
Graphical Definition of In-Place Transformations
in the Eclipse Modeling Framework

Enrico Biermann1, Karsten Ehrig2, Christian Köhler1, Günter Kuhns1,
Gabriele Taentzer1, and Eduard Weiss1

1 Department of Computer Science, Technical University of Berlin, Germany,
{enrico,jaspo,bunjip,gabi,eduardw}@cs.tu-berlin.de

2 Department of Computer Science, University of Leicester, UK,
karsten@mcs.le.ac.uk

Abstract. The Eclipse Modeling Framework (EMF) provides a mod-
eling and code generation framework for Eclipse applications based on
structured data models. Although EMF provides basic operations for
modifying EMF based models, a framework for graphical definition of
rule-based modification of EMF models is still missing. In this paper we
present a framework for in-place EMF model transformation based on
graph transformation. Transformations are visually defined by rules on
object patterns typed over an EMF core model. Defined transformation
systems can be compiled to Java code building up on generated EMF
classes. As running example different refactoring methods for Ecore mod-
els are considered.

1 Introduction

In the world of model-driven software development the Eclipse Modeling Frame-
work (EMF) [7] is becoming a key reference. It is a framework for describing
class models and generating Java code which supports to create, modify, store,
and load instances of the model. Moreover, it provides generators to support the
editing of EMF models.

EMF unifies three important technologies: Java, XML, and UML. Regardless
of which one is used to define a model, an EMF model can be considered as the
common representation that subsumes the others. I.e. defining a transformation
approach for EMF, it will become also applicable to the other technologies.

In model-driven development, the transformation of models belongs to the es-
sential activities. Different kinds of model transformations [24] are distinguished:
endogenous transformations, such as refactoring or optimization in general, mod-
ify models within the same language. Exogenous transformation translate mod-
els between different languages. A prominent example for exogenous transfor-
mations are mappings from Platform Independent Models (PIMs) to Platform
Specific Models (PSMs) in the Model-Driven Architecture (MDA) approach [12].
Although different in the intention, exogenous and endogenous transformations
can simulate each other in a certain sense. An exogenous transformation with

the same source and target language can be considered as endogenous one. Cor-
responding transformation engines usually work with two models, the source and
the target model, in the exogenous case. This is not adequate for endogenous
transformations where mostly in-place model updates are needed. Vice versa,
endogenous transformations can emulate exogenous ones by constructing the
product of all source and target languages and using it as underlying language.

Furthermore, we can distinguish model-to-model transformation to be used
on a higher abstraction level, while model-to-text transformation to be defined
by approaches like JET [10], refer to e.g. code generation. In the following, we
focus on model-to-model transformations.

It has been shown that source-driven transformation languages such as XSLT
being used to transform XML documents, are well suitable for the transformation
of documents, but less suited for model transformations [18, 27].

In contrast to common model-to-model transformation approaches for EMF,
we present an approach for in-place model-to-model transformations. As run-
ning example, we will consider model refactorings in EMF. We will introduce a
visual notation for transformation rules which differs largely from that of QVT.
Relations are a key concept in QVT which does not fit well to endogenous
transformations, since relationships between model elements are not of primary
interest. In contrast, the transformation approach presented focuses on struc-
ture modification and is inspired by graph transformation [19]. Transformation
rules contain left and right-hand sides being object structures; moreover, nega-
tive object patterns may be defined, restricting the rule application. Since the
transformation concepts are close to graph transformation concepts, it is pos-
sible to translate the rules to AGG [2], a tool environment for algebraic graph
transformation where they might be further analyzed. For efficient execution of
model transformations, the rules can be translated to Java code using generated
EMF classes.

2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [7] provides a modeling and code gen-
eration framework for Eclipse applications based on structured data models. The
modeling approach is similar to that of MOF, actually EMF supports Essential
MOF (EMOF) as part of the OMG MOF 2.0 specification [8]. The type informa-
tion of sets of instance models is defined in a so-called core model corresponding
to metamodel in EMOF. The core or metamodel for core models is the Ecore
model. It contains the model elements which are available for EMF core models
in principle. In Fig. 1, the main part of Ecore is shown. The kernel model con-
tains elements EClass, EDataType, EAttribute and EReference. These model
elements are needed to define classes by EClass, their attributes by EAttribute
and interrelations by EReference. EClasses can be grouped to EPackages which
might be again structured into subpackages. In addition, each model element
can be annotated by EAnnotation. Furthermore, there are some abstract classes

Fig. 1. Kernel of Ecore model

to better structure the Ecore model, such as ENamedElement, ETypedElement,
etc.

It is important to note that the EMF metamodel (Ecore) again is a core
model. That means that the metaclasses EClass, EDatatype, EReference etc.
actually cannot just be interpreted as, but in fact are classes of an EMF core
model. This is of great importance for our approach, since it enables us to use
native EMF notions (elements of the metamodel) for the definition of transfor-
mation rules and interprete these notions in terms of formal graphs and graph
transformations.

From an EMF model, a set of Java classes for the model and a basic, tree
based editor can be generated. The generated classes provide basic support for
creating/deleting model elements and persistency operations like loading and
saving. Relations between EMF model classes are handled by special EMF lists,
extending the Java list classes. Moreover, EMF models can be used as underly-
ing models in new application plugins. But in many cases, the EMF model by
its own is not powerful enough to express the complete model behavior. There-
fore the generated code can be extended by the developer in order to add new
functionalities that are not expressed in the EMF model.

EMF
Source Model

EMF
Core Model

Ecore

instance of

instance of

EMF
Target Model

Transformation
Rules

instance of

applied

instance of

Transformation
Model

instance oftyped over

Fig. 2. Transformation Overview

3 Visual Definition of Endogenous Transformations

Basically, an in-place EMF transformation is a rule-based modification of an
EMF source model resulting in an EMF target model. Both, the EMF source
and target models are typed over the same EMF core model which itself is again
typed over Ecore. The transformation rules are typed over the Transformation
Model shown in Fig. 3 which itself is an instance of Ecore again (see Fig. 2).
Since the transformation model is an EMF model, a tree-based editor can be
generated automatically. For more convenient editing of the rules we developed
an additional visual editor being an Eclipse plug-in based on EMF and GEF [5].
Figs. 4 - 8 show screenshots of this editor.

A Transformation consists of a RuleSet containing the set of Rules for the
transformation. Furthermore, it has a link to the core model its instances are
typed over. If needed, a start structure can be defined as well to have a fixed
starting point for the transformation available. A transformation together with
a start structure forms an EMF grammar.

Rules are expressed mainly by two object structures LHS and RHS, the left
and right-hand sides of the rule. Furthermore, a rule has mappings between
obects and links of the LHS and the RHS indicated by numbers preceding the
class names. The left-hand side LHS represents the pre-conditions of the rule,
while the right-hand side RHS describes the post-conditions. Those symbols and
links of the LHS which are mapped to the RHS, describe a structure part which
has to occur in the EMF source model, but which is not changed during the
transformation. All objects and links of the LHS not mapped to the RHS define
the part which shall be deleted, and all objects and links of the RHS to which
nothing is mapped, define the part to be created. Attributes in the LHS have to
occur in the EMF source model in addition while they can be reassigned with
different values in the RHS of the rule.

The applicability of a rule can be further restricted by additional application
conditions. As already mentioned above, the LHS of a rule formulates some kind
of positive condition. In certain cases also negative application conditions (NACs)
which are pre-conditions prohibiting certain object structures, are needed. If
several NACs are formulated for one rule, each of them has to be fulfilled. A
NAC is again an object structure. Moreover, mappings between the LHS and a
NAC can be defined. This feature is useful to prohibit structures in relation to
the LHS.

The rule’s LHS or a NAC may contain constants or variables as attribute
values, but no Java expressions, in contrast to a RHS. A NAC may use the
variables already used in the LHS or new variables declared as input parameters.
The scope of a variable is its rule, i.e. each variable is globally known in its rule.
The Java expressions occurring in the RHS, may contain any variable used within
the LHS or declared as input parameter. Multiple usage of the same variable is
allowed and can be used to require equality of values.

A rule-based transformation system may show two kinds of non-determinism:
(1) for each rule several matches can exist, and (2) several rules can be applicable.
There are techniques to restrict both kinds of choices. The choice of matches can
be restricted by using input parameters. Moreover, some kind of control flow on
rules can be defined by applying them in a certain order. For this purpose, rules
are equipped with layers. All rules of one layer are applied as long as possible
before going over to the next layer. Later on, we will show how to use Java for
controlling rule applications.

Running Example: Refactoring of EMF Models: To illustrate the presented
transformation approach for EMF models we show two refactoring methods for
EMF models. All transformation rules are typed over the Ecore model, in more
detail over the Ecore section shown in Fig. 1. In the following, we define the
simple refactoring ”move class” where a class is moved from one package to an-
other. Moreover, the complex refactoring ”pull up attribute” is shown. If each
subclass contains an attribute with the same name, it can be pulled up to their
common superclass.

Refactoring rule ”MoveClass(EString n, EString p)” in Fig. 4 has two input
parameters ”n” and ”p” to determine the names of the class to be moved and
the package it shall be moved to. The LHS describes the pattern to be found for
refactoring consisting of the class with name ”n”, the package it is currently in,
and the package with name ”p” it shall be moved to. The RHS shows the new
pattern after refactoring where the class is contained in the package named ”p”.
In addition, the rule has a NAC which checks if the package named ”p” already
contains a class named ”n”.

Refactoring ”PullUpAttribute” is more complex, i.e. it cannot be defined by
just one rule, but four rules are needed to check the complex pre-condition, to do
the kernel refactoring, and to make the model consistent afterwards. For checking
the pre-condition, rule ”CheckAttribute(EString c, EString a)” in Fig. 5 checks
for the class named ”c” if there is a subclass not containing an attribute named
”a”. This rule can be applied at most once, since there are NACs which check if

Fig. 3. Transformation Model

Fig. 4. Rule ”MoveClass”

there is already a subclass with this annotation. Thereafter, we try to apply rule
”PullUpAttribute(EString c, EString a)” in Fig. 6. If there is no subclass of the
class named ”c” which has an annotation with source ”no attribute” and if the

Fig. 5. Rule ”CheckAttribute”

class named ”c” has not already an attribute named ”a”, it looks for a subclass
which has an attribute named ”a”. After the refactoring, the attribute with
name ”a” is pulled up from one subclass. This rule is applicable at most once.
Thereafter, NAC ”Attribute already pulled up” will not be satisfied anymore.
NAC ”Attribute not in all sub-types” checks a necessary pre-condition.

If ”PullUpAttribute” was successful, i.e. there is no subclass with a corre-
sponding annotation, all attributes named ”a” being still contained in subclasses
have to be deleted. This is done by rule ”DeleteAttribute(EString c, EString a)”
in Fig. 7 applying it as long as possible. Finally, if the refactoring was not suc-
cessful, all new annotations of the class named ”c” have to be deleted again
which is performed by rule ”DeleteAnnotation(EString c)” in Fig. 8. The appli-
cation control for these rules just described can be realised by putting each of
the rules to consecutive layers in the order of description. (See attribute ”layer”
of model element ”Rule” in the transformation model in Fig. 3.)

4 Execution of EMF Transformations

To apply the defined transformation rules on a given EMF model, we either
select and apply the rules step-by-step, or take the whole rule set and let it
apply as long as possible. A transformation step with a selected rule is defined
by first finding a match of the LHS in the current instance model. A pattern
is matched to a model if its structure can be found in the model such that the
types and attribute values are compatible. In general, a pattern can match to

Fig. 6. Rule ”PullUpAttribute”

Fig. 7. Rule ”DeleteAttribute”

different parts of a model. In this case, one of the possible matches has to be
selected, either randomly or by the user.

Performing a transformation step which applies a rule at a selected match,
the resulting object structure is constructed in two passes: (1) all objects and
links present in the LHS but not in the RHS are deleted; (2) all object and links
in the RHS but not in the LHS are created. A transformation, more precisely a
transformation sequence, consists of zero or more transformation steps.

Fig. 8. Rule ”DeleteAnnotation”

Consistency recovery: Although EMF models show a graph-like structure and
can be transformed similarly to graphs [19], there is a main difference in between.
In contrast to graphs EMF models have a distinguished tree structure which
is defined by the containment relation between their classes. An EMF model
should be defined such that all its classes are transitively contained in the root
class. Since an EMF model may have non-containment references in addition,
the following question arises: What if a class which is transitively contained in
the root class, has non-containment references to other classes not transitively
contained in the root class? In this case we consider the EMF model to be
inconsistent, since e.g. it cannot be made persistent anymore. A transformation
can make an EMF model inconsistent, if its rule deletes one or more objects or
containment links. For example an inconsistent situation occurs, if one of these
objects transitively contains an object included by a non-containment reference.
To restore the consistency, all objects to be deleted or to be disconnected from
their containing objects, have to be determined. Thereafter, all non-containment
references to these indicated objects have to be removed, too. Similar to the
handling of deleted structures, consistency recovery is also applied to newly
created objects. If a rule creates objects which are not contained in the tree
structure, the consistency recovery will remove these objects at the end of a rule
application. It is possible to forbid the application of those rules entirely, since
inconsistencies on creation of objects can be determined statically.

4.1 Interpreter Approach

For executing the defined transformation by the EMF Interpreter, a new Inter-
preter instance has to be created first. (See the following code snippet.)

Interpreter interpreter = new Interpreter(eObject);

interpreter.loadTransformation(filename);

interpreter.transform();

interpreter.applyRule(rulename, parameter, mapping);

An eObject can be any class in the model instance which should be trans-
formed. After creating the interpreter, the transformation file with name ”file-
name” is loaded. It has to be ensured that the loaded transformation contains
the same classes that are used by the instance model to be transformed. After
loading a transformation, rules can be applied. For example, invoking trans-
form() results in the application of all rules as long as possible. For applying
a specific rule, method applyRule is called. The first parameter of applyRule is
simply the name of the rule to be applied. Afterwards the value of each input
parameter needs to be specified. A sample use of class Parameter is given in the
following example. The third parameter of method applyRule contains a vector
of EObjects which defines a partial match between rule objects and instance
objects. If a rule shall be matched automatically, this parameter is set to null.

Here is the sample code snippet for the application of rule MoveClass to an
EMF model for a library. Assuming you want to move class Book from package
Bookshelf to package Library.

Interpreter interpreter = new Interpreter(eClass1);

interpreter.loadTransformation("refactoring.tfm");

Parameter parameter = new Parameter();

parameter.addParameter("n","Book", "String");

parameter.addParameter("p", "Library", "String");

Vector mapping = new Vector(2);

mapping.add(eClass1);

mapping.add(ePackage1);

interpreter.applyRule("MoveClass", parameter, mapping);

Interpreting EMF Transformations by Graph Transformations: Since EMF mod-
els show a graph-like structure and can be transformed similarly to graphs, we
have chosen an interpreter approach where an EMF model is translated to a cor-
responding graph. Furthermore, the EMF transformation rules are translated to
graph rules. After having performed the corresponding graph transformation,
the result graph is translated back to an EMF model. For the execution of graph
transformations, we take AGG [2], a transformation engine for typed, attributed
graphs.

As first step, the EMF core model of the transformation is translated to a
so-called type graph. Classes are translated to node types and references to edge
types. Please note that bidirectional references are mapped to two opposite edge
types. Class attributes become node type attributes on the graph side. EMF
instance models are translated to graphs. Since each consistent instance model
has root objects which contain all other objects, we can navigate from given
EObjects being the roots for all linked objects and translate them to graph
nodes. All references are mapped to edges. Each EMF rule is translated to a
graph rule in a straightforward way.

After having performed the corresponding graph transformation, the result-
ing graph has to be translated back to an EMF model. As described above,
it might happen that the resulting EMF model is not consistent, i.e. non-
containment references which make the model inconsistent, have to be removed.

Having a translation of EMF transformation to graph transformation (and
back again) at hand, the available analysis techniques may be useful to vali-
date EMF transformations. This is not always possible, but only if the EMF
models remain consistent during the transformation which is the case if objects
with subtrees are not deleted or uncoupled by removing the reference to their
container.

All refactoring rules in the running example preserve the consistency of EMF
models. Thus, analysis techniques such as critical pair analysis, termination
checks, etc. are available also for these EMF model refactorings. For example in
[23], critical pair analysis was used to detect conflicts and dependencies between
software refactorings. For example, one conflict between two different applica-
tions of rule ”PullUpAttribute” reported by AGG occurs, if a class has several
subclassses where attributes named ”a” occur. In this case only one of these
attributes is pulled up. Since all these attributes in the subclasses are equal
and are deleted afterwards, the refactoring result is independent of the concrete
attribute pulled up. Thus, this conflict can be resolved [22].

4.2 Compiler Approach

Besides interpreting an EMF transformation as graph transformation, transfor-
mation rules can also be compiled to Java methods to be used together with
previously generated EMF code. For the translation of transformation rules to
code we use JET, the code generator in EMF [7].

For each transformation rule, two classes are generated to do the rule match-
ing and the transformation. E.g. for refactoring rule ”MoveClass”, Java classes
”MoveClassRule.java” and ”MoveClassWrapper.java” are generated. The first
class contains methods for execution, undo and redo functionality. The second
class is needed for the matching process. Rule matching is formulated as a con-
straint solving problem where the LHS objects are variables, the objects of the
EMF instance model form the domain, and typing, linking und attribute values
form the set of constraints. Formulating pattern matching in this way, its effi-
ciency is directly dependent on the constraint solving algorithm as well as on
the ordering of variables and domain elements. This form of pattern matching
is influenced by graph pattern matching as done in AGG [25].

To apply one rule you create an instance of the generated rule class. This
class and the dependent wrapper class contain all information about the intended
changes of instances by the rule and how to find a match for the LHS. To have
at least one reference to the instance, on which the rule shall be applied, it
must be set by method ”setInstanceSymbol(eObject)”. Its parameter can be
an arbitrary EObject of the instance model. Input parameters can be given by
setters, which have name ”set” followed by the variable name in the rule. Matches
for the LHS are either found automatically or are given by setters, which have

the form set+Type+Counter (for objects of type ”Type” further distinguished
by ”Counter”). By method ”execute()” the given partial match is completed
and the rule applied. Here is a short code example for the application of the rule
”MoveClass”. Let’s assume you want to move class Book from package Bookshelf
to package Library.

MoveClassRule moveClassRule = new MoveClassRule();

moveClassRuse.setInstanceSymbol(eClass1);

moveClassRule.setParN("Book"); // set Name

moveClassRule.setParP("Library"); // set Package

moveClassRule.setEClass0(eClass1);

moveClassRule.setEPackage0(ePackage1);

moveClassRule.execute();

There is also a way to apply a rule with the same parameters as the In-
terpreter. To do so you call method ”applyRule()” in class ”Transformation-
Interface”. This class also needs a reference to the instance which is given in
the constructor. Additionally it allows to start a transformation by calling the
method ”transform()”.

Transformation transformation = new Transformation(eClass1);

transformation.applyRule("MoveClass", parameter, mapping);

transformation.transform();

While transform applies the rule arbitrarily in this example, the rule appli-
cation can also be controlled by Java constructs.

5 Related Work

In this paper we presented a model transformation approach based on graph
transformation concepts and the Eclipse technology. There are already several
model transformation tool environments around being based on graph trans-
formation and/or Eclipse. Most of these tool environments are designed for
exogenous model transformation, i.e. model transformations between different
languages, and do not allow in-place model updates. This fact is one of the
differences to our approach which is especially designed for endogenous model
transformation, i.e. model transformation within the same language. In the fol-
lowing, we look a little closer to several approaches and distinguish between
EMF-related and graph transformation related approaches.

5.1 EMF-Related Approaches

A rather simple approach to EMF model transformation is given by the Merlin
Eclipse plug-in [11] which can perform model-to-model and model-to-code trans-
formations. Focussing on the first type of transformations type mappings and

simple mapping rules consisting of conditions - actions pairs can be performed.
Type mappings and rules are defined in a textual form.

Sub-projects in Eclipse GMT [4] like Tefkat [20], ATL [3], MTF [1] and
MOMENT [16] support a much more elaborated transformation approach which
is mainly declarative and close to the concepts of QVT, but might also allow
imperative feature, as in the case of ATL. Similarly, our approach is mainly rule-
based, but allows native method calls in attribute computations (as ATL does).
In contrast to ours, model transformations are formulated in textual forms in all
studied approaches.

Each of the QVT-related approaches considered provides a transformation
engine based on EMF which might be integrated in other applications as well
as a tool environment (IDE) which consists of at least an editor and a debugger
provided as Eclipse plug-ins. While also offering a transformation engine and a
(visual) editor, our approach lacks from an integrated debugger. For this pur-
pose, a model transformation has to be translated to AGG where the stepwise
execution of transformations is supported.

The MOMENT project contains an EMF transformation engine which is
based on algebraic specifications as implemented in Maude [?]. Similarly to ours,
this approach has a clear formal background. But in contrast to MOMENT our
EMF transformations are based graph transformation concepts which can be
used for verify properties of model transformations such as termination, conflu-
ence, and constraint checking, and can be executed by the AGG graph transfor-
mation engine.

5.2 Graph Transformation Related Approaches

There are a number of graph transformation-based approaches to model transfor-
mation, as e.g. supported by VIATRA2 [15], VMTS [21], AToM3 [17], GReAT [9],
MOFLON [13], Gmorph [26] and MOTMOT [14]. While all dealing with graphs
and their manipulation, these approaches differ heavily concerning the kind
of graphs used and the transformation concepts supported. All indicated ap-
proaches support exogenous model transformations.

Besides standard graph transformation concepts, such as rules with left and
right-hand sides and integrated attribute computations, a number of advanced
transformation concepts are supported. Additional forms for structuring rule
sets are supported by all of the related approaches. We decided to keep our
transformation model rather simple by supporting the standard transformation
concepts with negative application conditions for rule in addition. As advantage,
graph transformations of this form can be verified based on the theory of alge-
braic graph transformation. Additional structuring of transformation rules has
to be expressed by additional Java code and is not yet taken into account for
verification.

Most of these graph transformation-related approaches do not offer EMF im-
port/export facilities. While VIATRA2 is able to perform EMF transformations
in an interpretative mode, it is not able to generate Java code for endogenous
EMF transformations. MOFLON combines MOF with graph transformation and

supports the generation of JMI compliant Java code, but does not offer verifica-
tion facilities.

6 Conclusion and Future Work

In this paper we presented an approach for the graphical definition of in-place
model transformations. As running example, we considered model refactorings
in EMF. Our visual notation for transformation rules pretty differs from that of
QVT. Relations are a key concept in QVT which does not fit well to endogenous
transformations, since relationships between model elements are not of primary
interest. In contrast, the transformation approach presented focuses on struc-
ture modification and is inspired by graph transformation. Transformation rules
contain left and right-hand sides being object structures; moreover, negative
object patterns may be defined, restricting the rule application. Since the trans-
formation concepts are closely related to graph transformation concepts, it is
possible to translate the rules to AGG, a tool environment for algebraic graph
transformation where they might be further analyzed. For efficient execution
of model transformations, the rules can be translated to Java code to be inte-
grated into generated EMF classes. The presented tool can be downloaded at
http://tfs.cs.tu-berlin.de/emftrans.

Further application of endogenous EMF model transformation may include
the execution of editing operations in EMF-based editors such as generated by
the Eclipse Graphical Modeling Framework (GMF) [6]. Orienting the transfor-
mation model at the concepts of algebraic graph transformation techniques, we
started with a rather simple transformation model. Further concepts may be for-
mulated on top of the approach presented such that the well-developed analysis
techniques for algebraic graph transformations can still be used.

References

1. IBM Model Transformation Framework http://www.alphaworks.ibm.com/tech/mtf,
2005.

2. AGG-System http://tfs.cs.tu-berlin.de/agg/, 2006.
3. ATL: The Atlas Transformation Language Home Page http://www.sciences.univ-

nantes.fr/lina/atl, 2006.
4. Eclipse Generative Modeling Tools (GMT) http://www.eclipse.org/gmt, 2006.
5. Eclipse Graphical Editing Framework (GEF) http://www.eclipse.org/gef, 2006.
6. Eclipse Graphical Modeling Framework (GMF) http://www.eclipse.org/gmf, 2006.
7. Eclipse Modeling Framework (EMF) http://www.eclipse.org/emf, 2006.
8. Essential MOF (EMOF) as part of the OMG MOF 2.0 specification

http://www.omg.org/docs/formal/06-01-01.pdf, 2006.
9. GReAT: Graph Rewriting And Transformation

http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp, 2006.
10. Java Emitter Templates (JET) as part of the Eclipse Modeling Framework (EMF)

http://www.eclipse.org/emf, 2006.
11. Merlin Generator http://sourceforge.net/projects/merlingenerator/, 2006.

12. Model Driven Architecture (MDA). http://www.omg.org/mda, 2006.
13. MOFLON http://gforge.echtzeitsysteme.org/projects/moflon/, 2006.
14. MoTMoT: Model driven, Template based, Model Transformer

http://www.fots.ua.ac.be/motmot/index.php, 2006.
15. VIATRA2 (VIsual Automated model TRAnsformations) frame-

work http://dev.eclipse.org/viewcvs/indextech.cgi/ checkout /gmt-
home/subprojects/VIATRA2/index.html, 2006.

16. A. Boronat, J. Carsi, and I. Ramos. Algebraic Specification of a Model Trans-
formation Engine. In Springer LNCS 3922. Fundamental Approaches to Software
Engineering (FASE’06). ETAPS’06. Vienna (Austria)., 2006.

17. J. de Lara and H. Vangheluwe. ATOM3: A Tool for Multi-Formalism Modelling
and Meta-Modelling. In R. Kutsche and H. Weber, editors, Proc. Fundamental
Approaches to Software Engineering (FASE’02), Grenoble, April 2002, pages 174
– 188. Springer LNCS 2306, 2002.

18. K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, and J. Steel. Declarative Trans-
formation for Object-Oriented Models. In In Transformation of Knowledge, Infor-
mation, and Data: Theory and Applications, edited by P. van Bommel. Idea Group
Publishing, 2005.

19. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

20. M. Lawley and J. Steel. Practical Declarative Model Transformation With Tefkat.
In In Proc. Model Transformation in Practice Workshop, Models Conference, 2005.

21. T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf. Systematic Approach
to Metamodeling Environments and Model Transformation Systems in VMTS. In
2nd International Workshop on Graph Based Tools (GraBaTs), workshop at ICGT
2004, Rome, Italy, 2004.

22. T. Mens, G. Taentzer, and O. Runge. Detecting Structural Refactoring Con-
flicts unsing Critical Pair Analysis. In In R. Heckel and T. Mens, editors,
Proc. Workshop on Software Evolution through Transformations: Model-based vs.
Implementation-level Solutions (SETra’04), Satellite Event of ICGT’04), Rome,
Italy, 2004.

23. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using
graph transformation. Software and System Modeling, 2006. to appear.

24. T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. In Proc. In-
ternational Workshop on Graph and Model Transformation (GraMoT’05), number
152 in Electronic Notes in Theoretical Computer Science, Tallinn, Estonia, 2006.
Elsevier Science.

25. Michael Rudolf. Utilizing Constraint Satisfaction Techniques for Efficient Graph
Pattern Matching. In 6th Int. Workshop on Theory and Application of Graph
Transformation (TAGT’98), LNCS 1764, pages 238–251. Springer Verlag, 2000.

26. S. Sendall. Combining Generative and Graph Transformation Techniques for Model
Transformation: An Effective Alliance? In 18th Annual ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2003.

27. G. Taentzer and G. Toffetti Carughi. A Graph-Based Approach to Transform XML
Documents. In L. Baresi and R. Heckel, editors, Proc. Fundamental Approaches
to Software Engineering (FASE), volume 3922 of LNCS. Springer, 2006.

