ELECTRONIC COMMUNICATIONS OF THE EASST

the EASST

© Volume 1

-

O Proc. of 3rd International Workshop on Graph Based Tools
<)

ISSN 1863-2122

Object Oriented and Rule-based Design of Visual Languages
using Tiger

Electronic Communi

Claudia Ermel, Karsten Ehrig, Gabriele Taentzer and
Eduard Weiss

12 pages, 2006

Guest Editors: Albert Ziindorf (Kassel, Germany), Daniel Varr6 (Budapest, Hungary)

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
Homepage of ELECTRONIC COMMUNICATIONS OF THE EASST: http://www.easst.org/eceasst

ELECTRONIC COMMUNICATIONS OF THE EASST

Object Oriented and Rule-based Design of Visual Languages

using Tiger

Claudia Ermel*, Karsten Ehrig**, Gabriele Taentzer* and
Eduard Weiss*
*Institut fiir Softwaretechnik und Theoretische Informatik, Technische Universitit Berlin, Germany
**Department of Computer Science, University of Leicester, United Kingdom

Abstract. In this paper we present the state-of-the-art of the TIGER environment for the gen-
eration of visual editor plug-ins in Eclipse, with the focus on its Designer component, a visual
environment for object oriented and rule-based design of visual languages. Based on an alpha-
bet for finite automata we show how a visual language can be designed by defining the abstract
and concrete syntax of the visual language and syntax directed editing operations in the gener-
ated editor plug-in. For the graphical layout we use the Graphical Editing Framework (GEF) of
ECLIPSE which offers an efficient and standardized way for graphical layouting.

Keywords: visual languages, editor generation, visual editor, graph transformation,
Eclipse

1 Introduction

Domain specific modeling languages are of growing importance for software and system development.
Meta tools are needed to support the rapid development of domain-specific tool environments. The basic
component of such environments is a domain-specific visual editor. A visual language (VL) definition
based on a meta model in combination with syntax rules defining syntax-directed editor commands is
used in TIGER (Transformation-based Generation of Environments) to generate a corresponding visual
editor. On the one hand, a visual language definition captures the visual symbols, links and relations
of the domain specific modeling language (the alphabet); on the other hand, a syntax graph grammar
defines precisely which editor operations are allowed and restrict the visual sentences of the VL to
correct diagrams.

TIGER combines the advantages of precise VL specification techniques using graph transformation con-
cepts with sophisticated graphical editor development features offered by the Eclipse Graphical Editing

VOLUME 1 1

VISUAL LANGUAGE DESIGN USING TIGER

Framework (GEF) [GEF06]. Using graph transformation at the abstract syntax level, an editor com-
mand is modeled in a rule-based way by just specifying the pre- and post-conditions of each command.
The application of such syntax rules to the underlying syntax graph of a diagram is performed by the
graph transformation engine AGG [Tae04]. TIGER extends AGG by a concrete visual syntax definition
for flexible means for visual model representation. From the definition of the VL, the TIGER Generator
generates Java source code. The generated Java code implements an ECLIPSE visual editor plug-in based
on GEF which makes use of a variety of GEF’s predefined editor functionalities. Thus, graphical layout
constraints are defined and solved with efficient Java methods without using complex constraint solving
algorithms like in GENGED [BEWO03] or DIAGEN [Min02], and the generated editors appear in a timely
fashion, conforming to the ECLIPSE standard for graphical tool environments.

Note that graph transformation-based editors, in contrast to related meta-model-based editors like
GMF [GMF05], AToM? [dLVA04] or Pounamou [NLGO05], do not only offer basic editor commands,
the so-called CRUD operations (Create, Read, Update, Delete), but they can also offer complex editing
commands which insert or manipulate larger model parts consisting of a number of elements. With com-
plex editing commands, model optimizations, such as model refactoring, as well as model simulation
can be performed.

TIGER [EEHTO5, Tig05] is the successor project of GENGED [BEWO03, Bar(02], with the objective
to make extensive use of today’s modern functionalities for visual model-driven development and inte-
gration offered by the Eclipse platform and its plug-in mechanism. Hence, both the TIGER Designer
component for visual VL definition and the TIGER-generated visual editors are ECLIPSE plug-ins, based
on the common paradigm for visual creation, management and navigation of resources. The features
of domain-specific editors generated by GENGED, DIAGEN and ATOM? (e.g. for layouting diagrams,
undo/redo, zooming, etc.) partly differ heavily from modern standards. Moreover, the generated environ-
ments are not meant to be integrated into other existing tool environments. As stand-alone applications
they do not always offer the standard look-and-feel of common editor features.

In this paper we focus on the TIGER Designer for visual editing of visual language specifications as
part of the TIGER environment [Tig05]. The second main component of TIGER is the TIGER Genera-
tor for generating rule-based editor plug-ins in ECLIPSE. The generator has already been presented in
[EEHTOS5].

The paper is organized as follows: Section 2 reviews the basic concepts for visual language specifica-
tion based on graph transformation, and introduces the TIGER perspective for VL design in ECLIPSE.
Section 3 goes into the details and describes how a VL is specified using the TIGER Designer, by defin-
ing on the one hand the abstract and concrete syntax of the VL alphabet, using the visual abstract syntax
editor and layout view, and on the other hand, by defining the editing operations using the visual rule
editor. Section 4 shows how a visual editor is generated as ECLIPSE plug-in from the VL specification.
In Section 5, we discuss ongoing and future work concerning the TIGER environment.

2 Visual Language Design based on Graph Transformation: Overview

Nowadays two main approaches to VL definition can be distinguished: grammar-based approaches or
meta-modeling. Using graph grammars, multi-dimensional representations are described by graphs and

PrOC. OF WORKSHOP ON GRAPH BASED TOOLS 2

ELECTRONIC COMMUNICATIONS OF THE EASST

allows not only a visual notation of the concrete syntax, but also a visualization of the abstract syntax.
While the concrete syntax contains the concrete layout of a visual notation, the abstract syntax shows
the underlying structure, i.e. it provides a condense representation to be used for further processing.
Similarly to textual language definition, grammar rules define the language, but for visual languages,
graph rules are used to manipulate the graph representation of a language element.

2.1 VL Design Concepts based on Graph Transformation

For the application of graph transformation techniques to VL design, typed attributed graph transfor-
mation systems [EEPTO06] have proven to be an adequate formalism. Roughly spoken a typed attributed
graph transformation rule p = (L — R) consists of a pair of typed attributed graphs L and R (its left-
hand and right-hand sides) and a mapping from L to R. Symbols and links appearing in L are matched
with the elements of the current editor diagram and deleted or preserved according to their mapping to
R. New symbols and links are created if they appear in R only. A direct graph transformation written
G 22 H, means that diagram G is transformed into diagram H by applying rule p at the occurrence o
of Lin G.

A VL is modeled basically by an alphabet, an attributed type graph which captures the definition of
the underlying symbols and relations which are available. Sentences or diagrams of the VL are given by
attributed graphs typed over the type graph. The abstract alphabet is extended by defining the concrete
layout of diagrams. At the concrete syntax level, the VL alphabet defines the figures and their properties
which are used to visualize the underlying abstract symbols.

Usually, the set of visual diagrams (sentences) over an alphabet should be further restricted to the mean-
ingful ones. By defining this restriction via graph rules, the constructive way is followed (as opposed to
the declarative MOF approach [MOF05], where OCL constraints are used). The application of abstract
syntax graph rules builds up abstract syntax graphs of valid diagrams. Together with a suitable start
graph, the set of syntax rules forms the syntax graph grammar which defines the models belonging to a
VL in a well-defined and constructive way.

2.2 The TIGER Perspective for VL Design in ECLIPSE

The main difference between the TIGER Designer and related stand-alone environments for graph trans-
formation-based VL design such as GENGED, DIAGEN and ATOM?, is the use of the ECLIPSE plat-
form. TIGER makes extensive use of the standard elements provided by the ECLIPSE workbench paradigm,
such as perspectives, editors and views. The TIGER perspective comprises a designated group of views
and editors in the ECLIPSE workbench window (the modeling desktop). A view is a visual component,
typically used to navigate a hierarchy of information, open an editor, or display properties for elements
in the active editor. An editor is also a visual component, typically used to edit or browse a resource.
Views and editors can be active or inactive. The active component is the target for common operations
such as cut, copy or paste. The TIGER perspective can be configured and customized in a flexible way
(as usual for Eclipse perspectives). The user determines for instance which components are shown and
how they are ordered on the desktop. Figure 1 shows an example of views and editors arranged in the
Tiger perspective: the tree view (in Figure 1) shows the hierarchical structure of a VL alphabet. A

VOLUME 1 3

VISUAL LANGUAGE DESIGN USING TIGER

visual editor (in Figure 1) is used to define the layout for a symbol type, and a properties view (
in Figure 1) allows to change values for graphical layout properties of the ellipse figure selected in the
visual editor.

03~ &l FrO-Q -~ P € y By &'Java 7 Tiger
7 activity.vls %2 *automata.vls layout container [InnerStanEllipse 74
= & Automata m 4 layout for StartState
-~ Alphabet @ Palette >
= (& Nodes I3 Select
+ W State £, Marquee
+ :""f FinalState (= shapes »
+ 7/ NormalState
+ 7 StanState j rectangle
+ 7 Bendpoint)
+ 7 StarFinalState "" ellipse
]
=-[) Edges rounded
+ & Transition /\ retangle
betweenBendpoints name
i é " 3 ‘\ / X polygon
I Properties E¥snchor =
Biogeity Yalie 3 5 [] chopbox anchor
- ﬁgu;ef It i D (&0, 50) %) ellipse anchor
+ default size imension
y h
fill color RGE {251, 254, 188} golencrol
kind of shape ellipse
layout manager BorderLayout
+ maximum size Dimension(59, 50)
name InnerStartEllipse
opaque true v
af = | »>

Figure 1: The TIGER Perspective in ECLIPSE

In the following, we describe how the diverse views and editors of the TIGER Designer are used to
define a VL specification consisting of a VL alphabet and a VL syntax grammar.

3 Designing Visual Languages using Tiger

As discussed in the previous section, a VL specification (VLSpec) consists of an Alphabet containing
the available symbols and links of the VL and their layout, a RuleSet containing syntax rules which
define possible editing operations to construct diagrams, and a StartGraph, defining the initial diagram
the syntax rules are applied to. In alphabets, rules and diagrams we distinguish the abstract syntax
(the internal representation of diagrams as graphs without layout information) from the concrete syntax
(describing additionally the layout properties and constraints).

3.1 The VL Alphabet

A VL alphabet consists of SymbolTypes and LinkTypes. In our approach, graph-like languages consist
of node symbol types (e.g. states in automata) and edge symbol types (e.g. transitions in automata).
Edge symbol types are connected to node symbol types by LinkTypes. Symbol types may be attributed
by an ordered list of AttributeTypes e.g. to model the state names in automata. Classes AttributeType,
SymbolType and LinkType have directly corresponding node and edge types in AGG forming the abstract
syntax representation. Figure 2 shows package abstractsyntax, where the abstract syntax of alphabets is

PrROC. OF WORKSHOP ON GRAPH BASED TOOLS 4

ELECTRONIC COMMUNICATIONS OF THE EASST

defined. This abstract alphabet syntax definition corresponds roughly to the M 3 level of the MOF meta-
model hierarchy, where also the syntax of meta-models (specifically UML meta-models) is defined.

abstractsyntax

-name : EString

JANA

ModelElement

SymbolRole

-NODE
-EDGE

Alphabet
begin
B 1 .
AttributeType |* SymbholType LinkType
-type : EString -role : SymbolRole "

1 » /_\1
super sub ond

Figure 2: VL Specification: Abstract Syntax of an Alphabet

The graphical layout (the concrete syntax) is given by additional classes extending the class diagram
shown in Figure 2. The TIGER Designer stores the concrete layout information for symbols and links in
the designer model based on the meta model shown in Figure 3 which is closely connected to the layout
relations of Eclipse GEF [GEFO06].

[abstractsyntax::AttributeType| [abstractsyntax::SymbolType| [abstractsyntax::LinkType]

layout | ¢ .
Figure \
-borderStyle CompoundFigure
-borderWidth -state : CompoundFigureState
-opaque . N
-visible paren -
fillColor Constraint
-borderColor
| 1| child
;exF. 1] constraintToParent (EonstraintToChiId
'}zi osition ContainmentConstraint
-align
-fontColor a i
ontColol _referencePoint Connection
-color
Shape -router
Layout Tkind -strokeStyle
-strokeWidth Anchor
-anchorKind
-relativeX
n * l-relativeY
BorderLayoutI |StackLayout| CompoundFigureState
-PRIMARY
[FlowLayout| [XYLayout] -SECONDARY

Figure 3: VL Specification: Concrete Syntax

Symbol types (for both nodes and edges) are layouted as CompoundFigures which may contain Figures
again. The figure layout is defined by Shapes which kind could be a Rectangle, Ellipse, Polyline, ...

VOLUME 1 5

VISUAL LANGUAGE DESIGN USING TIGER

For the automata VL, we have e.g. two Shapes of kind Ellipse nested into each other in for layouting
a final state, and we have a Text figure (the arc inscription) as child figure of a Connection figure for
layouting a transition. The figure arrangement is done by GEF standard layout styles such as Stack-
Layout, BorderLayout, XYLayout, and FlowLayout. Connection Anchors describe the relation between
Shapes and Connections. GEF layout Constraints are handling the layout positions inside of Figures via
ContainmentConstraints, for example a Text Figure is located inside an Ellipse figure.

Figure 4 shows the TIGER Perspective for designing a visual language for finite automata.

- Tiger - automata.vis - Eclipse SDK 0606
File Edit View Navigate Search Project Run Editor Menu Window Help
H-EHS | %-0-Q- | o g B Tiger D
% *automata vis abstract syntax
- S Automata @ Baietts 2
= & Alphabet m [y select
- @ Nodes BPoint2BPointBegin CL Marquee
© V] state L Srcasromen Etypes i
+ 7 Finaisite State2BPointEnd 77 node symbol type
* 7{ NormalState g edge symbol type
w7 Stantstate BPaint2StateBegin 4 attribute type
+ 7[Bendpoint ' -
= W StarFinaistate rromBendgoimToSme | IMM' 2 orxae
7 Links
7 Attributes State2BPointBegin
- @ Edges

+ g Transttion
+ E betweenBendpoints
+ g fromBendpointToState
+ g fromStateToBendpoint
c @ rule set
%, Startgraph

BPoint2StateEnd

St nd ranstion

nscr.java lang.String
State2StateBegin
K———

ame:java lang String
int

Fnals‘tale | FovmalSteﬂe | &l artfinaiState
Y

Navigator layout container = Properties 1 OuterRectangle

»,
15 2, layout for StartFinalState
2,
Palette »
prover e E - P 5
constraint to parent CENTER (= shapes td o

>

-l figure
fill color RGB {255, 255, 255} o\ i rectangle
fort Tahoma |height=8 [style=1 |RGB={0,0,255} hamel v
— (= anchor »

name TextFigure .

fal. < E chophox anchor

«

ANy

Figure 4: VL Design of the Automata VL with the TIGER Designer

While the tree view on the left-hand side (in Figure 4) shows the symbol types of the automata
alphabet, the syntax rules and the start graph of the automata syntax grammar, the abstract syntax can be
defined in the abstract syntax panel to the right (in Figure 4), where the abstract syntax of the automata
alphabet is shown. The concrete layout of a symbol type is defined via a graphical editor shown at the
bottom of the right-hand side (in Figure 4). The layout for the StartFinalState symbol (a start state
which is a final state as well) is given by an invisible rectangle, containing the start marker (a polygon),
and an outer and inner ellipse selected from the shapes menu of the editor Palette. Moreover, an attribute
name is represented by a text figure, connected via an anchor to the inner ellipse figure. The Properties
View on the left side of the bottom (in Figure 4) shows the layout properties like text width and style
of the figure selected in the editor, here the text figure of the StartFinalState symbol. In the same way

PROC. OF WORKSHOP ON GRAPH BASED TOOLS 6

ELECTRONIC COMMUNICATIONS OF THE EASST

NormalState, StartState, FinalState and State are defined where the last one represents the other states
via an inheritance relation defined in the abstract syntax.

Edges are created in a quite similar way. For a Transition two Links are defined in the tree view for
connecting the Transition with a State. The concrete layout is given by Transition Connection defining
a line connection with a closed arrow decoration from the editor Palette. For better orientation, the
begin and end points of a connection are visualized by small block arrows (see Figure 5). An inscription
attribute inscr is located close to the end point of the transition line via a layout constraint. The Properties
View shows the layout properties of the TransitionConnection with black color, solid line style, and
normal width.

L] Tiger - automata.vls - Eclipse SDK 006
File Edit “iew WNavigate Search Project Run Editor Menu Windows Help
9 - B ¥ -0-Q- | & - T @luava | T Tiger
<‘,’,‘ \%L‘qCVS Reposito...
Lz Tautomata vis ! abstract syntax O TransitionConnection
= @ Modes A layout for Transition
5 -’,!17 State Palette 3
+ F Finalstate h et
+ '?17 MormalState L Marguee
+ ’ff StartState = connections »
+ ?17 Bendpoint -
+ # StartFinaiState Fenneston
- fED Ecges _/—”-i}» -
- g Tranzition C:' inscr
+ g Links
= 1EY Attributes y @ .
& inscrjavalang String | w =
& layout container 7 = Properties B 3
- layout of Transition A || Property Yalug =
= ™ TranstionConnection = stroke
-X m color RGBE {0, 0,0}
Arrowehead router Ml
[InscrTextFigure style =alic
+ layout of StartState ¥ wicth 1 v

Figure 5: Creating a Transition connection in the TIGER Designer

3.2 The VL Syntax Grammar

Language constraints restricting the set of valid diagrams over an alphabet are modeled by restricting
the set of editing commands, i.e. graph transformation-based editors are usually syntax-directed. An
editor command is modeled as a graph rule (typed over the language’s alphabet) being applied to the
abstract syntax graph of the current diagram. The graph transformation approach to language definition
is a constructive one, since syntax rules are used to build up all language instances from an initial state
(the start graph). The start graph together with the set of syntax rules and the underlying VL alphabet,
are called VL syntax grammar because it defines the complete syntax of the visual language.

Figure 6 shows package rules, where the start graph and the syntax rules are defined. The left- and right-
hand sides of a rule are graphs. Additionally, a rule may contain a set of negative application conditions

VOLUME 1 7

VISUAL LANGUAGE DESIGN USING TIGER

(NACs), which model situations in which the rule is not applicable. Moreover, a rule may have a set
of input parameters defined by the user when the rule is applied, and variables for performing attribute
computations. For each rule, the rule morphisms from the left-hand side L to the right-hand side R and
from L to the NACs are given by sets of mappings for symbols and links.

begin
abstractsyntax::SymbolType ‘ |abstractsyntax::LinkType
| abstractsyntax::vispec | 1 4
’ ’ |abstractsyntax::AttributeType| end
rules !
. begin
. 1 . .
Attribute Symbol | | Link |
L T
' RuleSet end

Variable = Parameter
Rule
-type : EString -type : EString
1 . 1 ’
| startGraph | | nac || s | [mus |

| | | |

N

o 4

Figure 6: VL Specification: Syntax Grammar

In the TIGER rule editor in Figure 7, the editor operations for syntax directed editing of automata are
defined. The rule addTransition inserts a Transition between two arbitrary States represented by solid
rectangles. In fact, the abstract node State preserves the user from defining different rules for each
possible pair of concrete state figures, for example to connect a StartState with a NormalState. The
left-hand side of the rule defines the States to be selected by the user as input parameters in=0 and in=1
of the rule. After rule application, a Transition with the inscription transinscr is inserted between the
previous States, where the mapping between the left- and right-hand side is indicated with m=0 and m=1.
The NAC uniqueTrans ensures that no Transition in the same direction exists before the rule application.
Instead, we allow inscriptions consisting of more than one character for one transition. The transition
name transinscr is listed as input parameter in the view parameters in rule of type java.lang.String. For
such attribute parameters, a dialog window pops up when performing the corresponding editor operation
in the generated environment, asking the user to specify the transition inscription.

In the Properties View the kind attribute specifies the rule behavior:

e The name of a create operation will appear as entry in the editor palette of the generated editor for
inserting a new symbol or a larger structure consisting of several symbols (a sub-diagram) in the
editor panel.

o A delete operation appears as an entry in the context menu of a symbol for deletion of the symbol
or an associated sub-diagram.

PROC. OF WORKSHOP ON GRAPH BASED TOOLS 8

ELECTRONIC COMMUNICATIONS OF THE EASST

- Tiger - automsta vis - Eclipse SDK Oee
File Edit View Navigste Search Project Run Editor Menu Window Help
H-HE 3-0-Q- 4 |w & | B | 7 Tiger »
%z "automata vis abstract syntax & addTransition
= S Automata 4 definition of addTransition
+ & plhabet M urigueTrans LHS RHS s Select
= rule set 3 Marquee
@Lf o in=0 m=0 & il
SR W ol Transition =0 mapping
5. LHS =Y unmapp
" RHS Ff node sym... #
= nacs
s uniqueTrans) j State
+ 5 addStart transinscr
+ £ addFinal =1 e timai m=1 ~’ FinalState
£
+ - moveState
ris " p
+ ?j‘ addMormal " Ngmalst...
=
+ - editTransinscr
AR gedge sym... *
+ a1 editStateMame 7 2
st +, Tranzition
+ -7 deleteState 3
o8 o .. betweenBen...
+ a1 deleteTransition .)
o5 : + fromBendpoi...
+ T addStartFinal . i
o EE mvattatenihl aon T T) - +1 e R Al el
O paramsters in rule s = Properties B
Property Walue
name type 5] rue
7 = - kind create
par transinscr java lang String e addTransition
new
<& » LSRR == B] S

Figure 7: Editing of the syntax rule addTransition in the Tiger Designer

e A move operation is associated with a symbol to change the layout position in the editor view by
mouse dragging.

e An edit operation appears as another context menu entry which allows to change the properties of
the associated symbol.

4 Generation of Eclipse Editor Plug-ins

After the specification of a visual language has been completed, the TIGER Generator can be invoked
for generating the Java code of the envisaged editor plug-in. The Tiger Generator uses Java Emitter
Templates (JET) as part of the Eclipse Modeling Framework (EMF) [EMFO06] for code generation. In
code templates, place holders are filled with values given from the visual language specification. The
generated Java code may be executed directly in the Eclipse Runtime-Workbench. Figure 8 shows the
generated editor plug-in for automata. In this editor, an automaton is shown generating the language
L = {w € {0,1}* | wis ending with 010 or 101}.

VOLUME 1 9

VISUAL LANGUAGE DESIGN USING TIGER

S Java - lastBits.autom - Eclipse SDK O 6 6
File Edit Navigate Search Project Run Window Help

| F-O-Q EHFCG~Y @4 =14 B ZrTiger &Java
*lastBits. autom

lastBits.autom: Automata

I3 Select

7, Marquee . .

(= Connections ~ # o1 L —

addTransition

(= Symbols » 7/ Undo moveState

addSFan editStateName

addFinal 1

addNormal Run As 4

addStartFinal —>1-> Debug As >

(= Pattems » Team »

addLoop Compare With »
Replace With 4

Automata Save

Figure 8: Generated Automata Editor Plug-in in ECLIPSE

The editor palette shows icons for the GEF standard features select (select a single symbol) and mar-
quee (select a set of symbols). VL-specific creation operations are grouped into categories Symbols (for
creating symbols), Connections (for creating connections between two symbols) and Patterns (for cre-
ating patterns consisting of more than one symbol). After a creation operation (e.g. addTransition) has
been selected in the palette, the required match symbols must be selected in the editor panel (the source
and target state for the transition have to be clicked on). If an input parameter is defined for the syntax
rule, a dialog pops up and asks for an attribute value (e.g. the transition inscription has to be given). Now,
the underlying creation rule is applied, i.e. the transition is inserted between the two states. Note that
addLoop is a creation pattern, because internally, a loop consists of three connections and two bendpoints
(see the loop at the start state in Figure 8). Thus, the bendpoints can be moved by the user to readjust the
loop. Move rules are applied simply when a symbol (or a set of symbols marked by Marquee) is dragged
by the mouse. A move rule may also be defined for a symbol pattern. For example, in the automata VL,
we defined a move rule moving a state node together with a loop. Deletion rules and editing rules appear
in the context menu which is evoked by the right mouse button after a symbol has been selected. Figure
8 shows the context menu for final state ¢010, where it is possible to evoke the operation editStateName.

5 Conclusion

In this paper we have described the state-of-the-art of the TIGER environment (http://tfs.cs.tu-berlin.de/
tigerprj) with focus on the Designer for specifying visual languages in ECLIPSE.

In the development of TIGER, our aim has been to bring together graph transformation-based editor gen-
eration with the Eclipse technology based on GEF which has resulted in the generation of syntax-directed
GEF-editors with graphs as underlying structures. Practical experience with TIGER so far includes the
VL design and visual editor plug-in generation for activity diagrams, Petri nets, automata and sequence
diagrams. The TIGER Designer proved to be a flexible and intuitive tool for VL design. Following the

PROC. OF WORKSHOP ON GRAPH BASED TOOLS 10

ELECTRONIC COMMUNICATIONS OF THE EASST

pure graph transformation-based approach to visual language definition, all editor commands are defined
via graph rules. Since the definition of simple editor commands might be tedious work, rules might be
partly generated from the type graph as done in GenGED [BEWO03]. In this way, the editor definition
could be simplified, but the result would still be a syntax-directed editor. Since both the meta-model-
based approach (generating visual free-hand editors) and the graph-transformation-based approach (gen-
erating syntax-directed editors), have their advantages and disadvantages (see [Tae06]), we propose as
future work to combine both approaches. This means that starting with a meta model only, a simple
editor would be generated offering the basic editor operations for each symbol. A syntax check can be
added by defining well-formed-ness rules or graph constraints (comparable to an OCL checker in addi-
tion to a meta model). For the generation of complex editor commands, an additional specification is
needed using syntax rules.

In order to further customize the generated editors, work is in progress to replace the underlying AGG
graph transformation engine by a transformation engine based on Eclipse EMF. In this way, genereated
editors can be based on already existing domain models. Currently, if the generated editors have to be
further adapted to specific needs, the Java code may be extended by hand. So far, changing the generated
code is not specifically supported by TIGER, so the user must take into account that a regeneration by
TIGER might overwrite hand-written code changes.

As a further improvement at the concrete syntax level we plan to extend TIGER to allow the nesting of
figures belonging to different symbol types. With this extension, a TIGER user would be able to specify
not only graph-like visual languages, but also more complex ones, like e.g. hierarchical Statecharts.

Furthermore, the TIGER environment has recently been extended by a model transformation graph
grammar which defines the model transformation between models of either two different VL specifica-
tions (exogenous), or between models belonging to the same VL specification (endogenous). An exoge-
nous model transformation between two generated editor plug-ins in TIGER is described in [EEEP06],
where activity diagrams are transformed into Petri nets. Considering our automata example, we might
define an endogenous model transformation based on the automata VL specification to transform non-
deterministic automata into deterministic ones in our generated automata editor plug-in. An example
for a related model transformation environment in ECLIPSE based on graph transformations is VIA-
TRAZ2,which is part of the ECLIPSE Generative Modeling Tools [GMTO06]. Work is in progress to sup-
port the definition of model transformations directly in the TIGER Designer, using the concrete layout of
the visual modeling languages.

These extensions can be considered as a starting point for the generation of comprehensive domain-
specific visual modeling environments.

References

[Bar02] R.Bardohl. A Visual Environment for Visual Languages. Science of Computer Programming
(SCP), 44(2):181-203, 2002.

[BEWO03] R. Bardohl, C. Ermel, and I. Weinhold. GenGED - A Visual Definition Tool for Visual Mod-
eling Environments. In J. Pfaltz and M. Nagl, editors, Proc. Application of Graph Transfor-
mations with Industrial Relevance (AGTIVE’03), Charlottesville, USA, September 2003.

VOLUME 1 11

VISUAL LANGUAGE DESIGN USING TIGER

[dLVAO4]

[EEEP06]

[EEHTO5]

[EEPTO6]

[EMF06]

[GEF06]

[GMFO05]

[GMTO06]
[Min02]

[MOFO05]

[NLGO3]

[Tac04]

[Tae06]

[Tig05]

J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-Modelling and Graph Grammars for
Multi-Paradigm Modelling in AToM?®. Software and System Modeling: Special Section on
Graph Transformations and Visual Modeling Techniques, 3(3):194-209, 2004.

H. Ehrig, K. Ehrig, C. Ermel, and J. Padberg. Construction and Correctness Analysis of
a Model Transformation from Activity Diagrams to Petri Nets. In I. Troch and F. Breite-
necker, editors, Proc. Intern. IMCAS Symposium on Mathematical Modelling (MathMod).
ARGESIM-Reports, 2006.

K. Ehrig, C. Ermel, S. Hiansgen, and G. Taentzer. Generation of visual editors as Eclipse plug-
ins. In Proc. 20th IEEE/ACM International Conference on Automated Software Engineering,
IEEE Computer Society, Long Beach, California, USA, 2005.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs in Theoretical Computer Science. Springer, 2006.

Eclipse Consortium. Eclipse Modeling Framework (EMF) — Version 2.2.0, 2006. http:
/lwww.eclipse.org/emf.

Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) — Version 3.2, 2006. http:
/Iwww.eclipse.org/gef.

Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF), 2005. http://www.
eclipse.org/gmf.

Eclipse Generative Modeling Tools (GMT) http:// www.eclipse.org/gmt, 2006.

M. Minas. Specifying graph-like diagrams with Diagen. Electronic Notes in Theoretical
Computer Science, 72(2), 2002.

Object Management Group. Meta-Object Facility (MOF), Version 1.4, 2005. http://www.
omg.org/technology/documents/formal/mof.htm.

J. Hosking N. Liu and J. Grundy. A Visual Language and Environment for Specifying Design
Tool Event Handling. In M. Erwig and A. Schiirr, editors, Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), IEEE Computer Society, 2005.

G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In J. Pfaltz, M. Nagl, and B. Boehlen, editors, Application of Graph Transfor-
mations with Industrial Relevance (AGTIVE’03), volume 3062 of LNCS, pages 446 — 456.
Springer, 2004.

G. Taentzer. Towards Generating Domain-Specific Model Editors with Complex Editing
Commands. In Proc. Intern. Workshop Eclipse Technology eXchange(eTX), 2006.

Tiger Project Team, Technical University of Berlin. Tiger: Generating Visual Environments
in Eclipse, 2005. http://www.tfs.cs.tu-berlin.de/tigerpr;.

PrROC. OF WORKSHOP ON GRAPH BASED TOOLS 12

