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Abstract

In this paper an integrated modelling approach for object-oriented systems is pro-
posed. The integrated language consists of three layers. On the first layer UML
class diagrams are used to define the structure of the modelled systems and OCL
expressions specify queries, which do not modify the object configuration. On the
second layer transformation rules model local state modifications of the system. On
the third layer Nassi-Shneiderman diagrams describe complex control flows built
over the rules and queries on the lower layers. The proposed integrated language is
evaluated by a running example on modelling doubly linked lists and the mergesort
algorithm.
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1 Introduction and Related Work

The Unified Modeling Language (UML) [10] has become the pre-dominant
modelling language in object-oriented software development. The behavioural
techniques provided by the UML, however, do not contain a method for
the declarative, rule-based specification of modifications on object structures.
Moreover, the interconnection between different behavioural techniques is
treated rather superficially in the UML specification, because the UML tries
to permit as many usage and interconnection scenarios as possible.

In this paper an integrated modelling approach is proposed, which tries to
eliminate these deficiencies by giving a layered collection of specification tech-
niques with a clear separation of concerns and well-defined interconnections.
The proposed integrated language is organised in three constitutive layers.

On the first layer UML class diagrams are used to specify the structure
of the system. Expressions of the Object Constraint Language (OCL) [9]
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specify the behaviour of query operations, which do not change the object
configuration of the system. This layer is introduced in Sect. 2.

On the second layer local state changes are modelled using a variant of
single-pushout graph transformation rules [1] tailored to the UML on this
layer. This layer is described in Sect. 3. Object-Based Graph Grammars [11]
and Object-Oriented Graph Grammars [7,6] are other approaches using graph
transformation rules to specify the behaviour of object-oriented systems. They
are, however, designed as self-contained specification techniques without rela-
tion to the UML.

On the third layer the assembly of the queries and rules from the previous
layers into complex control flows is achieved by structured flowcharts [8], which
are also known as Nassi-Shneiderman diagrams. The third layer is explored in
Sect. 4. Structured flowcharts are favoured over e.g. UML activity diagrams
in this paper, because we believe that they provide a viable alternative for
the visual modelling of control flows. On the one hand, they are close to the
structure of the constructs in most contemporary, imperative programming
languages, which could lead to a broader acceptance among programmers and
software designers. On the other hand, the separation of concerns realised by
the layered, integrated language facilitates the compactness and comprehen-
sibility of the flowcharts making them easier to grasp than the source code of
a programming language. Different approaches to control the application of
graph transformation systems are proposed in the literature. Transformation
Units [4] are one of the most prominent examples. They provide an abstract
framework for the definition of control structures over transformation rules,
where the structured flowcharts of this paper could probably be integrated into
that framework as a sophisticated specification language for control structures.

These layers are integrated in the sense that the interconnections between
the different layers are precisely defined: The queries on Layer 1 are only
allowed to call other queries on Layer 1. The transformation rules on Layer 2
may use OCL expressions on Layer 1 in their attribute specifications. The
structured flowcharts on Layer 3 can use OCL experessions on Layer 1 and
call arbitrary other operations, which may be specified by transformation rules
on Layer 2 or other flowcharts on Layer 3. The integrated language is intended
to be constructive in the sense that the behaviour of a system can (and should
be) completely described using the sublanguages on the appropriate layers.

The Fujaba Tool Suite [3] uses Story Diagrams [2], which are a combi-
nation of activity and collaboration diagrams, to specify transformations on
object-oriented systems. The Fujaba approach is very similar to the one pro-
posed in this paper. In contrast to Fujaba, which employs Java source code
for the specification of low-level expressions, we use OCL expressions, which
are on the one hand already integrated into the UML family of languages,
on the other hand they aid in keeping the approach platform independent.
Another difference is the strict separation of concerns with transformation
rules and flowcharts specified in self-contained diagrams, respectively, where
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Fujaba uses the integrated Story Diagrams. The separation of concerns eases
the reuse of transformation rules in different flowcharts and of flowcharts in
other flowcharts. The choice of visualisation techniques for rules and control
flow is the last main difference. Fujaba uses collaboration diagrams to visualise
rules, while in this paper a seperate visualisation of left- and right-hand-side
is chosen, because the collaboration visualisation cannot adequately capture
the change of attribute values and the specification of negative application
conditions. In Fujaba UML activity diagrams are used for the control flow,
where our reasons for choosing structured flowcharts have already been given
above.

The semantics of the UML languages is — sometimes deliberately — left
ambiguous and only given in natural language. In order to allow features like
precise reasoning and code generation, a more restricted and formal approach
has to be considered. Therefore, the integrated modelling language proposed
in this paper is designed to allow the definition of a precise semantics.

It is possible to use graph transformation systems also as the semantic
domain of object-oriented modelling techniques. This is done in [13,5], where
UML class, object, state, collaboration, and use case diagrams are translated
into graph transformation systems. This approach is complementary to the
one in this paper, where graph transformations are used as an additional
modelling technique on the syntactical level.

2 UML Foundations

In this paper we use UML class diagrams [10] to specify the class structure of
the modelled system. Additionally, the behaviour of query operations, which
do not change the object configuration of the system, is specified by OCL con-
straints [9], which are guaranteed to have no side effects on the system state.
Note, that we do not employ OCL invariants and pre-post-conditions in this
paper. Those constraints will be considered in future work on verification,
shortly discussed in Sect. 5, where they will play the role of descriptive spec-
ifications against which the constructive models defined in this paper should
be checked.

The two subsequent layers will be designed to closely match and reuse
the concepts of class diagrams and OCL constraints. For example, the self
and return parameters of OCL have counterparts in both rules and flowcharts.
Additionally, rules and flowcharts also require OCL expressions in various
locations.

As a running example we specify doubly linked lists, whose elements con-
tain an integer as key and a string as data content. The class diagram of the
example is depicted in Fig. 1. The abstract class Listltem is used as an abstrac-
tion of the common characteristics of lists and the elements in the lists. The
objects of the List class serve as sentinels for the list, such that the next item
is the first element of the list and the previous is the last one. This approach
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; prev
kg Lists) [Listitem &
AN next
| |
List Element
length:Integer key:Integer
create():List data:String
append(new:Element) create(i:Integer,s:String):Element
moveFirstTo(other:List) sorted():Boolean {query} -~ _ _
moveTo(other:List) -~
,sorted():Boolean {query} context Lists::Element.sorted():Boolean
,| merge(first:List,second:List):List | | body: if next.ocllsKindOf(Element) and
" | mergeSort() next<>self
then if key<=next.key
context Lists::List.sorted():Boolean then next.sorted()
body: if next.ocllsKindOf(Element) else false
then next.sorted() endif
else true else true
endif endif

Fig. 1. Class diagram of the example

ensures that we do not have to deal with undefined pointers. Moreover, it
allows to check if a list is non-empty and if an element has another successor
by calls to the builtin OCL property ocllsKindOf(Element) on the next link.
Note, that this class diagram would also allow object structures with multiple
instances of List in a list, but the operations — namely the structure modifica-
tions specified by the rules in the next section — do not allow the creation of
such senseless structures.

The underlined operations List.create, Element.create, and List.merge are
static operations, which are called in the context of the class instead of a
particular object of the class. The operations List.sorted and Element.sorted
are annotated with a query property string expressing that they are not allowed
to change the configuration of objects and attributes in the system.

The sorted queries are specified by the OCL constraints in Fig. 1. The
List.sorted query returns true for an empty list and calls the Element.sorted
query on its first element otherwise. The Element.sorted query returns true if
the element is the last in the list, i.e. the next link points to the containing
instance of List and not to another instance of Element, or the element is not
contained in a list at all, i. e. the next link points to the element itself. If there
is another element in the list, the keys are compared and false is returned if
they are not in the correct order. Otherwise the query is called recursively on
the next element.

3 Transformation Rules

On the second layer of the integrated modelling approach we will use trans-
formation rules to describe local state changes in object configurations. These
rules are a variant of single-pushout graph transformation rules [1].

A rule is given by a left- and a right-hand-side consisting of instance speci-
fications. The left-hand-side (LHS) is connected to the right-hand-side (RHS)
by a partial, injective mapping. Since the application of a rule should be de-
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termined by the parameters given to the operation, we require the LHS to be
uniquely navigable from the instance specifications representing the parame-
ters, whose type is a class. A special parameter self is available in non-static
operations to denote the object on which the operation is called. If the op-
eration has a return parameter, the special parameter return has to be used
on the RHS to designate the output of the rule. For attributes the instance
specifications on the LHS may declare OCL constraints, which have to hold
for the rule to be applicable. The instance specifications on the RHS may then
specify the new values of attributes by OCL constraints, which may similarly
to post-conditions use the @pre operator to access the attribute values before
the rule application. The OCL attribute constraints may also use any data
type parameters given to the operation.

Given a match of the LHS in an object configuration, the application of the
rule can be constructed by removing the parts of the LHS not mapped to the
RHS and adding the parts of the RHS, which do not have a preimage in the
LHS. Since we assume an execution environment with garbage collection, we
will use only rules, which are non-deleting on objects. Matches may in general
be non-injective, but if there are contradicting attribute constraints for objects
identified by the match, then the rule is not applicable. Operation invocations
leading to a non-applicable rule should result in some kind of error handling,
e.g. by throwing an exception, but the integration of exception handling is
outside the scope of this paper and is left as future work.

In addition to the LHS and RHS, negative application conditions (NAC)
may be defined for a rule. Such conditions are defined as non-injective ex-
tensions of the LHS, where non-injectivity is used to forbid the identification
of certain elements by the match and extensions are used to forbid auxiliary
object structures. If the NAC can be matched compatibly with the match of
the LHS, then the rule is not applicable.

It may be argued that rules, which are allowed to manipulate all struc-
tures navigable from the called object and the call’s parameters, contradict
the object-oriented paradigm of encapsulation of object behaviour, but for the
modelling of complex structure changes it seems appropriate to specify them
as a rule operating under the control of one of the participating objects rather
than dividing the operation, which logically belongs together, into operations
on the different objects. In a more elaborated framework, which takes into
account visibility and accessibility constraints to facilitate object encapsula-
tion, these visibilities and accessibilities would of course have to be respected
by the rules.

For our running example, the transformation rules in Fig. 2 can be used
to create lists and elements. The List.create rule in Fig. 2(a) creates an empty
list, while the Element.create rule in Fig. 2(b) creates an element containing
the given integer as the key and the given string as the data content. The
created element is not contained in a list, which is expressed by the next and
previous links pointing to the element itself. Since these operations are both
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rule Lists::List.create():List) rule Lists::Element.create(i:Integer,s:String):Element)
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Fig. 2. Transformation rules for creating instances of Listltem
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(¢) Moving the whole List

Fig. 3. Transformation rules for modifying a List

static, there is no self instance in the LHS. The return parameter is used to
transmit the created instances as operation results to the caller.

The rules in Fig. 3 modify a given list. The List.append rule in Fig. 3(a)
appends a given element to the end of the list. The rule is not applicapble if
new is already contained in another list, because the previous and next links
are required to point to new itself. The List.moveFirstTo rule in Fig. 3(b) moves
the first element of a list to the end of another list. This rule is not applicable
if the self list is empty, because then there is no match for 1:Element, and
if the caller tries to move to the same list, because the conflicting attribute
specifications for self and other prohibit their identification. The List.moveTo
rule in Fig. 3(c) moves a whole list to another empty list. Again, the rule
is not applicable, when self and other refer to the same object, because of
the conflicting attribute specifications. Additionally, the given NAC forbids
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var:Type ‘van:expr ‘ ‘obLop(pan ‘

Block (b) Assignment (c) Operation | Block | Block

call
(d) Parallelism

(a) Declaration

cond cond

Block

Block Block Block

cond

(e) Decision (f) Iteration (g) Iteration
with pre- with post-
condition condition

Fig. 4. Symbols used in flowcharts

the application on an empty list, because the application would lead to an
ill-formed object configuration with the self list contained in the other list.

4 Structured Flowcharts

In this section we use structured flowcharts [8] as defined by Nassi and Shnei-
derman to describe control flows. The flowcharts are built over the queries and
rules defined in the previous sections. Because the details of state changes are
delegated to the rule-based operation specifications, the control flows remain
concise and comprehensible.

Flowcharts are constructed using the block symbols in Fig. 4, where these
blocks can be sequentially composed and recursively inserted for the Block
nonterminals. A variable declaration shown in Fig. 4(a) consists of a previously
undeclared variable var and a type Type. The scope of the variable is the
contained block. Values can be assigned to variables by an assignment as
shown in Fig. 4(b), where the variable var can be a previously declared variable
or the special variable result. Note that neither the parameters of the operation
including self, nor attributes may appear on the left side of an assignment,
because modifications of the object structure should be specified by rules not
by direct assignments. The expression expr with corresponding return type
is constructed similar to OCL expressions, but it is, in contrast to OCL,
also allowed to contain calls to non-query operations. Operations without
return parameter can be called with the block in Fig. 4(c), where obj is a
navigation path from a parameter or variable to an object, op is an operation
of the class of that object, and par are parameters for the operation. Control
flows, which can be executed parallely independent, can be expressed by the
block in Fig. 4(d). A decision as in Fig. 4(e) is given by an OCL expression
cond with Boolean return type, which is constructed over the parameters and
previously declared and defined variables. If the query evaluates to true, the
left block is executed, if it evaluates to false, the right block is chosen. The
iteration with precondition in Fig. 4(f) corresponds to a while-loop in common
programming languages. While the Boolean query cond evaluates to true, the
block is executed. Conversely, the iteration with postcondition in Fig. 4(g)
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flow Lists::List.merge(first:List,second:List):List)

return:=List.create()

first.next.ocllsKindOf(Element) and second.next.ocllsKindOf(Element)

irst.next.key<=second.next.ke

first. moveFirstTo(return) ‘ second.moveFirstTo(return)

first.next.oclisKindOf(Element)

‘ first. moveFirstTo(return)

second.next.ocllsKindOf(Element)

‘ second.moveFirstTo(return)

Fig. 5. Flowchart of merging two sorted lists

flow Lists::List.mergeSort())

next.ocllsKindOf(Element)

work:List[length]
number:Integer

number:=0

next.ocllsKindOf(Element)

work[number]:=List.create()

moveFirstTo(work[number])

next.ocllsKindOf(Element) and work[number].prev.key<=next.key

‘ moveFirstTo(work[number])

number:=number+1

number>1
i:Integer
j:Integer
i:=0 j:=0
j<number
j*1<number

work[i]:=merge(work[j],work[j+1]) ‘ work[i]:=work[j]

=i+l [i=i+2

number:=(number+1)/2

work[0].moveTo(self)

Fig. 6. Flowchart of the Natural Mergesort algorithm

corresponds to a repeat-loop, where cond is evaluated for the first time after
the first iteration.

For our example of doubly linked lists, we will specify the Natural Merge-
sort algorithm [12], which utilises sublists that are already sorted to optimise
the performance of the sorting procedure. In Fig. 5 we first specify an auxiliary
operation for merging two already sorted lists. As long as both lists contain
elements, the first elements are compared and the smaller one is moved to the
resulting list. When one of the lists becomes empty, the rest of the other one

is moved to the result and the operation terminates.

The Natural Mergesort algorithm itself is specified in Fig. 6. If the list is
empty, nothing is done, otherwise the main part of the algorithm is started,
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which consists of two parts. First, the list is broken up into already sorted
sublists, which are stored in the work array of lists, where this array is declared
to contain at most length lists. The actual number of sorted lists is stored in
the number variable. Then, these lists are merged pairwise, which halves the
number of sorted lists in each pass. This is done until only one list remains
and this list is moved to the self list.

5 Summary and Future Work

In this paper an integrated modelling approach for object-oriented systems
has been developed, which is organised in three constitutive layers. The first
layer employs OCL to yield a functional description of query operations with-
out side effects. On the second layer transformation rules are used to define
the behaviour of operations, which change the object configuration locally.
Finally, structured flowcharts are used on the third layer to specify complex
control flows.

Interesting lines of future work include the extension of the presented ap-
proach with respect to further structural and behavioural aspects of the UML,
like multiplicities, visibilities, signal and exception handling, and redefinition.
The presented languages should be aligned with the UML metamodel by giv-
ing metamodels for the three layers. The definition of the abstract syntax by a
graph grammar could complement the metamodel, where this also permits the
use of graph transformation rules for refinement, refactoring, code generation,
and other model transformations.

One of the main motivations for the work in this paper is to define a fully
formalized object-oriented modelling technique. Hence, the languages will also
be given an integrated formal semantics, which will then be used to facilitate
formal verification. For the purpose of verification the constructive modelling
techniques presented here will be complemented by descriptive specification
techniques like OCL invariants and pre- and post-conditions or UML sequence
diagrams. The system described by the constructive techniques can then be
verified against the properties required by the descriptive techniques using a
variety of verification methods.
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