
AGG: A Graph Transformation Environment

for Modeling and Validation of Software�

Gabriele Taentzer

Technische Universität Berlin, Germany
gabi@cs.tu-berlin.de

Abstract. AGG is a general development environment for algebraic
graph transformation systems which follows the interpretative approach.
Its special power comes from a very flexible attribution concept. AGG
graphs are allowed to be attributed by any kind of Java objects. Graph
transformations can be equipped with arbitrary computations on these
Java objects described by a Java expression. The AGG environment con-
sists of a graphical user interface comprising several visual editors, an
interpreter, and a set of validation tools. The interpreter allows the step-
wise transformation of graphs as well as rule applications as long as pos-
sible. AGG supports several kinds of validations which comprise graph
parsing, consistency checking of graphs and conflict detection in concur-
rent transformations by critical pair analysis of graph rules. Applications
of AGG include graph and rule-based modeling of software, validation of
system properties by assigning a graph transformation based semantics
to some system model, graph transformation based evolution of software,
and the definition of visual languages based on graph grammars.

1 Introduction

Graphs play an important role in many areas of computer science and they
are especially helpful in analysis and design of software applications. Prominent
representatives for graphical notations are entity relationship diagrams, control
flows, message sequence charts, Petri nets, automata, state charts and any kind
of diagram used in object oriented modeling languages as UML. Graphs are
also used for software visualizations, to represent the abstract syntax of visual
notations, to reason about routing in computer networks, etc. Altogether graphs
represent such a general structure that they occur nearly anywhere in computer
science.

Graph transformation defines the rule-based manipulation of graphs. Since
graphs can be used for the description of very different aspects of software, also
graph transformation can fulfill very different tasks. E.g. graphs can conveniently
be used to describe complex data and object structures. In this case, graph
transformation defines the dynamic evolution of these structures.
� Research partly supported by the German Research Council (DFG), and the EU

Research Training Network SegraVis.

J.L. Pfaltz, M. Nagl, and B. Böhlen (Eds.): AGTIVE 2003, LNCS 3062, pp. 446–453, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



AGG: A Graph Transformation Environment 447

Graphs have also the possibility to carry attributes. Graph transformation
is then equipped with further computations on attributes. Since graph trans-
formation can be applied on very different levels of abstraction, it can be non-
attributed, attributed by simple computations or by complex processes, depend-
ing on the abstraction level. AGG graphs may be attributed by Java objects
which can be instances of Java classes from libraries like JDK as well as user-
defined classes.

The graphical user interface provides a visual layout of AGG graphs similar to
UML object diagrams. Several editors are provided to support the visual editing
of graphs, rules and graph grammars. Additionally, there is a visual interpreter,
the graph transformation machine, running in several modes. If another than
the standard layout is preferred, it is possible to just use the underlying graph
transformation machine and to implement a new layout component or, moreover,
a new graphical interface for the intended application.

AGG has a formal foundation based on the algebraic approach to graph
transformation [1, 2]. Since the theoretical concepts are implemented as directly
as possible – not leaving out necessary efficiency considerations – AGG offers
clear concepts and a sound behavior concerning the graph transformation part.
Clearly, Java semantics is not covered by this formal foundation.

Due to its formal foundation, AGG offers validation support like graph pars-
ing, consistency checking of graphs and graph transformation systems as well as
conflict detection of graph transformation rules. Graph parsing can be advanta-
geously used to e.g. analyze the syntax of visual notations. Modeling a dynamic
system structure as graph there is generally the desire to formulate invariants
on the class of evolving graphs. AGG offers the possibility to formulate consis-
tency conditions which can be tested on single graphs, but which can also be
shown for a whole graph transformation system. If a consistency condition holds
for a graph transformation system, all derived graphs satisfy this condition. The
conflict detection of graph rules is useful to check dependencies between different
actions. It is based on a critical pair analysis for graph rules, a technique which
has been developed for term rewriting used in functional programming. Since
graph rules can be applied in any order, conflict detection helps to understand
the possible interactions of different rule applications.

2 Graph Transformation Concepts

Graph transformation based applications are described by AGG graph gram-
mars. They consist of a type graph defining the class of graphs used in the
following, a start graph initializing the system, and a set of rules describing the
actions which can be performed. The start graph as well as the rule graphs may
be attributed by Java objects and expressions. The objects can be instances of
Java classes from libraries like JDK as well as user-defined classes. These classes
belong to the application as well. Moreover, rules may be equipped by negative
application conditions and attribute conditions. The type graph defines all possi-
ble node and edge types, their possible interconnections and all attribute types.



448 Gabriele Taentzer

Please note that the type graph can contain additional application conditions for
rules, since it offers the possibility to set multiplicity constraints for arc types.
Type graphs have first be introduced in [6].

The way how graph rules are applied realizes directly the algebraic approach
to graph transformation as presented in [1, 2]. The formal basis for graph gram-
mars with negative application conditions (NACs) was introduced in [8].

Besides manipulating the nodes and arcs of a graph, a graph rule may also
perform computations on the objects’ attributes. During rule application, ex-
pressions are evaluated with respect to the variable instantiation induced by the
actual match. The attribution of nodes and arcs by Java objects and expressions
follows the ideas of attributed graph grammars as stated in [11] and further
in [14] to a large extent. The main difference here is the usage of Java classes
and expressions instead of algebraic specifications and terms. The combination of
attributed graph transformation with negative application conditions has been
worked out comprehensibly in [14]. The AGG features follow these concepts very
closely.

Graph transformation can be performed in two different modes using AGG.
The first mode to apply a rule is called Debug mode. Here, one selected rule will
be applied exactly once to the current host graph. The matching morphism may
be (partially) defined by the user. Defining the match completely “by hand”
may be tedious work. Therefore, AGG supports the automatic completion of
partial matches. If there are several choices for completion, one of them is chosen
arbitrarily. All possible completions can be computed and shown one after the
other in the graph editor. After having defined the match, the rule will be applied
to the host graph once. The result is shown in the graph editor that is, the host
graph is now transformed according to the rule and the match. Thereafter, the
host graph can immediately be edited.

The second mode to realize graph transformation is called Interpretation
mode. This is a more sophisticated mode, applying not only one rule at a time
but a whole sequence of rules. The rule to be applied and its match are non-
deterministically chosen. Starting the interpretation, all rules are applied as often
as possible, until no more match for any rule can be found. Please note that in
general the result graph is not unique, since the application of one rule may
avoid the application of another rule.

The basic concepts of AGG are presented comprehensively in [7]. In the
following, the presentation of AGG concentrates on its new features which cover
mainly validation possibilities.

3 Validation Support

Besides editing and interpretation facilities, AGG also offers support for model
validation. Since the main AGG concepts rely on a formal approach to graph
transformation, i.e. the algebraic approach, validation techniques developed for-
mally for this approach, can be directly implemented in AGG. In the following,
three main techniques are presented.



AGG: A Graph Transformation Environment 449

3.1 Graph Parsing

The AGG graph parser is able to check if a given graph belongs to a certain
graph language determined by a graph grammar. In formal language theory, this
problem is known as the membership problem. Here, the membership problem
is lifted to graphs. Three different parsing algorithms are offered by AGG, all
based on back tracking, i.e. the parser is building up a derivation tree of possible
reductions of the host graph. Leaf graphs are graphs where no rule can be applied
anymore. If a leaf graph is isomorphic to the stop graph, the parsing process
finishes successfully. Since simple back tracking has exponential time complexity,
the simple back tracking parser is accompanied by two further parser variants
exploiting critical pair analysis for rules.

Critical pair analysis can be used to make parsing of graphs more efficient:
decisions between conflicting rule applications are delayed as far as possible.
This means to apply non-conflicting rules first and to reduce the graph as much
as possible. Afterwards, the conflicting rules are applied, first in uncritical sit-
uations and when this is not possible anymore, in critical ones. In general, this
optimization reduces the derivation tree constructed, but does not change the
worst case complexity.

A parsing process might not terminate, therefore so-called layering conditions
are introduced. Using layers for rules and graph types such that each rule deletes
at least one graph object, which is of the same or a lower layer, creates graph
objects of a greater layer only, and has negative application conditions with graph
objects of the current or lower layers only, it has been shown in [5] that a parsing
process based on such a layered graph transformation always terminates.

3.2 Critical Pair Analysis

Critical pair analysis is known from term rewriting and usually used to check
if a rewriting system is confluent. Critical pair analysis has been generalized
to graph rewriting. Critical pairs formalize the idea of a minimal example of
a conflicting situation. From the set of all critical pairs we can extract the objects
and links which cause conflicts or dependencies.

A critical pair is a pair of transformations both starting at a common graph G
such that both transformations are in conflict, and graph G is minimal according
to the rules applied. The set of critical pairs represents precisely all potential
conflicts, i.e. there exists a critical pair like above if, and only if, one rule may
disable the other one. There are three reasons why rule applications can be
conflicting: The first two are related to the graph structure while the last one
concerns the graph attributes.

1. One rule application deletes a graph object which is in the match of another
rule application.

2. One rule application generates graph objects in a way that a graph struc-
ture would occur which is prohibited by a negative application condition of
another rule application.



450 Gabriele Taentzer

3. One rule application changes attributes being in the match of another rule
application.

Please note that using a type graph with multiplicity constraints usually
leads to considerably less critical pairs.

3.3 Consistency Checking

Consistency conditions describe basic properties of graphs as e.g. the existence
of certain elements, independent of a particular rule. To prove that a consistency
condition is satisfied by a certain graph grammar, i.e. is an invariant condition,
a transformation of consistency conditions into post application conditions can
be performed for each rule [10]. A so-constructed rule is applicable to a consistent
graph if and only if the derived graph is consistent, too. A graph grammar is
consistent if the start graph satisfies the consistency conditions and the rules
preserve this property.

In AGG, consistency conditions are defined on the basis of graphical con-
sistency constraints which consist each of a premise graph and a conclusion
graph such that the premise graph can be embedded into the conclusion graph.
A graphical consistency constraint is satisfied by a graph G if for each graph
pattern equivalent to the premise also an extension equivalent to the conclusion
can be found. Based on graphical consistency conditions a propositional logics
of formulae has been defined, to be used to formulate more complex consistency
conditions.

4 The Tool Environment

Figure 1 shows the main graphical user interface of the AGG system. To the
left, a tree view with all graph grammars loaded is shown. The current graph
grammar is highlighted. A selected graph, rule or condition is shown in its cor-
responding graphical editor on the right. The upper editor is for rules and con-
ditions showing the left and the right-hand sides or the premise and conclusion,
respectively. The lower editor is for graphs. The attribution of graph objects is
done in a special attribute editor that pops up when a graph object is selected
for attribution. In Fig. 1 a grammar for a sample requirement specification on
shopping is shown. This grammar is presented in detail in [9] where conflict de-
tection of such a requirement specification is analyzed by critical pair analysis.
Here, we extend the specification by two consistency conditions to show how
they can look like. The graph editor on the lower right shows the type graph of
this sample application. It contains typical object types around shopping. On
top of the type graph, an atomic consistency condition ”UniqueGoodPropriety”
is depicted which is part of consistency condition ”Proprieties” being a logical
formula shown in a separate formula editor on the lower left. Condition ”Pro-
prieties” is defined as conjunction of atomic conditions ”UniqueGoodPropriety”
and ”RackPropriety”. Condition ”UniqueGoodPropriety” has two conclusions,



AGG: A Graph Transformation Environment 451

Fig. 1. Screen dump of AGG

i.e. this condition contains two sub-conditions (with the same premise) disjunc-
tively connected. The one presented expresses that each good belongs to a shop.
Otherwise, it has to belong to a customer.

Graphs and graph grammars can be stored as XML documents [15], especially
AGG supports exchange in GXL [16], the quasi standard format for graphs.

5 Conclusion

This paper gives a rough overview on the graph transformation environment
AGG. It consists of visual editors for graphs, rules and graph grammars as well
as a visual interpreter for algebraic graph transformation. Moreover, standard
validation techniques for graph grammars are supported. Applications of AGG
may be of a large variety because of its very flexible attribution concept re-
lying on Java objects and expressions. E.g. the application of AGG for visual
language parsing [5] implemented in GenGEd [3], conflict detection in func-
tional requirement specifications [9], consistency checking of OCL constraints
in UML models [4] have been considered. AGG is not the only tool environ-
ment which is based on graph transformation. In this context we also have to
mention PROGRES [13] and a variety of tools which apply graph transforma-



452 Gabriele Taentzer

tion in a certain context, e.g. Fujaba [17], DiaGen [18], GenGED [3] and many
more. But AGG is the only one which consequently implements the theoretical
results available for algebraic graph transformation to support their validation.
The development group of AGG at the Technical University of Berlin will con-
tinue implementing concepts and results concerning validation and structuring
of graph transformation systems, already worked out formally. AGG is available
at: http://tfs.cs.tu-berlin.de/agg.

Acknowledgement

Large parts of AGG have been developed by Olga Runge. She is carefully main-
taining AGG, caring about all technical and documentation issues and puts a lot
of efforts on integrating students’ work smoothly into the whole project.

References

[1] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph transformation, Volume 1: Foundations, pages 163–246. World Scientific,
1997. 447, 448

[2] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation II: Single pushout approach and
comparison with double pushout approach. In G. Rozenberg, editor, The Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume 1:
Foundations, pages 247–312. World Scientific, 1996. 447, 448

[3] R. Bardohl. A Visual Environment for Visual Languages. Science of Computer
Programming (SCP), 44(2):181–203, 2002. 451, 452

[4] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Consistency Checking
and Visualization of OCL Constraints. In A. Evans and S. Kent, editors, UML
2000 - The Unified Modeling Language, volume 1939 of LNCS. Springer, 2000.
451

[5] P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of Visual Languages
based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In Proc. IEEE Symposium on Visual Languages, September 2000. Long version
available as technical report SI-2000-06, University of Rome. 449, 451

[6] A. Corradini, U. Montanari, and F. Rossi. Graph Processes. Special Issue of
Fundamenta Informaticae, 26(3,4):241–266, 1996. 448

[7] C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approach: Language and Tool
Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, volume
2: Applications, Languages and Tools, pages 551–603. World Scientific, 1999. 448

[8] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Applica-
tion Conditions. Special issue of Fundamenta Informaticae, 26(3,4), 1996. 448

[9] J.H. Hausmann, R. Heckel, and G. Taentzer. Detection of Conflicting Functional
Requirements in a Use Case-Driven Approach. In Proc. of Int. Conference on
Software Engineering 2002, Orlando, USA, 2002. To appear. 450, 451



AGG: A Graph Transformation Environment 453

[10] R. Heckel and A. Wagner. Ensuring Consistency of Conditional Graph Gram-
mars – A constructive Approach. Proc. of SEGRAGRA’95 “Graph Rewriting and
Computation”, Electronic Notes of TCS, 2, 1995.
http://www.elsevier.nl/locate/entcs/volume2.html. 450

[11] M. Löwe, M. Korff, and A. Wagner. An Algebraic Framework for the Transforma-
tion of Attributed Graphs. In M.R. Sleep, M.J. Plasmeijer, and M.C. van Eekelen,
editors, Term Graph Rewriting: Theory and Practice, chapter 14, pages 185–199.
John Wiley & Sons Ltd, 1993. 448

[12] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[13] A. Schürr, A. Winter, and A. Zündorf. The PROGRES-approach: Language and
environment. In H. Ehrig, G. Engels, J.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, Volume
2: Applications, Languages and Tools. World Scientific, 1999. 451

[14] G. Taentzer, I. Fischer, M Koch, and V. Volle. Visual Design of Distributed
Systems by Graph Transformation. In H. Ehrig, H.-J. Kreowski, U. Montanari,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 3: Concurrency, Parallelism, and Distribution,
pages 269–340. World Scientific, 1999. 448

[15] The Extensible Markup Language (XML) http: // www. w3. org/ XML/ , 2003. 451
[16] GXL http: // www. gupro. de/ GXL , 2003. 451
[17] Fujaba Project Group, 2003. Available at http://www.fujaba.de. 452
[18] M. Minas. Concepts and realization of a diagram editor generator based on hy-

pergraph transformation. Science of Computer Programming, 44(3):157 – 180,
2002. 452

http://www.w3.org/XML/
http://www.gupro.de/GXL
http://www.fujaba.de

	AGG: A Graph Transformation Environment for Modeling and Validation of Software
	Introduction
	Graph Transformation Concepts
	Validation Support
	Graph Parsing
	Critical Pair Analysis
	Consistency Checking

	The Tool Environment
	Conclusion


