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Abstract. The Eclipse Modeling Framework (EMF) provides a modeling and code genera-
tion framework for Eclipse applications based on structured data models. Within model driven
software development based on EMF, refactoring of EMF models become a key activity. In this
paper, we present an approach to define EMF model refactoring methods as transformation rules
being applied in place on EMF models. Performing an EMF model refactoring, EMF transfor-
mation rules are applied and can be translated to corresponding graph transformation rules,
as in the graph transformation environment AGG. If the resulting EMF model is consistent, the
corresponding result graph is equivalent and can be used for validating EMF model refactor-
ing. Results on conflicts and dependencies of refactorings for example, can help the developer to
decide which refactoring is most suitable for a given model and why.
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1 Introduction

In the world of model-driven software development, the Eclipse Modeling Framework (EMF) [EMF06]
is becoming a key reference. It is a framework for describing class models and generating Java code;
it supports the creation, modification, storage, and loading of model instances. Moreover, it provides
generators to support the editing of EMF models.

EMF unifies three important technologies: Java, XML, and UML. Regardless of which one is used
to define a model, an EMF model can be considered as the common representation that subsumes the
others. That means defining a transformation approach for EMF, it will become also applicable to the
other technologies.

Refactoring within the model-driven software development process means to refactor the corresponding
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models. Basing the model-driven approach on EMF models, refactoring of EMF models becomes a key
activity which should be supported. Since EMF unifies three different technologies, i.e. Java, XML and
UML, the EMF refactoring can also be used to restructure Java programs, XML schemas and UML
models. Considering especially UML, a number of refactoring methods are already available, see e.g.
[SPTJ01], [Por03], [MB05], which all cover at least refactoring of class models. Since EMF models
resemble very much UML class models, UML refactoring methods can also be considered for EMF
model refactorings.

Different approaches have been considered for model refactorings which can be categorized as model
transformations in general, optimizing models of a given modeling language. Most of the refactoring ap-
proaches presented (e.g. [SPTJ01], [MB05]) use OCL constraints to describe the pre- and post-conditions
of refactorings in a declarative way. Another kind of approaches use transformation rules (e.g. [Por03]).
In [MT04], declarative approaches based on pre-/post-conditions are compared with graph transforma-
tion approaches.

In this paper, we consider two selected refactorings of instances of the Ecore model being the EMF
meta model and as such also an EMF model. Besides the Ecore model, we could also choose any other
EMF model, such as the UML2 model, for refactoring. Our transformation approach is based on graph
transformation and adapted to EMF models.

In our running example, we consider an EMF model which stores the abstract syntax of simple place/
transition Petri nets and refactor it in order to get a more object-oriented model. (See the original Petri
net model in Fig. 1.) This model is restructured by pulling up the common attribute ”name” of classes
”Place”, ”Transition” and ”PetriNet” to a new superclass ”NamedElement”. (See the refactored model in
Fig. 2.) In the following, we consider “create superclass” and “pull up attribute” as sample EMF model
refactorings.

Figure 1: Petri net model before refactoring

EMF model refactoring can be considered as endogenous model transformation [MVG06] performing
some kind of model optimization. When applying a refactoring method to an EMF model, this model
shall be modified, i.e. it shall be transformed in-place. Considering the current transformation approaches
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Figure 2: Petri net model after refactoring

for EMF such as Tefkat [LS05], ATL [JK06], MTF [MTF05], Merlin [Mer06], and the transformation en-
gines developed within the Eclipse Project General Model Transformer (GMT), a transformation engine
for in-place transformation and with validation facilities for model transformations is not yet available.

Therefore, we recently developed an endogenous EMF model transformation engine [BEK+] which can
perform in-place model transformations, based on graph transformation concepts. The transformation
description can be compiled to Java code using those EMF classes already generated. Furthermore, it is
possible to translate the rules to AGG [AGG06], a tool environment for algebraic graph transformation
where the transformation might be further analyzed.

The analysis of transformations and transformation rules is helpful in deciding what to refactor and
when. Termination of refactoring operations as well as conflicts and dependencies between different
refactorings are important issues to be analysed to inform the user about the refactorings which can be
performed. The dependency analysis has already been considered in [MTR04].

2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [EMF06] provides a modeling and code generation frame-
work for Eclipse applications based on structured data models. The modeling approach is similar to that
of MOF, actually EMF supports Essential MOF (EMOF) as part of the OMG MOF 2.0 specification
[EMO06]. The type information of sets of instance models is defined in a so-called core model corre-
sponding to metamodel in EMOF. The core or metamodel for core models is the Ecore model. It contains
the model elements which are available for EMF core models in principle. In Fig. 3, the main part of
Ecore (without attributes) is shown. The kernel model contains elements EClass, EDataType, EAttribute
and EReference. These model elements are needed to define classes by EClass, their attributes by EAt-
tribute and interrelations by EReference. EClasses can be grouped to EPackages which might be again
structured into subpackages. In addition, each model element can be annotated by EAnnotation. Fur-
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thermore, there are some abstract classes to better structure the Ecore model, such as ENamedElement,
ETypedElement, etc.
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Figure 3: Kernel of Ecore model

It is important to note that the EMF metamodel (Ecore) is again a core model. That means that the
meta classes EClass, EDatatype, EReference etc. actually cannot only be interpreted as, but in fact are
classes of an EMF core model. This fact is of great importance for our approach, since it enables us to
use native EMF notions (elements of the meta model) for the definition of refactoring rules and interpret
these notions in terms of formal graphs and graph transformations.

3 Specification of EMF Model Refactorings

Before presenting the specification of concrete EMF model refactoring methods, we present the transfor-
mation approach used to manipulate EMF models. The transformation concepts are closely related to the
algebraic graph transformation concepts [EEPT06]. The main reason for this design decision is the basic
opportunity to validate EMF model transformations which is possible only if some form of consistency
can be reached by the EMF transformation. We will discuss consistency issues in the next section.
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3.1 EMF Model Transformation Approach

Basically, an EMF transformation is a rule-based modification of an EMF source model resulting in an
EMF target model. Both, the EMF source and target models are typed over an EMF core model which
itself is again typed over Ecore. Refactoring can take place on two levels: (1) Refactoring rules are typed
over the Ecore model and are applied to EMF models. The running example of this paper containing
refactorings of a Petri net model (being an EMF core model) is of this kind. (2) Refactoring rules are
typed over some EMF core model (e.g. the Petri net model in Fig. 1) and refactor EMF instance models
(e.g. Petri net instance models).

A Transformation System consists of a set of transformation rules. Furthermore, it has a link to the core
model its instances are typed over. Rules are expressed mainly by two object structures LHS and RHS,
the left and right-hand sides of the rule. Furthermore, a rule has mappings between objects of the LHS
and the RHS indicated by numbers preceding the class names. The left-hand side LHS represents the
pre-conditions of the rule, while the right-hand side RHS describes the post-conditions. Those objects of
the LHS which are mapped to the RHS, describe a structure part which has to occur in the EMF source
model, but which is not changed during the transformation. All objects of the LHS not mapped to the
RHS define the part which shall be deleted, and all symbols and links of the RHS to which nothing is
mapped, define the part to be created.

The applicability of a rule can be further restricted by additional application conditions. As already
mentioned above, the LHS of a rule formulates some kind of positive condition. In certain cases also
negative application conditions (NACs) which are pre-conditions prohibiting certain object structures,
are needed. If several NACs are formulated for one rule, each of them has to be fulfilled. A NAC is
again an object structure which is the target of a mapping from the LHS. This feature is useful to prohibit
structures connected to the LHS.

The rule’s LHS or a NAC may contain constants or variables as attribute values, but no Java expressions,
in contrast to an RHS. A NAC may use the variables already used in the LHS or new variables declared
as input parameters. The scope of a variable is its rule, i.e. each variable is globally known in its rule.
The Java expressions occurring in the RHS, may contain any variable used within the LHS or declared
as input parameter. Multiple usage of the same variable is allowed and can be used to require equality of
values.

A rule-based transformation system may show two kinds of non-determinism: (1) for each rule several
matches may exist, and (2) several rules may be applicable. There are techniques to restrict both kinds
of choices. The choice of matches can be restricted by using input parameters. Moreover, some kind
of control flow on rules can be defined by applying them in a certain order. For this purpose, rules are
equipped with layers. All rules of one layer are applied as long as possible (in any order) before going
over to the next layer. The transformation stops after having execute the last layer.

To apply the defined transformation rules on a given EMF model, we either select and apply the rules
step-by-step, or take the whole rule set and let it apply as long as possible. A transformation step with
a selected rule is defined by first finding a match of the LHS in the current instance model. A pattern is
matched to a model if its structure can be found in the model such that the types and attribute values are
compatible. In general, a pattern can match to different parts of a model. In this case, one of the possible
matches has to be selected, either randomly or by the user.
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Performing a transformation step which applies a rule at a selected match, the resulting object structure
is constructed in two passes: (1) all objects and links present in the LHS but not in the RHS are deleted;
(2) all object and links in the RHS but not in the LHS are created. A transformation, more precisely a
transformation sequence, consists of zero or more transformation steps.

3.2 Selected Refactoring Methods for EMF Models

Based on the presented transformation approach for EMF models we show two selected refactoring
methods for EMF models. All transformation rules are typed over the Ecore model, in more detail
over the Ecore section shown in Fig. 3. In the following, we define the simple refactorings “create
superclass” and “connect superclass” where a new superclass is created for a given class and can be
become superclass of further classes. Moreover, the complex refactoring “pull up attribute” is shown. If
each subclass contains an attribute with the same name and type, it can be pulled up to their common
superclass.

Refactoring rule “CreateSuperclass(EString c, EString s, boolean a)” in Fig. 4 has parameters “c” and
“s” to determine the name of the child class and of the new super class. Moreover, we have to decide if
the new super class shall be abstract. The LHS describes the pattern to be found for refactoring consisting
of a class which will be the child and the package it belongs to. The RHS shows the new pattern after
refactoring where a new class with name “s” has been created which is the super class of the given class.
The super class shall be contained in the same package as the class its subclass. Fig. 4 shows the left
and the right-hand sides of the rule. Objects which are preserved occur in both parts. If two objects
correspond to each other, they are colored and numbered equally.

Figure 4: Rule ”CreateSuperclass”

After creating a super class, it might become super class of more than one class which can be restruc-
tured by rule “ConnectSuperclass(EString s, EString c)” in Fig. 5. A class is allowed to become subclass
of a given class, if that class does not have attributes and references yet. These additional conditions are
expressed by two NACs “No Attribute” and “No Reference” which check that the class does not have an
EAttribute and does not have an EReference to some class.

Refactoring “PullUpAttribute” is more complex, i.e. it cannot be defined by just one rule, but four rules
are needed to check the complex pre-condition, to do the kernel refactoring, and to make the model
consistent afterwards. For checking the pre-condition, rule “CheckAttribute(EString c, EString a)” in
Fig. 6 checks for the class named “c” if there is a subclass not containing an attribute named “a”. This
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Figure 5: Rule ”ConnectSuperclass”

rule can be applied at most once, since there are NACs which check if there is already a subclass with this
annotation. Thereafter, we try to apply rule “PullUpAttribute(EString c, EString a)” in Fig. 7. If there is
no subclass of the class named “c” which has an annotation with source ” no attribute” and if the class
named “c” has not already an attribute named “a”, it looks for a subclass which has an attribute named
“a”. After the refactoring, an existing attribute with name “a” is pulled up. This rule is applicable at most
once. Thereafter, NAC “Attribute already pulled up” will not be satisfied anymore. NAC “Attribute not
in all sub-types” checks a necessary pre-condition.

Figure 6: Rule ”CheckAttribute”
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Figure 7: Rule ”PullUpAttribute”

If “PullUpAttribute” was successful, i.e. there is no subclass with a corresponding annotation, all at-
tributes named “a” being still contained in subclasses have to be deleted. This is done by rule “DeleteAt-
tribute(EString c, EString a)” in Fig. 8 applying it as long as possible. Finally, if the refactoring was
not successful, all new annotations have to be deleted again which is performed by rule “DeleteAnnota-
tion()” in Fig. 9. The application control for these rules just described can be realised by putting each of
the rules to consecutive layers in the order of description. (See Table 1.)

Layer Rule
1 CreateSuperclass, ConnectSuperclass, CheckAttribute
2 PullUpAttribute
3 DeleteAttribute
4 DeleteAnnotation

Table 1: Control flow for refactoring “pull up attribute”

Compared to the first refactorings, the implementation of refactoring “pull up attribute” looks rather
complicated. Four rules instead of one are needed, since our approach does not support complex pre-
conditions which allow to check for-all-conditions. For example, refactoring “pull up attribute” is al-
lowed only, if all direct subclasses contain that attribute to be pulled up. After this refactoring, the result-
ing model has to be updated in the sense that the subclasses do not have to contain that attribute anymore.
Thus, rules should have a for-all-operator for deletion and/or creation of graph parts. We restricted our
transformation approach such that for-all-conditions and -operators are supported, because we provide
algebraic graph transformation as formal basis for validation purposes, provided by AGG. Since there are
also formal concepts for graph transformation with for-all-conditions and -operators around, it is up to
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future work to extend the analysis techniques for such extended graph transformation and to implement
them.

Figure 8: Rule ”DeleteAttribute”

Figure 9: Rule ”DeleteAnnotation”

Applying first rule “CreateSuperclass(“Transition”, “NamedElement”, “true”) to class “Transition” of
the Petri net model in Fig. 1. Second, rule applications “ConnectSuperclass(“Place”, “NamedElement”)”
and “ConnectSuperclass(“Petrinet”, “NamedElement”)” are performed. Thereafter, attribute “name” is
pulled up by first applying “PullUpAttribute” once, e.g. to class “Place”. Thereafter, rule “DeleteAt-
tribute” is applied twice (to classes “Petrinet” and “Transition” in this case). Rule “CheckAttribute” does
find a match, since all subclasses of “NamedElement” have attribute “name”. Similarly, rule “DeleteAn-
notation” is not applicable.

4 Consistency of EMF Model Refactorings

Consistency of model refactorings can be understood in different ways: (1) In the software development
process different kinds of artefacts such as models, programs, documentations,etc. occur. If the model
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is changed, the corresponding code and documentation has to be changed accordingly (see [MT04]
for further information). Following the model-driven software development paradigm thoroughly, code
would be changed accordingly as soon as the code generator uses the refactored model. Thus, consistency
between model and code could be easily achieved in this case. (2) More basically, consistency of model
refactorings should also mean a kind of syntactic correctness in the sense that the refactored model is still
an element of the given modeling language and fulfills certain validation properties. In the following, we
concentrate on this second kind of consistency, while the first kind is out of scope of this paper.

Similarly to MOF, modeling languages are defined with EMF by a class model defining the model
elements and their relations. Since all refactoring rules are typed over the EMF core model, i.e. the meta
model, the refactored model is still correct wrt. its meta model. If the meta model contains additional
consistency constraints, they have to be checked after each refactoring to make sure that the resulting
model is still consistent.

4.1 Consistency with Graph Transformation

To open up the possibility for formal validation of EMF model refactorings, another kind of consistency
is needed. In the following, we consider EMF model refactorings as consistent if they can be compared
with graph transformations. In this case, the formal analysis techniques for graph graph transformation
become available also for EMF refactoring. Results on conflicts and dependencies of refactorings for
example, can help the developer to decide which refactoring is most suitable for a given model and why.

Although EMF models show a graph-like structure and can be transformed similarly to graphs [EEPT06],
there is a main difference in between. In contrast to graphs, EMF models have a distinguished tree struc-
ture which is defined by the containment relation between their classes. An EMF model should be defined
such that all its classes are transitively contained in the root classes. Since an EMF model may have non-
containment references in addition, the following question arises: What if a class which is transitively
contained in a root class, has non-containment references to other classes not transitively contained in
some root class? In this case we consider the EMF model to be inconsistent.

A transformation can make an EMF model inconsistent, if its rule deletes one or more objects. For
example an inconsistent situation occurs, if one of these objects transitively contains an object referred
to by a non-containment link. To restore the consistency, all objects to be deleted have to be determined.
Thereafter, all non-containment references to these indicated objects have to be removed, too. To ensure
consistent transformations only, rules which delete objects or containment links or redirect them, have to
be equipped with additional NACs.

If a containment link is deleted, the corresponding contained object has to be deleted, too. This object
is not allowed to contain further objects. This constraint has to be required with a separate NAC. If
a containment link is set or redirected and a maximum multiplicity is set on the container’s end, an
application condition is needed which checks that this multiplicity has not yet been reached, i.e. there do
not exist objects which would be without container after rule application.

Similarly to the handling of deleted structures, consistency recovery is also applied to newly created
objects. If a rule creates objects which are not transitively contained in one of the root objects, the con-
sistency recovery will remove these objects at the end of a rule application. It is easily possible to forbid
the application of those rules entirely, since inconsistencies on creation of objects can be determined
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statically.
Our visual editor for EMF transformation rules is able to check the consistency with graph transforma-

tion discussed above. Every time an inconsistency is found, the inconsistent part is highlighted and the
inconsistency is further described to inform the user.

4.2 Consistency of Selected EMF Model Refactorings

All selected refactoring rules are typed over the Ecore model, thus also the refactored EMF models will
be typed over Ecore.

Considering the consistency of the selected EMF model refactorings, we define all objects of type
“EPackage” as root objects. Now we check the consistency of those refactoring rules defined in the
previous section: Rules “CreateSuperclass”, “ConnectToSuperclass”, “CheckAttribute”, and “PullU-
pAttribute” are consistent by definition. Rule “DeleteAttribute” could cause an inconsistent model in
principle, but does not do so, since “EAttribute” objects cannot have children and all possible links oc-
cur in the LHS. In contrast, rule “DeleteAnnotation” defines the deletion of an object which may have
children due to the Ecore model, but does not have any applying only the refactoring rules. To ensure
a consistent rule application only, rule “DeleteAnnotation” could be extended by a NAC checking that
there is no EObject connected to the given EAnnotation. In this way we get a set of consistent refactoring
rules only which can be translated to a set of corresponding graph transformation rules for further valida-
tion. In this case, the EMF refactoring rules can be translated to AGG, a tool environment for algebraic
graph transformation where they might be further analyzed. Since all refactoring rules in the running
example preserve the consistency of EMF models, analysis techniques such as critical pair analysis, ter-
mination checks, etc. are available also for EMF model refactorings. For example in [MTR04], critical
pair analysis was used to detect conflicts and dependencies between refactorings of class models.

Figure 10: Sample critical pair in AGG

As a sample critical pair a “delete-use-conflict” is shown in Fig. 10 produced by the critical pair analysis
of AGG between rule “PullUpAttribute” two times. The overlapping graph at the right-hand side of
Fig. 10 depicts a situation where edge “5:eStructuralFeatures” is critical, since it is deleted during the first
application and cannot be used again during the second application of “PullUpAttribute”. Considering
our example, this situation is not critical, since one and the same “EAttribute” is intended to be pulled
up only once.
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5 Conclusion

In this paper we presented an approach to specify the refactoring of EMF models by endogenous, in-place
EMF model transformation. We use a recently developed EMF model transformation engine [BEK+]
which is based on algebraic graph transformation concepts. Due to this formal basis, a formal analysis
of conflicts and dependencies of EMF model refactorings can be performed. A necessary presumption
for this kind of formal validation is the consistency of EMF refactorings with graph transformations. We
could show that the selected EMF model refactoring rules fulfill this kind of consistency.

It is up to future work to investigate further EMF model refactorings, to answer the following ques-
tions: How far are EMF refactorings similar to UML refactorings? Which of the EMF refactorings are
consistent with graph transformation (as defined above) and thus, can be formally analysed concerning
conflicts and dependencies?

Future work also includes the development of a comprehensive environment for EMF model refactor-
ing. A visual editor and a transformation engine with code generator presented in [BEK+] are already
available at http://tfs.cs.tu-berlin.de/emftrans. Further tools such as a visual debugger and validation
tools would be helpful.
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