Specifying Visual Languages with GenGED

Roswitha Bardohl, Karsten Ehrig, Claudia Ermel,
Anilda Qemali, Ingo Weinhold

Technische Universitit Berlin
{rosi,karstene,lieske,agemali,bonefish }@Qcs.tu-berlin.de

Abstract. This contribution gives an overview about the current con-
cepts of GENGED, an environment for the visual definition of visual
languages (VLs). From the visual definition, a VL specification is ob-
tained that serves as a configuration of a VL-specific environment, i.e.,
the configuration is dependent on the parameters available in a VL spec-
ification: GENGED allows for the visual specification of syntax-directed
editing, parsing, and simulation as well. In addition to these features, we
show how to define an animation view for a certain VL model.

All GENGED features are based on the formal concepts of algebraic
graph transformation and graphical constraint solving. Hence, we have
a well-defined theory which serves as a basis for proper extensions of
GENGED.

Keywords: visual languages, visual specification, editing, simulation,
animation.

1 Introduction

The use of visual modeling and specification techniques today is indispensable
in software system specification and development, so are corresponding visual
environments. As the development of specific visual environments is expensive,
generators for visual environments have gained importance, especially in the field
of rapid prototyping. Most existing generators like DIAGEN [10] rely on a textual
specification of a visual language instead of a visual one. However, because of
the at least two-dimensional character of visual representations the description
by one-dimensional texts is not always adequate.

In this contribution we briefly present the current state of GENGED, devel-
oped at the TU Berlin, for visually specifying visual languages (VLs) and corre-
sponding environments [1]. We start with a review on the underlying structure,
namely alphabet and grammars based on graph transformation and graphical
constraint solving. These structures form the basis for the specification of syntax
and behavior of visual models (diagrams over a specific VL, such as statecharts,
automata or Petri nets). The resulting specification is the basis for the config-
uration of a visual environment for (syntax-directed or free-hand) editing and
simulation. The different components of GENGED are only loosely coupled to
allow the user as much flexibility as possible. Thus, it is not necessary to define
a parse grammar if the user wants to have a syntax-directed editor.

Syntax and parse grammars are needed for editing whereas simulation gram-
mars describe the dynamic aspects of the specified system. The simulation of
the system’s behavior is defined by the means of the VL, e.g. the different states
of the system are still given by diagrams over the VL, such as an active state
of a statechart or an automaton, or a Petri net with an initial marking. Yet, in
order to have an intuitive understanding of a model, it is even better to have
an animation view which shows the dynamic behavior directly in the applica-
tion domain. We sketch our ideas concerning an extension of GENGED towards
allowing domain specific animation based on the formal simulation grammar.

The editing, parsing and simulation features are now implemented in the
GENGED tool environment, whereas the extension concerning animation is still
work in progress. All GENGED concepts are illustrated by the specification of
a VL for automata comprising features for simulation and animation.

The paper is organized as follows: In Sect. 2 we briefly review the GENGED
concepts which are illustrated by the specification of automata. The automata
specification is extended in Sect. 3, where we discuss the specification of syntax-
directed editing, parsing and simulation. In Sect. 4 we sketch our ideas for defin-
ing animation views of visual models.

2 Review of GENGED Concepts

GENGED is based on the well-defined concepts of algebraic graph transfor-
mation. Diagrams are represented by attributed graph structures covering the
abstract syntax (the logical language elements) and the concrete syntax (the
layout). A graph structure is given by disjoint sets, called vertices and unary
operations from a source vertex to a target vertex, also called edges. Each vertex
is typed over a type graph (the VL alphabet defining the vocabulary of a VL)
such that the operations are structure preserving. The concrete syntax extends
the abstract syntax by graphics defining the layout for each symbol type given
by the abstract syntax. A graphical constraint satisfaction problem (CSP) over
positions and sizes of the graphics defines the spatial relations between differ-
ent symbols by restricting the scope of constraint variables. The CSP has to
be solved by an adequate variable binding in each instance diagram over the
alphabet. Thus, the CSP defines layout conditions for diagrams of a VL.

Using syntax-directed editing available in a VL-specific editor, a diagram is
edited by applying the graph grammar rules to a given start diagram. The start
diagram and the rules are part of the corresponding VL syntax grammar. In
the following we illustrate the concepts VL alphabet and VL grammar by the
specification of a VL for automata, our running example.

2.1 VL Alphabets

A VL alphabet establishes a type system for symbols (vertices) and links (edges)
of a specific VL, i.e. it defines the vocabulary of a VL. The VL alphabet is rep-
resented by an algebraic graph structure signature and a constraint satisfaction
problem [1].

A conceivable alphabet for automata is illustrated in Fig. 1. In the upper part
of the figure, the abstract syntax of the alphabet is shown, namely the symbols
State, Trans (short for Transition), and a Start (resp. Final) marking for a state.
Both a State and a Trans symbol are enhanced with data attributes, namely
a state name (short SN) and a transition label (short TL). We also introduce
already the symbol Active which is used for the simulation (cf. Sect. 3.3). The
links are indicated as arcs in the abstract syntax part of Fig. 1.

Abstract
Syntax

Concrete O

VN A Y
_L String - #‘ @ - String
Syntax

{ Helv.,12pt7h Helv.,12pt

Fig. 1. VL alphabet for automata.

In addition to logical vertex attributes, symbol graphics are represented as
a further kind of attributes. In Fig. 1, e.g., the graphic for the symbol type
State is given by a circle. Thus, each State symbol (instance of the State type)
in a diagram is represented by a circle. In general, the position and size of all
instances occurring in a diagram depend on graphical constraints (illustrated
by dotted arrows in Fig. 1). The condition that each start and end point of a
transition arc must touch the boundary of a state circle is one example for a
layout condition defined by constraints in our alphabet for automata.

Fig. 2 depicts the abstract and the concrete syntax of an instance over the
automata alphabet modeling a process of the well-known producer/consumer
system.

The states of the automaton represent the states of the system: A producer
can be idle or busy and deliver a product to a buffer. A consumer can order
a product, remove it from the buffer and consume it. The automaton verifies
strings of the form (pdro)”pdrc where each character corresponds to a possible
state transition (p: produce, d: deliver, r: remove, o: order, c: consume).

2.2 VL Grammars

Given a VL alphabet, a VL grammar over the VL alphabet consists of a start
diagram and a set of rules. Usually, a rule consists of a rule name, optionally
a set of parameters, and two graphs, namely a left-hand side (LHS or L) and
a right-hand side (RHS or R), which are combined via a rule morphism (a
graph structure morphism on the abstract syntax level). Moreover, a rule may
be extended by negative application conditions (NACs) and attribute conditions
that are boolean expressions over variables and parameters of a rule.
Graph transformation defines a rule-based manipulation of graphs. In GENGED

we follow the Single-Pushout (SPO) approach to graph grammars [11] as well as

Abstract
Syntax

Concrete

Syntax

Fig. 2. Automaton modeling the Producer/Consumer system

we support the dangling condition well-known from the Double-Pushout (DPO)
approach [6] 1. The application of a rule r to a graph G (derivation) requires a
mapping (total graph structure morphism) from the abstract syntax level of the
rule’s LHS to the abstract syntax level of this graph G. Due to the derivation
result, the corresponding graphical attributes and constraints are instantiated
from the alphabet. The positions and sizes of the graphical objects are calculated
by a constraint solver (cf. [9]).

Insert_State (sn: String)

Fig. 3. Syntax-directed editing rule supporting the insertion of a state symbol.

Fig. 3 illustrates a syntax rule for the insertion of a State symbol. This rule
contains a rule parameter, namely a state name indicated by the variable sn of
type String. The left-hand side L of this rule is empty, i.e., nothing is required for

! In contrast to the SPO approach where all dangling edges are deleted implicitly, the
dangling condition of the DPO approach forbids the rule application if the trans-
formed graph H contains dangling edges.

applying the rule. By the right-hand side R a state symbol is generated together
with a state name. The NAC states that the state names have to be unique in
a diagram.

3 VL Specification

In GENGED algebraic graph transformation and graphical constraint solving
techniques are combined to support the definition of VL specifications which
configure a VL-specific visual environment. Each VL specification consists of a
VL alphabet and some kinds of grammars, respectively specifications; cf. Fig. 4.

Syntax Grammar 01

[Alphabet | ParseGrammar || Parse Specification -2L] vL-Specification |

Simulation Grammar *

Fig. 4. Workflow for the visual definition of a VL specification.

If only a syntax grammar is in the focus of a VL specification, it should be
defined in a way such that it expresses the correct syntax of the VL. Moreover,
it should not cover only language-generating rules but additionally language-
manipulating rules for comprehensive syntax-directed editing. Unfortunately,
such a rule set can be very detailed and large, and an end user 2 may be ir-
ritated because of many rules doing more or less the same. Therefore, free-hand
rather than syntax-directed editing is conceivable in a VL-specific visual envi-
ronment. In this case a parse grammar should be available. In order to define
complex VLs (like Statecharts in [2]) we propose the combination of a simple
syntax grammar together with a parse grammar. A parse grammar may be ex-
tended by the definition of a layering function and a critical pair analysis in
order to optimize the parsing process. The parse grammar together with these
extensions result in a parse specification. Similar to the syntax definition via
syntax grammar and parse grammar, the simulation is defined by a simulation
grammar.

3.1 Syntax Grammar

Each rule of the syntax grammar provides an editing command. The grammar’s
start diagram serves as a template for new diagrams to be created. Usually, the
editing process begins with an empty start graph. The syntax rules presented in

2 We distinguish two kinds of users, namely users defining a VL (language designer),
and those who use a VL specific environment (end user).

Fig. 5 are language generating; the rules for modification and deletion of elements
work analogously. Fig. 5 illustrates three of four rules of the syntax grammar for
the automata example — the first one, Insert_State(), was already given in Fig. 3.
Insert_Transition() inserts a labeled transition between two states, Mark_Start() and
Mark_Final() make a state the start respectively a final state by attaching the
corresponding symbol. The Mark_Final() rule contains an NAC to avoid attaching
the Final symbol twice. A similar NAC could be added to Mark Start() as well,
but since our parsing grammar covers this case, we omit it here.

Insert_Transition (tn: String)

ERCEDEr i

Mark Start ()
[x:stad [ysan} | xsad=Gos==|

\@ H\\»@ |

Mark_Final ()

R Y
‘y:Fini’iH x:State L ‘X:State o
| RcENN |

Fig. 5. Syntax grammar for automata.

3.2 Parse Grammar

Using the rules of the parse grammar the parser tries to reduce a given diagram
to the grammar’s stop diagram. If such a derivation exists then the diagram
is accepted, otherwise rejected. An optional layering function assigns an integer
number (a layer) to each rule. The parsing algorithm considers only those deriva-
tions consisting of rule applications of ascending order. Another optional feature,
the critical pair analysis, is used to optimize the parsing process. Usually each
possible order of applications of rules (of the same layer) has to be considered.
Therefore for each pair of rules it is analyzed whether or not their matches might
interfere with each other. In the latter case their application order does not play
a role and thus only one single (arbitrary) order needs to be checked.

The parse grammar for the automata example (see Fig. 6) does not require
layering. It is quite simple, since the only condition to be checked is whether
the given automaton has exactly one start state. The rules Remove_Transition(),
Unmark_Final() and Remove_State() resemble the respective inverted syntax rules
(not requiring any NACs, if the dangling condition is used). They reduce the

Remove_Transition ()

(o= [nad— o) - ®
& &

er '
1St S

©
emove_State () Stop

, B R ys xsad-GoD

(si] i |

Fig. 6. Parse grammar for automata.

— 2

diagram by removing the Trans, Final and State symbols. The only symbols that
cannot be removed are State symbols with attached Start symbols. Thus what
should remain reducing a correct diagram is the start state, just as given by the
grammar’s stop diagram.

3.3 Simulation Grammar

In order to visualize which state is the active one, the automata alphabet (Fig. 1)
contains an Active symbol, a colored circle. We want to simulate how an au-
tomaton reacts to a given input string. Therefore in each step the Active mark
should move to the succeeding state. The Active symbol has an In attribute which
contains the remainder of the input string still to be processed. Since we do not
exclude nondeterministic automata, more than one transition might be triggered
at a time. Fig. 7 illustrates the simulation grammar for automata.

The simulation grammar contains only two rules, Init() and Trigger_Transition().
The first one adds an Active symbol to the start state of a diagram. The rule
parameter in, the input string, is stored as In attribute of the Active symbol. The
second rule moves the Active symbol from the source to the target state of a
transition. The attribute condition ensures that the transition label is indeed a
prefix of the remaining input string. After the rule application the prefix has
been removed.

Given the string to be processed, the simulation grammar calculates a state
at which the automaton may terminate, if Init() is applied exactly once and then
Trigger_Transition() is applied as long as possible.

Init (in: String)
[y} esae-Gesvr—m

Trigger_Transition ()

X .cond.:
s | iart1t.rsta0r(t)2With(tn)
sn

in.substring(tn.length())

)

Fig. 7. Simulation grammar for automata.

The concepts of VL specification presented so far are the basis to generate
a VL environment supporting editing and simulating specific diagrams (e.g. au-
tomata). In general, simulation grammars capture the behavior of formal visual
models whose VLs allow the description of dynamic state transitions (like e.g.
Petri nets, Statecharts or automata). Each simulation step (the application of a
simulation rule) models a state transition.

However, the simulation process is still visualized by sequences of formal VL
diagrams, i.e. specific automata or Statecharts are shown. In order to support an
intuitive understanding of system behavior, especially for non-experts in the spe-
cific formal model, it is desirable to have a layout of the model in the application
domain.

4 Defining Animation Views for Visual Models

In order to support an intuitive understanding of system behavior, especially
for non-experts in the specific formal model, it is desirable to have a layout of
the model in the application domain. In the GENGED approach it is possible
to define a relationship between the formal system model and a corresponding
layout of the model as icons from the application domain. Such an animation
view directly shows the states and dynamic changes of the system.

Fig. 8 a) shows a certain state of the producer/consumer automaton from Fig.
2. The Buffer is highlighted as active here. For the animation view we choose the
application domain of a kitchen. Producing is visualized as baking and consuming

as eating cakes®. Fig. 8 b) shows a snapshot of the active system state in the
animation view where the consumer has removed the product from the buffer.

b)

Satisfied
Consumer

Fig. 8. Automaton and Animation View Snapshot of a state of the Producer/Consumer
System

Within the GENGED framework, we suggest a generic approach how to vi-
sualize the animation of a system based on a VL specification, a VL model (VL
diagrams for the different states of a system), and a VL simulation grammar. The
transformation from the layout of the formal model to the layout of the animation
view is called view transformation. Naturally this view transformation is formal-
ized as a visual grammar based on the VL alphabet which is extended by the new
graphics and constraints needed for the domain-specific layout. The simulation
rules are transformed into animation rules for the animation view defining the
state transitions in the new animation layout. We enforce compatibility between
animation and simulation rules by applying the view transformation rules to the
LHS and the RHS of each simulation rule instance.

Simulation Rule Instance

d e deliver d e
(&) =ae

View Transformation

T T
I I
] 1
I I

I
v Animation Rule v

>
>

//.

y eI | \A)‘

Fig. 9. View Transformation from Simulation to Animation View

~

3 This is not meant to be discriminating: Also men bake cakes!

The simulation rule in the upper part of Fig. 9 models the state transition d
(for deliver) from the state Busy Producer to the state Buffer by highlighting the
current state. The animation rule in the lower part of Fig. 9 shows the same state
transition in the application domain oriented layout. The dashed arrows from
the simulation rule to the animation rule indicate the formal view transformation
between both views.

The implementation of these concepts in the GENGED environment is work
in progress and sketched in [7].

5 Conclusion

In [1] GENGED is proposed for the visual definition of visual languages (VLs)
and graphical editors supporting syntax-directing editing. Meanwhile, GENGED
has been extended in different fields as presented in this contribution. Not only
syntax-directed editing may be defined visually but a parse specification and
a simulation grammar as well. These specifications based on algebraic graph
transformation allow comprehensive editing and analysis as well as they support
the visualization of behavioral aspects of VL models.

Apart from the animation concepts, all the proposed concepts are imple-
mented in the GENGED environment (see http://tfs.cs.tu-berlin.de/genged). The
development of the animation approach is also joint work in the area of applying
graph transformation techniques to Petri nets [5]. More details can be found in
[3,7) where different types of Petri nets (i.e. Elementary nets, Place/Transition
nets and Algebraic High-Level nets) have been specified as VLs in GENGED .

Future directions concern the development of animation modules for different
views of system behavior [4]. The specification of model evolution [8,12] based
on two different VLs modeling two layers of abstraction (architecture and com-
ponents) is an example for the integration of views in one specification. Both
VLs are coupled via distinguished (abstract) vertices. This may serve as basis
for integrating several VLs in a way that it is possible to handle different kinds
of views which are standard practice in the software specification process.

Acknowledgements The research is partially supported by the German Re-
search Council (DFG), and the projects APPLIGRAPH (ESPRIT Basic Re-
search WG), GRAPHIT (CNPq and DLR), and the joint research project “DFG-
Forschergruppe PETRI NET TECHNOLOGY”. Many thanks also to our anony-
mous referees for valuable comments.

References

1. R. Bardohl. GENGED - Visual Definition of Visual Languages based on Algebraic
Graph Transformation. Verlag Dr. Kovac, 2000. PhD thesis, Technical University
of Berlin, Dept. of Computer Science, 1999.

2. R. Bardohl and C. Ermel. Visual Specification and Parsing of a Statechart Variant
using GENGED. In Proc. Symposium on Visual Languages and Formal Methods
(VLFM’01), Stresa, Italy, September 5-7 2001.

10.

11.

12.

13.

R. Bardohl, C. Ermel and H. Ehrig. Generic Description of Syntax, Behavior and
Animation of Visual Models using GenGED. Techn. Report No. 2001/19, ISSN
1436-9915, TU Berlin, 2001.

R. Bardohl, C. Ermel, and L. Ribeiro. A Modular Approch to Animation of Simu-
lation Models. In Proc. 14" Brazilian Symposium on Software Engineering, Joao
Pessoa, Brazil, October 2000.

B. Braatz, K. Ehrig, K. Hoffmann, J. Padberg, and M. Urb&sek. Application of
Graph Transformation Techniques to the Area of Petri Nets. In H.-J. Kreowski,
editor, Proc. AGT 2002: APPLIGRAPH Workshop on Applied Graph Transfor-
mation, 2002. To appear.

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation IT: Single Pushout Approach and
Comparison with Double Pushout Approach. In G. Rozenberg, editor, Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 1: Foun-
dations, chapter 4, pages 247-312. World Scientific, 1997.

C. Ermel, R. Bardohl, and H. Ehrig. Specification and Implementation of Anima-
tion Views for Petri Nets. In Weber et al. [13], pages 75-92.

C. Ermel, R. Bardohl, and J. Padberg. Visual Design of Software Architecture
and Evolution based on Graph Transformation. In Int. Workshop on Uniform
Approaches to Graphical Process Specification Techniques (UNIGRA01), ENTCS
Vol. 44, No. 4, 2001.

P. Griebel. Paralleles Losen von grafischen Constraints. PhD thesis, University of
Paderborn, Germany, February 1996.

O. K6th and M. Minas. Generating Diagram Editors Providing Free-Hand Editing
as well as Syntax-Directed Editing. In H. Ehrig and G. Taentzer, editors, Proc.
GRATRA’2000 - Joint APPLIGRAPH and GETGRATS Workshop on Graph
Transformation Systems, pages 32-39. TU Berlin, March 25-27 2000.

M. Lowe, M. Korff, and A. Wagner. An Algebraic Framework for the Transfor-
mation of Attributed Graphs. In M. Sleep, M. Plasmeijer, and M. van Eekelen,
editors, Term Graph Rewriting: Theory and Practice, chapter 14, pages 185-199.
John Wiley & Sons Ltd, 1993.

J. Padberg, C. Ermel, and R. Bardohl. Rule-Based and Visual Model Evolution
using GENGED. In Proc. Satellite Workshops of 27th Int. Coll. on Automata,
Languages, and Programming (ICALP’2000), pages 467-475, Geneva, Switzerland,
2000. Carleton Scientific, Canada.

H. Weber, H. Ehrig, and W. Reisig, editors. 2nd Int. Colloquium on Petri Net
Technologies for Modelling Communication Based Systems, Berlin, Germany, Sept.
2001. Research Group »Petri Net Technology«, Fraunhofer Gesellschaft ISST.

