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t. The Obje
t Constraint Language (OCL) provides an impor-tant 
omplement to visual formalisms used in the de�nition of UML lan-guages. Yet, its usage is limited by two major drawba
ks. The �rst is thelimited availability of tools for the automati
 veri�
ation of 
onstraintsagainst model diagrams. The se
ond is the diÆ
ulty of amalgamatinga textual formalism su
h as OCL with the visual languages used in therest of UML. We atta
k these problems with methods deriving froma graph-transformation based approa
h. We propose a visualisation ofOCL, based on a re
ently proposed metamodel for it, whi
h provides ade
larative way to represent OCL 
onstraints, and then we dis
uss howan operational semanti
s for OCL 
an be based on transformation unitswhi
h guide the appli
ation of graph-transformation rules.1 Introdu
tionThe Obje
t Constraint Language (OCL) provides an important 
omplement tovisual formalisms used in the de�nition of UML languages. It is used both as atextual 
ounterpart to UML models, and to 
onstrain extensions of UML usingmetamodels. Yet, its usage is limited by two major drawba
ks. The �rst is thelimited availability of tools for the automati
 veri�
ation of 
onstraints againstmodel diagrams. The se
ond is the diÆ
ulty of amalgamating a textual formalismsu
h as OCL with the visual languages used in the rest of UML.Both problems 
an be atta
ked based on the existen
e of some formal se-manti
s for OCL. In parti
ular, the existen
e of a metamodel, as introdu
ed in[RG99℄, allows us to devise some form of visualisation, 
onforming to the meta-model, but whi
h is better suited to integration with the UML diagrammati
languages. A visual formalism su
h as that of graph rewriting rules 
an also beused to provide an operational semanti
s for OCL, whi
h 
an be applied both toits visual and to its textual representation. Su
h an operational semanti
s 
anbe realised on top of existing tools for graph rewriting.The paper �rst presents the main 
on
epts behind the proposed visualisa-tion and then dis
usses how an operational semanti
s 
an be a
hieved in termsof transformation units de�ning a strategy in the appli
ation of graph transfor-mation rules. The 
on
lusions illustrate some bene�t of the approa
h? Partially supported by the EC under Esprit Working Group APPLIGRAPH.



2 Visualisation of OCL ConstraintsIn the following, we 
onsider two main issues when visualizing OCL. One is thevisualization of navigation expressions, ubiquitous in UML. Another importantissue is the visualization of 
olle
tions and their operations. The visualization
on
epts for both issues are illustrated by examples taken from an industrialproje
t on 'E-Government'. The proje
t obje
tive is to repla
e the existing soft-ware system used in the residents' oÆ
es in Berlin by a new software systemthat supports and fa
ilitates both the business pro
ess within one or amongseveral authorities and the business pro
esses between the authority and the
itizen by exploiting Internet te
hnologies. The main responsibilities of the res-idents' registration oÆ
e are the registration of inhabitants, the maintenan
eand preparation of the inhabitants data for other authorities like poli
e or �redepartment, and the 
erti�
ation of passports and ID 
ards. The underlyingbusiness obje
t model 
ontains 
lasses like NaturalPerson whi
h des
ribes nat-ural persons as opposed to legal persons, and Inhabitant 
ontaining data ofnatural persons being inhabitants. Additional 
onstraints must be 
he
ked toinsure the 
onsisten
y of the data base with the intended appli
ation. A moredetailed presentation of the business model 
an be found in [BKPPT01℄. In thesame paper, the interested reader 
an also �nd a dis
ussion on the prin
iplesbehind the proposed visualization.2.1 Constraints on Navigation ExpressionsOCL 
onstraints involve 
omplex navigation expressions to rea
h obje
t prop-erties. A user trying to follow these expressions in
urs in the 
ognitive 
ost ofhaving to reformulate an obje
t stru
ture, given in some stati
 stru
ture diagram,in a di�erent, textual, syntax. Hen
e, visualizing navigation paths would helpthe developer to maintain an overview of the stru
ture while reasoning aboutthe 
onstraints. We propose to express obje
t navigation in a visual, de
larativeway through 
ollaboration diagrams.The following is a simple OCL 
onstraint stating that the birth date of anatural person 
omes before the date of moving into an apartment; the 
onstraintis stated textually in the usual OCL syntax.
ontext NaturalPerson inv:self.birth.attrBirthDate < self.address.attrDateOfMoveInThe visualized form of this 
onstraint, in Figure 1, 
ontains three 
lassi-�er roles, two of whi
h present attributes. The attribute values, x and y, are
ompared in the bottom 
ompartment. The kind of 
onstraint is indi
ated byshort
uts 'inv', 'pre' or 'post' (for invariants, pre- or post
onditions, respe
tively)in the upper left 
orner. Four alternative versions for visualizing this 
onstraint
ould be employed, as navigation to Birth and Address obje
ts 
an be per-formed on named as well as on anonymous asso
iations.



: Address

attrDateOfMoveIn = x

/self: NaturalPerson

y < x

inv

attrBirthDate = y

birth : Birth

Fig. 1. The birth date 
omes before the date of moving into an apartment.2.2 Colle
tions and Their OperationsOCL supports three di�erent types of 
olle
tions: sets, bags and sequen
es. Setsare represented using the 
onvention for multi-obje
ts in UML. Under this 
on-vention, a multi-obje
t represents all the obje
ts, possibly an empty 
olle
tion,rea
hed by a navigation expression. We 
all this visual form set box. The othertypes of 
olle
tions are represented by adorning the set box with details re
all-ing the 
olle
tion type, i.e. 
onne
ting the 
orners of the shifted re
tangles withdots (to remind of a series) for a sequen
e, and pla
ing a semi 
ir
le, reminding ahandle, over the upper re
tangle of the 
olle
tion element for a bag. The 
on
reteelement type of a 
olle
tion is in the front re
tangle. Basing the visualization on
ollaborations, the appli
ation of an operation is des
ribed by an intera
tion.We use the sele
t operation to des
ribe how a 
olle
tion operation 
anbe visualized. Usually, the sele
ting expression is framed by a set box. Su
h arepresentation is employed in Figure 2 to sele
t all the addresses of a naturalperson who is a resident or a non-resident with a known address. The numberof addresses must be greater than 0. The 
orresponding textual OCL 
onstraintis: 
ontext NaturalPerson inv:self.address!sele
t(naturalPerson.inhabitant.attrState = #resident j#known)! size > 0
self: NaturalPerson

n > 0

#n
a: Address a

: Inhabitant

attrState = #resident | #knownFig. 2. A sele
t statement



2.3 Logi
al expressionsThe use of the alternative operator (j) in Figure 2 is a short
ut for a disjun
tioninvolving dupli
ation of the 
lassi�er role to present the possible alternativevalues. A more general visualization has been devised for logi
al expressions. Inparti
ular, logi
al expressions on obje
t navigation are represented by framingexpressions in order to reprodu
e the nesting of logi
al AND and OR operators,where ea
h level is alternately read as an AND or an OR, starting from anoutermost AND frame. In 
ase the original OCL formula had disjun
tions at thetop level, a new �
titious top node is �rst inserted to 
onstitute the AND-labeledroot, and then the translation pro
ess is started. Dashed diagram parts are usedfor negation.If-then-else expressions 
an be depi
ted by frames with di�erent 
ompart-ments. The if 
ompartment is above the then 
ompartment on the left, and theelse 
ompartment on the right.2.4 OCL MetamodelAs we base the visualization of OCL on 
ollaborations, we perform some adap-tation of the OCL meta model introdu
ed in [RG99℄ and further elaborated in[Bod00℄ to make it 
onsistent with the meta model for 
ollaborations. The idea isto use 
ollaborations to des
ribe properties of obje
ts. This is natural, sin
e thedes
ription of obje
t properties is based on 
lassi�er and asso
iation roles whi
hare used to des
ribe navigation paths. The dynami
 aspe
ts of 
ollaborations areexploited to represent the 
alling of methods to determine obje
t properties.As in [Bod00℄, a spe
ial pa
kage UML OCL 
ontains basi
 data types and
olle
tions. Abstra
t 
olle
tions are thought to be in
orporated in this pa
kageas data types. They have to be instantiated by 
on
rete element types, whi
h isdone in a spe
ial pro�le whi
h introdu
es typed 
olle
tions with a link ba
k to
lassi�ers to 
apture the 
olle
ted type. Spe
ial OCL operations are integratedby o�ering spe
ial data types in the UML OCL pa
kage as des
ribed above.3 Graph Transformations for Che
king ConstraintsThe main motivation to develop OCL has been the de�nition of well-formednessrules in the 
ontext of the UML semanti
s, but it may also be used for pre
isemodeling of user appli
ations. To express OCL semanti
s by graph transforma-tion, a fun
tion tr : Set(O
lExpression)! Rules [ Set(TransformationUnit)is de�ned. An OCL 
onstraint is an expression, with a boolean return value, sat-is�ed by an instan
e model, if the 
orresponding rule or transformation unit 
anbe applied to the instan
e graph. The evaluation of the rule or unit does notmodify the graph on whi
h the 
onstraint is 
he
ked.3.1 The Graph Transformation Approa
hWe work on dire
ted, typed, and attributed graphs. Rule appli
ation followsthe single-pushout approa
h to graph transformation [L�ow93,EHK+96℄. A rule



may also 
ontain a set of negative appli
ation 
onditions (NAC) to express thatsomething must not exist for a rule to be appli
able [HHT96℄. The negative
ondition 
an refer to values of attributes [TFKV99℄. Rules 
an also employ setnodes, whi
h 
an be mapped to any number of nodes in the host graph, in
ludingzero. The mat
hing of a set node is in any 
ase exhaustive of all the nodes in thehost graph satisfying the 
ondition indi
ated by the rule. Set nodes have to bepreserved between the left and right 
ontext, but new set nodes 
an be 
reated.This implies that it is not possible to use a rule to destroy a set of nodes, butthe nodes in the set have to be removed individually from it. Finally, set nodesmust not o

ur in NAC's.Transformation units are used to further 
ontrol rule appli
ation. In thefollowing example, the denotation of transformation units is mainly redu
ed tothe 
ontaining rules and 
ontrol 
onditions. Initial and terminal 
on�gurationsare all instan
es of the given UML model. The import relation of units remainsimpli
it. The 
ontrol 
ondition is spe
i�ed by expressions over rules.Given a setNames of rule names from whi
h rule expressions are 
onstru
ted,a rule expression E as we will use it, is a term generated by the following syntax:{ basi
 operators:E ::= Names j E1 and E2 j E1 or E2 j E1;E2 j a(E) j na(E) jnull j if E1 then E2 else E3 end j while E1 do E2 end{ derived operators:E ::= E1 implies E2 j E1 = E2 j E1 xor E2 j asLongAsPossible E endMost of the operators presented above have the obvious meaning: operatorsa and na test the appli
ability and non-appli
ability, resp. Ea
h rule expressionis either appli
able or non-appli
able, i.e. it has a boolean return value. In 
ase,it is appli
able, the unit it 
ontrols 
an also produ
e a value, a node, or a setnode, a

ording to the de
laration of the arguments for the unit. In the operatorsif-then-else and while-do-end, the rule expression E1 is tested for appli
abil-ity (without being applied). The result of this test determines how to pro
eedwith appli
ation in the usual way. Operator asLongasPossible applies a ruleexpression to a graph as long as it is appli
able. A detailed formal de�nition ofrule expressions as presented above 
an be found in [BKPPT00℄.3.2 Che
king simple OCL 
onstraintsAn OCL 
onstraint over navigation expressions 
an be translated into a graphrule, easily derivable from the visualization of su
h OCL 
onstraints by stati

ollaboration diagrams. Su
h diagrams 
an be interpreted as identi
al graphrules, i.e. both sides are equal and the rule morphism is the identity (e.g. theOCL 
onstraint in Figure 1 whi
h 
an be interpreted as an identi
al graph rule).If a rule whi
h is the translation of a 
onstraint 
an be applied to someinstan
e graph, the 
onstraint is satis�ed for this instan
e. The non-appli
abilityof a rule 
an have two 
auses: either there is no total mapping of the left-handside to the instan
e graph or no mapping satis�es all the additional appli
ation




onditions. In both 
ases, this 
an be reported to the user helping him/her to�nd the in
onsisten
y. After the user has performed further editing steps on theUML model, the 
he
king 
an be started again. Thus, the rule-based 
hara
terof in
onsisten
y 
he
king 
ould be advantageously used to perform 
onstraint
he
king any time the user so wishes.3.3 Che
king advan
ed OCL 
onstraintsThe proposed visualisation does not always have a dire
t pro
edural 
ounterpartand dire
t mat
hing is not suÆ
ient when some strategy has to be followed in
onstraint 
he
king. For example, 
he
king a 
onstraint expressed as a nestingof logi
al 
onne
tives, or navigation expressions involving a universal quanti�errequires following a pre
ise sequen
e of a
tions.The translation from OCL 
onstraints to rule expressions 
an be performedsystemati
ally, as the translation to the de
larative visualisation. We 
onsiderhere again the example in Figure 2. We assume that the prede�ned operations,su
h as sele
t, have already been translated into suitable transformation units.Then, the whole 
onstraint is translated again into a transformation unit whi
huses the sele
t unit.
set: Set

t: T

s:Set

set: Set

t: T

set: Set

t: T

set: Set

s: Set

createSet (out s: Set)

selectE (in set: Set, in s: Set, in t: T)

1 1

2 23 3
select t [expr](in s:Set,s’:Set) 

createSet(s’);

while choose(s,t) do

if tr (expr)

then selectE(s,s’,t)

else deselectE(s,t)

end

end

s:Set t: T
L=R

choose (in set: Set, out t: T)

set: Set

s: Set

t: T

deselectE (in set: Set, in t: T)

1 1

2 2

done

done

doneFig. 3. Translation of pre-de�ned operation sele
tThe sele
t operation is dire
tly dependent on the evaluation of the sele
tingexpression. The sele
ting expression is part of the resulting transformation unit,thus the unit name is dependent of the expression. (Consider the translation ofsele
t in Figure 3.) In the body of this transformation unit, the operation is�rst initialized by 
reating an additional stru
ture (here a Set node) and thenthe sele
t a
tion is performed. Note that the dotted box in the left-hand side



of rule 
reateSet indi
ates that the set s must not be already present in thediagram for the rule to be appli
able. For ea
h element 
hosen from the given set(and not already visited, i.e. without an adja
ent done edge), we have to sele
tor desele
t it, depending on the sele
ting expression. The 
hosen element is usedas input parameter of the sele
ting expression.Having the translation of sele
t available, the translation of the OCL 
on-straint in Figure 2 is depi
ted in Figure 4. The �rst rule navigates to all theaddresses. Then two transformation units are 
alled, performing the sele
tion ofaddresses of residents or known persons and 
ounting them. The last rule 
he
ksif there is at least one of those addresses.
: Address 2

1

self: NaturalPerson

: Address 2

1

self: NaturalPerson

: Inhabitant 2

attrState = x

isGreaterZero(in x: Integer)

x > 0 L=R

inhabitantAddresses(): addresses(s);select  [isResidentOrKnown(n)](s,s’);

size(s’,x); isGreaterZero(x)

a

isResidentOrKnown (in n: NaturalPerson)addresses(out set: Set)

set:Set
1

self: NaturalPerson

x = #resident or x = #knownL=RFig. 4. Translation of OCL 
onstraint in Figure 2During a 
onstraint 
he
k, the instan
e graph may be augmented by addi-tional obje
ts and links. These obje
ts, whi
h may be 
olle
tion nodes and ad-ditional done edges, have to be deleted by additional rules 
olle
ted in a spe
ialtransformation unit whi
h is invoked after ea
h 
he
k.3.4 An example on an instan
e diagramAs an example of 
onsisten
y 
he
k of an instan
e diagram, 
onsider the obje
tdiagram in Figure 5, showing a portion of the data base in the E-Governmentproje
t. We want to 
he
k the OCL 
onstraint in Figure 2 on the two instan
esof NaturalPerson there.To test the well-formedness of a diagram or model, we have to look for theappli
ability of a set of rules and/or transformation units. Looking at our samplemodel in Fig. 5, the transformation unit in Fig. 4 
an be applied fully to theportion of the diagram relative to Manuel, but not to the portion relative toGabi. Indeed, the transformation unit in Figure 4 will start by 
onstru
ting theset of addresses, whi
h results empty for Gabi. Now the sele
t transformationunit will start by 
onstru
ting the new set to a

ommodate the sele
ted address,but it will not enter the while loop, as the rule de�ning the looping 
onditionis not appli
able. Hen
e, the sele
t transformation unit will end by returning



Manuel:NaturalPerson

attrFamilyName = "Koch"

attrSex = "Male"

attDateOfDeath = #none

:Inahbitant

attrState = #resident

:Address

attrStateofApartment = #sole

attrDateOfMOveIn = 22/02/2001

attrDateOfMoveOut = #none

Gabi:NaturalPerson

attrFamilyName = "Taentzer"

attrSex = "Female"

attrDateOfDeath = #none

:Inhabitant

attrState = #knownFig. 5. An obje
t diagram not satisfying a 
onstraintan empty set. The inhabitantAddresses transformation unit will then pro
eedto 
ompute the size of this set and �nally the rule for isGreaterZero is notappli
able, making the whole unit to fail. Conversely, when applying the unit toManuel's portion, the sele
ted set 
ontains the only address present for Manuel,so that it is not empty, and its size is greater than zero, testifying to that the
onstraint is satis�ed.3.5 Dis
ussionThe identi�
ation of the transformation units translating a textual OCL 
on-straint 
an pro
eed in parallel with the translation to a visual 
ounterpart, pro-viding an operational reading of the de
larative visual representation. The twovisual forms of management of OCL 
onstraints, i.e. visual OCL 
onstraints andgraph transformations, share some 
ommonalities at the base level, presentingelements from the UML syntax, namely, 
lassi�ers, asso
iations, multi-obje
tsand attributes. However, the 
omposition of 
omplex 
onstraints is expressedthrough ad ho
 visualisations in one 
ase and through rule sequen
es in theother. In general, rule expressions 
an be employed to govern the appli
ationof rules for 
omplex 
onstraints, in a way whi
h 
an be inferred by the stru
-ture of the visualisation. Conversely, the visualisation provides suitable graphi
al
onstru
ts to express the iteration and alternative operators of rule sequen
es.Using graph transformation to give OCL an operational semanti
s is rather
losely related to the dynami
 metamodeling approa
h by Engels et al. whoprovide a graphi
al approa
h to the operational semanti
s of behavioural UMLdiagrams [EHHS00℄. To this end, they use 
ollaboration diagrams, whi
h 
anbe interpreted as graph rules. The two approa
hes mainly di�er in the way ruleappli
ation is 
ontrolled. While in the metamodeling approa
h rule appli
ations
an be 
ontrolled by sequential and parallel 
omposition as well as the usage ofother transformation units, we allow a larger variety of 
ontrol 
onstru
ts.



4 Con
lusionsWe have proposed to exploit forms of visualisation to a
hieve a smoother in-tegration and use of OCL in the 
ontext of the UML diagrammati
 languages,both from a de
larative and from a pro
edural point of view. To this end the pa-per has illustrated how visual representation of 
onstraints exploiting the UMLvisual syntax 
an be a
hieved, and how graph rules 
an be used to support
onsisten
y 
he
king of OCL 
onstraints on target diagrams. Two systemati
translations from the textual OCL syntax to the two forms of visual syntax(stati
 visualization and exe
utable graph transformation units) preserving thesemanti
s of the 
onstraints 
an be realized. These visual syntaxes admit someamount of hybridization with textual syntaxes, as 
onditions on properties orprimitive OCL operators (su
h as size or isOCLKindOf) are more simply leftin the textual form (see for instan
e the realization of isGreaterZero in Figure4). The presented visualisation is based on 
ollaborations, and is 
onsistent withthe metamodel for OCL proposed in[RG99℄. It introdu
es a limited amount ofnew 
ore notation, but o�ers a variety of visual short
uts for 
onvenient visualnotation, favouring a greater readability and amenability to reasoning of OCL
onstraints. The 
ombination of the visualisation of OCL and the appli
ationof rule expressions has the advantage of allowing an intuitive representation tothe user, who 
an perform dire
t 
he
king on the model, and of getting a formalsemanti
s, in terms of transformation units.Based on the proposed translation, an OCL evaluator 
an be implementedon top of a graph transformation ma
hine like AGG or PROGRES ([EEKR99℄)and later integrated into a UML CASE tool. These tools support a step by stepevolution of the underlying host graphs. An OCL evaluator based on su
h agraph transformation ma
hine 
an help to understand the implemented OCLsemanti
s by following the stepwise evaluation on instan
e diagrams visually.An editor for visual OCL 
onstraints is 
urrently being implemented for theopen sour
e CASE tool ArgoUML. The graph transformation-based approa
h to
he
king in
onsisten
ies 
an easily support automati
 repair a
tions, by de�ningsuitable graph rules to solve them, if possible. This approa
h relies on the idea ofliving with in
onsisten
ies during software development presented in [GMT99℄,also on the basis of graph transformation.Referen
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