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Abstract. Despite the increasing relevance of model transformation
techniques in model-driven software development, research is mainly con-
ducted to the specification and the automation of such transformations.
However, since the transformations themselves may also contain concep-
tual flaws, it is essential to formally analyze them prior to executing
them on user models. In the current paper, we focus on a central val-
idation problem of trusted model transformations, namely, termination
and propose a Petri net based analysis method that provides a sufficient
criterion for the termination problem of model transformations captured
by graph transformation systems.

Keywords: graph transformation, termination, model transformation,
Petri nets.

1 Introduction

Many researchers and practitioners have recently revealed that model driven
software development relies not only on the precise definition of modeling lan-
guages taken from different domains, but also on the unambiguous specification
of transformations between these languages. To provide a standardized support
for capturing queries, views and transformations (QVT) between modeling lan-
guages defined by their standard MOF metamodels, the Object Management
Group (OMG) is soon to issue QVT [17] as a standard. QVT provides a declar-
ative rule-based, model transformation language where control structures are
restricted to embedding transformation rules into each other.

Graph transformation (GT) [8,20] has been applied successfully to many
model transformation (MT) problems. Many success stories were in the field
of model analysis which aim at projecting high-level UML models into mathe-
matical domains by model transformations to carry out formal analysis.
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As revealed in a recent study [14], graph transformation and QVT-like declar-
ative techniques show a close correspondence. A first precise formulation of this
correspondence has been studied in [19]. As a consequence the theoretical back-
ground of graph transformation is expected to provide useful results for QVT.

Problem statement. A core problem, which is very vaguely addressed by QVT,
is related to the correctness of model transformations, namely, to guarantee that
certain semantic properties hold for a trusted model transformations. For in-
stance, when transforming UML models into mathematical domains, the results
of a formal analysis can be invalidated by erroneous model transformations as
the systems engineers cannot distinguish whether an error is in the design or in
the transformation. In case of QVT, it is possible that the embedded transforma-
tion rules interfere with each other and thus they may cause semantic problems,
which is not acceptable for trusted model transformations.

Most typical correctness properties of a trusted model transformation are ter-
mination, uniqueness (confluence) and behaviour preservation. In [11], we pro-
posed a set of sufficient criteria that guarantees the termination of model trans-
formations specified by so-called layered graph transformation systems (GTS).
While this technique was applicable to various practical model transformation
problems, further experiments have revealed that these sufficient criteria exclude
model transformations where rules are causally dependent on themselves.

Objectives and Approach. In the current paper, we provide a Petri Net based
technique for the termination analysis of model transformations specified by
GTSs. As termination is undecidable for graph grammars in general [18], we
propose a sufficient criterion, which either proves that a GTS is terminating, or
it yields a “maybe nonterminating” (do not know) answer.

The essence of our technique is to derive a simple Petri net which simulates the
original GTS by abstracting from the structure of instance models (graphs) and
only counting the number of elements of a certain type. If we manage to prove
by algebraic techniques that the Petri net runs out of tokens in finitely many
steps regardless of the initial marking, then we can conclude that the original
GTS is terminating due to simulation. In order to handle graph transformation
systems with negative application conditions as well, we introduce the notions
of forbidden and permission patterns, and overapproximate how different rules
influence each other when generating permissions.

As the derived Petri net model is of managable size (comparable to the number
of elements in the metamodels), our technique can yield positive results for
judging the termination of various model transformation problems captured by
graph transformation techniques.

Structure of the paper.The rest of the paper is organized as follows: Sec. 2 presents
a running example where we specify (with graph transformation rules) a trans-
formation from UML class diagrams to relational databases. Sec. 3 provides an
overview on graph transformation systems and Place / Transition (P/T) nets.
Sec. 4 proposes a P/T net abstraction of GTS with rules having negative appli-
cation conditions (NAC). Sec. 5 presents sufficient conditions for termination of
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GTSs by solving algebraic inequalities. Sec. 6 discusses related work and finally
Sec. 7 presents our conclusions and proposals for future work.

2 Motivating Example: The Object-Relational Mapping

As the motivating example of the current paper, we map simple UML class dia-
grams into relational database tables by using one of the standard solutions. This
transformation problem (with several variations) is frequently used as a model
transformation benchmark of high practical relevance [15].

The source and target languages (UML and relational databases, respectively)
are captured by their corresponding metamodels in Fig. 1. In Sec. 3.1, metamodels
will be represented formally by means of type graphs [9], while instance models will
be graphs typed over a type graph.

UML class diagrams in our pa-

Fig. 1. Metamodels (type graphs): Source, ref-
erence, target

per consist of classes arranged into
an inheritance hierarchy (by parent
edges).Classes haveattributes (at-
trs), which are typed over classes
(type). Directed associations are
leading from a source (src) class to
a destination (dst) class.

Relational databases consist of
tables, which are composed of
columns (tcols). Each table has a
single primary key column (pkey).
Foreign key (FKey) constraints
can be assigned to tables (fkeys). A foreign key refers to certain columns (cref )
of a table (tref ), and it is related to the columns kcols of (local) referencing table.

These metamodels (adapted from [15]) are extended by a reference metamodel
to interconnect the elements of the source and the target language. This way it
defines the main guidelines of (this variant of) the object-relational mapping itself,
which can be summarized as follows:

– Each top-level UML class (i.e. a top-most class in the inheritance tree) is pro-
jected into a database table. Two additional columns are derived automati-
cally for each top-level class: one for storing a unique identifier (primary key),
and one for storing the type information of instances.

– Each attribute of a UML class will appear as columns in the table related to
the top-level ancestor of the class. For the sake of simplicity, the type of an at-
tribute is restricted to user-defined classes. The structural consistency of valid
object instances in columns is maintained by foreign key constraints.

– Each UML association is projected into a table with two columns pointing to
the tables related to the source and the target classes of the association by
foreign key constraints.
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3 Introduction to Graph Transformation and Petri Nets

Now we provide a brief overview on the formal background of graph transforma-
tion and Petri nets. Only those concepts will be introduced which are essential for
presenting our main results in Sec. 4 and 5.

3.1 Typed Graph Transformation

Type and Instance Graphs. The metamodels of different modeling languages are
frequently formalized as type graphs and instance models are typed over this type
graph. The traditional instance-of relationship between metamodels and models
is captured formally by a typing morphism.

A graph G = (N, E, src, trg) is a 4-tuple with a set N of nodes, a set E of edges,
a source and a target function src, trg : E → N . A type graph TG is an ordinary
graph. An instance graph G is typed over TG by a typing morphism type : G →
TG. Let card(G, x) denote the cardinality (i.e. the number of graph objects) of a
type x ∈ TG in graph G. Formally, card(G, x)= |{n | n ∈ N ∪ E ∧ type(n)= x}|.

For the current paper, we assume that there is a unique edge of a certain type
between two nodes, i.e., if src(e1) = src(e2) ∧ trg(e1) = trg(e2) ∧ type(e1) =
type(t2) ⇒ e1 = e2, which simplifies the proofs of our theorems.

Graph Transformation. Graph transformation (GT) [8] provides a rule-based ma-
nipulation of graph models. A graph transformation rule r = (L l←− K

r−→ R)
typed over a type graph TG is given by triple where L (left-hand side, LHS), K
(context) and R (right-hand side, RHS) graphs are typed over TG and graph mor-
phisms l, r are injective and assumed to be type preserving.

The negative application conditions (NACs) of a GT rule are a (potentially
empty) set of pairs (N, n) with N being a graph also typed over TG and n : L → N
being an injective graph morphism. A GT rule with NACs is denoted shortly as
r = (L l←− K

r−→ R, {L
ni−→ N i}) (i = 1 . . . k). Moreover, we assume that no

rules exist where all L and N are empty.

Application of a Rule. The application of a rule to a host model graph G alters
the model graph by replacing the pattern defined by L with the pattern defined
by R. This is performed by (i) finding an injective matching m : L → G of the
L pattern in model graph G; (ii) checking the negative application conditions N
which prohibit the presence of certain model elements, i.e. for each NAC n : L →
N of a rule no injective graph morphism q : N → G exists with m = q ◦ n; (iii)
removing a part of the model graph M that can be mapped to L but not to R
yielding an intermediate graph D; (iv) adding new elements to the intermediate
graph D which exist in R but not in L yielding the derived graph H . A GT step
is denoted formally as G

r,m
=⇒ H , where r and m denote the applied rule and the

matching along which the rule was applied, respectively. In the paper, we follow
the Double Pushout Approach [8].
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Fig. 2. Model transformation from UML to relational databases

Example 1. A sample graph transformation rule calculating the transitive closure
of the parent relation is depicted in the top rule (parentClosureR) of Fig. 2. The rule
prescribes that if class CP is parent of class CM (i.e. there is a parent edges between
them), and CM is a parent of class CC , but there is no parent edge from CC to CP,
then such an edge should be created.

For a more compact presentation of the rules, we abbreviate the L, N and R graphs
of a rule into one, and we only mark the (images of) graph elements to be removed
(del), or created (new). We assume that all elements in R marked as new are im-
plicitly present in the negative application condition N as well. In case of rule
class2TableR we use crossed lines to denote the second negative application con-
dition (that is not part of R).

Example 2. The object-relational mapping is captured by the set of graph trans-
formation rules in Fig. 2. The entire transformation starts with a preprocessing
phase when the transitive closure of parent relations is calculated (parentClosureR),
and then all attributes and associations are lifted up to the top-level
classes in the inheritance (parent) hierarchy (rules liftXYZ). Then the main model



Termination Analysis of Model Transformations by Petri Nets 265

transformation (Fig. 2) proceeds as described in Sec. 2 by transforming classes
into tables (class2tableR), associations into tables (assoc2tableR), attributes into
columns (attr2columnR), attribute types and destination class of associations into
foreign key constraints (attr2fkeyR and assoc2fkeyR).

A graph transformation system GTS = (R, TG) consists of a type graph TG and a
finite set R of graph transformation rules typed over TG. A graph grammar GG =
(GTS, G0) consists of a graph transformation system GTS = (R, TG) and a so-
called start (model) graph G0 typed over TG.

The state space Sem(GG) generated by a graph grammar GG = (GTS, G0) is
defined as a graph where nodes are model graphs, and edges are graph transforma-
tion steps G

r,m
=⇒ H such that the source and target nodes of the edge are graphs

G and H , respectively. Starting from G0 the state space (i.e. the reachable model
graphs) of the GG is represented taking into account all applicable rules from a
given model graph for all possible matchings.

A graph grammar GG = (G0, GTS) is terminating if there are no infinite
sequences of rule applications starting from G0. A graph transformation system
GTS = (R, TG) is called terminating if for all G0, the corresponding graph gram-
mar GG = (G0, GTS) is terminating.

3.2 Place/Transition Nets

In the current section we give a short introduction into the theory of Place/
Transition nets based on [16].

A Place/Transition net (or shortly P/T net) is a 4-tuple PN = (P, T, E, w)
where P is a set of places (represented graphically as circles), T is a set of transi-
tions (represented as horizontal bars), E ⊆ (P × T ) ∪ (T × P ) is the set of arcs
(where no arcs connect two places or two transitions), and the weight function
w : E → N

+ maps arcs to positive integers.
Placesmay contain tokens.The distribution of tokens at different places is called

a marking M : P → N, which maps places to non-negative integers. The initial
marking is denoted as M0.

The token distribution can be changed in the net by firing transitions. A transi-
tion t is enabled (i.e. it may fire), if each of its input places contain at least as many
tokens as it is specified by the weight function. The firing of an enabled transition
t removes a w(p, t) amount of tokens from the input places, and w(t, p) tokens are
produced on each output place p. As a result, the marking M changes to M ′ (de-
noted as M

t=⇒ M ′) according to ∀p ∈ P : M ′(p) = M(p) − w(p, t) + w(t, p).
The incidence matrix W of a (finite) net describes the net token flow (of the

P/T net) when firing a transition. Mathematically, W is a |P | × |T |–dimensional
matrix of non-negative integers N such that wij = w(tj , pi) − w(pi, tj), where
1 ≤ i ≤ |P |, 1 ≤ j ≤ |T |.

After firing a transition t in marking M , the result markingM ′ can be computed
with the incidence matrix: M ′ = M + W · et, where et is a |T |-dimensional unit
vector, where the t-th component is 1 and the others are 0.



266 D. Varró et al.

A (transition) firing sequence s = 〈t1, t2, . . . , 〉 is a sequence of transition firings
starting from state M0 such that M0

t1=⇒ M1,
t2=⇒ . . . , i.e. for all 1 ≤ j tj is enabled

in Mj−1 and Mj is yielded by the firing of tj in Mj−1.
The marking of the net after executing the first k steps of the firing sequence s

can be calculated by the state equation: Mk = M0 + W · σ, where σ is the transi-
tion occurrence vector or Parikh–vector of the trajectory s counting the number
of occurrences of individual transitions in the firing sequence.

4 A Petri Net Abstraction of Graph Transformation

4.1 Definition of the Core Abstraction

Firstwemapagraphtransformationsystemwithoutnegativeapplication conditions
into a Petri net (which is called cardinality (P/T) net in the sequel) by only keeping
track of the number of objects in the instance graph (separately for each node and
edge in the type graph) but abstracting from the structure of the instance graph.

Informally speaking, since the LHS of a GT rule requires the presence of nodes
and edges of certain types, the derived transition removes tokens from all the places
storing the instances of the corresponding types. Furthermore, the RHS of a GT
rule guarantees the presence of nodes and edges of certain types, thus the derived
transition generates tokens for the places storing the instances of such types. Later
we show that this is a proper abstraction, i.e. the derived P/T net simulates the
original GTS, i.e. when a GT rule is applicable, the corresponding transition in
the P/T net can be fired as well.

This mapping F(GTS) = (FTG, FG, FR) → PN (where GTS = (R, TG) and
PN = (P, T, E, w) with initial marking M0) is formally defined as follows:

– FTG : TG → P : Types into places. For each node and edge y ∈ NTG ∪ ETG

in the type graph TG, a corresponding place py = F(y) is defined in the car-
dinality P/T net.

– FG : G → M0: Instances into tokens. For each node and edge x ∈ NG ∪ EG

in an instance graph G with type y = type(x), a token is generated in the
corresponding marking MG = F(G) of the target P/T net. Formally, for all
places py = F(y), the marking of the net is defined as MG(py) = card(G, y).

– FR : R → (T, E, w): Rules into transitions. For each rule r in the graph trans-
formation system GTS, a transition tr = F(r) is generated in the cardinality
P/T net such that

• Left-hand side: If there is a graph object x in L with y = type(x), then an
incoming arc (py, tr) is generated in the P/T net where py = F(y) and the
weight of the arc w(py , tr) is equal to the number of graph objects in L of
the same type y. Formally, if ∀x, y : x ∈ L ∧ y = type(x) ∧ F(y) = py ⇒
(py, tr) ∈ E ∧ w(py, tr) = card(L, y).

• Right-hand side: If there is a graph object x in R with y = type(x), then
an outgoing arc (tr, p) is generated in the P/T net where py = F(y) and
the weight of the arc w(tr, py) is equal to the number of graph objects in
R of the same type y. Formally, if ∀x, y : x ∈ R ∧ y = type(x) ∧ F(y) =
py ⇒ (tr, py) ∈ E ∧ w(tr, py) = card(R, y).
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Fig. 3. Transition corresponding to rule
liftAssocDstR

In Fig. 3 rule liftAssocDstR of the ex-
ample in Fig. 2 is shown on the left to-
gether with the corresponding transition
liftAssocDstR (on the right) of the P/T net
abstraction of the example. Note that in-
dices of F() will be omitted for simplicity.

As the GT rule liftAssocDstR contains
two Class nodes, one Association node, one
parent edge and one dst edge, the corre-

sponding transition is enabled if the corresponding type places (with identical la-
bels) contain at least 2, 1, 1, and 1 tokens, respectively. Since the application of
the rule preserves all items and creates one dst edge, the firing of transition liftAs-
socDstR puts 2, 1, 1, and 2 tokens to these places, respectively.

Note, however, that the transition of Fig. 3 is always enabled and thus, it would
directly cause non-termination. Therefore, we now extend our abstraction tech-
nique to handle graph transformation rules with negative application conditions
as well, which are frequently used in model transformation problems.

4.2 Extensions for Negative Conditions

Permission Places. In order to cope with NACs, the P/T net is extended with so-
called permission places to restrict the firing of a transition. We add one permission
place for each NAC in the GTS, and the idea of a permission place is to count how
many times the GT rule can be applied to the current instance graph (such that
the corresponding NAC does not violate these matchings).

– Start graph. The initial marking of permission places shall enable the firing of
a transition as many times as the corresponding GT rule is applicable to the
start graph by giving a permission token.

– Removing permissions. If a new matching of some NAC Ni of a GT rule r is
generated or an existing matching of the LHS of the same rule r is destroyed by
the application of some GT rule r′ then one or more tokens should be removed
from the permission place corresponding to N i

r.
– Creating permissions. If an existing matching of the NAC of a GT rule r is

destroyed or a new matching of the LHS of the same rule r is generated by the
application of some GT rule r′ then one or more tokens should be generated
to the permission place corresponding to N i

r.

Unfortunately, the exact number of tokens created for or removed from a per-
mission place depends on the actual graph structure. Therefore, we cannot derive
a constant weight a priori for the corresponding arcs in the P/T net; instead we
write w(G) on such arcs to denote that the weight of the arc is dependent on graph
G. However, we know that such an arc weight w(G) is finite, i.e. we can only gen-
erate and remove a finite number of new permissions for any permission place.

Overapproximation for Permissions. Therefore, we need to define an overapproxi-
mation of the potential number of rule applications, which still simulates the GTS,
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yet it is precise enough to detect termination for a certain class of model transfor-
mation problems.

– In our proposal, we only remove one token from a permission place when it is
absolutely guaranteed (by analyzing the original GT rule) that a permission
should be destroyed each time the rule is applied. In case of GT rules with NAC,
such a situation is when a GT rule cannot be applied on the same matching
twice due to a NAC.

– In case of generating a permission, we should consider all possible values for
the arc weight wi(G), thus we create a new variable ci which runs over positive
integers.

Permission and Forbidden Patterns. An initial idea for granting permissions is
to consider the causalities of GT rules, i.e. when a rule generates a new matching
for another rule, a new permission is generated as well. However, this solution is
unable to handle cases when GT rules are generating a bounded number of new
matchings for themselves (i.e., when a rule is causally dependent on itself).

For instance, each application of rule liftAssocDstR (in Fig. 3) generates a new
dst, thus a new matching for itself, which seems to be a direct cause for non-
termination. On the other hand, if the meaning of a permission is related to the
number of Class-Association pairs not connected by a dst edge, we notice that this
number is strictly decreasing, thus no new permission is granted by GT rule liftAs-
socDstR for itself. This insight is captured formally by forbidden and permission
patterns.

Definition 1 (Forbidden and permission pattern). Let GTS = (R, TG) be
a graph transformation system . A forbidden pattern fpi

r is defined for each NAC
N i

r of rule r as the smallest subgraph of N i
r that contains N i

r \Lr (also called as the
context of ni : Lr → N i

r).
The permission pattern ppi

r (of the same NAC N i
r) is defined as smallest sub-

graph of fpi
r that contains N i

r \ Lr (also called as the boundary of ni
r : Lr → N i

r),
which is defined formally as fpi

r \ (N i
r \ Lr).

Informally, the permission pattern can be interpreted as an LHS pattern having
a NAC with the forbidden pattern. The exact number of permissions for a rule is
calculated as the number of matchings of the permission pattern having the for-
bidden pattern as a NAC.

(a) Rule liftAssocDstR (b) Rule attr2fkeyR

Fig. 4. Forbidden and permission patterns
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Example 3. The concepts of forbidden and permission patterns are demonstrated
in Fig. 4(a). The forbidden pattern (FP) of rule liftAssocDstR contains a dst edge
leading from Association A to Class CP. Here N \ L contains the single dst edge
while the two nodes are added to guarantee that the forbidden pattern forms a
graph. In order to obtain the permission pattern (PP), we simply remove this dst
edge from the forbidden pattern.

Definition of cardinality P/T with permission places. The cardinality P/T net
with permission places of GTS is a PN = (P, T, E, w) derived by the mapping
Fpp(GTS) by extending F(GTS) in the following way:

– Variables as weight functions. We extend the weight function of a P/T net to
w : E → N

+ ∪ V where V is a set of variables ranging over N
+.

– NACs into permission places. For each NAC N i of a rule r a corresponding
permission place prNi = Fpp(rNi) is defined in the cardinality net.

– Matchings of permission patterns into tokens (initial marking). For each NAC
N i of a rule r as many tokens are generated in the corresponding permission
place as the number of injective matchings m of permission pattern ppi

r in the
instance graph G which satisfies the derived NAC ppi

r → fpi
r, (i.e., there is no

injective matching of the forbidden pattern fpi
r to G along m).

– NACs into pre arcs. For each rule r with NACs N1, . . . , Nk, if there is an injec-
tive morphism ki : N i → R compatible with r for some NAC N i (informally,
everything included in the NAC N i exists or it is created by the RHS), an
incoming arc (pr

Ni
, tr) is generated in the P/T net with weight 1.

– Rule actions into post arcs. For each pair of rules r = (Lr
l←− Kr

r−→ Rr) with
NACs N1, . . . , Nk and r′ = (L′

r
l←− K ′

r
r−→ R′

r), an outgoing arc (tr′ , pr
Ni

)
(i : 1 ≤ i ≤ k) is generated in the P/T net (i.e. from the transition of rule r′

to the permission place of rNi) with a variable arc weight vr′,r
Ni

if
1. at least one graph object o is deleted by r′ (from the forbidden pattern

fpi
r of r) such that there exists a graph object o′ ∈ N i \Lr, and type(o) =

type(o′) or
2. at least one graph object o is created by r′ such that there exists a graph

object o′ ∈ ppi
r, and type(o) = type(o′).

Informally, instead of regarding the causality between two rules based upon the
RHS of rule r′ and the LHS of r, we define causality between the effects of a rule
r′ and the permission pattern of r.

Furthermore, in order to overapproximate the graph dependent arc weights
w(G), we introduce variables as weights for such arcs. As a consequence, for each
step of the P/T net, we can substitute the variables with proper values to sim-
ulate the original GTS in a step-wise way. In order to prove termination later in
Sec. 5, we will show that any substitution of these variables fulfill certain algebraic
properties.

The incidence matrix of the P/T net abstraction of GTS with NACs is denoted
as W (v), which notation emphasizes that W contains variables at locations where
new permissions are generated for a rule.
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Fig. 5. Incidence matrix of the P/T net abstraction

The incidence matrix of the example GTS is given in Fig. 5. The places
(columns) refer to the type places corresponding to the type graph of Fig. 1, while
transitions (rows) refer to corresponding rules of Fig. 2. The right-most columns
of the matrix denote permission places. Note that the incidence matrix is indepen-
dent of the initial marking of the cardinality P/T net, thus our termination result
is valid for any initial marking.

It is worth pointing out that the proposed abstraction highly relies on the fact
that a RHS contains at least one of its NACs. Note that this is typical for model
transformation problems where NACs are frequently used to prevent the applica-
tion of a rule multiple times on the same matching.

Example 4 (Cardinality P/T net with permission patterns). Rule parentClosureR
generates new parent edges, which are required for the matching of rule liftAssocD-
stR (see Fig. 2), thus the two rules are causally dependent. However, no new per-
missions are generated for the latter, since rule parentClosureR should remove a dst
edge (see the forbidden pattern) or create new Class or Association nodes (see the
permission pattern) for a new permission to be generated (see the permission and
forbidden patterns in Fig. 4(a)).

On the other hand, rule class2tableR generates new permissions for rule
attr2fkeyR, since the tables created by the former are present in the permission
pattern of the latter (which consists of tables T , TT and columns C1 and C2 , see
Fig. 4(b)). Consequently, a variable v1 is used as the weight of the corresponding
arc leading from the transition of class2table to the permission place of attr2fkeyR.

5 Termination Analysis of Graph Transformation

Now we propose a termination analysis for GTS using a generalization of non-
repetitiveness results from P/T nets [16].

A P/T net is partially repetitive if there exists a marking M0 and a firing se-
quence s from M0 such that some transition occurs infinitely many times in s.
Furthermore, a main result from P/T net theory states that a P/T net with the
incidence matrix W is partially repetitive if and only if there exists a Parikh–vector
σ ≥ 0, σ �= 0 such that WT · σ ≥ 0. As a consequence, if a P/T net is not partially
repetitive (i.e., no Parikh–vector σ ≥ 0, σ �= 0 exists that satisfies WT · σ ≥ 0),
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then only finite firing sequences exist from any intial marking M0, which proves
termination.

Our generalization lies in the fact we do not require the existence of the inci-
dence matrix W . Instead we state that if sequences of state vectors fulfill the con-
dition that at least one component of the state vector is decreasing (wrt. each pre-
vious state vector in the sequence) in each step it guarantees that the 0 state is
reached in finite steps. Our reason for this generalization is that W may contain
variables at permission places.

Theorem 1. If for all infinite sequences {Mi} = M0, M1, . . . of n-dimensional
(state) vectors of nonnegative integer values with Mj − Mj−1 < ∞ for all j

(1) ∀i, ∀j : j > i, Mi �≡ 0 ⇒ ∃k : Mj [k] − Mi[k] < 0, and

(2) ∀i, ∀j : j > i, Mi ≡ 0 ⇒ Mj ≡ 0

then M ≡ 0 in finitelymany steps, i.e. ∃s : Ms ≡ 0 (where Mj[k] denote component
k in vector Mj).

Then, we claim that mapping F() is a proper abstraction in the sense that the
derived P/T net without permission places simulates the original GTS . In other
terms, whenever a rewriting step is executed in the GTS on an instance graph, then
the corresponding transition can always be fired in the corresponding marking in
the P/T net, furthermore, the result marking is an abstraction of the result graph.

Theorem 2 (Cardinality P/T net simulates GTS). Let GTS = (R, TG) be
a graph transformation system and PN = (P, T, E, w) be a cardinality P/T net
derived by the mapping F(GTS). Furthermore, let G, H be instance graphs typed
over TG. Then PN simulates GTS, formally

∀G, H, r, o : (G
r,o
=⇒ H) ⇒ (MG

tr=⇒ MH),

where F(G) = MG, F(H) = MH, and F(r) = tr.

Finally, as a termination “oracle”, we solve quadratic inequalites based on the in-
cidence matrix of the P/T net with variables as defined in Sec. 4.1-4.2. If there
are no solutions for the inequality for any evaluation of variables in the incidence
matrix, we state that the original GTS is terminating.

Theorem 3 (Termination). Let W (v) be the incidence matrix of a cardinality
P/T net PN = Fpp(GTS) derived as the abstraction of a GTS.

If ∃σ∃v W (v) · σ ≥ 0 has no solutions with v ≥ 1, σ ≥ 0, σ �= 0 (thus
∀σ∀v ∃k : (W (v) · σ)[k] < 0), then GTS is terminating.

In order to show that the quadratic inequality W (v) · σ ≥ 0 has no solutions for
proving the termination of GTSs with negative application conditions, we used
a symbolic optimization toolkit (GAMS [12]) which supports mixed integer non-
linear programming.
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6 Related Work

Relation of Graph Transformation and Petri Nets. The main idea of this paper
is to analyze graph transformation systems via Petri nets. In fact, there is a long
tradition concerning the relationship of both areas. The basic observation is that
a P/T net is essentially a rewriting system on multisets, which allows to encode
the firing of P/T nets as a direct graph transformation in the Double Pushout ap-
proach using discrete graphs and empty interfaces for the productions only (see
[7]). Taking into account general graphs and nonempty interfaces graph transfor-
mation systems are closer to some generalizations of Petri nets, like contextual
nets. This relationship has been used in [2] to model concurrent computations of
graph grammars.

Vice versa the existence of powerful analysis techniques for P/T nets motivates
to simulate graph transformation by P/T nets [3], which allows to conclude cor-
rectness properties of graph grammars from properties of corresponding P/T nets.
The main novelty of this paper wrt. [3] (and subsequent papers of the authors) is
that (i) we take into account also negative application conditions of graph trans-
formations and (ii) the size of the derived P/T is dependent on the type graph and
not to the instance graph. The price we have to pay for a more efficient termination
analysis is that our P/T net can be too abstract to verify all the safety properties
investigated in [3].

Termination of Graph Transformation Systems. Termination of graph transfor-
mation systems is undecidable in general [18], but several approaches have been
considered to restrict a graph transformation system such that termination can
be shown. The classical approach of proving termination is to construct a mono-
tone function that measures graph properties, and to show that the value of such a
function decreases with every rule application. Concrete criteria such as the num-
ber of nodes and edges of certain types have been considered by Aßman in [1].
However, he sticks to these concrete criteria, while Bottoni et.al. [5] developed a
general approach to termination based on measurement functions.

With respect to termination for graph transformation systems, the currentwork
generalizes and formalizes the work begun at [13]. This, in fact, is an extension of
the layering conditions for deleting grammars proposed in [6], which were used
for parsing. A main advantage of our approach with respect to the termination
requirements of this parsing algorithm is that we do not require to partition the
rules (and the alphabet) into layers.

As pointed out already in the introduction, we have presented termination cri-
teria for graph transformation systems in [11], which allow to prove termination
of several practical relevant model transformations. However these criteria are not
applicable to model transformations where rules are causally dependent on them-
selves (e.g. transitive closure) like our motivating example. Since each layer of [11]
can be treated separately by our current techniques, furthermore, the termination
criteria proposed in [11] imposes a special structure on the derived incidence ma-
trix of the P/T net, it is possible to show that our termination analysis technique
based on P/T nets subsumes our former results in [11].
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7 Conclusion

In this paper, we have presented a termination analysis technique for model trans-
formations expressed as graph transformation systems using an abstraction into
Petri nets. This way, the termination problem of (a special class of) graph trans-
formation systems can be proved by its Petri net abstraction using algebraic tech-
niques. Since the termination of graph transformation systems is undecidable in
general, our approach yields a sufficient criterion: either it proves that a GTS is
terminating, or gives a “do not know” answer.

We believe that our results can also be useful for proving the termination of
QVT-based model transformations, which also uses a very limited set of control
structure. For instance, triple graph grammars (TGG) [21] provide a declarative
means to specify model transformations, and show a strong conceptual correspon-
dence with bidirectional QVT mappings. Moreover, a pair of traditional (opera-
tional) graph transformations can be easily derived for each TGG rule, and then
our termination criteria become directly applicable.

Although not mentioned explicitly, the termination criteria presented can also
be used for graph transformation with node type inheritance, since a flattening to
graph transformation without inheritance is available in [4]. Thus, the termination
analysis can always be done and need not be translated back.
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