
Transformations of Petri Nets

H. Ehrig, K. Hoffmann, J. Padberg 1

Institute for Software Technology and Theoretical Computer Science
Technical University Berlin, Germany

Abstract

The aim of this paper is an introduction to the area of Petri net transformations, a rule-based
approach for dynamic changes of the net structure of Petri nets. This is especially important for
the stepwise construction of Petri nets in the sense of the software development process in software
engineering. The concept of Petri net transformations is based on that of graph transformations
and high-level replacement systems and it is introduced within a small case study logistics.

Keywords: Petri nets, rule-based approach, transformations, high-level replacement systems,
graph transformation

1 Introduction

The main idea of graph transformations is the rule-based modification of
graphs where each application of a rule leads to a graph transformation step.
Since Petri nets can be considered as bipartite graphs the concept of graph
transformations can be applied to define transformations of Petri nets. While
the well-known token game of Petri nets does not change the net structure
the concept of Petri net transformations is a rule-based approach for dynamic
changes of the net structure of Petri nets. Petri net transformations have been
introduced in [31] as instantiation of high-level replacement systems [12,13],
where the algebraic approach to graph transformations [14] based on double
pushouts has been generalised to suitable categories. So, we now start with a
general overview of graph transformations, for more see [35,10,15].

1
Email: {ehrig,hoffmann,padberg}@cs.tu-berlin.de

Electronic Notes in Theoretical Computer Science 148 (2006) 151–172

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.016

mailto:ehrig,hoffmann,padberg@cs.tu-berlin.de
http://www.elsevier.com/locate/entcs


The research area of graph transformations is a discipline of computer sci-
ence which dates back to the early seventies. Methods, techniques, and results
from the area of graph transformations have already been studied and applied
in many fields of computer science such as formal language theory, pattern
recognition and generation, compiler construction, software engineering, con-
current and distributed systems modelling, database design and theory, logical
and functional programming, AI, visual modelling, etc. Graph transformation
has at least three different roots, namely from Chomsky grammars on strings
to graph grammars, from term rewriting to graph rewriting, and from textual
description to visual modelling.

The main idea is to advocate graph transformations for the whole range
of computing. Our concept of Computing by Graph Transformations is not
limited to programming but includes also specification and implementation by
graph transformations as well as graph algorithms and computational models
and computer architectures for graph transformations. Computing by graph
transformation is a fundamental concept for programming, specification, con-
currency, distribution, and visual modelling. A state of the art report for
applications, languages and tools for graph transformation on one hand and
for concurrency, parallelism and distribution on the other hand is given in
volumes 2 and 3 of the Handbook of Graph Grammars and Computing by
Graph Transformation [10] and [15]. In our paper [17] we have presented
a comprehensive prsentation of graph and net transformation and their re-
lation. Petri net transformations can also be realized for algebraic high-level
nets [31], which is a high-level net concepts integrating algebraic specifications
with place/transition nets.

The main idea of graph transformation as well as of Petri net transfor-
mations is the rule-based modification of graphs, respectively of Petri nets.
Basically a rule (or production) p = (L, R) is a pair of graphs (or nets) called
left hand side L and right hand side R. Applying the rule p = (L, R) means
to find a match of L in the source and to replace L by R. In order to replace
R by L we need to connect R with the context leading to the target graph
(respectively the target net) of the transformation.

In Section 2 we present an intuitive introduction to Petri net transforma-
tions by illustrating the rule-based modification of place/transition nets in
terms of a small example in the area of logistic processes. The example shows
how to use Petri net transformations as vertical refinement concept in the
sense of software engineering. Moreover we demonstrate that net transforma-
tions are compatible with union of nets. This corresponds to compatibility
of vertical and horizontal structuring in the sense of software engineering and

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172152



enhances the relevance of Petri net transformations for software engineering.

In Section 3 we present precise definitions for the basic notions of Petri net
transformations in the case of place/transition nets. The union theorem shows
compatibility of net transformations with union of subnets via a common
interface provided that the net transformations are preserving this interface.
Further results are briefly discussed at the end of Section 3. In the conclusion
we discuss some of the future work.

2 Introduction to Petri Net Transformations

In this section we introduce Petri net transformations by example of a case
study. In contrast to most applications of the graph transformation approach,
where graphs denote states of a system and rules and transformations describe
state changes and the dynamic behaviour of systems, in the area of Petri nets
we use rules and hence transformations to represent stepwise modification of
nets. This kind of transformation for Petri nets is considered to be a vertical
structuring technique, known as rule-based net transformation. Rules describe
the replacement of a left-hand side net by a right-hand side net. The appli-
cation of the rule yields a transformation where in the source net the subnet
corresponding to the left-hand side is replaced by the subnet corresponding
to the right-hand side.

In the following we show how Petri net transformations can be used in the
case study logistics before we present the basic concepts in Section 3.

2.1 Case Study Logistics

In this example we illustrate the rule-based modification of place/transition
nets in terms of a small example in the area of logistic processes. For the full
case study we refer to [6].

Statement of the Case Study Logistics

We consider the logistics of a company consisting of the following depart-
ments:

• offer preparation

• order acceptance

• order processing

• shipping department

• accounts receivable

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 153



The first version of the logistic process is given by the Petri net in Figure 1.
This Petri net is decomposed into five parts corresponding to the departments
described above. The union describes the gluing of the subnets along the
interface. In this case the interface net consists of places only, so that the
union corresponds to the usual place fusion of nets. But the general union
construction allows having arbitrary subnets as interfaces.

In the following we modify the subnets independently of each other by
applying the rules r1-r4 shown in Fig. 2-6 leading to the new version of each
department shown in Fig. 7. To distinguish between previous and new cus-
tomers the application of rule r1 adds a place new customer and a transition
new customer request. In contrast rule r2 expresses at an abstract level that
the check of the availability of articles can be done in two different ways in
the new version of the logistic process. On one hand the complete order of the
customer have to be in the stock, and on the other hand the order is changed
is such a way that only those articles are included which are available at the
moment.

In the first version of the logistic process depicted in Figure 1 the invoice
is created after the shipping document. Because these documents are inde-
pendent of each other in the new version of the logistic process they should
be created in parallel. This is realized by the application of rule r3.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172154



acknowledged
customer order

assort
delivery

customer
requests

create
shipping
document

shipping
document

provide
transport
ressource

transport
ressource

execute
order

create
invoice

customer order
in process

enter in
the books

receipted bill
of delivery

customer offer

customer assigns
company

customer order

customer request

maker offer

Offer Preparation

Order Processing

Order Acceptance

customer

check
availability

delivery

invoice

receivable

Accounts Receivable

Shipping Department

Figure 1. Logistic Process: Net PN1

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 155



customer
request

customer
request

new
customer

customer
request

request
new customer

L1 K1 R1

Figure 2. Introducing New Customer: Rule r1

customer
order

acknowledged
customer order

L2

customer
order

acknowledged
customer order

check
availability 2

check
availability 1

acknowledged
customer order

customer
order

availaility
check

K2 R2

Figure 3. Different Checks of Availability: Rule r2

transport
ressource

shipping
document

customer order
in process

acknowledged
customer order

assort
delivery

delivery

acknowledged
customer order

assort
delivery

customer order
in process

delivery

transport
ressource

shipping
document

L3 K3

al
l p

la
ce

s,
 n

o 
tr

an
si

tio
ns

, n
o 

ar
cs

R3

t2

p3

t2

p3

Figure 4. Create Shipping Documents and Invoice in Parallel: Rule r3

We show explicitly the direct transformation with rule r3 from Shipping

Department 1 (see Fig. 1) to Shipping Department 2 (see Fig. 7) in Fig.
5. In the upper row of Fig. 5 we show rule r3. In a first step we delete from
Shipping Department 1 both transitions of rule r3 and adjacent edges, but
we preserve all places of L3, because they are also in K3 and R3, leading to
the context net C in Fig. 5. In a second step we glue together C and R3 via

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172156



K3 leading to Shipping Department 2 in Fig. 5.

transport
ressource

shipping
document

customer order
in process

acknowledged
customer order

assort
delivery

delivery

L3 transport
ressource

shipping
document

acknowledged
customer order

assort
delivery

customer order
in process

assort
delivery

create
shipping
document

shipping
document

provide
transport
ressource

transport
ressource

execute
order

customer order
in process

receipted bill
of delivery

acknowledged
customer order

acknowledged
customer order

assort
delivery

customer order
in process

delivery

transport
ressource

shipping
document

acknowledged
customer order

assort
delivery

create
shipping
document

shipping
document

provide
transport
ressource

transport
ressource

execute
order

receipted bill
of delivery

delivery

customer order
in process

acknowledged
customer order

assort
delivery

execute
order

receipted bill
of delivery

create
shipping
document

shipping
document

provide
transport
ressource

transport
ressource

customer order
in process

delivery

C

K3

delivery

Shipping Department 1 Shipping Department 2

delivery

R3

Figure 5. Direct Transformation: Shipping Dep. 1
r3

=⇒ Shipping Dep. 2

Finally, the area of responsibility of the department Accounts Receiv-

able is expanded to check the correct payments of customers by rule r4 in
Fig. 6.

end of
transaction

payment
register

receivablepayment

R4

receivable

K4L4

receivable

Figure 6. Introducing Payment: Rule r4

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 157



Since all rules and transformations are preserving the interfaces of the
corresponding union in Fig. 1, esp. rule r1 preserves the place customer offer,
the interfaces are still available in Fig. 7 and can be used to construct the
resulting net PN2. The union theorem in Section 3 makes sure that this
construction leads to the same result as if we would have applied the rules
r1-r4 sequentially to the entire net PN1 in Fig. 1. This is a typical example
for compatibility of horizontal structuring (union) with vertical refinement
(rule-based transformation).

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172158



check
availability 2

new customer
requests

customer
requests

acknowledged
customer order

assort
delivery

check
availability 1

create
shipping
document

shipping
document

provide
transport
ressource

transport
ressource

execute
order

customer order
in process create

invoice

enter in
the books

end of
transaction

payment
register

receivablepayment

invoice

receipted bill
of delivery

customer offer

customer assigns
company

customer order

delivery

customer request

customernew customer

maker offer

Offer Preparation

Order Processing

Order Acceptance

Shipping Department

Accounts Receivable

Figure 7. Resulting Net PN2

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 159



2.2 Relevance of Petri Net Transformations

The above example illustrates only some of the possibilities and advantages
of net transformations. The usual argument in favour of formal techniques,
to have precise notions and valid results clearly holds for this approach as
well. Moreover, we have already investigated net transformations in high-
level Petri net classes (see Section 3.6) that are even more suitable for system
modelling than the place/transition nets in our example. The impact for
system development is founded in what results from net transformations:

• Stepwise Development of Models: The model of a complex software system
may reach a size that is difficult to handle and may compromise the ad-
vantages of the (formal) model severely. The one main counter measure is
breaking down the model into sub-models, the other is to develop the model
top-down. In top-down development the first model is a very abstract view
of the system and step by step more modelling details and functionality
are added. In general however, this results in a chain of models, that are
strongly related by their intuitive meaning, but not on a formal basis. Petri
net transformations fill this gap by supporting the step-by-step development
of a model formally. Rules describe the required changes of a model and
their application yields the transformations of the model. Moreover, the
representation of change in a visual way using rules and transformations is
very intuitive and does not require a deeper knowledge of the theory.

• Distributed Development of Models: Decomposing a model, that is too
large, is an important technique for the development of complex models.
To combine the advantages of a horizontal structuring with the advantages
of step-by-step development techniques for ensuring the consistency of the
composed model are required. Then a distributed step-by-step development
is available, that allows the independent development of sub-models. The
theory of net transformations comprises horizontal structuring techniques
and ensures compatibility between these and the transformations. In our
example we have employed the union construction for the decomposition,
and have subsequently developed the subnets independently of each other.
The theory allows much more complex decompositions, where the indepen-
dence of the sub-models is not as obvious as in the given example. So,
the formal foundation for the distributed development of complex models
is given.

• Incremental Verification: Pure modification of Petri nets is often not suf-
ficient, since the net has some desired properties that have to be ensured

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172160



during further development. Verification of each intermediate model re-
quires a lot of effort and hence is cost intensive. But refinement can be
considered as the modification of nets preserving desired properties. Hence
the verification of properties is only required for the net, where they can
be first expressed. In this way properties are introduced into the devel-
opment process and are preserved from then on. Rule-based refinement
modifies Petri nets using rules and transformations so that specific system
properties are preserved. For a brief discussion see Section 3.6.

• Foundation for Tool Support: A further advantage is the formal foundation
of rule-based refinement and/or rule-based modification for the implemen-
tation of tool support. Due to the theory of Petri net transformations we
have a precise description, how rules and transformation work on Petri nets.
Tool support is for the practical use the main precondition. The user should
get tool support for defining and applying rules. The tool should assist the
choice as well as the execution of rules and transformations.

• Variations of the Development Process: Another area, where transforma-
tions are very useful, concerns variations in the development process. Often
a development is not entirely unique, but variations of the same develop-
ment process lead to variations in the desired models and resulting systems.
These variations can be expressed by different rules yielding different trans-
formations, that are used during the step-by-step development.

3 Concepts of Petri Net Transformations

In this section we give the precise definitions of the notions that we have
already used in our example. For notions and results beyond that we give a
brief survey in Section 3.6 and refer to literature.

The concept of Petri net transformations is a special case of high-level
replacement systems. High-level replacement systems have been introduced
in [12] as a categorical generalisation of the double-pushout approach to graph
transformation. The theory of high-level replacement systems can successfully
be employed not only to graph transformation, but also to other areas, as
Petri nets (see [12]). This leads to the concept of Petri net transformations as
instantiation of high-level replacements systems. In the following we present
explicitly the resulting concept of Petri net transformations.

3.1 Place/Transition Nets and Net Morphisms

Let us first present a notation of place/transition net that is suitable for our
transformation approach. We assume that the nets are given in the algebraic

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 161



style as introduced in [27]. A place/transition net N = (P, T, pre, post) is
given by the set of places P , the set of transitions T , and two mappings
pre, post : T → P⊕, the pre-domain and the post-domain,

T
pre

��

post
�� P⊕ ,

where P⊕ is the free commutative monoid over P that can also be con-
sidered as the set of finite multisets over P . The pre- (and post-) domain
function maps each transition into the free commutative monoid over the set
of places, representing the places and the arc weight of the arcs in the pre-
domain (respectively in the post-domain). For finite P an element w ∈ P⊕

can be presented as a linear sum w =
∑

p∈P λp ·p with λp ∈ N or as a function
w : P → N. In the infinite case we have to require that λp �= 0 only for finitely
many p ∈ P that means the corresponding w : P → N has finite support.

Based on the algebraic notion of Petri nets we use simple homomorphisms
that are generated over the set of places. These morphisms map places to
places and transitions to transitions. The pre-domain of a transition has to be
preserved, that is even if places may be identified the number of tokens that
are taken, remains the same. This is expressed by the condition pre2 ◦ fT =
f⊕

P ◦ pre1.

A morphism f : N1 → N2 between two place/transition nets N1 =
(P1, T2, pre1, post1) and N2 = (P2, T2, pre2, post2) is given by f = (fP , fT )
with fP : P1 → P2 and fT : T1 → T2 so that pre2 ◦ fT = f⊕

P ◦ pre1 and
post2 ◦ fT = f⊕

P ◦ post1. The diagram schema for net morphisms is given in
the following diagram.

T1

pre1 ��

post1
��

fT

��

P⊕
1

f⊕

P

��

T2

pre2 ��

post2
�� P⊕

2

Several examples of net morphisms can be found in Figure 5 where the
horizontal and vertical arrows denote injective net morphisms.

3.2 Rules and Transformations

The category PT consists of place/transition nets as objects and place/transition
net morphisms as morphisms. In order formalise rules and transformations
for nets in the DPO-approach we first state the construction of pushouts in
the category PT of place/transition nets. For any span of two morphisms
N1 ← N0 → N2 the pushout can be constructed. The construction is based
on the pushouts for the sets of transitions and sets of places in the category
Set of sets. In the category Set sets and functions the pushout object D is
given by the quotient set

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172162



D = B + C/ ≡, short D = B +A C,

where B + C is the disjoint union of B and C and ≡ the equivalence
relation generated by f(a) ≡ g(a) for all a ∈ A. In fact D can be interpreted
as the gluing of B and C along A: Starting with the disjoint union B + C we
glue together the elements f(a) ∈ B and g(a) ∈ C for each a ∈ A.

Given the morphisms f : N0 → N1 and g : N3 → N2 then the pushout N3

in the category PT with the morphisms f ′ : N2 → N3 and g′ : N1 → N3 is
constructed (see digram below) as follows:

• T3 = T1 +T0
T2 with f ′

T and g′
T as pushout of fT and gT in Set.

• P3 = P1 +P0
P2 with f ′

P and g′
P as pushout of fP and gP in Set as well.

• pre3(t) =

{
[pre1(t1)] ; if g′

T (t1) = t

[pre2(t2)] ; if f ′
T (t2) = t

• post3(t) =

{
[post1(t1)] ; if g′

T (t1) = t

[post2(t2)] ; if f ′
T (t2) = t

N0

g

��

f
��

(=)

N1

g′

��

N2 f ′
�� N3

Two examples of the pushout construction of nets are depicted in Figure
5. We have the embedding of K3 into L3 and C. The pushout describes the
gluing of the nets L3 and C along the six places of the interface K3. Hence
we have the pushout L3 +K3 C =Shipping Department 1 on the left hand
side of 5. Similarly we have the pushout R3+K3C =Shipping Department

2 on the right hand side of Figure 5.

Next we introduce rules, that correspond to graph productions in the DPO-
approach. Rules describe the replacement of the left-hand side net by the
right-hand side net in the presence of an interface net.

• A rule r = (L
k1←− K

k2−→ R) consists of place/transition nets L, K and R,
called left-hand side, interface and right-hand side net respectively, and two

injective net morphisms K
k1−→ L and K

k2−→ R.

• Given a rule r = (L
k1←− K

k2−→ R) a direct transformation N1
r

=⇒ N2,
from N1 to N2 is given by two pushout diagrams (1) and (2) in the following
diagram. The morphisms m : L → N1 and n : R → N2 are called match
and comatch, respectively. The net C is called pushout complement or the

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 163



context net.

L

m

��
(1)

K
k1�� k2 ��

c

��

(2)

R

n

��

N1 C�� �� N2

The illustration of a transformation can be found for our example in Figure
5, where the rule r3 is applied to the net Shipping Department 1 with
match m. As explained above the first pushout denotes the gluing of the nets
L3 and C along the net K3 resulting in the net Shipping Department 1.
The second pushout denotes the gluing of the nets R3 and C along the net
K3 resulting in the net Shipping Department 2.

3.3 Gluing Condition and the Construction of the Context Net

Given a rule r and a match m as depicted in the diagram above, then we
construct in a first step the pushout complement provided the gluing condition
holds. This leads to the pushout (1) in the diagram above. In a second step
we construct the pushout of c and k2 leading to N2 and the pushout (2) in the
diagram above.

The gluing condition correspond exactly to the gluing condition in the
graph case. Using the same interpretation as in the graph case, but the nota-
tion in Subsection 3.2 we have the following:

Gluing Condition for Nets:

BOUNDARY ⊆ GLUING

where BOUNDARY and GLUING are subnets of L defined by

• GLUING = k1(K)

• DANGLING = {p ∈ PL | ∃t ∈ T1 − mT (TL) :
(mP (p) ∈ pre1(t) or mP (p) ∈ post1(t))}

where the notation p ∈ pre1(t) means pre1(t) =
∑

p∈P1
λp · p with λp > 0,

similar for post1,

• IDENTIFICATION = {x ∈ K | ∃y ∈ K : (x �= y and m(x) = m(y))},
where x ∈ K means x ∈ PK with m = mP or x ∈ TK with m = mT , and

• BOUNDARY = DANGLING ∪ IDENTIFICATION

Now the pushout complement C is constructed by:

• PC = (P1 \ mP (PL)) ∪ mP (k1P (PK))

• TC = (T1 \ mT (TL)) ∪ mT (k1T (TK))

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172164



• preC = pre1|TC
and postC = post1|TC

Note that the pushout complement C leads to the pushout (1) in the
diagram above and that it is unique up to isomorphism.

In our example of the development of the logistic process in Section 2 the
gluing condition is satisfied in all cases, since the matches are all injective
and places are not deleted by our rules. In fact DANGLING of the match
in Fig. 5 is given by all places of L3 except acknowledged customer order
and customer order in process, while GLUING consists of all places in L3.
IDENTIFICATION is empty, because the match is injective hence we have
BOUNDARY = DANGLING ⊆ GLUING.

3.4 Union Construction

The union of two Petri nets sharing a common subnet, that may be empty, is
defined by the pushout construction for nets. The union of place/transition
nets N1, N2 sharing an interface net I with the net morphisms f : I → N1

and g : I → N2 is given by the pushout diagram (1) below. Subsequently we

use the short notation N = N1 +I N2 or N1, N2
�� I �� N .

I

g

��

f
��

(1)

N1

g′

��
N2 f ′

�� N

In our example in Fig. 1 we use the union construction to describe the com-
position of subnets. The interface net I between the subnets Offer Prepa-

ration and Order Acceptance is given by the net consisting only of the
place customer offer. The other interfaces in Fig. 1 are given by the places
costumer order, acknowledged customer order and the two places customer
order in process and receipted bill of delivery.

3.5 Union Theorem

The Union Theorem states the compatibility of union and net transformations:
Given a union N1 +I N2 = N and net transformations N1

r1=⇒ M1 and N2
r2=⇒

M2 then we have a parallel rule r1 + r2 = (L1 + L2 ← K1 + K2 → R1 + R2),
where N1 + N2 is the disjoint union of nets, and a parallel net transformation

N
r1+r2=⇒ M . Then M = M1 +I M2 is the union of M1 and M2 with the shared

interface I, provided that the given net transformations preserve the interface
I. The Union Theorem is illustrated in the following diagram and especially
stated and proven in [28]:

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 165



N1, N2

r1,r2

��

�� I ��

(=)

N

r1+r2

��
M1, M2

�� I �� M

Note that the compatibility requires an independence condition stating
that nothing from the interface net I may be deleted by one of the transfor-
mations of the subnets. This is obviously the case in our example in Section
2, since the interfaces consist of places only and the rules preserve all places.
In fact, we have to apply the union theorem four times in order to obtain the
transformation from net PN1 in Fig. 1 to net PN2 in Fig. 7.

3.6 Further Results

We briefly introduce the main net classes which have been studied up to now,
and subsequently we present some main results.

• Place/transition nets in the algebraic style have already been introduced in
Subsection 3.1.

• Coloured Petri nets [23,24,25] are widely known and very popular. Their
practical relevance is very high, due to the very successful tool Design/CPN
[22].

• Algebraic high-level nets are available in quite a few different notions e.g.
[37,34,31]. We use a notion that reflects the paradigm of abstract data types
into signature and algebra. An algebraic high-level net (as in [31]) is given
by N = (SPEC, P, T, pre, post, cond, A), where SPEC = (S, OP, E; X)
is an algebraic specification in the sense of [16] with additional variables
X not occurring in E, P is the set of places, T is the set of transitions,
pre, post : T → (TOP (X) × P )⊕ are the pre- and post-domain mappings,
cond : T → Pfin(EQNS(SIG, X)) are the transition guards, and A is a
SPEC algebra.

Horizontal Structuring

Union and fusion are two categorical structuring constructions for place/tran-
sition nets, that merge two subnets or two different nets into one.

The union has been introduced in the previous subsection. Now let us
consider fusion: Given a net F that occurs in two copies in the net N1, repre-

sented by two morphisms F
f

��

f ′
�� N1 the fusion construction leads to a net N2,

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172166



where both occurrences of F in N1 are merged. If F consists of places p1, .., pn

then each of the places occurs twice in net N1, namely as f(p1), ..., f(pn) and
f ′(p1), ..., f

′(pn). N2 is obtained from net N1 fusing both occurrences f(pi)
and f ′(pi) of each place pi for 1 ≤ i ≤ n.

The Union Theorem is presented in the previous section. The Fusion The-
orem [29] is expressed similarly: Given a rule r and a fusion F ��

�� N1 then
we obtain the same result whether we derive first N1

r
=⇒ N ′

1 and then con-
struct the fusion F ��

�� N ′
1 resulting in N ′

2 or whether we construct the fusion
F ��

�� N1 first, resulting in N2 and then perform the transformation step
N2

r
=⇒ N ′

2. Similar to the Union Theorem a certain independence condition
is required. Both theorems state that Petri nets transformations are compati-
ble with the corresponding structuring technique under suitable independence
conditions. Roughly spoken these conditions guarantee that the interface net
I and respectively the fusion net F are preserved by all net transformations.

Parallelism

We are able to model interleaving and parallelism of net transformations.

The Local Church-Rosser Theorem states a local confluence in the sense
of formal languages corresponding to interleaving. The required condition of
parallel independence means that the matches of both rules overlap only in
parts that are not deleted. Sequential independence means that those parts
created by the first transformation step are not deleted in the second. The
Parallelism Theorem states that sequential or parallel independent transfor-
mations can be carried out either in arbitrary sequential order or in parallel.
In the context of step-by-step development these theorems are important as
they provide conditions for the independent development of different parts or
views of the system. More details for horizontal structuring or parallelism are
given in [31] and [29].

Refinement

The extension of high-level replacement systems to rules and transforma-
tions preserving properties has the following impact on Petri nets: Rule-based
refinement comprises the transformation of Petri nets using rules while pre-
serving certain net properties. For Petri nets the desired properties of the net
model can be expressed, e.g in terms of Petri nets (as liveness, boundedness
etc.), in terms of logic (e.g. temporal logic, logic of actions etc.) in terms of
relation to other models (e.g. bisimulation, correctness etc.) and so on.

For place/transition nets, algebraic-high level nets and Coloured Petri nets
the following results for rule-based refinement are presented in the following
table. For more details see [33].

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 167



Notion/Results PT-nets AHL-nets CPNs

Rules, Transformations
√ √ √

Safety property preserving transforma-
tions with

transition-gluing morphisms
√ √ √

place-preserving morphisms
√ √ √

Safety property introducing transfor-
mations

√ √ √

Liveness preserving transformations
√

? ?

Liveness introducing transforma-
tions

√
? ?

Local Church Rosser I + II Theorem
√ √ √

Parallelism Theorem
√ √ √

Union
√ √ √

Fusion
√ √ √

Union Theorem
√ √ √

Fusion Theorem
√ √ √

Table 1
Achieved results

4 Conclusion

The main idea of Petri net transformations is to extend the classical theory of
Petri nets by a rule-based technique that allows modelling the changes of the
Petri net structure.

There have been already a few approaches to describe transformations of
Petri nets formally (e.g. in [4,5,36,7,38]). The intention has been mainly on
reduction of nets to support verification, and not on the software development
process as in our case. This use of transformations has been one of the main
focus areas of the DFG-Research group Petri Net Technology. There are some
large studies in various application areas as medical information systems [18],

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172168



as train control systems [32] or as sketched in this paper in logistics. These
case study clearly show the advantages using net transformation in system
development and the practical use of the results stated in table 1.

Although the area of Petri net transformations is already well-established,
there are many promising directions for further research to follow, for example:

• Transfer to other net classes
There is a large variety of Petri net classes, and in principle the idea of
Petri net transformation is applicable to all. The concept of transformation
we have employed is an algebraic one, so the use of algebraic approaches
to Petri nets is more suggesting. Algebraic higher-order Nets [21] have
been recently developed and are one of the promising targets to transfer the
idea of transformations to. These nets extend algebraic high-level nets as
they are equipped with a higher-order signature and algebra. This allows
most interesting applications and supports structure flexibility and system
adaptibilty in an extensive way.

• Component technology
Components present an advanced paradigm for the structuring of complex
systems and have been advocated in the recent years most strongly. Com-
ponents, that use Petri nets for the specification of the interfaces and the
component body have been defined in [30]. There are three nets that rep-
resent the import, the export and the body of the component. The export
is an abstraction of the body and the import is embedded into the body.
There are two operations; the hierarchical composition and the union of
components. Unfortunately there is no transformation concept in the sense
of graph and net transformation up to now. Based on net transformations
the transformation of the import, the export and the body can be defined
straightforward.

• Tool support
The practical use of graph transformations is supported by several tools.
The algebraic approach to graph transformations is especially supported by
the graph transformation environment AGG (see the homepage of [1]). On
top the graph transformation system AGG there is the GenGED environ-
ment (see the homepage of [20]) that supports the generic description of
visual modelling languages for the generation of graphical editors and the
simulation of the behaviour of visual models. Especially, Petri net trans-
formations can be expressed using GenGED, e.g. for the animation of Petri
nets [9,3]. In this framework, the animation view of a system modeled as a
Petri net consists of a domain-specific layout and an animation according to
the firing behaviour of the Petri net. This animation view can be coupled to
other Petri net tools [8] using the Petri Net Kernel [26] a tool infrastructure

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 169



for editing, simulating and analysing Petri nets of different net classes and
for integration of other Petri net tools.

References

[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] P. Baldan, A. Corradini, U. Montanari, F. Rossi, H. Ehrig, and M. Löwe. Concurrent Semantics
of Algebraic Graph Transformations. In G. Rozenberg, editor, The Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 3: Concurrency, Parallelism
and Distribution. World Scientific, 1999.

[3] R. Bardohl and C. Ermel. Scenario Animation for Visual Behavior Models: A Generic
Approach Applied to Petri Nets. In G. Juhas and J. Desel, editors, Proc. 10th Workshop
on Algorithms and Tools for Petri Nets (AWPN’03), 2003.

[4] G. Berthelot. Checking properties of nets using transformations. Advances in Petri Nets 1985,
Lecture Notes in Computer Science 222: pages 19–40. Springer 1986.

[5] G. Berthelot. Transformations and decompositions of nets. In Brauer, W., Reisig, W., and
Rozenberg, G., editors, Petri Nets: Central Models and Their Properties, Advances in Petri
Nets, Lecture Notes in Computer Science 254, pages 359–376. Springer, 1987.

[6] J. Bogen. Schrittweise Entwicklung von Ereignisgesteuerten Prozessketten zu Algebraischen
Higher-Order Netzen. Master Thesis, Technische Universität Berlin, 2004.

[7] R. David and H. Alla, editors. Petri Nets and Grafcet. Master Thesis, Technische Universität
Berlin, 2004.

[8] C. Ermel, R. Bardohl, and H. Ehrig. Specification and implementation of animation views
for Petri nets. In DFG Research Group Petri Net Technology, Proc. of 2nd International
Colloquium on Petri Net Technology for Communication Based Systems, 2001.

[9] C. Ermel, R. Bardohl, and H. Ehrig. Generation of animation views for Petri nets in GenGED.
In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Advances in Petri Nets: Petri
Net Technologies for Modeling Communication Based Systems, Lecture Notes in Computer
Science 2472. Springer, 2003.

[10] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 2: Applications, Languages and Tools.
World Scientific, 1999.

[11] H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-level replacement systems with
applications to algebraic specifications and Petri nets, In [2], chapter 6, pages 341–400.

[12] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concurrency in
high-level replacement systems. Math. Struct. in Comp. Science, 1:361–404, 1991.

[13] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concurrency in
high-level replacement systems. Math. Struct. in Comp. Science, 1:361–404, 1991.

[14] H. Ehrig. Introduction to the algebraic theory of graph grammars (A survey). In Graph
Grammars and their Application to Computer Science and Biology, pages 1–69. Lecture Notes
in Computer Science 73. Springer, 1979.

[15] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 3: Concurrency, Parallelism,
and Distribution. World Scientific, 1999.

[16] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer Verlag,
Berlin, 1985.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172170

http://tfs.cs.tu-berlin.de/agg


[17] H. Ehrig and J. Padberg. Graph Grammars and Petri Net Transformations., In Lectures
on Concurrency and Petri Nets Special Issue Advanced Course PNT, pages 496-536. Lecture
Notes in Computer Science 73. Springer, 2004.

[18] C. Ermel, J. Padberg, and H. Ehrig. Requirements Engineering of a Medical Information
System Using Rule-Based Refinement of Petri Nets. In D. Cooke, B.J. Krämer, P. C-Y. Sheu,
J.P. Tsai, and R. Mittermeir, editors, Proc. Integrated Design and Process Technology, pages
186–193. Society for Design and Process Science, 1996. Vo

[19] H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach. In 14th
Annual IEEE Symposium on Switching and Automata Theory, pages 167–180. IEEE, 1973. l.1.

[20] GenGED Homepage. http://tfs.cs.tu-berlin.de/genged.

[21] Kathrin Hoffmann. Formal approach and applictions of algebraic higher-order nets. PhD
thesis, Technische Universität Berlin, 2005. submitted.

[22] K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN. A Reference Manual. Meta
Software Cooperation, 125 Cambridge Park Drive, Cambridge Ma 02140, USA, 1991.

[23] K. Jensen. Coloured Petri nets. Basic Concepts, Analysis Methods and Practical Use, Volume
1: Basic Concepts. Springer Verlag, EATCS Monographs in Theoretical Computer Science
edition, 1992.

[24] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, Volume
2: Analysis Methods. Springer Verlag, EATCS Monographs in Theoretical Computer Science
edition, 1994.

[25] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, Volume
3: Practical Use. Springer Verlag, EATCS Monographs in Theoretical Computer Science
edition, 1997.

[26] E. Kindler and M. Weber. The Petri net kernel – an infrastructure for building Petri net
tools. Software Tools for Technology Transfer, 3(4):486–497, 2001.

[27] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Computation,
88(2):105–155, 1990.

[28] J. Padberg. Abstract Petri Nets: Uniform Approach and Rule-Based Refinement. PhD Thesis,
Technische Universität Berlin, Germany, 1996.

[29] J. Padberg. Categorical approach to horizontal structuring and refinement of high-level
replacement systems. Applied Categorical Structures, 7(4):371–403, December 1999.

[30] J. Padberg. Petri net modules. Special Issue on Component Based System Development,
Journal on Integrated Design and Process Technology, 2002.

[31] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation systems.
Mathematical Structures in Computer Science, 5:217–256, 1995.

[32] J. Padberg, P. Schiller, and H. Ehrig. New Concepts for High-Level Petri Nets in the
Application Domain of Train Control. In E. Schnieder and U. Becker, editors, Proc. Vol.
2, 9th Symposium on Transportation Systems, pages 153–160, 2000.

[33] J. Padberg and M. Urbášek. Rule-based refinement of Petri nets: A survey. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors, Advances in Petri Nets: Petri Net Technologies
for Modeling Communication Based Systems, Lecture Notes in Computer Science 2472.
Springer, 2003.

[34] W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer Science, 80:1–34,
1991.

[35] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172 171

http://tfs.cs.tu-berlin.de/genged


[36] Vanio M. Savi and Xiaolan Xie. Liveness and boundedness analysis for petri nets with event
graph modules. In Jensen, K., editor, 13th International Conference on Application and Theory
of Petri Nets 1992, Sheffield, UK, Lecture Notes in Computer Science 616, pages 328–347.
Springer, 1992.

[37] J. Vautherin. Parallel system specification with coloured Petri nets. In G. Rozenberg, editor,
Advances in Petri Nets 87, pages 293–308. Lecture Notes in Computer Science 266. Springer,
1987.

[38] W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets, Lecture Notes in Computer Science 1248, pages 407–
426. Springer, 1997.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 148 (2006) 151–172172


	Introduction
	Introduction to Petri Net Transformations
	Case Study Logistics
	Relevance of Petri Net Transformations

	Concepts of Petri Net Transformations
	Place/Transition Nets and Net Morphisms
	Rules and Transformations
	Gluing Condition and the Construction of the Context Net
	Union Construction
	Union Theorem
	Further Results

	Conclusion
	References



