Characterizing Tools for Visual Modeling Techniques

Gabriele Taentzer
Technical University of Berlin, Germany

Abstract

In the wide area of visual modeling techniques a large number of CASE and Meta-CASE
tools have been developed to define and work with visual modeling techniques. In this
report, we mainly concentrate on those tools developed by partners and grant holders of
the Research Training Network SegraVis on Syntactic and Semantic Integration of Visual
Modeling Techniques. FEach tool is shortly introduced and characterized along a criteria
catalog for CASE and MetaCASE tools.

1 Introduction

In the wide area of visual modeling techniques a large number of CASE and Meta-CASE
tools have been developed to define and work with visual modeling techniques. In this survey,
we concentrate on those tools for visual modeling techniques and languages which have been
developed within the SegraVis project. The main purpose of this characterization is to get
an overview on the offered functionalities and to better understand each tool’s purpose and
features. A characterization of further CASE and Meta-CASE tools, e.g. the large variety
of CASE-tools for UML [@], is out of scope of this paper.

A CASE tool is usually dedicated to one individual modeling technique. It supports the
editing of models and might offer also support for simulation, validation, transformation and
code generation. For example, there are a number of UML-CASE tools such as 1\/[3LgicD1rava|7
Poseidon E|, etc.

Meta CASE tools support in specifying visual modeling techniques and generating visual
modeling environments. Different kinds of Meta CASE tools are available: Generic, param-
eterizable CASE tools allow for the definition of variants of one main modeling techniques
(e.g. lots of UML CASE tools offer support for the definition of stereotypes). CASE tool
frameworks (such as Eclipse/EMF) can be used to generate reusable, semi-complete code
to be extended to a specific CASE tool. CASE tool generators offer designers support for
the specification of visual modeling environments and their generation from the given spec-
ification. Tools like AToM3 and Tiger described below belong to this group of Meta CASE
tools.

The Meta CASE approaches followed by the following tools are graph transformation-
based and /or based on Meta Object Facilities (MOF) [5]. Basing the specification of a visual
modeling technique on graph transformation [8], the visual alphabet, i.e. the symbols and
links, are described by type graphs. Graph grammars define the language syntax, and graph
transformation systems can be used for the semantics definition. Using MOF, symbols, links

'www.magicdraw. com
Zwww . gentleware . com

www.magicdraw.com
www.gentleware.com

and multiplicity constraints are described by class diagrams, while well-formedness rules
define the language syntax.

The semantics of visual modeling techniques can be described in an operational way by
defining a number of transition steps which might be animated. If a separate semantical
domain is defined, a visual model has to be translated to that domain. This is usually done
by some transformation concept, such as graph transformation or QVT, the OMG-approach.
Model transformation has become a central activity in model-driven software development.
Model transformations have been classified by Czarnecki, Mens et.al. [2] [].

We start this tool characterization by introducing each tool first. Thereafter, a catalog
of criteria is presented wich distinguishes functional and non-functional characteristics. The
functional characteristics are further structured along CASE and MetaCASE-functionalities.
Each tool presented is characterized along these criteria as far as adequate. For a better
overview, the characterization is presented by a number of tables. Please note that this
paper is a revised and extended version of a first comparison of SegraVis tools [9].

2 Survey on SegraVis Tools

In the following, CASE and Meta-CASE tools developed within the SegraVis project, are
shortly presented.

AGG AGGE| is a development environment for attributed graph transformation systems
supporting an algebraic approach to graph transformation. It aims at specifying and rapid
prototyping applications with complex, graph structured data. AGG may be (re)used (with-
out GUI) as a general purpose graph transformation engine in Java applications employing
graph transformation concepts.

MOFLON The MOFLONH meta modeling framework, aims to combine the standardized
MOF 2.0 meta modeling language as graph schema language with Fujaba graph transforma-
tion rules. MOFLON has adopted the MOMoC code generator to produce JMI-compliant
Java code. The framework is used to specify tools for tool integration and trend analysis of
domain-specific software architectures.

GenGED The GenGED[| approach (Generation of Graphical Environments for Design)
supports the generic description of visual modeling languages for the generation of graph-
ical editors and the simulation of behavior models. GenGED is based on algebraic graph
transformation, i.e. AGG, and graphical constraint solving techniques and tools. It has been
applied to a variety of visual languages (VLs). The corresponding visual environment sup-
ports the visual description of VLs and the generation of language-specific graphical editors,
available in syntax-directed or free-hand editing mode. The behavior of a visual model can
be specified and simulated in the generated graphical editor.

AToM3 The two main tasks of ATOMZﬂ are meta-modeling and model-transforming.
Meta-modeling refers to the description, or modeling of different kinds of formalisms used

3tfs.cs.tu-berlin.de/agg
4w .moflon. org
Stfs.cs.tu-berlin.de/genged
Satom3.cs .mcgill.ca

tfs.cs.tu-berlin.de/agg
www.moflon.org
tfs.cs.tu-berlin.de/genged
atom3.cs.mcgill.ca

to model systems Model-transforming refers to the (automatic) process of converting, trans-
lating or modifying a model in a given formalism, into another model that might or might
not be in the same formalism. In AToM3, formalisms and models are described as graphs.
From a meta-specification (in the ER formalism or class diagrams) of a formalism, AToM3
generates a tool to visually manipulate (create and edit) models described in the specified
formalism. Model transformations are performed by graph rewriting. The transformations
themselves can thus be declaratively expressed as graph-grammar models.

Fujaba The primary topic of the Fujabam Tool Suite project is to provide an easy way to
extend UML and Java development platform with the ability to add plug-ins. The Fujaba
Tool Suite combines UML class diagrams and UML behaviour diagrams to a powerful, easy
to use, yet formal system design and specification language. Furthermore the Fujaba Tool
Suite supports the generation of Java source code out of the whole design which results in
an executable prototype. Moreover the way back is provided, too (to some extent so far), so
that Java source code can be parsed and represented within UML.

The plug-in SPin [3] allows to specify models on a very high level of abstraction and to
transform them into a common concrete representation. SPin realizes the idea of Architecture
Stratification and extends Fujaba with a model transformation engine and an Open API for
defining custom transformation rules.

MetaEnv MetaEnv [I] is a toolbox for automating visual software engineering. MetaEnv
augments visual diagrammatic (VD) notations with customizable dynamic semantics. Tradi-
tional meta-CASE tools support flexibility at syntactic level: MetaEnv augments them with
semantic flexibility. MetaEnv refers to a framework based on graph grammars and has been
experimented as add-on to several commercial and proprietary tools that support syntactic
manipulation of VD notations.

ViaTra2 The VIATRAF|(VIsual Automated model TRAnsformations) framework is the
core of a transformation-based verification and validation environment for improving the
quality of systems designed using the Unified Modeling Language or various Business Process
Modeling languages by automatically checking consistency, completeness and dependability
requirements. The specification formalism of VIATRAZ2 combines graph transformation and
abstract state machines into a single semantic framework. On the tool-level, VIATRAZ2 is
integrated to the Eclipse framework as a plug-in, and it is ported to several off-the-shelf
modeling CASE tools.

Consistency Workbench The Consistency Workbenc}ﬂ is a research prototype for
consistency management in UML-based development processes. Currently, consistency of
UML models is only partially ensured by the language specification. In particular, behavioral
consistency of UML models is not prescribed by the language standard. Such semantic
consistency must be defined and checked by the software engineer when applying UML in
practical development processes.

The Consistency Workbench aims at providing tool support for consistency management
along a general methodology. Briefly, the methodology requires the software engineer to
identify consistency problems and then develop partial mappings (model transformations) of

T fujaba.de
Swww.eclipse.org/gmt
“wwwcs .uni-paderborn.de/cs/ag-engels/ag dt/Tools/ConWork)

www.fujaba.de
www.eclipse.org/gmt
wwwcs.uni-paderborn.de/cs/ag-engels/ag_dt/Tools/ConWork

UML models into a formal semantic domain. In such a semantic domain, formal consistency
conditions can be defined and existing formal verification tools such as model checkers can
be applied for their verification. One key functionality of the Consistency Workbench is the
definition and execution of model transformations as well as consistency checks including
model transformations.

UGT UGT [I0](UML to Graph Transformation) is a research prototype which generates
graph transformation rules from a given UML model. UGT reads a model specification
from a given text file and automatically generates the graph rules which facilitate a stepwise
execution of the model. The initial graph is computed from the input model plus an object
diagram specified by the modeler as initial.

Technically, UGT combines two well established tools in order to realize the functionality
described above. The graph transformation part of UGT is realized by the graph transfor-
mation tool AGG and an extension of the validation tool [7] is used for the evaluation of
OCL expressions.

Tiger The TIGERIE environment (Transformation-induced Generation of Modeling Envi-
ronments) supports the generation of visual editor plug-ins in ECLIPSE from formal visual
language (VL) specifications, based on meta-modeling and graph transformation. TIGER
combines graph transformation concepts offered by AGG with sophisticated graphical editor
development features offered by the ECLIPSE Graphical Editing Framework (GEF). Editor
commands are modeled in a rule-based way using the TIGER Designer component. TIGER
extends AGG by a concrete visual syntax definition for flexible means for visual model rep-
resentation. From the definition of the VL, Java source code is generated which implements
an ECLIPSE visual editor plug-in based on GEF offering an efficient and standardized way
for graphical layouting.

The TicEr EMF Transformatorﬂ is an extension for in-place EMF transformation based
on graph transformation. Transformations are visually defined by rules on object patterns
typed over an EMF core model. A transformation system can be either compiled to Java
code or interpreted using the underlying AGG transformation engine.

3 Non-functional characteristics

The main non-functional information about the tools is listed in Fig. Please note that
the tools are mainly described along qualitative characteristics, since there are nearly no
benchmark tests available for them. In the following, all the non-functional characteristics
are listed.

e Name: the full name of the tool as well as its shortcut (if available).

e Developer: For Segravis tools, this is either the name of a SegraVis partner or a grant
holder. For all other tools, this is the name of the head of the development or a
company,/ organisation.

e Status of tool/component development: Open source or commercial? Under which
license? Prototype, established tool, the standard tool for....7

e Which version has been used for evaluation?

0tfs.cs.tu-berlin. de/tigerprj
Htfs.cs.tu-berlin.de/emftrans

tfs.cs.tu-berlin.de/tigerprj
tfs.cs.tu-berlin.de/emftrans

e Which implementation language has been used?
e For which platforms is the tool available?
e In which way is the tool documented?

e Is there support for interoperability with other tools? What kinds of exchange formats
are supported? Are there well-defined interfaces for the tool and/or tool components?

e What are the possibilities to extend the tool or components of the tool? Can it be
adapted to special user requirements?

e Do there exist test suites? How is the recovery from failures?

e Are there benchmark tests?

4 Functional characteristics

Describing the functional tool characteristics, we distinguish two groups: tools with CASE
functionalities (see Fig. and tools with Meta CASE functionalities. The Meta CASE
functionalities comprise general aspects as well as syntactical (see Fig. [3) and semantical
features (see Fig. [4]). Dependent on the features of each tool, it occurs in those tables only
where corresponding characteristics are compared.

4.1 CASE functionalities

A variety of considered tools are CASE tools for a fixed language each. A CASE tool
should be an integrated development environment for a certain modeling language. It can
comprise visual editors, simulators, model transformations to other modeling techniques,
code generators, animation and validation tools. The table entries are concerned with the
following questions:

e Which visual modeling technique or language is supported?

o [s there a reference application for this tool? If yes, the one or two most important
ones are mentioned.

e Is the tool developed for a special application domain?
e [s there a visual editor? How do the visual editors work? Syntax-directed or freehand?

e Is there a simulator? Is it visual? How does it work? Is the simulation discrete or
continous/animated? Is it hand-driven or automatic? Does it show the (intermediate)
results? In a visual form?

e To which other visual modeling technique or language are model transformations sup-
ported?

e To which implementation languages are code generators available?
e Which kinds of model validation techniques are supported?

e Are several views on the model supported? If yes, which ones?

auou
auou

wisiuyoaw
uibnid asdipg

‘1dxa ener
Aq uonnquye

X99 :oupa
‘uab ‘yewloy
TNX Areyaudosd

X99 :lonps
‘uab ‘rewloy
JNX Areyaudosd

(99v
yum uone.Baul)
X99 “INX

oopener ‘sabed
gam ‘siaded

z'€ asdi|p3
‘yar ‘Aue

ener

eAe(

02CT
21emyos 93l

auou
auou

auou

X929

abenbue| ndui
3SN papuaixe
ul sjgpow JAN

auou

sisay) ewojdip

Mar ‘Aue

e/

BeAe(

T0

pasesjal

194 J0U ‘BAjoR
‘adf0j01d
yoleasal

uawalg un

19N

auou
auou

auou

uonduosap
elqabe
ssao0ud 4SO

9'T uoplesod
Aq paonpoud
S|spow AN

auou

G¥2-€0-14-d1
yoday [ealuyss)
se a|qe|rene

Mar ‘Aue

e/

ener

0T
juawdojanap
Jayuny

ou Apuanind
‘adA0j01d
yoseasal

uloquaped Iun

Youagyom
Koualsisuo)

auou
ou

uolrewlojsues) Buunp
pajes sweiboid ener
eusaixa ‘suibnid maN

(uonyesauah
9p02) [enixa} Aue

(eydre)
4N “1aSM 1349
‘TIAN TOLA “TAdA

sul-bnid
“1LOA “INdA ‘IdY
yum auibu3g ‘ysuel

(e19/dwoour) sajdwexa
snoweA yim apinb 1asn

asdip3 ‘Mar

ener

ener

(z asesjpy) 02

1d3 Japun
a|qe|leAe 21eMYoSs 931}

SOIWou023
pue ABojouyda
Jo Ausianiun 1sadepng

CVHLVIA

S]00] SIARIDDS :SO1ISII810RIRYD [RUOIIOUNJ-UON

auou auou

auou sise) yunc

auou wsiueyoaw

uibnid

Areyaudoid TANX

Areyoudoid

"9XO ‘ddd

Arejaudoud ANX

Areyaudoud

"¥XO ‘ddd

1dV yum INX “IXD
aulbus uo
ewlojsuel]

Jaded IM ‘|dV

10} S0pener

‘s1aded

SMOPUIMN Mar Aue

e/ ener

++2 ener

0T 44

aIemyos aaly paysi|qelss

“1d9T1NND

‘aIemyos aal)

oueiN (jassey un)
1p 021Ud3N|0d uloglaped un

AUTRIBN eqelny

auou

auou

suoissaldxa
uoyikd
Aq uonnqune:

SNd 'SSd9
‘dINSD00 X999
‘Tew.o} ENOIY

Jew.o} SN0

suoieoldde
uoyikd
ynum uone.bajul

gam ay) uo
S[eLoIN} [BINSS

SO%eN
‘SMOPUIM
xnur ‘XINN

uoyikd

uoyiAd

220
2I1eMyos 99y

(amnjaybuep
SsueH)
eJe ap uenp

ENOLY

auou
auou

auou

ONS
‘Tewno} INX
Areyaudoid

Jewloy JNX
Areyaudoid

TNX

sabed gam
‘yooq ‘siaded

xnur *XINN

OAS

eAe(

0T
paysiqeIse
‘aIemyos a9l

d3aous

auou

wunc

wsiueyoaw
uibnid

Jewloy InoAe|

Areyaudoud ‘INX

JeuWL.0} INoAe|

Areyaudoud ‘INX

INC INX

sabed

gaM ‘siaded

Mar ‘Aue

ener

ener

60

21emyos 931y

peISwIRq NL

NOT40W

auou

SS9} Mlewyouaq
/ @dUeWIoad

uunC salins 1sal / Aljigel|ey

suoissaldxa
ener Aq
uonnguie s|qixayy

IXLD 'XD9 IXD

34003
X999 XD

X9
‘IdV yum auibua
uonewlojsuel|

sabed gap ‘1aded

Mar ‘Aue

B/

ener

9¢CT
paysliqelsa
‘asuLdI7 NND

‘91eMyos aal)

ulpsg NL

99OV

sanijigissod
uoISuUaIXd

syewJoy indino

syew.oy Indul

Anjiqesadosaiul
10} 1ioddns

uolreljuswnoop

swJojre|d payioddns

S|00) pajelauab
Jo abenbue|
uolejuawa|dwi

abenbue|
uoneyuaws|dwi
UOISI9A

juawdo|anap
juauodwo09/|00}
JO snels

1adojanap

aweN

1CS

Non-functional characteristi

: SegraVis Tools

Figure 1

ou ou ou swelbelp maln| ou sanqune SM3IA [BIBASS
‘SU09I 3pou o/m malA ydelh
sydeif urewop dUBWas ul Sylewyouaq auou auou uolyeulw.a) uolleplifen [gpouw
ajels waisAs Buiwlosuen| Buoayd jppow Buiwiopad, ‘sisAfeue Jred [eanuo ‘Burydayd
Ag sun. wa)sAs| pue suolyewojsuel) Kouaisisuod ‘Buisred ydeih
Bunenwis Agq uonepifen Jopow Bunnoaxa
Aq Bupoayd Aouslsisuod
auou; auou O ISNY ener| ener auou 0] si01etauab apod)
wia1sAs| urewop onuewas Siau 11ad Aue Aue Aue 0}
uonew.ojsues) ydeih suoljewJojsuel) [ppow|
s)nsal auou 19SMOIQ auou JlleWOolNe/UBALIP-pURY ‘813.9SIp slole|nwis
areIpawlalul SMoYs ‘[ensia| ydeib ‘a1019s1p
‘UBALIp-puUeY ‘B1319SIP
auou Pa3123Ip-XeuAS| auou Pa103.IP-XeIuAS| Pa10B.IP-XeIUAS| pa1oBIIp-XeluAs| SJ1011p8 [9poW [BNnSIA
Aue| Aue) Aue) Aue| swaisAs pappaqua Aue surewop
uolrealdde |ejoads|
uone|nwis| dSD urewop| s100]1D1d| waisAs pappaqusa auou S101Ipa [ensIA Jo uonesauas| suoneoljdde aoualayal
pue waisAs uonew.ojsuel) JlUBWAS O}ul Uole|SURY pue yamw
ydeib oy uone|suel Aq Aqg sureyoalels AN
s|apow AN JO uonepifen 10 Buoayd Aoua)sisuod)
uonewlojsuel) $398Y2 AoUd]SISuod| uolewlojsuel) (uoirewlojsuen)| ainjonasenul AN uonewlojsues ydeib| abenbue|sanbiuyosy
ydeib pue JAN Jo Builspow axI- AN ydesb| ydeib) Buyepo Builepow [ensiA|
pue uonewJoysuely ydeih, uanug Alo1s
190 yosuagxIopmAdUBISISUOD IEEIE eqelny NOT140OW 99Y sweN

s|00] sinelbas :sal

euoNoUN) ISVD

CASE functionalities

SegraVis Tools

Figure 2

4.2 Meta CASE functionalities

For each Meta CASE tool, we consider the scope of the tool: For which kinds of modeling
techniques and/or languages is this Meta CASE tool designed? Moreover, the approach for
defining the visual modeling technique/language is interesting. Which one is used?

We characterize Meta CASE tools along the supporting tools offered for each language
definition aspect. Language definition aspects are the syntax definition, simulation and
animation aspects, and model transformation. For each aspect, we distinguish tools to
define this aspect, tools interpreting this definition, tools generated from a definition, and
tools analyzing a definition according to certain properties.

General and Syntax Aspects
e Which kinds of modeling techniques/languages can be described by this tool?

e What are the meta concepts to describe a visual technique or language? If several are
used, please distinguish which one is used for which purpose.

e Is there a reference application for this tool? If yes, the one or two most important
ones are mentioned.

e [s the tool developed for a special application domain?
e Are abstract and/or concrete syntax features defined?
e How are symbols (model elements) and their interrelations defined?

e Which structures based on symbols and relations are allowed, i.e. belong to the visual
language to be defined? Are all structures allowed? Or are they restricted by additional
constraints or a grammar?

e Which kind of concrete layout is possible? Graph-like, diagram-like, icon-based, etc.?

e If the concrete syntax is described, how is the concrete layout defined? Are special
layout algorithms used?

e [s there a visual editor which takes the language description as input and interprets
it such that an editor for the language defined is available? Which features has this
editor? (See CASE tool simulators)

e Is it possible to generate a visual editor for the language defined? Which features has
this editor? (See CASE tool simulators)

o Is parsing of visual structures/models supported? Are certain parts, i.e. texts parsed?

e Is it possible to formulate syntactical constraints? Which kinds of constraints can be
used?

Semantics Aspects
e Is it possible to give an operational semantics for the language to be defined?

e Is it possible to translate language elements to some separate semantical domain?
Which one?

e How is the semantics described?

e [s there a simulator which takes the language description as input and interprets it
such that a simulator for the language defined is available? Which features has this
simulator? (See CASE tool simulators)

Tewwe.f sanoldnnu auou| welBelp sse|D)| saf] SIS SJUreNsU0d 190 SJUreNISUOd[SIUIEIISUOD [BD130BIUAS
XejuAs ‘soueluayul yum| (pa1oLnsal) ‘uonenuelsul ydeio)|
ydeib adA paingune ‘aouelIayul |apowelaw|
auoy| (Yewoy enixal) 1O LN auou| ene] auou Tew.o} [en)xa} 104 ene] Tew.o} Buisred
enixa) Jo4|
ul-bnid asdijo3 se auou auou| auou| EE saA| auou sa| auou 1011pa pajesauabh)
auoy| auoy| auou| auou| auou pa1oalIp Pa1oalIp-XejUAS| auou| pajoalIp-XeluAs|
XejuAs / puey
931} uoneuIguIOd
SlureJsuod)| JBMBIA [9pOW IOy sydeub| WwalsAS| (uoyAd swisiueyodawl so|ni bunipa|sydelb adA) ‘sadA) sydeih uondiiosap nokeT
439 asdijo3 uo| swyLoble 1noAe| u-ing adA) ‘sadAyf uonewuojsuen| ul syurensuod+)| [ensinjuswale| + rewwelb pue| abpa pue spoul adA) ‘sadAy
paseq ‘1aqeydie [ensin| afipa pue apou ydeih |opow-elaw uoljeloN 19qeydfe fensia| abpa pue apou
sainbi4-ggmelq asdijog| Jop3)| MI|-ydesp| aIl-ydesblinoAe| Joy yniobie) paseq-uod|| ydesh EXTRIGES 1N0Ae| 81919U09)
uo paseq ‘aM1|-ydeid /18MaIA [apou [edlydelb + ou ‘paseq-uodl Jo onewwelbelp)
paseq malA 9a1) pajelbalul
Jewwrelb ydeid| swrelbelp 199[qo/sse|9)| ydeib| sweibelp abexoed [STET e/ul Jewwrelb| aInjonus| ERVETIENT S81N10N11S Pamo||e|
XejuAs pue aouelayul adA paingune| pue sse|d JAN| -ersw Ag paulap) ydeib Aq pauyap abexoed 4ON adAy apou
yum ydeib adfy ue Ag pauyap| yum ajqiredwod)| yum ydelb adAy
suolje[al pue S|oquiAs| SeINqLIE ‘SUOIeIJ0SSE) sabpa SUONEIN0SSE) suone|el swisiueyoaw suone|a. saouaiaal leninuwisabpas pue sapouf suoiejal pue sjoquAS|
paingue ‘padAy ‘sjopowl(elaw)/sasse|d) pue sapou| pue sasse|9| pue sjoquiAs| /syuawale [epow| pue sjoquiAs| ‘suoperoosse| paingune ‘padAy

pangune ‘padAy pangune ‘padAif pangune ‘padAif ‘sasse|d
XeJUAs] (439 ul) xejuhs 1oensge| xejuAs joensaqe xejuAs| xejuAs 1oensqe| xejuAs joelisqe) XejuAs 1oensqe) Aue| xejuAs 1oensqe) S91njea) XejuAs|
10®JISOR PUE 8}81IU0D) 10eJISOR /21910U0D)| pue 8)819U0J /81210U09 pue 81810U09|
uonesauah S|apow Jo uonewlojsuel) [ppow| uonewlojsuel)| *sAs awi [eal uone[nwis uonesauah Buussuibusal auou| surewop|
JuUSWUOIIAUS [ensiA| Bunjoayd Aouaisisuod) |apow ‘Buieauibus-al (wsirew.oy huswuoliaua [ensiA| ‘uoneiBajul |00y uolyesidde ejoads
‘uonesBaul 00| 1nw)
sjepowl| 4SO urewop onueWwas s|apow $1001D7d| 0'Z 40N “'SA3Q SIENEEIES densiooq| sweibelp Auanoe|suoneorjdde soualsal
HINT Jo Bulojoeyal ‘sjau ojul uone|suen)| 73d9/INE PUe AN 10| ‘uonoesau]| ‘sjau ad ‘speyoarels
u1ad 01 swelbelp Ananoe| Aq sueyosrels JAN Jo| uonenfeas Anjiqepuadag $S9201d| ‘sleu u1ad
woly uorewojsuen| Buyoayd Aousisisuod “ejewioIny paw ||
|apouw ‘swreiBelp AjAnoe)
‘efewioine ‘sjau 13ad|
uonewlojsuen)] $»323yd Aoualsisuod)| SINSV ‘Uonewlojsuesn)| uoewlojsuel)| uonewuojsuen] sonuewss Joj| Buispow evw| saimonis ydeid) uonewlojsuen| uonewlojsuel)| uoniuiap|
ydeib pamngune padAy J0} uonduosap|yde.b ‘Buiiepowreisw NdA ydeub padAy ydelb| uonewsojsuesn pangune padAy ydeuh) ydeib| abenbue|ioy yoeoidde)
| weibelp) pajualio 193(qo| ydelb ‘xejuAs oy painguie padAy
-AuAnoe pue sajni Builepow e1a||
uonewuoysuel; ydeid
Aue] Aue| (paseq |spowelaw) Aue Aue] suonew.ojsue.) aM-ydeio)| Auelo'z TN ‘0°Z 40N Aue| sanbiuyosysabenbue|
ydeip Burepow payoddns
UM 1IN
10611 YOuS IO CYHLVIN AUZeIBN egelny ENOLY| IN-TAA-AD| d3aous NOT4ON 99V sweN

Adauaisisuo))

s|00] siAeIBaS :s10adse xejuhs pue [esauab — sanifeuonouny ISy LIS

general and syntactical aspects

1e8

Meta-CASE functionalit

SegraVis Tools:

Figure 3

9

e Is it possible to generate a simulator for the language defined? Which features has this
simulator? (See CASE tool simulators)

e Are animated simulations supported?

e If animation is supported, which animation features are available? Continuous move-
ments, color changes, size changes, change of visibilities,...?

e How can the model behaviour be tested? Are test cases generated?

e Is the validation of model behaviour supported? If yes, how can it be validated?

Transformation and Integration Aspects

e If model transformation is supported, which target models or target languages are
possible?

e How is the model transformation described?

e [s there an interpreter which takes a model transformation description as input and
interprets it?

e [s it possible to generate code for a model transformation? In which language?
e Is it possible to animate a model transformation?

e [s it possible to validate a model transformation? If yes, what kinds of validations can
be performed?

e [s it possible to integrate several languages?

e Is there some consistency checking between different models or languages available?

5 Survey on Additional Tools for Visual Modeling Tech-
niques

In the following, two further tools for visual modeling techniques are presented. These tools
are presented by participants of the “Advanced School on Visual Modeling techniques” which
was held in Leicester, September 9-11, 2006.

GROOVE The GROOVEE Tool Set consists of a (graph) Editor and a (graph transfor-
mation) Simulator. Its main purpose is to support the generation of transition systems that
stem from graph production systems. It then allows to perform verification techniques (e.g.
model checking) on these transition systems, in which the states are represented as graphs
taking graph structures as building blocks for the properties to check for. In the future it
is planned to implement partial order reduction techniques as well as abstraction techniques
enabling verification of large (or even infinite) systems.

GROOVE, version 1.4.0, has been developed at the University of Twente by A. Rensink,
H. Kastenberg, and T. Staijen. It is free software (GNU Public License) implemented in Java.
It is documented by papers and example production systems. A separate transformation
engine with API is available. GXL is used as input/output format. This has been tested
using JUnit.

GROOVE can be used as CASE tool for graph transformation. The reference application
is state space exploration/verification. The tool environment comprises a syntax-directed

12gro0ove.sf.net/

10

groove.sf.net/

Aouaisisuo))

99V 10} Se awes auou Syrewyduaq auou JENREDE) auou sisAjeue) uolreulwa) sojweuAp)
|opow ajdwis [eluawaloul ‘syde.b| |opow Jo uoljepljen|
Jo Ajiqeyoeal
‘salouapuadap
pue s)oI3u0d)
Sosed 159} uone|nwis| auou nunc| suoneaydde siny auou nNe| sase? 1sal Jo| SolweuAp|
Jo uonesauab oyl aAnoeIIul Ag uonelauab ou |apouw jo Bunsa]
‘uoneardde ajny ‘suoneoydde
a|ny
auou auou awreb| auou sah sabueyd auou auou Sainjea} uoljewiue
U0} 18U 1ad ISIA /9Z1S/10|09)|
3y} JO uonewiuy| ‘Juswanow
snonupuod
auou auou JIOTE auou sah ag ‘seh auou auou SM3IA Uuoljew|ue
19b.1e] 8y} Ul
S8|NnJ uoie|NwWIs| auou EE SOLIeUddS auou auou| Joye|nwis payesauab
Aq uone|nwis| uolyewue o)
91219sIp
99Yy| $308y2 Aouaisisuod Joj| Jasmolq |apow aweb uaxoy (SgoQq) waisAs, dlyewone dlrewonge auou oewoine| Joyenwis Bunaidiaiul
ul sajns 4N3 [ensin yum| Jo sueaw Aq Buismoig JoNoRIBU JonoRIB JonioRIAU
JREI e IET]] ‘wis 91219s1p) 193[qO d1weuiq| ‘snonupUOd ‘snonupuod ‘91210sIp ‘fensi
/212.9sIp| /212.9sIp ‘[ensi|
WB]SAS| sureibelp| SINSV ERS WIB1SAS| ERS wa)SAS| WB]SAS| ERS Aq
uolrewuojsuel)] AuAnoe se payoads| + uolrewlojsuel)| uonewlojsues| uonewlojsuel) uolewiojsuel) uoljewuojsuel)| uonewlojsues)l uonewlojsuen uondudssp sonuewss
ydeiblare sy0ayd Aousisisuod ydelh ydeib yde.b| ydelh ydelb ydeih ydelb
Aue - NSV Slau 1ad Aue Aue - Aue - urewop [esnuewss
saA| syoayo Aoualsisuod Joy saA ou| Saf| saA saA saA saA| sonuewss [euonelado
18611 YouagiIiom| CVHLVIN AU3eIBN egelny ENOLV]| d3aousy NOT40W 99V aweN

S|00] SIAelBas :s1oadse soluewas — Sallifeuooun) ISV 19N

semantical aspects

1e8

Meta-CASE functionalit

SegraVis Tools

Figure 4

11

auou sah auou auou auou| saA sabenbue|/sjopow 1UaIa4IP|
usamiaq Buiyoayd Aouaisisuod|
sjlaqeydpe sah uonesbajul| urewop onuewsas s|lopow-elaw slaqeydpe ou sabenbue| 1ualaip Jo uoneibalul
ay) bunelibajul |apowrelaw Aq uowwod [esanas ‘sak| ay) Buneibajul
Aq ‘saf| e ybnouy Aq ‘saf|
uoneuiwdy Arened ou Syrewyouaq OoN ou| sisAjeue uollew.ojsuell Jo uolepifea
‘sajouapuadap [eluswaloul
pue s)oIjuod
ou| Arened ou aweb uay oy ou ou| ou uollewlojsuel] Jo uolrew ue)
Jo sueaw Aq
ener) ou| BAB(10 ou| ou eAer) uolewIojSuRI] [Bpow palelauab)
S| saA| (uonelauab| sjapow 18U 1Y EEN siageydpe ou uolewJojsuel) [apow palaidiaiul
9p09 ose) SaA| ay) Buneibayul
Aq ‘sah]
uoneuwlojsuel) waisAs| uonewuoysuen| uonewsoysueny uonewlojsuenfiaaysajlis TNX| uolewLIojsue.) uo3d1I0Sap uolrew.ojsued]|
ydeib uolnewojsuel) |apowl ydeuh ydeib ydeuh| ydeib
Aue) pauyap-1asn Aue| Siau 1ad Auy| Siau 1ad X2 sabenbue|/sjppow 196.e)
pawiL [9A3|-ybIH J4OWN ‘0’2 4O
18b11| youagyiomAousisisuo) cellelIN AUFBISN EINOLY a3aouen NOTd40N QweN

$]100] SIAeIBaS :s10adse uoleliBalul pue uoewojsuel — Sall[euOoIdUNS SVD IO

transformation and integration aspects

ties

i

Meta-CASE functional

SegraVis Tools

Figure 5

12

editor, a discrete, hand-driven or automatic simulator which keeps track of intermediate
results, several views on state graph, rules, and transition system, as well as a tool for model
transformation.

Using GROOVE as MetaCASE tool, it is especially useful to define the abstract syntax
and semantics of object-oriented systems by graph transformation. An interpreting simulator
is available which is visual, discrete, and hand-driven or automatic. The exploration of
the state space is animated by color changes. The model behaviour can be tested by rule
applications and validated by a simple model checker.

TEMA The TEMA (Test Modelling using Action words) tool is created for model-based
testing Symbian S60 devices. The tool contains a visual editor for creating test models and
routines for running the tests. The test models are composed of model components which
are presented as LSTSs, that is, labeled transition systems (LTSs) where also states can
be labelled. Composing a test model means here a process algebraic parallel composition
of model components which have gone through a set of small transformations. Parallel
composition synchronisations, transformations and the specified form of LSTS have been
tuned to support creating models especially for Symbian testing.

TEMA has been developed by Antti Kervinen at the Tampere University of Technology
and is a tool in a very early state which will be open source later. It is implemented in Java
and Python and runs on Linux, MacOS, Unix, Windows for modelling. The test adapter
for Symbian devices is Windows only. TEMA can interoperate with Mercury QTP (test
adapter), Tampere Verification Tool and understands LSTS and CSV as input formats. The
output is just text.

TEMA is a CASE tool for LSTS and restricted process algebras and is applied for model-
based testing tools. A special application domain is the testing of Symbian S60 devices.
The tool has visual editors where LTS/LSTS may be drawn free-hand, hand-driven and
automatic simulators. The models can be checked concerning sanity checks. Moreover,
external verification tools can be used.

6 Conclusion

In this contribution, we presented CASE and Meta CASE tools for visual modeling tech-
niques and characterized them according to a criteria catalogue. The main purpose of this
characterization is to get an overview on the functionalities of such kind of tools and to find
out which features are already covered by tools.

Although CASE functionalities are discussed within this paper, the main focus lies on
MetaCASE functionalities. In a first conclusion, we can say that the syntax definition as well
as model transformation aspects are quite well captured by the tools presented. These VL
aspects are defined based on MOF and graph transformation. Interpreters and generators
are available to provide the user of a visual modeling technique with visual editors and tool
support for model transformation. Moreover, several analysis and verification techniques for
VL’s are available. Modularity, refinement and integration is not yet covered to such extent
by the tools considered.

A characterization and comparison with other CASE and Meta-CASE tools is left to
future work.

13

Acknowledgement

I would like to thank the developers of all tools presented in this paper for their help in tool
characterization.

References

1]
2]

L. Baresi and M. Pezze. Formal interpreters for diagram notations. ACM Transactions
on Software Engineering and Methodology - ACM Press, 14(1):42 — 84, January 2005.

K. Czarnecki and S. Helsen. Classification of model transformation approaches. In On-
line Proc. of the 2nd Workshop on Generative Techniques in the context of Model-Driven
Architecture, Anaheim, October 2003.

T. Khne, M. Girschick, and F. Klar. Tool support for architecture stratification. In H.C.
Mayr and R. Breu, editors, GI (pub.), Proceedings of the Modellierung 2006, Innsbruck,
Tirol, Austria, volume 82 of LNI, pages 213-222, 2006.

T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. In Proc. International
Workshop on Graph and Model Transformation (GraMoT’05), number 152 in Electronic
Notes in Theoretical Computer Science, Tallinn, Estonia, 2006. Elsevier Science.

Object Management Group (OMG). OMG’s MetaObjectFacility, 2006. URL: http:
//www . omg . org/mofl

Object Management Group (OMG). Unified Modeling Language - UML Resource Page,
2006. URL: http://www.uml.org,.

Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints.
PhD thesis, Universitat Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.
G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

G. Taentzer. A First Comparison of SegraVis Tools. EASST Newsletter, 10:12-23, 2005.

Paul Ziemann, Karsten Holscher, and Martin Gogolla. From UML Models to Graph
Transformation Systems. In Mark Minas, editor, Proceedings of the Workshop on Visual
Languages and Formal Methods (VLFM 2004), volume 127(4) of FElectronic Notes in
Theoretical Computer Science, pages 17-33. Elsevier Science, 2005.

14

http://www.omg.org/mof
http://www.omg.org/mof
http://www.uml.org

	Introduction
	Survey on SegraVis Tools
	Non-functional characteristics
	Functional characteristics
	CASE functionalities
	Meta CASE functionalities

	Survey on Additional Tools for Visual Modeling Techniques
	Conclusion

