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Abstract. Adhesive high-level replacement (HLR) systems have been
recently introduced as a new categorical framework for graph tranfor-
mation in the double pushout (DPO) approach. They combine the well-
known concept of HLR systems with the concept of adhesive categories
introduced by Lack and Sobociński.
While graphs, typed graphs, attributed graphs and several other variants
of graphs together with corresponding morphisms are adhesive HLR cat-
egories, such that the categorical framework of adhesive HLR systems
can be applied, this has been claimed also for Petri nets. In this paper
we show that this claim is wrong for place/transition nets and algebraic
high-level nets, although several results of the theory for adhesive HLR
systems are known to be true for the corresponding Petri net transfor-
mation systems.
In fact, we are able to define a weaker version of adhesive HLR categories,
called weak adhesive HLR categories, which is still sufficient to show all
the results known for adhesive HLR systems. This concept includes not
only all kinds of graphs mentioned above, but also place/transition nets,
algebraic high-level nets and several other kinds of Petri nets. For this
reason weak adhesive HLR systems can be seen as a unifying framework
for graph and Petri net transformations.

1 Introduction

The use of categorical techniques for unifying frameworks in Computer Science
has a long tradition. In the early 1970ies the concept of closed monoidal cat-
egories was proposed by Goguen in [1] as a unifying framework for different
kinds of deterministic automata. An extension of this framework to nondeter-
ministic and stochastic automata using pseudo-closed categories was presented
in [2]. Other important examples are the unifying frameworks of institutions
and specification frames respectively. This first framework is based on a categor-
ical treatment of signatures, models and sentences introduced by Goguen and
Burstall [3], and the second one in [4] combines directly signatures and sentences
to specifications. In both cases we obtain a unifying framework for all kinds of
algebraic and logical specification techniques.
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Most recently the unifying framework of adhesive high-level replacement
(HLR) systems for different kinds of graph transformation systems has been
introduced in [5, 6]. The corresponding concept of adhesive HLR categories in-
tegrates those of HLR categories in [7] and adhesive categories by Lack and
Sobociński [8], which was later extended to quasi-adhesive categories [9]. The
concept of adhesive categories requires the existence of pushouts along monomor-
phisms and pullbacks, and the property that pushouts along monomorphisms
are van Kampen (VK) squares. Roughly spoken the last property means that
pushouts are stable under pullbacks and vice versa pullbacks are stable under
combined pushouts and pullbacks. In the case of adhesive HLR categories the
class of all monomorphisms is replaced by a subclass M of monomorphisms
closed under composition and decomposition and the existence of all pullbacks
by pullbacks along M-morphisms. In [5, 6] it is shown that there is a unifying
framework of adhesive HLR systems for graph transformation systems based on
the double pushout (DPO) approach [10] concerning a large variety of different
graph concepts, like labeled graphs, typed graphs, attributed graphs, typed at-
tributed graphs and hypergraphs. The key idea is to show that adhesive HLR
categories satisfy a number of different properties, called HLR properties, which
are used in [7] to prove important results like the Local Church-Rosser Theorem,
the Parallelism Theorem and the Concurrency Theorem. This was first shown
for adhesive categories in [8] for the class M of all monomorphisms and later
extended to adhesive HLR categories in [5, 6] and to quasiadhesive categories in
[9], whereM is the class of all regular monomorphisms.

The idea to apply the DPO approach to Petri nets was first considered for
place/transition nets in [7] and for algebraic high-level nets in [11]. In [5] we
have claimed that the category (PTNets,M) of place/transition nets with the
class M of all injective morphisms is an adhesive HLR category in order to
apply the general theory of adhesive HLR systems also to place/transition nets.
Unfortunately this claim is wrong as we show in this paper. The reason is that
PTNets has general pullbacks, but pullbacks in general cannot be constructed
componentwise in Sets. However, pullbacks along monomorphisms in PTNets
can be constructed componentwise in Sets. This is the key idea to weaken the
concept of adhesive HLR categories using weak VK squares, such that (PTNets,
M) is a weak adhesive HLR category, and nevertheless this weaker concept
still allows to verify the HLR properties used in [7, 5, 6] to prove under some
additional assumptions the following main results:
1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem,
4. Embedding and Extension Theorem,
5. Local Confluence Theorem - Critical Pair Lemma.

In this paper we show for elementary nets, place/transition nets and algebraic
high-level nets that they are weak adhesive HLR categories for a suitable class of
morphisms. In [5, 6] we have shown already that adhesive HLR categories satisfy
the HLR properties to prove the main results stated above. In this paper we show
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that this is already true for weak adhesive HLR categories. This implies that the
main results are also true for different kinds of Petri net transformation systems
including elementary, place/transition and algebraic high-level nets. Note, that
in contrast to the ”classical” theory of Petri nets and systems based on the token
game, where the structure of the nets remains unchanged, the theory of Petri net
transformations allows not only the token game, but also to change the structure
of the nets. In this sense weak adhesive HLR categories can be seen as a unifying
framework not only for graph but also for Petri net transformations.

This paper is organized as follows:
In Section 2 we review adhesive and adhesive HLR categories as introduced in [8]
and [5]. In Section 3 we extend these concepts to weak adhesive HLR categories
and systems. This is the basis to define Petri net transformation systems as an
instance of weak adhesive HLR systems in Section 4.
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2 Review of Adhesive and Adhesive HLR Categories

The intuitive idea of adhesive categories are categories with suitable pushouts
and pullbacks which are compatible with each other. More precisely the definition
is based on so-called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is sta-
ble under pullbacks, and vice versa that pullbacks are stable under combined
pushouts and pullbacks. The name van Kampen derives from the relationship
between these squares and the Van Kampen Theorem in topology (see [12]).

Definition 1 (van Kampen square). A pushout (1) is a van Kampen square,
if for any commutative cube (2) with (1) in the bottom and the back faces being
pullbacks holds: the top face is a pushout iff the front faces are pullbacks.
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It might be expected that at least in the category Sets of sets and functions
each pushout is a van Kampen square. Unfortunately this is not true (see Ex.
1). But at least pushouts along monomorphisms (injective functions) are VK
squares (see [8, 9]).

Fact 1 (VK squares in Sets). In Sets, each pushout along a monomorphism
is a VK square. Pushout (1) is called a pushout along a monomorphism, if m
(or symmetrically f) is a monomorphism.

Example 1 (VK squares in Sets). In the following diagram on the left hand side
a VK square along an injective function in Sets is shown. All morphisms are
inclusions, or 0 and 1 are mapped to ∗ and 3 to 2.

Arbitrary pushouts are stable under pullbacks in Sets. That means, one
direction of the VK square property is also valid for arbitrary morphisms. But
the other direction is not necessarily fulfilled. The cube on the right hand side
is such a counterexample for arbitrary functions: all faces commute, the bottom
and the top are pushouts and the back faces are pullbacks. But obviously the
front faces are no pullbacks, therefore the pushout in the bottom fails to be a
VK square.

{0, 1}

{0, 1, 2, 3}

{0, 1}

{0, 1, 2}

{∗}

{∗, 2, 3}

{∗}

{∗, 2}

{0, 1} × {0, 1}

{0, 1}

{0, 1}

{∗}

{0, 1}

{∗}

{∗}

{∗}

π2

+mod2

π1

��
In the following definition of adhesive categories only those VK squares of

Def. 1 are considered where m is a monomorphism. According to Lack and
Sobociński [8] we define

Definition 2 (adhesive category). A category C is an adhesive category, if

1. C has pushouts along monomorphisms (i.e. pushouts, where at least one of
the given morphisms is a monomorphism),

2. C has pullbacks,
3. pushouts along monomorphisms are VK squares.

Let us first consider some basic examples and counterexamples for adhesive
categories (see [8]).
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Fact 2 (Sets, Graphs, GraphsTG as adhesive categories). The categories
Sets of sets and functions, Graphs of graphs and graph morphisms and
GraphsTG of typed graphs and typed graph morphisms are adhesive categories.

Counterexample 2 (non-adhesive categories). For example, the category Posets
of partially ordered sets and the category Top of topological spaces and con-
tinuous functions are not adhesive categories. In the following diagram a cube
in Posets is shown that fails to be a van Kampen square. The bottom is a
pushout with injective functions (monomorphisms) and all lateral faces are pull-
backs, but the top square is no pushout in Posets. The proper pushout over the
corresponding morphisms is the square (1).

3

2→ 3

1→ 3

1→ 2→ 3

0→ 3

0→ 2→ 3

0→ 1→ 3

0→ 1→ 2→ 3

3 2→ 3

0→ 3
0 ↘
2 ↗ 3

(1)

��

Remark 1. In [9] Lack and Sobociński have also introduced a variant of adhesive
categories, called quasiadhesive categories, where the class of monomorphisms in
Def. 2 is replaced by regular monomorphisms. A monomorphism is called regular,
if it is the equalizer of two morphisms. For adhesive and also for quasiadhesive
categories Lack and Sobociński have shown, that all the HLR properties, shown
for adhesive HLR categories in Thm. 2 below, are valid. This allows to prove
several important results of graph transformation systems in the framework of
adhesive and also of quasiadhesive categories. On the other hand adhesive and
also quasiadhesive categories are special cases of adhesive HLR categories (C,M)
(see Def. 3 below), where the classM is specialized to the class of all monos and
of all regular monos respectively.

The main difference between adhesive HLR categories and adhesive categories
is that a distinguished class M of monomorphisms is considered instead of all
monomorphisms, so that only pushouts along M-morphisms have to be VK
squares. Moreover, only pullbacks along M-morphisms and not over arbitrary
morphisms are required (see [5, 6]).

Definition 3 (adhesive HLR category). A category C with a morphism
class M is called an adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition
(g ◦ f ∈M, g ∈ M⇒ f ∈ M),
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2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

3. pushouts in C along M-morphisms are VK squares.

Remark 2. M-morphisms are closed under pushouts if, for a pushout (1) in Def.
1, m ∈ M implies that n ∈ M. Analogously, M-morphisms are closed under
pullbacks if, for a pullback (1), n ∈ M implies that m ∈M.

Example 3 (adhesive HLR categories).

– All adhesive categories are adhesive HLR categories for the class M of all
monomorphisms.

– The category (HyperGraphs, M) of hypergraphs with the class M of
injective hypergraph morphisms is an adhesive HLR category.

– Another example for an adhesive HLR category is the category (Sig,M) of
algebraic signatures with the classM of all injective signature morphisms.

– The category (ElemNets,M) of elementary Petri nets with the classM of
all injective Petri net morphisms is an adhesive HLR category (see Fact 3).

– An important example of an adhesive HLR category is the category
(AGraphsATG, M) of typed attributed graphs with a type graph ATG
and the class M of all injective morphisms with isomorphisms on the data
part. ��

Counterexample 4 (non-adhesive HLR categories). The categories (PTNets,
M) of place/transition nets and (Spec, M) of algebraic specifications, where
M is the class of all the corresponding monomorphisms, fail to be adhesive HLR
categories (see Ex. 6). ��

3 Weak Adhesive HLR Categories and Systems

As pointed out in Counterex. 4 the category (PTNets, M) of place/transition
nets with the class M of all monomorphisms fails to be an adhesive HLR cat-
egory. For this reason we introduce now a slightly weaker version, called weak
adhesive HLR category.

For a weak adhesive HLR category we only soften item 3 in Def. 3, so that
only special cubes are considered for the VK square property.

Definition 4 (weak adhesive HLR category). A category C with a mor-
phism class M is called a weak adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition
and decomposition,

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,
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3. pushouts in C alongM-morphisms are weak VK squares, i.e. the VK square
property holds for all commutative cubes with m ∈ M and (f ∈ M or
b, c, d ∈M) (see Def. 1).

Remark 3. For the weak version of the VK square property it is sufficient to
require f ∈ M or b, c, d ∈ M. In both cases this makes sure that the pullback
squares in the cube are pullbacks alongM-morphisms.

Example 5 (weak adhesive HLR categories).

– All adhesive HLR categories are weak adhesive HLR categories.
– The category (PTNets,M) of place/transition nets with the classM of all

monomorphisms is a weak adhesive HLR category (see Fact 4).
– Similarly the category AHLNets(SP,A) of algebraic high-level nets with

fixed specification SP and algebra A considered with the classM of injective
morphisms is a weak adhesive HLR category (see Fact 5).

– An interesting example of high-level structures, which are not graph-like, are
algebraic specifications (see [13]). The category (Spec,Mstrict) of algebraic
specifications with the classMstrict of all strict injective specification mor-
phisms is a weak adhesive HLR category. ��
Similar to adhesive HLR categories also weak adhesive HLR categories are

closed under product, slice, coslice, functor and comma category constructions.
That means we can construct new weak adhesive HLR categories from given
ones.

Theorem 1 (construction of weak adhesive HLR categories). Weak ad-
hesive HLR categories can be constructed as follows:

1. If (C,M1) and (D,M2) are weak adhesive HLR categories, then the product
category (C × D, M1 ×M2) is a weak adhesive HLR category.

2. If (C,M) is a weak adhesive HLR category, so are the slice category (C\X,
M ∩ C\X) and the coslice category (X\C, M ∩ X\C) for any object X
in C.

3. If (C, M) is a weak adhesive HLR category, then for every category X the
functor category ([X, C], M-functor transformations) is a weak adhesive
HLR category. An M-functor transformation is a natural transformation
t : F → G where all morphisms tX : F (X)→ G(X) are in M.

4. If (A,M1) and (B,M2) are weak adhesive HLR categories and F : A→ C,
G : B→ C are functors, where F preserves pushouts along M1-morphisms
and G preserves pullbacks (alongM2-morphisms), then the comma category
(ComCat(F, G; I),M) withM = (M1×M2)∩MorComCat(F,G;I) is a weak
adhesive HLR category .

In the following theorem we show several important properties for weak ad-
hesive HLR categories, which are essential to prove the main results in Cor. 1.
These properties have been required as HLR properties in [7] to show some of
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the main results for HLR systems. In [8], it was shown already that these HLR
properties are valid for adhesive categories. They were extended to adhesive HLR
categories in [5], and now also for weak adhesive HLR categories using almost
the same proofs.

Theorem 2 (properties of weak adhesive HLR categories). Given a weak
adhesive HLR category (C, M), then the following properties hold:

1. Pushouts along M-morphisms are pullbacks: Given the following pushout
(1) with k ∈ M, then (1) is also a pullback.

2. M pushout-pullback decomposition lemma: Given the following commuta-
tive diagram with (1)+(2) being a pushout, (2) a pullback, w ∈ M and
(l ∈M or u ∈ M). Then (1) and (2) are pushouts and also pullbacks.

3. Cube pushout-pullback lemma: Given the following commutative cube (3),
where all morphisms in the top and in the bottom are in M, the top is a
pullback and the front faces are pushouts. Then we have: the bottom is a
pullback iff the back faces of the cube are pushouts.

A′

B′

A

B

C′

D′

C

D(3)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

E

F

(1) (2)

k

l

u

s

r

w

v

4. Uniqueness of pushout complements: Given k : A→ B ∈M and s : B → D
then there is up to isomorphism at most one C with l : A→ C and u : C → D
such that (1) is a pushout.

Now we are able to generalize graph transformation systems, grammars and
languages in the sense of [10] based on the category Graphs to weak adhesive
HLR categories, which was already done for HLR, adhesive and adhesive HLR
categories in [7], [8] and [5] respectively.

In general, a weak adhesive HLR system is based on productions, also called
rules, that describe in an abstract way how objects in this system can be trans-
formed. An application of a production is called direct transformation and de-
scribes how an object is actually changed by the production. A sequence of these
applications yields a transformation.

Definition 5 (production and transformation). Given a weak adhesive
HLR category (C, M), a production p = (L l← K

r→ R) (also called rule)
consists of three objects L, K and R called left hand side, gluing object and right
hand side respectively, and morphisms l : K → L, r : K → R with l, r ∈M.

Given a production p = (L l← K
r→ R) and an object G with a morphism

m : L→ G, called match. A direct transformation G
p,m
=⇒ H from G to an object

H is given by the following diagram, where (1) and (2) are pushouts.
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L K R

G D H

(1) (2)

l r

m k n

f g

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct transformations is called a trans-
formation and is denoted as G0

∗⇒ Gn. For n = 0, we have the identical trans-
formation G0

id⇒ G0, i.e. f = g = idG0 . Moreover, we allow for n = 0 also
isomorphisms G0

∼= G′
0, because pushouts and hence also direct transformations

are only unique up to isomorphism.

Definition 6 (weak adhesive HLR system, grammar and language). A
weak adhesive HLR system AHS = (C,M, P ) consists of a weak adhesive HLR
category (C, M) and a set of productions P .

A weak adhesive HLR grammar AHG = (AHS, S) is a weak adhesive HLR
system together with a distinguished start object S.

The language L of a weak adhesive HLR grammar is defined by L = {G | ∃
transformation S

∗⇒ G}.
In [5, 6] it is shown that the HLR properties stated in Thm. 2 together

with binary coproducts compatible with M are sufficient to prove the following
main results for adhesive HLR systems. Hence we also have the following main
results for weak adhesive HLR systems which are stated explicitely in [7] for
HLR systems and in [5, 6] for adhesive HLR systems.

Corollary 1 (main results for weak adhesive HLR systems). Given a
weak adhesive HLR system with binary coproducts compatible withM (i.e. f, g ∈
M⇒ f + g ∈M), then we have the following results:

1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem.

The Local Church-Rosser Theorem allows one to apply two graph transfor-
mations G⇒ H1 via p1 and G⇒ H2 via p2 in an arbitrary order leading to the
same result H , provided that they are parallel independent. In this case they can
also be applied in parallel, leading to a parallel graph transformation G ⇒ H
via the parallel production p1 + p2. This second main result is called the Paral-
lelism Theorem. The Concurrency Theorem is concerned with the simultanous
execution of causally dependent transformations.

4 Petri Net Transformation Systems

Petri net transformation systems have been first introduced in [7] for the case
of low-level nets and in [11] for high-level nets using the algebraic presentation
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of Petri nets as monoids as introduced in [14]. The main idea of Petri net trans-
formation systems is to extend the well-known theory of Petri nets based on the
token game by general techniques which allow to change also the net structure
of Petri nets. In [15], a systematic study of Petri net transformation systems has
been presented in the categorical framework of abstract Petri nets, which can
be instantiated to different kinds of low-level and high-level Petri nets. In this
chapter we show that the category (ElemNets,M) of elementary Petri nets is
an adhesive HLR category (see Fact 3) and that the categories (PTNets,M) of
place/transition nets and (AHLNets(SP,A), M) of algebraic high-level nets
over (SP, A) are weak adhesive HLR categories (see Fact 4 and 5). The corre-
sponding instantiations of weak adhesive HLR systems lead to different kinds of
Petri net transformation systems.

In the following we present a simple grammar ENGG (elementary net graph
grammar) for elementary Petri nets, which allows to generate all elementary
nets. The start net S of ENGG is empty. We have a production addP lace to
create a new place p and productions addTrans(n, m) for n, m ∈ N to create a
transition with n input and m output places.

addP lace:

∅ ∅ p

addT rans(n, m):

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

p1 ... pn

q1 ... qm

The grammar ENGG can be modified to a grammar PTGG (place/transition
net graph grammar) for place/transition nets if we replace the productions
addTrans(n, m) by productions addTrans(n, m)(i1, ..., in, o1, ..., om), where
i1, ..., in resp. o1, ..., om correspond to the arc weights of the input places p1, ..., pn

resp. the output places q1, ..., qm.

Definition 7 (elementary Petri net). An elementary Petri net is given by
N = (P, T, pre, post : T → P(P )) with a set P of places, T of transitions
and pre- and post-domain functions pre, post : T → P(P ), where P(P ) is the
power set of P . A morphism f : N → N ′ in ElemNets is given by f = (fP :
P → P ′, fT : T → T ′) compatible with the pre- and post-domain function, i.e.
pre′ ◦ fT = P(fP ) ◦ pre and post′ ◦ fT = P(fP ) ◦ post.

Fact 3 (elementary Petri nets as adhesive HLR category). The category
(ElemNets, M) of elementary Petri nets is an adhesive HLR category, where
M is the class of all injective morphisms.

Proof idea. The category ElemNets is isomorphic to the comma category
ComCat(IDSets,P ; I), where P : Sets → Sets is the power set functor and
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I = {1, 2}. According to Thm. 1.4 it suffices to note that P : Sets→ Sets pre-
serves pullbacks using the fact that (Sets,M) is an adhesive HLR category. ��

Definition 8 (place/transition net). According to [14] a place/transition net
N = (P, T, pre, post : T → P⊕) is given by a set P of places, a set T of transi-
tions, as well as pre- and post-domain functions pre, post : T → P⊕, where P⊕

is the free commutative monoid over P . A morphism f : N → N ′ in PTNets
is given by f = (fP : P → P ′, fT : T → T ′) compatible with the pre- and
post-domain functions, i.e. pre′ ◦ fT = f⊕

P ◦ pre and post′ ◦ fT = f⊕
P ◦ post.

Fact 4 (place/transition nets as weak adhesive HLR category). The cat-
egory (PTNets, M) of place/transition nets is a weak adhesive HLR category,
but not an adhesive HLR category, if M is the class of all injective morphisms.

Proof idea. The category PTNets is isomorphic to the comma category
ComCat(IDSets, �⊕; I) with I = {1, 2}, where �⊕ : Sets → Sets is the
free commutative monoid functor. According to Thm. 1.4 it suffices to note
�⊕ : Sets→ Sets preserves pullbacks along injective morphisms using the fact
that (Sets, M) is a weak adhesive HLR category. This implies that (PTNets,
M) is a weak adhesive HLR category.

It remains to show that (PTNets,M) is not an adhesive HLR category. This
is due to the fact, that �⊕ : Sets → Sets does not preserve general pullbacks.
This would imply that pullbacks in PTNets are constructed componentwise for
places and transitions. In fact, in Ex. 6 we present a non-injective pullback in
PTNets, where the transition component is not a pullback in Sets, and a cube
which violates the VK properties of adhesive HLR categories. ��

Example 6 (non-VK square in PTNets). The square (1) in Fig. 1 with non-
injective morphisms g1, g2, p1, p2 is a pullback in the category PTNets, where
the transition component is not a pullback in Sets. In the cube in Fig. 1 the
bottom square is a pushout in PTNets along an injective morphism m ∈ M, all
side squares are pullbacks, but the top square is no pushout in PTNets. Hence
we have a counterexample for the VK property. ��

In the following we combine algebraic specifications with Petri nets leading to
algebraic high-level (AHL) nets (see [11]). For simplicity we fix the correspond-
ing algebraic specification SP and the SP -algebra A. For the more general case,
where also morphisms between different specifications and algebras are allowed,
we refer to [11]. Under suitable restrictions for the morphisms we also obtain a
weak adhesive HLR category in the more general case (see [15] for HLR proper-
ties of high-level abstract Petri nets).

Intuitively, an AHL net is a Petri net, where ordinary, uniform tokens are
replaced by data elements from the given algebra. Firing a transition t means to
remove some data elements from the input places and add some data elements,
computed by term evaluation, to the output places of t. There could be also some
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Fig. 1. A pullback and a non-VK square in PTNets

firing conditions to restrict the firing behaviour of a transition. In addition, a
typing of the places restricts the data elements which could be put on each place
to that of a certain type.

Definition 9 (AHL net). An AHL net over (SP, A), where SP = (SIG, E, X)
has additional variables X and SIG = (S, OP ), is given by N = (SP, P, T,
pre, post, cond, type, A) with sets P and T of places and transitions,
pre, post : T → (TSIG(X) ⊗ P )⊕ as pre- and post-domain functions,
cond : T → Pfin(Eqns(SIG, X)) assigning to each t ∈ T a finite set cond(t) of
equations over SIG and X, type : P → S a type function and A an SP -algebra.
Note that TSIG(X) is the SIG-term algebra with variables X, (TSIG(X)⊗P ) =
{(term, p) | term ∈ TSIG(X)type(p), p ∈ P} and �⊕ is the free commutative
monoid functor. A morphism f : N → N ′ in AHLNets(SP,A) is given by a
pair of functions f = (fP : P → P ′, fT : T → T ′) which are compatible with the
pre, post, cond and type functions as shown below.

Pfin(Eqns(SIG, X))

T (TSIG(X)⊗ P )⊕

T ′ (TSIG(X)⊗ P ′)⊕

P

P ′

S

pre

post

pre′
post′

cond

cond′

fT (id⊗fP )⊕
type

type′
fP

Fact 5 (AHL nets as weak adhesive HLR category). Given an algebraic
specification SP and an SP -algebra A, the category (AHLNets(SP,A),M) of
algebraic high-level nets over (SP, A) is a weak adhesive HLR category. M is
the class of all injective morphisms f , i.e. fP and fT are injective.
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Proof idea. According to the fact that(SP, A) is fixed the construction of push-
outs and pullbacks in AHLNets(SP,A) is essentially the same as in PTNets,
which is already a weak adhesive HLR category. We can apply the idea of comma
categories ComCat(F, G; I), where in our case the source functor of the oper-
ations pre, post, cond, type is always the identity IDSets, and the target func-
tors are (TSIG(X) ⊗ )⊕ : Sets → Sets and two constant functors. In fact
(TSIG(X)⊗ ) : Sets→ Sets, the constant functors and �⊕ : Sets→ Sets pre-
serve pullbacks along injective functions. This implies that also (TSIG(X)⊗ )⊕ :
Sets→ Sets preserves pullbacks along injective functions, which is sufficient to
verify the properties of a weak adhesive HLR category. ��

Corollary 2 (main results for Petri net transformation systems). The
results stated in Cor. 1 are valid for Petri net transformation systems based on
the following categories:

1. (PTNets, M) (see Fact 4),
2. (ElemNets, M) (see Fact 3),
3. (AHLNets, M) (see Fact 5).

Example 7 (place/transition net transformation). We present an example of a
place/transition net transformation system from [16], where a communication
network is created and analyzed w.r.t. lifeness and safety properties. Here we
only consider the construction using Petri net transformations. The system is
composed of 3 components: a buffer, a printer and a communication unit depicted
in Fig. 2. The behaviour of the buffer and the printer are obvious from the
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Fig. 2. Components of the system
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figure. The communication unit can send a message through a secure (SSC)
or non-secure (NSC) channel. Using the NSC channel a message may become
corrupted, therefore two copies of the message are sent, which are compared by
the receiving subunit D. If both copies differ (NOK), then the transmission has
to be repeated, otherwise (OK) it ends.

Petri net transformations are used to connect these three components. In the
top row of Fig. 3(a) the production to connect buffer and printer is depicted.
Fig. 3(a) shows the whole Petri net transformation as the application of this
production to the components buffer and printer. In Fig. 3(b) and Fig. 3(c) the
corresponding productions for connecting the communication unit with buffer
and printer are shown respectively. Applying all three productions leads to the
communication network depicted in Fig. 4.
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Fig. 4. Resulting communication network

5 Conclusion

In this paper we have shown how to extend adhesive HLR categories and systems
- recently introduced as a new categorical framework for graph transformation
in [5, 6] - to weak adhesive HLR categories and systems in order to be suitable
also as a unifying framework for Petri net transformations. It is interesting to
note that all the results for HLR systems based on adhesive HLR categories are
still valid under the weaker assumptions of weak adhesive HLR categories. But
we might need the stronger assumptions for results based on general pullback
constructions as considered in [8, 9]

Especially we have shown in this paper that the category (PTNets, M) of
place/transition nets with the classM of all monomorphisms is not an adhesive
HLR category, but a weak adhesive HLR category. This is sufficient to show
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that the following main results of graph transformation systems are also valid
for Petri net transformation systems:
1. Local Church-Rosser Theorem
2. Parallelism Theorem
3. Concurrency Theorem
We conjecture that also the following results
4. Embedding and Extension Theorem
5. Local Confluence Theorem
stated explicitely in [5, 6] for adhesive HLR systems are valid for our Petri
net transformation systems considered above. The Embedding and Extension
Theorem allows us to embed transformations into larger contexts, and with the
Local Confluence Theorem we are able to show local confluence of transformation
systems on the basis of the confluence of critical pairs. As additional properties
we need a suitable E ′-M′ pair factorization and initial pushouts for Petri nets
which have been shown for graphs already in [5, 6].
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