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Abstract

Several approaches exist to define a visual language
(VL). Among those the meta-modeling approach used to de-
fine the Unified Modeling Language (UML), and the graph
transformation approach are very popular. Especially the
combination of both, using meta-modeling to define the syn-
tax of a VL and graph transformation for specifying model
transformations has been considered conceptually and ex-
plored in a number of applications. A formal integration of
both approaches has just been started by integrating classi-
cal algebraic graph grammars with a node type inheritance
concept. In this paper, the integration of inheritance is ex-
tending to attributed graph transformation. More precisely,
we define attributed type graphs with inheritance leading
to a formal integration of inheritance with typed attributed
graph transformation.

1 Introduction

There are mainly two different lines to define a visual
language (VL): the declarative and the constructive way.
The UML is defined by the Meta Object Facilities (MOF)
approach [12], which uses classes and associations to de-
fine symbols and relations of a VL. Within this meta mod-
eling approach, multiplicities and OCL constraints [14] are
additionally used to formulate desired language properties.
While constraint-based formalisms provide a declarative
approach to VL definitions well-suited to specify language
requirements, grammars are more constructive, i.e. closer
to the implementation. In [11], a number of textual as well
as graph grammar approaches are considered for VL def-
inition. Due to its appealing visual form, graph grammars
can directly be used as high-level visual specification mech-
anisms for VLs [2]. Defining the abstract syntax of visual
forms as graphs, a graph grammar directly defines the lan-
guage grammar. The induced graph language determines
the corresponding VL. Visual language parsers can be im-
mediately deduced from such a graph grammar. Further-

more, abstract syntax graphs are also the starting point for
model simulation and transformation, i.e. model manipu-
lation [3, 5, 13, 9]. Here again, it is very natural to use
graph transformation as a high-level, constructive specifica-
tion formalism.

In [1] we have already started to consider the integration
of meta modeling with graph transformation. The basic in-
tegration can be done by identifying symbol classes with
node types and associations with edge types. In this way,
declarative as well as constructive elements may be used
for language definition, but it is still open how single parts
of a VL specification are defined.

In addition, symbol classes can be inherited within the
meta-modeling approach. To continue the integration of
meta-modeling with graph transformation, the concept of
class inheritance has to be transferred to node types. Sup-
porting node type inheritance leads to a more dense form
of graph transformation systems, since similar productions
can be abstracted into one. In [1], we have shown this in-
tegration for typed graph transformation without attributes.
Since classes usually also have attributes, the integration of
inheritance should be extended to typed attributed graph
transformation. A solid formal framework for typed at-
tributed graph transformation with attributes for nodes and
edges has been presented in [7]. In this paper, we show
how to extend this approach to a formal integration of in-
heritance with typed attributed graph transformation. For
this purpose, we first introduce attributed type graphs with
inheritance and show how they can be flattened to attributed
type graphs without inheritance. This flattening idea is con-
tinued for typed attributed graph transformation.

The main results in this paper show that for each graph
transformation and grammar GG based on an attributed
type graph ATGI with inheritance there is an equivalent
typed attributed graph transformation and grammar GG
without inheritance. Hence there is a direct correspon-
dence to typed attributed graph transformation without in-
heritance, where fundamental theoretical results have al-
ready been shown in [7].

Applying typed attributed graph transformation with in-
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heritance to VL definitions makes the integrated usage of
meta-modeling and graph transformation concepts more
precise and clear on one hand, and allows the application
of theoretical results to VL definitions on the other hand.
E.g. using typed attributed graph transformation with in-
heritance for model transformation opens the possibility to
show certain correctness properties for model transforma-
tion.

In this paper we focus on the formal framework concern-
ing typed attributed graph transformation with inheritance
and a small example only. A slightly larger example is pre-
sented in [1] defining a simplified variant of UML state di-
agrams.

2 Attributed Type Graphs with Inheritance

In this section we start to integrate the concept of inher-
itance into typed graphs, which results in a general con-
cept for Attributed Type Graphs with Inheritance (ATGI)
and a close relationship of typing with and without inher-
itance. In [7] we have presented typed attributed graphs
with attributes for nodes and edges, which generalizes the
concept in [8], where only attributes for nodes have been
considered. The new approach in [7] requires the concepts
of an E-graph where two kinds of vertices, i.e. graph and
data vertices, are distinguished. Furthermore, three differ-
ent kinds of edges are defined to link vertices or to refer to
attributes.

Let G be an E-graph G = (GVG
, GVD

, GEG
, GENA

,
GEEA

, (sourcei)i∈{G,NA,EA}, (targeti)i∈{G,NA,EA})
where G refers to graph parts, NA to node attribution, and
EA to edge attribution, according to the signature in Fig. 1.

An attributed graph AG over a data signature DSIG =
(SD, OPD) with attribute value sorts S′

D ⊆ SD is given by
AG = (G, D) where G is an E-graph as described above
and D is a DSIG-algebra s.t.

.∪s∈S′
D

Ds = GVD
.

2.1 Attributed Type Graphs with Inheritance

For a clearer correspondence between class concepts on
one hand and type graphs on the other hand, we start to ex-
tend the existing concept of attributed type graphs by node
type inheritance.

Definition 1 (Attributed Type Graph with Inheritance)
Let ATG be an attributed type graph (TG, Z)

with TG being an E-graph TG = (TGVG
, TGVD

,
TGEG

, TGENA
, TGEEA

, (sourcei, targeti)i∈{G,NA,EA})
with TGVD

= S′
D and Z being the final DSIG-

algebra. An attributed type graph with inheritance (ATGI)
ATGI = (TG, Z, I, A) consists of an attributed type
graph ATG, an inheritance graph I = (IV , IE , s, t), with
IV = TGVG

, and a set A ⊆ IV , called abstract nodes.

For each node n ∈ IV , the inheritance clan is defined by
clanI(n) = {n′ ∈ IV | ∃ path n′ ∗→ n in I} ⊆
IV with n ∈ clanI(n).

The inheritance graph I could be defined to be acyclic,
but this is not necessary for our theory.

The running example of this paper is a very small sec-
tion of a notational model for diagrams. We start with the
presentation of the attributed type graph with inheritance.
In Fig. 2 we show the compact and in Fig. 3 the ex-
plicit notation of the same sample type graph. Solid and
dashed arrows represent the graph and attribution edges of
the type graph, while solid arrows with white arrowhead
belong to the inheritance graph. A Screen with a resolu-
tion (width,height) has geometrical Figures which have a
position and a visibility (x,y,visible). Figures are first ab-
stractly defined. An inheritance relation to concrete figures
refines them to Circle, Rectangle, and Line. A Circle has
the additional attribute radius, a Rectangle the additional
attributes width and height and a Line has the relative end
point coordinates (endx, endy) as additional attributes. The
edge attribute id : Nat refers to the identities of figures and
demonstrates the usage of edge attributes in attributed type
graphs with inheritance. Edge attributes are also useful to
establish a list of items, e.g. to enumerate parameters of
methods or operations.

E V

E E

target

source

target

source

target

G

NAEA

V

G

G

sourceNAEA

EA NA

G

D

Figure 1. E-Graph

In order to benefit from the well-founded theory of typed
attributed graph transformation [7], we flatten attributed
type graphs with inheritance to ordinary ones.

Definition 2 (Closure of ATGI) Given an attributed type
graph with inheritance ATGI = (TG, Z, I, A) with TG
as above, the abstract closure of ATGI is the attributed
type graph ATG = (TG, Z) with TG = (TGVG

, TGVD
,

TGEG
, TGENA

, TGEEA
, (sourcei, targeti)i∈{G,NA,EA})

• TGEG
= {(n1, e, n2) | n1 ∈ clanI(sourceG(e)),

n2 ∈ clanI(targetG(e)), e ∈ TGEG
}

• sourceG((n1, e, n2)) = n1 ∈ TGVG

• targetG((n1, e, n2)) = n2 ∈ TGVG

• TGENA
= {(n1, e, n2) | n1 ∈ clanI(sourceNA(e)),

n2 = targetNA(e), e ∈ TGENA
}
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Circle
radius: Nat width: Nat

height: Nat

Line
endx: Nat
endy: Nat

Rectangle

height: Nat

Screen
width: Nat

Figure
x: Nat
y: Nat
visible: Bool

{abstract}
id: Nat

has

Figure 2. Example of an attributed type graph
with inheritance (compact notation).
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Rectangle

Line

Screen Figure
{abstract}

Bool
visible

Nat

height
width

id

radius

width
height

endx
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has

Figure 3. Example of an attributed type graph
with inheritance (explicit notation).

• sourceNA((n1, e, n2)) = n1 ∈ TGVG

• targetNA((n1, e, n2)) = n2 ∈ TGVD

• TGEEA
= {((n11, e1, n12), e, n2) |

e1 = sourceEA(e) ∈ TGEG
,

n11 ∈ clanI(sourceG(e1)),
n12 ∈ clanI(targetG(e1)),
n2 = targetEA(e) ∈ TGVD

, e ∈ TGEEA
}

• sourceEA((n11, e1, n12), e, n2) = (n11, e1, n12)

• targetEA((n11, e1, n12), e, n2) = n2

The attributed type graph ÂTG = (T̂G, Z) with T̂G =
TG|TGVG

\A ⊆ TG is called the concrete closure of ATGI ,
because all abstract nodes are removed:
T̂G = TG|TGVG

\A is the restriction of TG to TGVG
\ A

The discrimination between the abstract and the concrete
closure of a type graph with inheritance is necessary. The

left-hand side (LHS) and right-hand side (RHS) of an ab-
stract production considered in section 3 are typed over the
abstract closure, while ordinary host graphs and concrete
productions are typed over the concrete closure.

Remark 1

1. Note, that we have TG ⊆ TG with TGVi
for i ∈

{G, D} and TGEi ⊆ TGEi if we identify e ∈ TGEi

with (sourcei(e), e, targeti(e)) ∈ TGEi for i ∈
{G, NA, EA}.

Due to the existence of the canonical inclusion TG ⊆
TG, all graphs typed over TG are also typed over TG.

2. The abstract and concrete closures of an ATGI are
attributed type graphs without inheritance.

Instances of attributed type graphs with inheritance are
attributed graphs. Here again, we can notice a direct cor-
respondence to meta-modeling where models consisting of
symbols and relations are instances of meta-models con-
taining the correspondent classes and associations.

Fig. 4 shows the compact notation of the abstract and
concrete closure of the ATGI example in Fig. 2, which fol-
lows from the explicit notation in Fig. 5. Here, we see
that the attributes as well as the edges of the abstract type
Figure are flattened to its descendant types and the data
vertex Nat is depicted twice for clearness.

Definition 3 (Instances of ATGI)
An abstract instance (AG, type) of ATGI is an attributed
graph of ATG, i.e. (AG, type : AG → ATG).
Similarily, a concrete instance (AG, type) of ATGI is an
attributed graph of ÂTG, i.e. (AG, type : AG → ÂTG).

x: Nat
y: Nat
visible: Bool

Circle
radius: Nat width: Nat

height: Nat

Line
endx: Nat
endy: Nat

Rectangle

x: Nat
y: Nat x: Nat

y: Nat
visible: Bool

x: Nat
y: Nat
visible: Bool

visible: Bool

id: Nat
has

id: Nat
has

id: Nat
has

id: Nat
has

height: Nat

Screen
width: Nat

Figure
{abstract}

closure
only in abstract

Figure 4. Abstract and concrete closure of the
ATGI example in Fig. 2 (compact notation).
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Figure 5. Abstract and concrete closure of the
ATGI example in Fig. 3 (explicit notation).

2.2 Attributed Clan Morphisms

Instances of attributed type graphs with inheritance are
attributed graphs. Here again, we can notice a direct cor-
respondence to meta-modeling where models consisting of
symbols and relations are instances of meta-models con-
taining the correspondent classes and associations. To for-
mally define the instance-type relation, we introduce at-
tributed clan morphisms.

The instance graph is typed over the type graph with in-
heritance by a pair of functions, one assigning each vertex
a vertex type and the other one assigning each edge an edge
type. Both are defined canonically. An ordinary graph mor-
phism [7] is not obtained this way, but some mapping called
clan morphism, enough to uniquely characterizing the type
morphism into the flattened type graph (see Lemma 1).

Definition 4 (ATGI-Clan Morphism)

Given an attributed type graph with inheritance
ATGI = (TG, Z, I, A) with TGVD

= S
′
D and

an attributed graph AG = (G, D) with G =
((GVi)i∈{G,D}, (GEi , sGi , tGi)i∈{G,NA,EA}) and
�∪
s∈S

′
D

Ds = GVD
then

type : AG → ATGI with type = (typeVG
, typeVD

,
typeEG

, typeENA
, typeEEA

, typeD) and

• typeVi
: GVi

→ TGVi
(i ∈ {G, D})

• typeEi : GEi → TGEi (i ∈ {G, NA, EA})

• typeD : D → Z unique final DSIG-homomorphism

is called an ATGI-clan morphism, if
(0) ∀s ∈ S

′
D the following diagram commutes,

Ds

typeD,s ��

=

��

Zs = {s}

��
GVD typeVD

�� TGVD
= S

′
D

i.e. typeVD
(d) = s for d ∈ Ds and s ∈ S

′
D.

(1) typeVG
◦ sGG

(e1) ∈ clanI(srcG ◦ typeEG
(e1))

(2) typeVG
◦ tGG

(e1) ∈ clanI(tarG ◦ typeEG
(e1))

(3) typeVG
◦ sGNA

(e2) ∈ clanI(srcNA ◦ typeENA
(e2))

(4) typeVD
◦ tGNA

(e2) = tarNA ◦ typeENA
(e2)

(5) typeEG
◦ sGEA

(e3) = srcEA ◦ typeEEA
(e3)

(6) typeVD
◦ tGEA

(e3) = tarEA ◦ typeEEA
(e3)

∀e1 ∈ GEG
, ∀e2 ∈ GENA

, ∀e3 ∈ GEEA
,

where we use abbreviations ‘src’ and ‘tar’ for ‘source’ and
‘target’ respectively.

An ATGI-clan morphism type : AG → ATGI is called
concrete if typeVG

(n) /∈ A for all n ∈ GVG
.

The following lemma is the key property relating ATGI-
clan morphisms and AG-morphisms, which is essential to
show the main results in section 3.

Lemma 1 (Universal ATGI-Clan Property)

There exists a universal ATGI-clan morphism uATGI s.t.
for each ATGI-clan morphism type : AG → ATGI there is
a unique AG-morphism type : AG → ATG with uATGI ◦
type = type.

AG
type

����������
type

�����������

=

ATG uAT GI

�� ATGI

Proof: See technical report [6].

3 Typed Attributed Graph Transformation
with Inheritance

In this section, we show how to adapt the concept of in-
heritance to the concepts of typed attributed graph transfor-
mation, graph grammar and graph language. The general
approach is to describe graph transformations by graph pro-
ductions. We follow the Double Pushout approach of typed
attributed graph transformation [7] extended by negative ap-
plication consitions (NACs).

As in well-formedness rules, e.g. formulated in the Ob-
ject Constraint Language (OCL) [14], the usage of abstract
classes is helpful to formulate concise language properties,
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the usage of abstract types in graph transformation is help-
ful to formulate concise graph productions.

3.1 Productions and Transformations

Our goal is to allow abstractly typed nodes in produc-
tions, such that these abstract productions actually represent
a set of structurally similar productions which we call con-
crete productions. To get all concrete productions for an
abstract production, any combination of node types of the
corresponding clans in the production’s LHS (being of con-
crete or abstract type) must be considered. Nodes which are
preserved by the production have to keep their type. Nodes
which are created in the RHS have to have a concrete type,
since abstract types should not be instantiated.

As done for type graphs with inheritance we define a flat-
tening of abstract productions to concrete ones. Concrete
productions are structurally equal to the abstract produc-
tion, but their typing morphisms are finer than the ones of
the abstract production and are concrete clan morphisms. A
typing morphism is finer than another one, if it distinguishes
from the other only by more concrete types in correspond-
ing clans. First we introduce the notion of type refinement
in order to formalize the relationship between abstract and
concrete productions to be defined below.

Definition 5 (ATGI-Type Refinement)
Given an attributed graph AG = (G, D) and ATGI-clan
morphisms type : AG → ATGI and type′ : AG →
ATGI , then type′ is called an ATGI-type refinement of
type, written type′ ≤ type if

• type′VG
(n) ∈ clanI(typeVG

(n)) ∀n ∈ GVG

• type′X = typeX for X ∈ {VD, EG, ENA, EEA, D}

Definition 6 (Abstract and Concrete Productions)
An abstract production typed over ATGI is given by p =
(L l←− K

r−→ R, type, NAC), where l and r are
AG-morphisms, type is a triple of typing ATGI-clan mor-
phisms type = (typeL : L → ATGI, typeK : K →
ATGI, typeR : R → ATGI) and NAC is a set of triples
nac = (N, n, typeN ) with an attributed graph N , an in-
jective AG-morphism n : L → N , and a typing ATGI-clan
morphism typeN : N → ATGI , s.t. the following condi-
tions hold

• typeL ◦ l = typeK = typeR ◦ r

• typeR,VG
(R′

VG
) ∩ A = ∅, where R′

VG
:= RVG

−
rVG

(KVG
)

• typeN ◦ n ≤ typeL for all (N, n, typeN ) ∈ NAC

• l, r and n are data preserving, i.e. lD, rD, nD are iden-
tities

N

typeN

��

L
n��

typeL

����
��

��
��

��
��

��
��

�

tL

����
��

��
��

��
��

��
��

� K

typeK

��

tK

��

l�� r �� R

typeR

����
��

��
��

��
��

��
��

�
tR

����
��

��
��

��
��

��
��

�

ATGI

A concrete production pt w.r.t. an abstract production p is
given by pt = (L l←− K

r−→ R, t, NAC), where t is a
triple of concrete typing ATGI-clan morphisms t = (tL :
L → ATGI, tK : K → ATGI, tR : R → ATGI), s.t.

• tL ◦ l = tK = tR ◦ r

• tL ≤ typeL, tK ≤ typeK , tR ≤ typeR

• tR,VG
(x) = typeR,VG

(x) ∀x ∈ R′
VG

The set of all concrete productions pt w.r.t. an abstract pro-
duction p is denoted by p̂.

The application of an abstract production can be directly
defined or expressed by using the flattening idea, i.e. to
apply one of its concrete productions. Both the host graph
and the concrete production are typed by concrete clan mor-
phisms such that we can define the application of concrete
productions. Later we will also define the application of
an abstract production directly and show the equivalence of
both.

Definition 7 (Application of Concrete Productions)
Let pt = (L l←− K

r−→ R, t, NAC) be a concrete pro-
duction, (G, typeG) a typed attributed graph with a con-
crete ATGI-clan morphism typeG : G → ATGI and
m : L → G an AG-morphism.
m is a match with respect to pt and (G, typeG), if
• m is a match with respect to the untyped production

L
l←− K

r−→ R and the attributed graph G,

• typeG ◦ m = tL, and

• m satisfies the negative application conditions NAC,
i.e. for each (N, n, typeN ) ∈ NAC it holds, that there
exists no AG-morphism o : N → G, such that o ◦ n =
m and typeG ◦ o ≤ typeN .

Given a match m, the concrete production can be applied
to the typed attributed graph (G, typeG), yielding a typed
attributed graph (H, typeH) by constructing the DPO of l,
r and m (see Fig. 6). We write (G, typeG)

pt,m=⇒ (H, typeH)
for such a direct concrete transformation. In general, a con-
crete transformation (G, typeG) =⇒ (H, typeH) is either
direct or a concatenation of two concrete transformations
(G, typeG) =⇒ (K, typeK) =⇒ (H, typeH).

The classical theory of typed attributed graph transfor-
mations relies on typing morphisms which are normal graph
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morphism, i.e. no clan morphisms. For showing the equiv-
alence of abstract and concrete graph transformations we
first have to consider the following: The application of a
concrete production typed by concrete clan morphisms is
equivalent to the application of the same production cor-
respondingly typed over the concrete closure of the given
type graph. This lemma is formulated and proven in [6] for
productions without NAC’s.

Although the semantics for the application of abstract
production can be given by the application of its concrete
productions, this solution is not efficient at all. Imagine a
tool which implements graph transformation with node type
inheritance, it would have to check all concrete productions
of an abstract productions to find the right one to apply to a
given instance graph.

Thus, as a next step, we want to examine more direct
ways to apply an abstract production. Since abstract and
concrete productions differ only in typing, but have the
same structure, a match morphism from the LHS of a con-
crete production into a given instance graph is also a match
morphism for its abstract production. But of course, the typ-
ing morphisms differ. Using the notion of type refinement,
however, we can express a compatibility property.

Definition 8 (Application of Abstract Productions)
Let p = (L l←− K

r−→ R, type, NAC) be an abstract
production typed over an attributed type graph with inher-
itance ATGI , (G, typeG) a typed attributed graph with a
concrete ATGI-clan morphism typeG : G → ATGI and
m : L → G an AG-morphism.
m is a match with respect to p and (G, typeG), if

• m is a match with respect to the untyped production
L

l←− K
r−→ R and the attributed graph G,

• typeG ◦ m ≤ typeL.
• tK,VG

(x1) = tK,VG
(x2) for tK = typeG ◦ m ◦ l and

all x1, x2 ∈ KVG
with rVG

(x1) = rVG
(x2).

• m satisfies NAC, i.e. for each nac =
(N, n, typeN ) ∈ NAC it holds that there exists no
AG-morphism o : N → G such that o ◦ n = m and
typeG ◦ o ≤ typeN .

Given a match m, the abstract production can be applied
to (G, typeG) yielding an abstract direct transformation
(G, typeG)

p,m
=⇒ (H, typeH) with the concrete ATGI-clan

morphism typeH as follows:
1. Construct the (untyped) DPO of l, r and m given by

pushouts (1) and (2) in Figure 6.
2. Construct typeD and typeH as follows

• typeD = typeG ◦ l′
• typeH,X(x) = if x = r′X(x′) then typeD,X(x′)

else typeR,X(x′′),
where m′(x′′) = x and
X ∈ {VG, VD, EG, ENA, EEA, D}.

N

/
���������

o

		���������

typeN



�
��

��
��

��
��

��
��

L

typeL

����
��

��
��

��
��

��
�

m

��
(1)

n�� K

d

��

l�� r ��

(2)

R

m′

��
G

typeG

����
��

��
��

� D
l′�� r′

��

typeD��

H

typeH
��ATGI

Figure 6. Match and application of an abstract
production.

In general, an abstract transformation (G, typeG) =⇒
(H, typeH) is either direct or a concatenation of two ab-
stract transformations (G, typeG) =⇒ (K, typeK) =⇒
(H, typeH).

Remark 2 typeH is a well-defined ATGI-clan morphism
with typeH ◦ r′ = typeD and typeH ◦ m′ ≤ typeR.
Moreover, we have typeG ◦ m ≤ typeL (as required) and
typeD◦d ≤ typeK . The third match condition is not needed
if rVG

is injective (as it is the case in most of the examples).

3.2 Sample Productions and Transformations

Fig. 7 shows sample productions for the simple type
graph in Fig. 2. Production moveFigure(dx, dy : Nat)
is an example of an abstract production, e.g. the produc-
tion moveFigure has to be defined only once and can
be applied to concrete graphical objects of types Circle,
Rectangle and Line. This abstract production has three
concrete productions according to the clan of type Figure.
Please note that due to the positive values of dx and dy, the
figures can only be moved up and right.

LHS RHS

LHS RHS

1:Screen 1:Screen Circle

x = x’
y = y’
radius = r
visible = v

1:Figure1:Figure

y = y1
x = x1
visible=true moveFigure(dx,dy: Nat)

y = y1+dy
x = x1+dx
visible=true

has
id=id’createCircle(id’,x’,y’,r: Nat; v:Bool)

Figure 7. Example productions for ATGI ex-
ample in Fig. 2.

createCircle(id′, x′, y′, r : Nat; v : Bool) is an exam-
ple of a concrete production which creates a Circle object.
Note that the production has to take care of the abstract at-
tributes x, y, visible derived from abstract class Figure

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05) 

0-7695-2443-5/05 $20.00 © 2005 IEEE



as well as of the concrete attribute radius and the edge at-
tribute id. A rule createF igure is not possible, because
instances of abstract classes cannot be created.

Fig. 8 shows a sample derivation sequence for
createCircle and moveFigure starting with an empty
Screen with resolution width = 100 and height =
100. First a new circle is created at position (10, 10)
applying production createCircle. Then, production
moveFigure(50, 0) instantiates attributes x1 and y1 with
values x1 = 10 and y1 = 10. After calculating the re-
sults x = x1 + dx and y = y1 + dy using input param-
eters dx = 50 and dy = 0, the attributes x and y are
assigned to new values. Note that the abstract production
moveFigure can be directly applied to the instance of con-
crete class Circle derived from the abstract class Figure.

createCircle(1,10,10,5,true)

moveFigure(50,0)

Screen

height=100
width=100

Circle

x = 60
y = 10
radius = 5
visible=true

Screen

height=100
width=100

Screen

height=100
width=100

Circle

x = 10
y = 10
radius = 5
visible=true

has
id=1

has
id=1

Figure 8. Sample derivation sequence.

3.3 Main Results

In this section we show the main results for the formal
integration of inheritance with typed attributed graph trans-
formation.

After having defined concrete and abstract transforma-
tions, the question arises how these two kinds of graph
transformation are related to each other. Theorem 1 will
answer this question by showing that for each abstract trans-
formation applying an abstract production p there is a con-
crete transformation applying a concrete production w.r.t. p,
and vice versa. Thus an application of an abstract produc-
tion can also be flattened to a concrete transformation. The
result allows us to use the dense form of abstract produc-
tions in graph transformations on one hand, and to reason
about this new form of graph transformation by flattening it
to usual typed attributed graph transformation which comes
along with a rich theory.

Theorem 1 (Equivalence of Transformations)
Given an abstract production p = (L l←− K

r−→
R, type, NAC) over an attributed type graph ATGI with
inheritance, a concrete typed attributed graph (G, typeG)
and a structural match morphism m : L → G (i.e. a match

with respect to the untyped production (L ←− K −→
R). Then the following statements are equivalent, where
(H, typeH) is the same concrete typed graph in both cases:

1. m : L → G is a match with respect to the abstract
production p yielding an abstract direct transforma-
tion (G, typeG)

p,m
=⇒ (H, typeH).

2. m : L → G is a match with respect to the concrete
production pt = L ← K → R with pt ∈ p̂ and tL =
typeG ◦ m yielding a concrete direct transformation
(G, typeG)

pt,m=⇒ (H, typeH).
In this case, tK and tR are defined by:

• tK = tL ◦ l
• tR,VG

(x) = if x = rVG
(x′) then tK,VG

(x′) else
typeR,VG

(x) for x ∈ RVG

• tR,X = typeR,X for
X ∈ {VD, EG, ENA, EEA, D}

Proof: See technical report [6].
As a consequence of Theorem 1, we lift this result to

graph grammars and graph languages below. Graph gram-
mars have been used to define the syntax of visual lan-
guages. Different approaches exist, e.g. the hyperedge
replacement which uses non-terminal labels to control the
transformation process. The algebraic approach presented
in this paper does not distinguish non-terminal and terminal
types (labels), but controls the transformation process just
by causal dependencies within the host graph. Please note
that non-terminal and abstract types are two different fea-
tures which can be combined in one approach, even though
not done in this paper. A similar result can also be shown
for graph transformation systems (graph grammars without
start graph), w.r.t. a fixed set of input graphs.

Definition 9 (Graph Grammar and Language) Given
an attributed type graph ATGI with inheritance and an
attributed graph G typed over ATGI by a concrete ATGI-
clan morphism typeG, an ATGI-graph grammar is denoted
by GG = (ATGI, (G, typeG : G → ATGI), P ), where
P is a set of abstract productions typed over ATGI .

The corresponding graph language is defined by the set
of all concrete typed graphs which are generated by an ab-
stract transformation (cf. definitions 7 and 8):
L(GG) = {(H, typeH : H → ATGI) | ∃ abstract

transformation (G, typeG) ∗⇒ (H, typeH) and typeH

is concrete}.

Theorem 2 (Equivalence of Graph Grammars)
For each ATGI-graph grammar GG = (ATGI,
(G, typeG), P ) with abstract productions P there are:

1. An equivalent ATGI-graph grammar ĜG =
(ATGI, (G, typeG), P̂ ) with concrete productions P̂ ,
i.e. L(GG) = L(GG).
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2. An equivalent ATG graph grammar without inher-
itance GG = (ATG, (G, typeG), P ) with closure
ATG of ATGI and productions P , i.e. L(GG) ∼=
L(GG), that means (G, typeG) ∈ L(GG) ⇔
(G, typeG) ∈ L(GG).

Construction:
1. The set P̂ is defined by P̂ = ∪p∈P p̂ with p̂ the set of

all concrete productions w.r.t. p.
2. typeG : G → ATG is the graph morphism cor-

responding to the ATGI-clan morphism typeG (see
Lemma 1). P is defined by P = ∪p∈P {pt | pt ∈ p̂},
where for pt ∈ p̂ with pt = (p, t, NAC) we de-
fine pt = (p, t, NAC) with uATGI ◦ tX = tX for
X ∈ {L, K, R} and NAC is defined by NAC as fol-
lows:
For each (N, n, typeN ) ∈ NAC we have all
(N, n, tN ) ∈ NAC with typeN ≥ tN = uATGI ◦ tN .

Proof: See technical report [6].

Remark 3 In the grammar GG of part 2 using the abstract
closure ATG of ATGI only graphs with concrete typing
are generated. In fact there is also an equivalent grammar
GG′ with type graph ÂTG, the concrete closure of ATGI .

4 Conclusion

In this paper we have presented a formal integration of
inheritance with typed attributed graph transformation. The
new concept allows the definition of abstract productions,
in which abstractly typed nodes can appear. These can be
matched to nodes of any of its concrete subtypes. This
inheritance concept is extremely useful in applications as
graph grammars and graph transformation systems can be
notably more compact. This has already been demonstrated
in [1] by showing the generation and simulation productions
for a simplified variant of UML state diagrams. However,
the formalism in [1] was restricted to graph transformation
without an attribution concept. In this paper, we have shown
how to obtain a formal integration of an inheritance concept
with typed attributed graph transformation as presented in
[7]. This work is a crucial step towards a precise integration
of meta-modeling and graph transformation concepts.

It remains to lift analysis techniques such as constraint
checking [10] and critical pair analysis [9] to type graphs
with inheritance, useful to e.g. optimise visual language
parsers [4] and to show correctness of model transformation
[8].
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