E2 else E3 end j while E1 do E2 end{ derived operators:E ::= E1 implies E2 j E1 = E2 j E1 xor E2 j asLongAsPossible E endMost of the operators presented above have the obvious meaning: operatorsa and na test the appliability and non-appliability, resp. Eah rule expressionis either appliable or non-appliable, i.e. it has a boolean return value. In ase,it is appliable, the unit it ontrols an also produe a value, a node, or a setnode, aording to the delaration of the arguments for the unit. In the operatorsif-then-else and while-do-end, the rule expression E1 is tested for appliabil-ity (without being applied). The result of this test determines how to proeedwith appliation in the usual way. Operator asLongasPossible applies a ruleexpression to a graph as long as it is appliable. A detailed formal de�nition ofrule expressions as presented above an be found in [BKPPT00℄.3.2 Cheking simple OCL onstraintsAn OCL onstraint over navigation expressions an be translated into a graphrule, easily derivable from the visualization of suh OCL onstraints by statiollaboration diagrams. Suh diagrams an be interpreted as idential graphrules, i.e. both sides are equal and the rule morphism is the identity (e.g. theOCL onstraint in Figure 1 whih an be interpreted as an idential graph rule).If a rule whih is the translation of a onstraint an be applied to someinstane graph, the onstraint is satis�ed for this instane. The non-appliabilityof a rule an have two auses: either there is no total mapping of the left-handside to the instane graph or no mapping satis�es all the additional appliation



onditions. In both ases, this an be reported to the user helping him/her to�nd the inonsisteny. After the user has performed further editing steps on theUML model, the heking an be started again. Thus, the rule-based haraterof inonsisteny heking ould be advantageously used to perform onstraintheking any time the user so wishes.3.3 Cheking advaned OCL onstraintsThe proposed visualisation does not always have a diret proedural ounterpartand diret mathing is not suÆient when some strategy has to be followed inonstraint heking. For example, heking a onstraint expressed as a nestingof logial onnetives, or navigation expressions involving a universal quanti�errequires following a preise sequene of ations.The translation from OCL onstraints to rule expressions an be performedsystematially, as the translation to the delarative visualisation. We onsiderhere again the example in Figure 2. We assume that the prede�ned operations,suh as selet, have already been translated into suitable transformation units.Then, the whole onstraint is translated again into a transformation unit whihuses the selet unit.
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done

done

doneFig. 3. Translation of pre-de�ned operation seletThe selet operation is diretly dependent on the evaluation of the seletingexpression. The seleting expression is part of the resulting transformation unit,thus the unit name is dependent of the expression. (Consider the translation ofselet in Figure 3.) In the body of this transformation unit, the operation is�rst initialized by reating an additional struture (here a Set node) and thenthe selet ation is performed. Note that the dotted box in the left-hand side



of rule reateSet indiates that the set s must not be already present in thediagram for the rule to be appliable. For eah element hosen from the given set(and not already visited, i.e. without an adjaent done edge), we have to seletor deselet it, depending on the seleting expression. The hosen element is usedas input parameter of the seleting expression.Having the translation of selet available, the translation of the OCL on-straint in Figure 2 is depited in Figure 4. The �rst rule navigates to all theaddresses. Then two transformation units are alled, performing the seletion ofaddresses of residents or known persons and ounting them. The last rule heksif there is at least one of those addresses.
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x = #resident or x = #knownL=RFig. 4. Translation of OCL onstraint in Figure 2During a onstraint hek, the instane graph may be augmented by addi-tional objets and links. These objets, whih may be olletion nodes and ad-ditional done edges, have to be deleted by additional rules olleted in a speialtransformation unit whih is invoked after eah hek.3.4 An example on an instane diagramAs an example of onsisteny hek of an instane diagram, onsider the objetdiagram in Figure 5, showing a portion of the data base in the E-Governmentprojet. We want to hek the OCL onstraint in Figure 2 on the two instanesof NaturalPerson there.To test the well-formedness of a diagram or model, we have to look for theappliability of a set of rules and/or transformation units. Looking at our samplemodel in Fig. 5, the transformation unit in Fig. 4 an be applied fully to theportion of the diagram relative to Manuel, but not to the portion relative toGabi. Indeed, the transformation unit in Figure 4 will start by onstruting theset of addresses, whih results empty for Gabi. Now the selet transformationunit will start by onstruting the new set to aommodate the seleted address,but it will not enter the while loop, as the rule de�ning the looping onditionis not appliable. Hene, the selet transformation unit will end by returning



Manuel:NaturalPerson

attrFamilyName = "Koch"

attrSex = "Male"

attDateOfDeath = #none

:Inahbitant

attrState = #resident

:Address

attrStateofApartment = #sole

attrDateOfMOveIn = 22/02/2001

attrDateOfMoveOut = #none

Gabi:NaturalPerson

attrFamilyName = "Taentzer"

attrSex = "Female"

attrDateOfDeath = #none

:Inhabitant

attrState = #knownFig. 5. An objet diagram not satisfying a onstraintan empty set. The inhabitantAddresses transformation unit will then proeedto ompute the size of this set and �nally the rule for isGreaterZero is notappliable, making the whole unit to fail. Conversely, when applying the unit toManuel's portion, the seleted set ontains the only address present for Manuel,so that it is not empty, and its size is greater than zero, testifying to that theonstraint is satis�ed.3.5 DisussionThe identi�ation of the transformation units translating a textual OCL on-straint an proeed in parallel with the translation to a visual ounterpart, pro-viding an operational reading of the delarative visual representation. The twovisual forms of management of OCL onstraints, i.e. visual OCL onstraints andgraph transformations, share some ommonalities at the base level, presentingelements from the UML syntax, namely, lassi�ers, assoiations, multi-objetsand attributes. However, the omposition of omplex onstraints is expressedthrough ad ho visualisations in one ase and through rule sequenes in theother. In general, rule expressions an be employed to govern the appliationof rules for omplex onstraints, in a way whih an be inferred by the stru-ture of the visualisation. Conversely, the visualisation provides suitable graphialonstruts to express the iteration and alternative operators of rule sequenes.Using graph transformation to give OCL an operational semantis is ratherlosely related to the dynami metamodeling approah by Engels et al. whoprovide a graphial approah to the operational semantis of behavioural UMLdiagrams [EHHS00℄. To this end, they use ollaboration diagrams, whih anbe interpreted as graph rules. The two approahes mainly di�er in the way ruleappliation is ontrolled. While in the metamodeling approah rule appliationsan be ontrolled by sequential and parallel omposition as well as the usage ofother transformation units, we allow a larger variety of ontrol onstruts.



4 ConlusionsWe have proposed to exploit forms of visualisation to ahieve a smoother in-tegration and use of OCL in the ontext of the UML diagrammati languages,both from a delarative and from a proedural point of view. To this end the pa-per has illustrated how visual representation of onstraints exploiting the UMLvisual syntax an be ahieved, and how graph rules an be used to supportonsisteny heking of OCL onstraints on target diagrams. Two systematitranslations from the textual OCL syntax to the two forms of visual syntax(stati visualization and exeutable graph transformation units) preserving thesemantis of the onstraints an be realized. These visual syntaxes admit someamount of hybridization with textual syntaxes, as onditions on properties orprimitive OCL operators (suh as size or isOCLKindOf) are more simply leftin the textual form (see for instane the realization of isGreaterZero in Figure4). The presented visualisation is based on ollaborations, and is onsistent withthe metamodel for OCL proposed in[RG99℄. It introdues a limited amount ofnew ore notation, but o�ers a variety of visual shortuts for onvenient visualnotation, favouring a greater readability and amenability to reasoning of OCLonstraints. The ombination of the visualisation of OCL and the appliationof rule expressions has the advantage of allowing an intuitive representation tothe user, who an perform diret heking on the model, and of getting a formalsemantis, in terms of transformation units.Based on the proposed translation, an OCL evaluator an be implementedon top of a graph transformation mahine like AGG or PROGRES ([EEKR99℄)and later integrated into a UML CASE tool. These tools support a step by stepevolution of the underlying host graphs. An OCL evaluator based on suh agraph transformation mahine an help to understand the implemented OCLsemantis by following the stepwise evaluation on instane diagrams visually.An editor for visual OCL onstraints is urrently being implemented for theopen soure CASE tool ArgoUML. The graph transformation-based approah toheking inonsistenies an easily support automati repair ations, by de�ningsuitable graph rules to solve them, if possible. This approah relies on the idea ofliving with inonsistenies during software development presented in [GMT99℄,also on the basis of graph transformation.Referenes[BKPPT00℄ P. Bottoni, M. Koh, F. Parisi-Presie, and G. Taentzer. Consistenyheking and visualization of OCL onstraints. In A. Evans and S. Kent,editors, UML 2000, number 1939 in LNCS, pages 294{308. Springer, 2000.[BKPPT01℄ P. Bottoni, M. Koh, F. Parisi-Presie, and G. Taentzer. A visualizationof OCL using ollaborations. In M. Gogolla and C. Kobrin, editors, UML2001, number 1939 in LNCS, pages 257{271. Springer, 2001.[Bod00℄ M. Bodenm�uller. The OCL Metamodel and the UML-OCL pakage. Pro.of OCLWorkshop, Satellite Event of UML 2000, York, Otober 2000, 2000.
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