
Working on OCL with graph transformations ?Paolo Bottoni1, Manuel Ko
h2,Fran
es
o Parisi-Presi

e1, Gabriele Taentzer31 Universit�a di Roma \La Sapienza Italy - 2 Free University of Berlin -3 University of PaderbornAbstra
t. The Obje
t Constraint Language (OCL) provides an impor-tant
omplement to visual formalisms used in the de�nition of UML lan-guages. Yet, its usage is limited by two major drawba
ks. The �rst is thelimited availability of tools for the automati
 veri�
ation of
onstraintsagainst model diagrams. The se
ond is the diÆ
ulty of amalgamatinga textual formalism su
h as OCL with the visual languages used in therest of UML. We atta
k these problems with methods deriving froma graph-transformation based approa
h. We propose a visualisation ofOCL, based on a re
ently proposed metamodel for it, whi
h provides ade
larative way to represent OCL
onstraints, and then we dis
uss howan operational semanti
s for OCL
an be based on transformation unitswhi
h guide the appli
ation of graph-transformation rules.1 Introdu
tionThe Obje
t Constraint Language (OCL) provides an important
omplement tovisual formalisms used in the de�nition of UML languages. It is used both as atextual
ounterpart to UML models, and to
onstrain extensions of UML usingmetamodels. Yet, its usage is limited by two major drawba
ks. The �rst is thelimited availability of tools for the automati
 veri�
ation of
onstraints againstmodel diagrams. The se
ond is the diÆ
ulty of amalgamating a textual formalismsu
h as OCL with the visual languages used in the rest of UML.Both problems
an be atta
ked based on the existen
e of some formal se-manti
s for OCL. In parti
ular, the existen
e of a metamodel, as introdu
ed in[RG99℄, allows us to devise some form of visualisation,
onforming to the meta-model, but whi
h is better suited to integration with the UML diagrammati
languages. A visual formalism su
h as that of graph rewriting rules
an also beused to provide an operational semanti
s for OCL, whi
h
an be applied both toits visual and to its textual representation. Su
h an operational semanti
s
anbe realised on top of existing tools for graph rewriting.The paper �rst presents the main
on
epts behind the proposed visualisa-tion and then dis
usses how an operational semanti
s
an be a
hieved in termsof transformation units de�ning a strategy in the appli
ation of graph transfor-mation rules. The
on
lusions illustrate some bene�t of the approa
h? Partially supported by the EC under Esprit Working Group APPLIGRAPH.

2 Visualisation of OCL ConstraintsIn the following, we
onsider two main issues when visualizing OCL. One is thevisualization of navigation expressions, ubiquitous in UML. Another importantissue is the visualization of
olle
tions and their operations. The visualization
on
epts for both issues are illustrated by examples taken from an industrialproje
t on 'E-Government'. The proje
t obje
tive is to repla
e the existing soft-ware system used in the residents' oÆ
es in Berlin by a new software systemthat supports and fa
ilitates both the business pro
ess within one or amongseveral authorities and the business pro
esses between the authority and the
itizen by exploiting Internet te
hnologies. The main responsibilities of the res-idents' registration oÆ
e are the registration of inhabitants, the maintenan
eand preparation of the inhabitants data for other authorities like poli
e or �redepartment, and the
erti�
ation of passports and ID
ards. The underlyingbusiness obje
t model
ontains
lasses like NaturalPerson whi
h des
ribes nat-ural persons as opposed to legal persons, and Inhabitant
ontaining data ofnatural persons being inhabitants. Additional
onstraints must be
he
ked toinsure the
onsisten
y of the data base with the intended appli
ation. A moredetailed presentation of the business model
an be found in [BKPPT01℄. In thesame paper, the interested reader
an also �nd a dis
ussion on the prin
iplesbehind the proposed visualization.2.1 Constraints on Navigation ExpressionsOCL
onstraints involve
omplex navigation expressions to rea
h obje
t prop-erties. A user trying to follow these expressions in
urs in the
ognitive
ost ofhaving to reformulate an obje
t stru
ture, given in some stati
 stru
ture diagram,in a di�erent, textual, syntax. Hen
e, visualizing navigation paths would helpthe developer to maintain an overview of the stru
ture while reasoning aboutthe
onstraints. We propose to express obje
t navigation in a visual, de
larativeway through
ollaboration diagrams.The following is a simple OCL
onstraint stating that the birth date of anatural person
omes before the date of moving into an apartment; the
onstraintis stated textually in the usual OCL syntax.
ontext NaturalPerson inv:self.birth.attrBirthDate < self.address.attrDateOfMoveInThe visualized form of this
onstraint, in Figure 1,
ontains three
lassi-�er roles, two of whi
h present attributes. The attribute values, x and y, are
ompared in the bottom
ompartment. The kind of
onstraint is indi
ated byshort
uts 'inv', 'pre' or 'post' (for invariants, pre- or post
onditions, respe
tively)in the upper left
orner. Four alternative versions for visualizing this
onstraint
ould be employed, as navigation to Birth and Address obje
ts
an be per-formed on named as well as on anonymous asso
iations.

: Address

attrDateOfMoveIn = x

/self: NaturalPerson

y < x

inv

attrBirthDate = y

birth : Birth

Fig. 1. The birth date
omes before the date of moving into an apartment.2.2 Colle
tions and Their OperationsOCL supports three di�erent types of
olle
tions: sets, bags and sequen
es. Setsare represented using the
onvention for multi-obje
ts in UML. Under this
on-vention, a multi-obje
t represents all the obje
ts, possibly an empty
olle
tion,rea
hed by a navigation expression. We
all this visual form set box. The othertypes of
olle
tions are represented by adorning the set box with details re
all-ing the
olle
tion type, i.e.
onne
ting the
orners of the shifted re
tangles withdots (to remind of a series) for a sequen
e, and pla
ing a semi
ir
le, reminding ahandle, over the upper re
tangle of the
olle
tion element for a bag. The
on
reteelement type of a
olle
tion is in the front re
tangle. Basing the visualization on
ollaborations, the appli
ation of an operation is des
ribed by an intera
tion.We use the sele
t operation to des
ribe how a
olle
tion operation
anbe visualized. Usually, the sele
ting expression is framed by a set box. Su
h arepresentation is employed in Figure 2 to sele
t all the addresses of a naturalperson who is a resident or a non-resident with a known address. The numberof addresses must be greater than 0. The
orresponding textual OCL
onstraintis:
ontext NaturalPerson inv:self.address!sele
t(naturalPerson.inhabitant.attrState = #resident j#known)! size > 0
self: NaturalPerson

n > 0

#n
a: Address a

: Inhabitant

attrState = #resident | #knownFig. 2. A sele
t statement

2.3 Logi
al expressionsThe use of the alternative operator (j) in Figure 2 is a short
ut for a disjun
tioninvolving dupli
ation of the
lassi�er role to present the possible alternativevalues. A more general visualization has been devised for logi
al expressions. Inparti
ular, logi
al expressions on obje
t navigation are represented by framingexpressions in order to reprodu
e the nesting of logi
al AND and OR operators,where ea
h level is alternately read as an AND or an OR, starting from anoutermost AND frame. In
ase the original OCL formula had disjun
tions at thetop level, a new �
titious top node is �rst inserted to
onstitute the AND-labeledroot, and then the translation pro
ess is started. Dashed diagram parts are usedfor negation.If-then-else expressions
an be depi
ted by frames with di�erent
ompart-ments. The if
ompartment is above the then
ompartment on the left, and theelse
ompartment on the right.2.4 OCL MetamodelAs we base the visualization of OCL on
ollaborations, we perform some adap-tation of the OCL meta model introdu
ed in [RG99℄ and further elaborated in[Bod00℄ to make it
onsistent with the meta model for
ollaborations. The idea isto use
ollaborations to des
ribe properties of obje
ts. This is natural, sin
e thedes
ription of obje
t properties is based on
lassi�er and asso
iation roles whi
hare used to des
ribe navigation paths. The dynami
 aspe
ts of
ollaborations areexploited to represent the
alling of methods to determine obje
t properties.As in [Bod00℄, a spe
ial pa
kage UML OCL
ontains basi
 data types and
olle
tions. Abstra
t
olle
tions are thought to be in
orporated in this pa
kageas data types. They have to be instantiated by
on
rete element types, whi
h isdone in a spe
ial pro�le whi
h introdu
es typed
olle
tions with a link ba
k to
lassi�ers to
apture the
olle
ted type. Spe
ial OCL operations are integratedby o�ering spe
ial data types in the UML OCL pa
kage as des
ribed above.3 Graph Transformations for Che
king ConstraintsThe main motivation to develop OCL has been the de�nition of well-formednessrules in the
ontext of the UML semanti
s, but it may also be used for pre
isemodeling of user appli
ations. To express OCL semanti
s by graph transforma-tion, a fun
tion tr : Set(O
lExpression)! Rules [Set(TransformationUnit)is de�ned. An OCL
onstraint is an expression, with a boolean return value, sat-is�ed by an instan
e model, if the
orresponding rule or transformation unit
anbe applied to the instan
e graph. The evaluation of the rule or unit does notmodify the graph on whi
h the
onstraint is
he
ked.3.1 The Graph Transformation Approa
hWe work on dire
ted, typed, and attributed graphs. Rule appli
ation followsthe single-pushout approa
h to graph transformation [L�ow93,EHK+96℄. A rule

may also
ontain a set of negative appli
ation
onditions (NAC) to express thatsomething must not exist for a rule to be appli
able [HHT96℄. The negative
ondition
an refer to values of attributes [TFKV99℄. Rules
an also employ setnodes, whi
h
an be mapped to any number of nodes in the host graph, in
ludingzero. The mat
hing of a set node is in any
ase exhaustive of all the nodes in thehost graph satisfying the
ondition indi
ated by the rule. Set nodes have to bepreserved between the left and right
ontext, but new set nodes
an be
reated.This implies that it is not possible to use a rule to destroy a set of nodes, butthe nodes in the set have to be removed individually from it. Finally, set nodesmust not o

ur in NAC's.Transformation units are used to further
ontrol rule appli
ation. In thefollowing example, the denotation of transformation units is mainly redu
ed tothe
ontaining rules and
ontrol
onditions. Initial and terminal
on�gurationsare all instan
es of the given UML model. The import relation of units remainsimpli
it. The
ontrol
ondition is spe
i�ed by expressions over rules.Given a setNames of rule names from whi
h rule expressions are
onstru
ted,a rule expression E as we will use it, is a term generated by the following syntax:{ basi
 operators:E ::= Names j E1 and E2 j E1 or E2 j E1;E2 j a(E) j na(E) jnull j if E1 then E2 else E3 end j while E1 do E2 end{ derived operators:E ::= E1 implies E2 j E1 = E2 j E1 xor E2 j asLongAsPossible E endMost of the operators presented above have the obvious meaning: operatorsa and na test the appli
ability and non-appli
ability, resp. Ea
h rule expressionis either appli
able or non-appli
able, i.e. it has a boolean return value. In
ase,it is appli
able, the unit it
ontrols
an also produ
e a value, a node, or a setnode, a

ording to the de
laration of the arguments for the unit. In the operatorsif-then-else and while-do-end, the rule expression E1 is tested for appli
abil-ity (without being applied). The result of this test determines how to pro
eedwith appli
ation in the usual way. Operator asLongasPossible applies a ruleexpression to a graph as long as it is appli
able. A detailed formal de�nition ofrule expressions as presented above
an be found in [BKPPT00℄.3.2 Che
king simple OCL
onstraintsAn OCL
onstraint over navigation expressions
an be translated into a graphrule, easily derivable from the visualization of su
h OCL
onstraints by stati

ollaboration diagrams. Su
h diagrams
an be interpreted as identi
al graphrules, i.e. both sides are equal and the rule morphism is the identity (e.g. theOCL
onstraint in Figure 1 whi
h
an be interpreted as an identi
al graph rule).If a rule whi
h is the translation of a
onstraint
an be applied to someinstan
e graph, the
onstraint is satis�ed for this instan
e. The non-appli
abilityof a rule
an have two
auses: either there is no total mapping of the left-handside to the instan
e graph or no mapping satis�es all the additional appli
ation

onditions. In both
ases, this
an be reported to the user helping him/her to�nd the in
onsisten
y. After the user has performed further editing steps on theUML model, the
he
king
an be started again. Thus, the rule-based
hara
terof in
onsisten
y
he
king
ould be advantageously used to perform
onstraint
he
king any time the user so wishes.3.3 Che
king advan
ed OCL
onstraintsThe proposed visualisation does not always have a dire
t pro
edural
ounterpartand dire
t mat
hing is not suÆ
ient when some strategy has to be followed in
onstraint
he
king. For example,
he
king a
onstraint expressed as a nestingof logi
al
onne
tives, or navigation expressions involving a universal quanti�errequires following a pre
ise sequen
e of a
tions.The translation from OCL
onstraints to rule expressions
an be performedsystemati
ally, as the translation to the de
larative visualisation. We
onsiderhere again the example in Figure 2. We assume that the prede�ned operations,su
h as sele
t, have already been translated into suitable transformation units.Then, the whole
onstraint is translated again into a transformation unit whi
huses the sele
t unit.
set: Set

t: T

s:Set

set: Set

t: T

set: Set

t: T

set: Set

s: Set

createSet (out s: Set)

selectE (in set: Set, in s: Set, in t: T)

1 1

2 23 3
select t [expr](in s:Set,s’:Set)

createSet(s’);

while choose(s,t) do

if tr (expr)

then selectE(s,s’,t)

else deselectE(s,t)

end

end

s:Set t: T
L=R

choose (in set: Set, out t: T)

set: Set

s: Set

t: T

deselectE (in set: Set, in t: T)

1 1

2 2

done

done

doneFig. 3. Translation of pre-de�ned operation sele
tThe sele
t operation is dire
tly dependent on the evaluation of the sele
tingexpression. The sele
ting expression is part of the resulting transformation unit,thus the unit name is dependent of the expression. (Consider the translation ofsele
t in Figure 3.) In the body of this transformation unit, the operation is�rst initialized by
reating an additional stru
ture (here a Set node) and thenthe sele
t a
tion is performed. Note that the dotted box in the left-hand side

of rule
reateSet indi
ates that the set s must not be already present in thediagram for the rule to be appli
able. For ea
h element
hosen from the given set(and not already visited, i.e. without an adja
ent done edge), we have to sele
tor desele
t it, depending on the sele
ting expression. The
hosen element is usedas input parameter of the sele
ting expression.Having the translation of sele
t available, the translation of the OCL
on-straint in Figure 2 is depi
ted in Figure 4. The �rst rule navigates to all theaddresses. Then two transformation units are
alled, performing the sele
tion ofaddresses of residents or known persons and
ounting them. The last rule
he
ksif there is at least one of those addresses.
: Address 2

1

self: NaturalPerson

: Address 2

1

self: NaturalPerson

: Inhabitant 2

attrState = x

isGreaterZero(in x: Integer)

x > 0 L=R

inhabitantAddresses(): addresses(s);select [isResidentOrKnown(n)](s,s’);

size(s’,x); isGreaterZero(x)

a

isResidentOrKnown (in n: NaturalPerson)addresses(out set: Set)

set:Set
1

self: NaturalPerson

x = #resident or x = #knownL=RFig. 4. Translation of OCL
onstraint in Figure 2During a
onstraint
he
k, the instan
e graph may be augmented by addi-tional obje
ts and links. These obje
ts, whi
h may be
olle
tion nodes and ad-ditional done edges, have to be deleted by additional rules
olle
ted in a spe
ialtransformation unit whi
h is invoked after ea
h
he
k.3.4 An example on an instan
e diagramAs an example of
onsisten
y
he
k of an instan
e diagram,
onsider the obje
tdiagram in Figure 5, showing a portion of the data base in the E-Governmentproje
t. We want to
he
k the OCL
onstraint in Figure 2 on the two instan
esof NaturalPerson there.To test the well-formedness of a diagram or model, we have to look for theappli
ability of a set of rules and/or transformation units. Looking at our samplemodel in Fig. 5, the transformation unit in Fig. 4
an be applied fully to theportion of the diagram relative to Manuel, but not to the portion relative toGabi. Indeed, the transformation unit in Figure 4 will start by
onstru
ting theset of addresses, whi
h results empty for Gabi. Now the sele
t transformationunit will start by
onstru
ting the new set to a

ommodate the sele
ted address,but it will not enter the while loop, as the rule de�ning the looping
onditionis not appli
able. Hen
e, the sele
t transformation unit will end by returning

Manuel:NaturalPerson

attrFamilyName = "Koch"

attrSex = "Male"

attDateOfDeath = #none

:Inahbitant

attrState = #resident

:Address

attrStateofApartment = #sole

attrDateOfMOveIn = 22/02/2001

attrDateOfMoveOut = #none

Gabi:NaturalPerson

attrFamilyName = "Taentzer"

attrSex = "Female"

attrDateOfDeath = #none

:Inhabitant

attrState = #knownFig. 5. An obje
t diagram not satisfying a
onstraintan empty set. The inhabitantAddresses transformation unit will then pro
eedto
ompute the size of this set and �nally the rule for isGreaterZero is notappli
able, making the whole unit to fail. Conversely, when applying the unit toManuel's portion, the sele
ted set
ontains the only address present for Manuel,so that it is not empty, and its size is greater than zero, testifying to that the
onstraint is satis�ed.3.5 Dis
ussionThe identi�
ation of the transformation units translating a textual OCL
on-straint
an pro
eed in parallel with the translation to a visual
ounterpart, pro-viding an operational reading of the de
larative visual representation. The twovisual forms of management of OCL
onstraints, i.e. visual OCL
onstraints andgraph transformations, share some
ommonalities at the base level, presentingelements from the UML syntax, namely,
lassi�ers, asso
iations, multi-obje
tsand attributes. However, the
omposition of
omplex
onstraints is expressedthrough ad ho
 visualisations in one
ase and through rule sequen
es in theother. In general, rule expressions
an be employed to govern the appli
ationof rules for
omplex
onstraints, in a way whi
h
an be inferred by the stru
-ture of the visualisation. Conversely, the visualisation provides suitable graphi
al
onstru
ts to express the iteration and alternative operators of rule sequen
es.Using graph transformation to give OCL an operational semanti
s is rather
losely related to the dynami
 metamodeling approa
h by Engels et al. whoprovide a graphi
al approa
h to the operational semanti
s of behavioural UMLdiagrams [EHHS00℄. To this end, they use
ollaboration diagrams, whi
h
anbe interpreted as graph rules. The two approa
hes mainly di�er in the way ruleappli
ation is
ontrolled. While in the metamodeling approa
h rule appli
ations
an be
ontrolled by sequential and parallel
omposition as well as the usage ofother transformation units, we allow a larger variety of
ontrol
onstru
ts.

4 Con
lusionsWe have proposed to exploit forms of visualisation to a
hieve a smoother in-tegration and use of OCL in the
ontext of the UML diagrammati
 languages,both from a de
larative and from a pro
edural point of view. To this end the pa-per has illustrated how visual representation of
onstraints exploiting the UMLvisual syntax
an be a
hieved, and how graph rules
an be used to support
onsisten
y
he
king of OCL
onstraints on target diagrams. Two systemati
translations from the textual OCL syntax to the two forms of visual syntax(stati
 visualization and exe
utable graph transformation units) preserving thesemanti
s of the
onstraints
an be realized. These visual syntaxes admit someamount of hybridization with textual syntaxes, as
onditions on properties orprimitive OCL operators (su
h as size or isOCLKindOf) are more simply leftin the textual form (see for instan
e the realization of isGreaterZero in Figure4). The presented visualisation is based on
ollaborations, and is
onsistent withthe metamodel for OCL proposed in[RG99℄. It introdu
es a limited amount ofnew
ore notation, but o�ers a variety of visual short
uts for
onvenient visualnotation, favouring a greater readability and amenability to reasoning of OCL
onstraints. The
ombination of the visualisation of OCL and the appli
ationof rule expressions has the advantage of allowing an intuitive representation tothe user, who
an perform dire
t
he
king on the model, and of getting a formalsemanti
s, in terms of transformation units.Based on the proposed translation, an OCL evaluator
an be implementedon top of a graph transformation ma
hine like AGG or PROGRES ([EEKR99℄)and later integrated into a UML CASE tool. These tools support a step by stepevolution of the underlying host graphs. An OCL evaluator based on su
h agraph transformation ma
hine
an help to understand the implemented OCLsemanti
s by following the stepwise evaluation on instan
e diagrams visually.An editor for visual OCL
onstraints is
urrently being implemented for theopen sour
e CASE tool ArgoUML. The graph transformation-based approa
h to
he
king in
onsisten
ies
an easily support automati
 repair a
tions, by de�ningsuitable graph rules to solve them, if possible. This approa
h relies on the idea ofliving with in
onsisten
ies during software development presented in [GMT99℄,also on the basis of graph transformation.Referen
es[BKPPT00℄ P. Bottoni, M. Ko
h, F. Parisi-Presi

e, and G. Taentzer. Consisten
y
he
king and visualization of OCL
onstraints. In A. Evans and S. Kent,editors, UML 2000, number 1939 in LNCS, pages 294{308. Springer, 2000.[BKPPT01℄ P. Bottoni, M. Ko
h, F. Parisi-Presi

e, and G. Taentzer. A visualizationof OCL using
ollaborations. In M. Gogolla and C. Kobrin, editors, UML2001, number 1939 in LNCS, pages 257{271. Springer, 2001.[Bod00℄ M. Bodenm�uller. The OCL Metamodel and the UML-OCL pa
kage. Pro
.of OCLWorkshop, Satellite Event of UML 2000, York, O
tober 2000, 2000.

[EEKR99℄ H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook ofGraph Grammars and Computing by Graph Transformation, Volume 2:Appli
ations, Languages and Tools. World S
ienti�
, 1999.[EHHS00℄ G. Engels, J. Hausmann, R. He
kel, and S. Sauer. Dynami
 meta modeling:A graphi
al approa
h to the operational semanti
s of behavioral diagramsin uml. In A. Evans and S. Kent, editors, UML 2000, number 1939 inLNCS, pages 323{337. Springer, 2000.[EHK+96℄ H. Ehrig, R. He
kel, M. Kor�, M. L�owe, L. Ribeiro, A. Wagner, and A. Cor-radini. Algebrai
 approa
hes to graph transformation II: Single pushoutapproa
h and
omparison with double pushout approa
h. In G. Rozen-berg, editor, The Handbook of Graph Grammars and Computing by GraphTransformations, Volume 1: Foundations, pages 247{312. World S
ienti�
,1996.[GMT99℄ M. Goedi
ke, T. Meyer, and G. Taentzer. ViewPoint-oriented SoftwareDevelopment by Distributed Graph Transformation: Towards a Basis forLiving with In
onsisten
ies. In Pro
. 4th IEEE Int. Symposium on Re-quirements Engineering (RE'99), June 7-11, 1999, University of Limeri
k,Ireland. IEEE Computer So
iety, 1999. ISBN 0-7695-0188-5.[HHT96℄ A. Habel, R. He
kel, and G. Taentzer. Graph Grammars with Negative Ap-pli
ation Conditions. Spe
ial issue of Fundamenta Informati
ae, 26(3,4),1996.[L�ow93℄ M. L�owe. Algebrai
 approa
h to single-pushout graph transformation.TCS, 109:181{224, 1993.[RG99℄ M. Ri
hters and M. Gogolla. A metamodel for OCL. In R. Fran
e andB. Rumpe, editors, UML'99, pages 156{171. Springer LNCS 1723, 1999.[TFKV99℄ G. Taentzer, I. Fis
her, M. Ko
h, and V. Volle. Visual Design of Dis-tributed Systems by Graph Transformation. In H. Ehrig, H.-J. Kreowski,U. Montanari, and G. Rozenberg, editors, Handbook of Graph Grammarsand Computing by Graph Transformation, Volume 3: Con
urren
y, Par-allelism, and Distribution, pages 269{340. World S
ienti�
, 1999.

