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a Università di Roma “La Sapienza - Italy
b Technische Universität Berlin - Germany

Abstract

We present an approach to maintaining consistency between code and specifica-
tion during refactoring, where a specification comprises several UML diagrams of
different types. Code is represented as a flowgraph, and the flowgraph and UML
diagrams constitute different views of a software system. A refactoring is modelled
as a set of distributed graph transformations, organized into transformation units.

1 Introduction

Refactoring has been a common programming practice ever since the pos-
sibility of writing subprograms arose. It is now a central practice of what
is called extreme programming [2] and has undergone systematisation, as wit-
nessed for instance in Fowler’s book [5]. Although refactoring can apply to any
programming paradigm, it becomes particularly significant in object-oriented
languages, and largely benefits from the synergy with research on design pat-
terns, as this makes new possibilities for refactoring apparent.

Refactoring is meant to preserve a program behaviour while improving its
reusability and flexibility, but does so by relying on a view of behaviour ex-
pressed by an input / output mapping. Actually, refactoring can have several
consequences if one considers the computing process, as expressed for instance
by a sequence of method calls or state changes of an object or an activity. On
the other hand, as refactoring is usually performed at the source code level, it
becomes difficult to maintain consistency between the code and its specifica-
tion – as expressed for instance through UML diagrams – which refers to the
original version of the code. Two strategies can be adopted: either recover
the specification after each change (or any chosen set of changes), using for
instance tools such as Fujaba [12]; or define the effects of a refactoring on
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the different parts of the specification. This last option is easily realised on
structural specifications, as transformations on such diagrams are notationally
equivalent to the lexical transformations on the source code. It is not so easy
to define these effects on behavioural specifications.

This work discusses an approach to the problem of maintaining consistency
between source code and both structural and behavioural diagrams, grounded
in the formal framework of graph transformations. In particular, UML speci-
fication diagrams are represented as graphs, and an abstract representation of
the source code is also expressed through suitable attributed graph structures.
The UML diagrams as well as the code are seen as different specification views
of a software system, so that consistency management between the views and
the code is modelled as a graph transformation distributed on several graphs at
once. Complex refactorings, as well as the checking of complex preconditions
are broken into collections of distributed transformations whose application is
managed by control expressions in suitable transformation units.

Paper outline. After reviewing some approaches to refactoring and to soft-
ware evolution using graph rewriting in Section 2, we provide the background
notions on distributed graph transformation in Section 3. In Section 4, we first
reformulate the problem of maintaining consistency between different forms of
specification and with code as the specification of suitable distributed graph
transformations, and then illustrate our approach by means of two refactor-
ings. Conclusions are given in Section 5.

2 Related Work

Formal methods have been applied towards a clear definition of the condi-
tions under which refactoring takes place, from Opdyke’s seminal thesis [14],
where preconditions for behaviour preservation are analysed, to Robert’s the-
sis, where the effect of refactoring is formalised in terms of postconditions [15],
so that composite refactorings can be discussed, in which the preconditions
for a refactoring are guaranteed by the postconditions for a previous one.

Recent work in the UML community has expressed the effects of refactoring
on UML diagrams, mainly class or state diagrams [16]. Similarly, Mens [10]
studies how to express such transformations in terms of graph transformations,
by mapping diagrams onto type graphs. Such type graphs are equivalent to the
abstract syntax of class diagrams of the UML metamodel. The work by Mens
et al. in [11] exploits several techniques that we also use in this paper, such as
control expressions, negative conditions, and parameterised rules. However,
all these studies focus on the effect of refactorings on single types of diagrams,
and do not investigate, for example, the coordination of a change in a class
diagram with that in a sequence or state diagram.

We try to attack this problem, by showing that some types of refactor-
ing require modifications in several diagrams at once, and proposing a con-
strained way of rewriting different graphs, as a model for a full formalisation
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of the refactoring process. To this end, we propose an approach derived from
distributed graph transformation, which is grounded in the double pushout
approach to graph transformation. This is based on a hierarchical view of
distributed systems, where high-level “network” graphs define the overall ar-
chitecture of a distributed system, while low-level ”specification” ones refer to
the specific implementation of local systems [17]. Such an approach has also
been applied to the specification of ViewPoints, a framework to describe com-
plex systems where different views and plans have to be coordinated [6]. In the
ViewPoint approach, inconsistencies between different views can be tolerated
[7], while in the approach proposed here different graphs have to be modified
in a coordinated way so that overall consistency is always maintained.

3 The Formal Background

Distributed rule application follows the double-pushout approach to graph
transformation as described in [17], exploiting rules with negative application
conditions. For further control on distributed transformations, transformation
units are used. In [9], they are defined based on a general approach. Here, we
use transformation units on distributed graph transformation. This combina-
tion provides us with a global control on structured graph manipulations.

3.1 Distributed Graph Transformation

We work with distributed graphs with typed and attributed nodes and edges.
Edge and node types for a given family of graphs F are defined in a type
graph T (F) and the typing of a graph G ∈ F consists of a set of injective
mappings from edges and nodes in G to edges and nodes in T (F). Distributed
graph transformations are graph transformations structured at two abstraction
levels: the network and the object level. The network level contains the
description of the system’s architecture by a network graph, and its dynamic
reconfiguration by network rules. At the object level, graph transformation is
used to manipulate local object structures. To describe a synchronized activity
on distributed object structures a combination of graph transformations on
both levels is needed. A distributed graph consists of a network graph where
each network node is refined by a local object graph. Network edges are
refined by graph morphisms on local object graphs, which describe how the
object graphs are interconnected. A distributed graph morphism m is defined
by a network morphism n – which is a normal graph morphism – together
with a set S of local object morphisms being graph morphisms on local object
graphs. Each node mapping in n is refined by a graph morphism of S on
the corresponding local graphs. Each mapping of network edges guarantees a
compatibility between the corresponding local object morphisms.

Following the double-pushout approach, a distributed graph rule p : L
l←

I
r→ R, is defined by the two distributed graph morphisms l and r. When
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applied to a distributed host graph G, it transforms G into a target graph G′

if and only if an injective match m : L → G is found which is a distributed
graph morphism again. A comatch m′ : R → G′ specifies the embedding of R
in the target graph. The elements in the interface graph I must be preserved
in the transformation. Due to space reasons, in the presentation of the rules
below, the graph I is implicit as the intersection of L and R. A rule may
also contain a set of negative application conditions (NAC) to express that
something must not exist for a rule to be applicable. The negative condition
is defined by a finite set of distributed graph morphisms NAC = {Ni

ni→ L}
and can refer to values of attributes [17]. For the rule to be applicable, no
graph present in NAC must be matched in the host graph.

In the figures below we will use schemes of graph productions rather than
actual rules. In these schemes set nodes are also employed, which can be
mapped to any number of nodes in the host graph, including zero. The match-
ing of a set node is in any case exhaustive of all the nodes in the host graph
satisfying the condition indicated by the rule.

In this paper, we use two additional mechanisms to specify control on rule
application. The first is the possibility to label edges with path expressions
summarising possible concatenations of edges, or alternative paths between
elements. The check of the existence of such paths could be realised by using
suitable transformation units defining how to check the existence of a sequence
of links, so that path expressions are here intended as a notational shortcut.
The second mechanism is the use of parameterised rules, so that actual rules
are obtained by instantiating the parameters to the context at hand. Finally,
we employ transformation units, as described in the next section.

3.2 Transformation Units

Transformation units are used to further control rule application, with the
control condition specified by expressions over rules [9]. The concept of trans-
formation units is defined independently from any given approach to graph
transformation. Actually, each transformation unit refers to a certain graph
transformation approach A consisting of a class of graphs G, a class of rules R,
a rule application operator =⇒ yielding a binary relation on graphs for every
rule of R, a class E of graph class expressions, and a class C of control con-
ditions. A transformation unit consists of an initial and terminal graph class
expression, defining which graphs serve as valid input and output graphs.
Moreover, a set of rules and a set of references to other transformation units,
to be used in the current one, are present, together with a control condition
over C describing the way the rules in this and other transformation units have
to be applied. Typically, C contains expressions on sequential application of
rules and units as well conditions or application loops, e.g. applying a rule
as long as possible. An explicit presentation of typical control expressions is
given in [8].
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In the following, we apply transformation units to distributed graph trans-
formation, i.e. we use the following underlying graph transformation approach:
G is the class of distributed graphs, R the class of distributed rules, and =⇒
the DPO way of rule application, as defined in [17]. In [8], class C is described.
Class E is not needed in the following. It can trivially be left empty to indicate
that no special initial and terminal graph classes can be specified.

4 Refactoring

In this section, we analyse some examples of refactoring which involve trans-
formations in more than one UML diagram. Following [15], refactorings are
expressed by pre- and post-conditions. The typical interaction with a refactor-
ing tool can be modelled by the following list of events: (1) The user selects
a segment of code. (2) The user selects one from a list of available (possible
composite) refactorings. (3) The tool checks the preconditions for refactoring.
(4) If the preconditions are satisfied, refactoring takes place, with effects as
described in the postconditions. Otherwise a message is issued to the user.

The choice to perform a specific refactoring is usually left to the software
designer. However, complex refactorings are resolved as sequences of indi-
vidual refactoring steps. In what follows we consider the effect of complex
refactorings as specified by individual graph transformation rules, possibly
distributed over different diagram graphs, and we do not model the processes
which lead to the choice of any particular refactoring. Actually, the effect of
refactoring on different diagrams can be expressed through schemes of graph
rewriting rules, which have to be instantiated with the proper names for, say,
classes and methods, as indicated in the code transformation.

Preconditions are usually checked on the textual code, but involve the
analysis of properties which are properly structural, such as the visibility of
variables in specific portions of code, or the existence of calls to some methods.
Due to space limitations, we do not provide a full formalised treatment here,
but we indicate the main transformations and give a short description of the
transformation units involved.

4.1 Graph Representation of Diagrams and Code

In the line of [10], we consider type graphs as defining the abstract syntax
for concrete visual languages, such as those defined in UML. In particular,
we refer to UML class, sequence, and state diagrams, with the type graphs
defined in coherence with the metamodel definition of such languages in the
official UML documentation [13].

We also assume the possibility of representing the source code in the form
of a flowgraph for a method, as is typical in compiler construction [1]. This is a
directed graph where nodes are lines of code and a reaches edge exists between
two nodes if a program execution can make the line represented by the first
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Fig. 1. The type graph for code representation.

node to be followed by the line represented by the second node. Moreover,
each line node is attached to a set of nodes describing the variables referred to
(for definition or usage) in the line and the methods, if any, called in the line.
Some of these variables can be localTo the Method, meaning they are either
passed to the method, or declared local to it. Finally, a set of parameter
nodes describing the types of the arguments to a method and a return node,
describing the type of the result, are also considered to be present. Figure
1 describes the resulting type graph. Such a type graph is simpler than the
one in [11] for the representation of relations among software entities, which
also considers inheritance among classes, and the presence of subexpressions
in method bodies. Here, we deal with inheritance in the UML class diagram
and, since we are not interested in representing the whole body of a method
we only keep trace of references to variables and methods and not of complete
expressions. On the other hand, we maintain a representation of code lines and
of reachability relations among them, which allows us to have a notion of block
that will be used in Section 4.2. A similar representation of diagrams as graphs
can be used for sequence diagrams, following the ideas in [4], and based on the
UML metamodel. To simplify matters, we describe transformations directly
on the concrete syntax of sequence diagrams.

Distributed graphs are suited to describe relationships between diagrams
and code fragments. Following the approach of [6], a network graph (see Fig-
ure 2) describes the type graph for the specification of the whole software
system at some stage of the evolution process. A network node is either asso-
ciated with one local object graph representing a UML diagram or the code
flowgraph (we call such nodes diagram nodes), or it is an interface node.
Here, we consider only the Class, Sequence, and State M achines families of
diagrams discussed in the text, and the Code Flowgraph. For each pair of
diagram nodes, a common interface node exists. Interface nodes are refined
at the local level by the common graph parts of two diagrams in the current
state. Network edges connect diagram nodes and interface nodes and are re-
fined at the local level by defining how common interface parts are embedded
in diagrams. Hence, an interface graph is related to its parent graphs by two
graph embeddings (being injective graph morphisms). For example, the inter-
face between Class diagrams and Flowgraphs will present Method, Variable,
and Type nodes, the interface with State Machine diagrams may have states
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Fig. 2. The type graph for network graphs describing software system specifications.

representing the execution of a method or of some block of code 1 , and the
interfaces with Sequence Diagrams will present the invocation of a Method as
a representedOperation. Several nodes of the same type can be used in the
specification of a software system, as for instance different sequence diagrams
are used to depict different scenarios, or a class can be replicated in different
class diagrams to show its relationships with different sets of other classes.

4.2 Code Extraction

As a first example, consider the extract code as method refactoring by which
a segment of code is isolated, given a name, and replaced in the original code
by a call to the newly formed method.

The preconditions for such a refactoring are that the code to be extracted
can be seen as a block, i.e. it must have only one entry point and one point
of exit, although it does not have to be a maximal block, i.e. it can be
immersed in a fragment of code which has itself the properties of being a
block. Moreover, the name to be given to the method must not exist in the
class hierarchy to which the affected class belongs. The post-conditions for
this refactoring assert that a new method is created containing the extracted
code, that such a method receives as parameters all the variables which are not
visible to the class and which are used in the code (they had to be passed or
be local to the original method), and that the code is replaced in the original
method by a proper call to the new method.

Figure 3 describes, in the form of a rule scheme, the effect of such refac-
toring on the graph representing the code. In this figure, a set node is used
to indicate the lines of code in the original version of the method which are
affected by the transformation. The rest of the method is left untouched. The
programmer must provide a specific instantiation of this scheme by listing the
lines to be moved. The other set nodes in Figure 3 indicate the variables and
methods referred to by the moved lines. Labels are here and in what follows
are used as variables to identify sets and nodes. The two negative application
conditions express the requirement that the moved lines must constitute a

1 We could as well refer to Activity Diagrams in a similar way.
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Fig. 3. The rule scheme for code modification in extract code as method.

block by stating that there must not be no line in the code that can reach or
be reached from the moved lines following two distinct paths. Moreover, the
newMethod will make use of parameters of some type, in particular to refer to
variables which are localTo the oldMethod (hence no longer visible otherwise
in the newMethod). These variables are identified by rules applied before in
the same transformation unit and passed on as a parameter to this rule.

In Figure 3 the NAC uses constraints to express that a path is not a sub-
set of another. An operational semantics for OCL exploiting transformation
units can be integrated in the current approach [3]. In general, complex pre-
conditions can be expressed as rules with identical left- and right- sides. A
transformation unit can then define a control mechanism such that the actual
transformation occurs only if each positive precondition is satisfied and no
negative precondition is satisfied.

Figure 4 describes the effect of this refactoring on class diagrams. At the
structural level, only the existence of a new method (with a fresh name) in
the class can be shown. The effects on the referred variables and the exis-
tence of a call for this method, observable in the textual description, are not
reflected in the structural diagram. The two negative application conditions
state that a method with the same signature as the new one must not appear
in any class higher or lower in the hierarchy than the modified class. These
conditions make use of path expressions to indicate the transitive closure of
the inheritance relation.

The newly created call is observed at the behavioural level, as shown in Fig-
ure 5. Referring now to concrete sequence diagrams, and not to their abstract
representation as graphs, we use two oblique lines as a notational shortcut to
indicate that anything can precede the activation of the old method. This can
be expressed in the abstract syntax graph by a path expression labelled with
first e next e∗ from the node representing the receiving instance to the node
representing the action.

Finally, in case the execution of the original code is represented by some
state or process in an activity or a state diagram, such a state or process should
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Fig. 5. The rule scheme for sequence diagram modification in
extract code as method.
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Fig. 6. The rule scheme for state diagram modification in extract code as method.

be replaced by states and state transitions which distinguish between states
prior to, coinciding with, or subsequent to the execution of the extracted code.
Figure 6 describes such a transformation. Incidentally, this suggests that more
stringent preconditions could be applied, to the effect of checking if a state
depicts a situation in which parts of code are executed which are not subsets
or supersets of the extracted code. If this is the case, there would be at least
two states such that the system would transit from one to the other during the
execution of the extracted code. In this case, the insertion of an intermediate
state corresponding to such execution would be more significant.

All the transformations above have to be applied to maintain consistency
of diagrams and code. The network level transformations will simply rewrite
nodes into themselves. With each such rewriting a transformation of the as-
sociated local graph occurs. The transformation units state that nodes have
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Fig. 7. The rule scheme for class diagram modification in move method.

to be rewritten as long as possible. This amounts to rewriting diagram nodes
at the network level as long as it is possible to transform the associated lo-
cal graph if affected by the refactoring, and applying transformations on one
local graphs as long as possible as well. For example, in the modification of
sequence diagrams, an activation of the old method can occur several times
on the same lifeline. Hence, the instantiation of the relevant transformation
scheme must be applied as long as possible in any sequence diagram. If nec-
essary, rules can be modified to tag elements to which a transformation has
already been applied and negative application conditions can be used to avoid
applying a rule twice to the same element. The transformation unit can then
be completed by removing the tags.

Preconditions for this refactoring were distributed among different graphs,
viz. those representing the class diagram and the code. As the whole process
is regulated by control expressions in a transformation unit, one can guard
the application of the refactoring by the satisfaction of preconditions in all
the relevant graphs.

4.3 Method movement

The code of a method can be moved from its defining class to a different
class in which it takes a new name. The original method is replaced with a
forwarding method that simply calls the new method in the destination class.
The new method must not already appear in the hierarchy of the target class.
Since the original method could refer to members of its original class, the
signature for the method is enriched with a reference to the original class, as
indicated by the node labelled with ClassXType in Figure 7. The case where
the method has to be moved to the superclass would be expressed by a rule
scheme similar to the one in Figure 7, but which would require the existence
of an inheritance relation between nodes labelled ClassX and ClassY.

Besides class diagrams, sequence diagrams have to be modified as well,
according to the transformation scheme depicted in Figure 8. Indeed, while the
call to the forwarding method can be said not to modify the behaviour of the
class, it has to be reflected in this diagram to prevent subsequent refinements
of this diagram from violating the correct sequence of calls.

In Figures 7 and 8 we consider the case where the method is an in-
stance method. The case for static methods requires some obvious modifi-
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Fig. 8. The rule scheme for sequence diagram modification in move method.

cations. Again, a transformation unit, with a rule expression of the form:
asLongAsPossible move method(oldNm, oldCls, newNm, newCls), causes
the flowgraph for the old method, together with all the network nodes of type
ClassDiagram and SequenceDiagram whose local nodes contain references to
the moved method, are affected by the transformation.

5 Conclusions

We have presented an approach to maintaining consistency between code and
model diagrams in the presence of refactorings. Each refactoring is described
through a set of coordinated graph transformation schemes which have to be
instantiated according to the specific code modification and applied to the
diagrams affected by the change. While this can be seen as a way to avoid
reverse engineering to reconstruct the models from the modified code, the
model can also be seen as a way to maintain consistency in diagrams through
re-engineering steps, before proceeding to the actual code modification. A
more thorough study of existing refactorings, and experimentation on actual
code, is needed to produce a library of distributed transformations which can
be used in practical cases.
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