
GT-VMT 2006

Translation of Restricted OCL Constraints into
Graph Constraints for Generating Meta Model

Instances by Graph Grammars

Jessica Winkelmann 1 Gabriele Taentzer 2

Department of Computer Science
Technical University of Berlin

Germany

Karsten Ehrig 3

Department of Computer Science, University of Leicester, UK

Jochen M. Küster 4

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

Abstract

The meta modeling approach to syntax definition of visual modeling techniques has
gained wide acceptance, especially by using it for the definition of UML. Based on
class structures and well-formedness rules, which could be formalized by OCL, the
abstract syntax of visual modeling techniques is defined in a declarative way. Since
meta-modeling is non-constructive, it does not provide a systematic way available
to generate all possible meta model instances. But for example, when develop-
ing model transformations, it is desirable to have a large set of valid instances at
hand to perform large-scale testing. In our approach, an instance-generating graph
grammar is automatically created from a given meta model. This graph grammar
ensures correct typing and cardinality constraints. To satisfy also the given OCL
constraints, well-formedness checks have to be done in addition. As a first step, a
restricted form of OCL constraints can be translated to graph constraints which are
to be checked during the instance generation process.

Key words: OCL, meta model, graph grammar, UML

1 Email: danye@cs.tu-berlin.de
2 Email: gabi@cs.tu-berlin.de
3 Email: karsten@mcs.le.ac.uk
4 Email: jku@zurich.ibm.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Winkelmann, Taentzer, Ehrig, Küster

1 Introduction

Meta modeling is a wide-spread technique to define visual languages, with
the UML [UML03] being the most prominent one. Despite several advantages
of meta modeling such as ease of use, the meta modeling approach has one
disadvantage: It is not constructive i. e. it does not offer a direct means of
generating instances of the language. This disadvantage poses a severe limi-
tation for certain applications. For example, when developing model transfor-
mations, it is desirable to have a large set of valid instance models available
for large-scale testing. Producing such a large set by hand is tedious. In
the related problem of compiler testing [BS97] a string grammar together
with a simple generation algorithm is typically used to produce words of the
language automatically. Generating instance-generating graph grammars for
creating instances of meta models automatically can overcome the main deficit
of the meta modeling approach for defining languages. The graph grammar
introduced in [EKTW05] ensures cardinality constraints, but OCL constraints
for the meta model are not considered until now. In this paper we present
the main concepts of automatic instance generation based on graph gram-
mars by an example. In addition, we show how restricted OCL constraints
can be translated to equivalent graph constraints. The restricted OCL con-
straints that can be translated can express local constraints like the existence
or non-existence of certain structures (like nodes and edges or subgraphs)
in an instance graph. Positive ones have to be checked after the generation
of a meta model instance, negative graph constraints can be checked during
the generation. They can be transformed into application conditions for the
corresponding rules, as defined in [EEHP04].

We first introduce meta models with OCL constraints in Section 2. Sec-
tion 3 presents the main concepts for automatic generation of instances from
meta models using the graph grammar approach. The generation process
is illustrated at a simplified statechart meta model. We use graph transfor-
mation with node type inheritance [BEdLT04] as underlying approach. In
Section 4 we explain how restricted OCL constraints can be translated into
graph constraints. We conclude by a discussion of related and future work.

2 Meta Models with OCL-Constraints

Visual languages such as the UML [UML03] are commonly defined using a
meta modeling approach. In this approach, a visual language is defined using
a meta model to describe the abstract syntax of the language. A meta model
can be considered as a class diagram on the meta level, i. e. it contains meta
classes, meta associations and cardinality constraints. Further features include
special kinds of associations such as aggregation, composition and inheritance
as well as abstract meta classes which cannot be instantiated.

Each instance of a meta model must conform to the cardinality con-

154

Winkelmann, Taentzer, Ehrig, Küster

straints. In addition, instances of meta models may be further restricted by
the use of additional constraints specified in the Object Constraint Language
(OCL) [Obj05].

Figure 1 shows a slightly simplified statechart meta model (based on
[UML03]) which will be used as running example. A state machine has one top
CompositeState. A CompositeState contains a set of StateVertices where such
a StateVertex can be either an InitialState or a State. Note that StateVertex
and State are modeled as abstract classes. A State can be a SimpleState, a
CompositeState or a FinalState. A Transition connects a source and a target
state. Furthermore, an Event and an Action may be associated to a transition.
Aggregations and compositions have been simplified to an association in our
approach but they could be treated separately as well. For clarity, we hide
association names, but show only role names in Figure 1. The association
names between classes StateVertex and Transition are called source and target
as corresponding role names. The names of all other associations are equal
to their corresponding role names. Since we want to concentrate on the main
concepts of meta models here, we do not consider attributes in our example.

The set of instances of the meta model can be restricted by additional
OCL constraints. For the simplified statecharts example at least the following
OCL constraints are needed:

(i) A final state cannot have any outgoing
transitions:
context FinalState inv:
self.outgoing->size()=0

(ii) A final state has at least one incoming
transition:
context FinalState inv:
self.incoming->size()>=1

(iii) An initial state cannot have any incoming
transitions:
context InitialState inv:
self.incoming->size()=0

(iv) Transitions outgoing InitialStates must al-
ways target a State:
context Transition inv:
self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State) Fig. 1. Meta Model for Statecharts

3 Generating Statechart Instances

In this section, we introduce the idea of an instance-generating graph grammar
that allows one to derive instances of a meta model in a systematic way.
Given an arbitrary meta model, the corresponding instance-generating graph
grammar can be derived by creating specific graph grammar rules, each one
depending on the occurrence of a certain meta model pattern. The idea is
to associate to a specific meta model pattern a graph grammar rule that

155

Winkelmann, Taentzer, Ehrig, Küster

Grammar Rule Example GraphLayer

:StateMachine
createCompositeState1

:StateMachine

Application Conditions

createCompositeState, createInitialState,
createSimpleState, createTransition,
createFinalState, createEvent, createAction

:SimpleState

:InitialState

:StateMachine

:Transition

:Transition

1
:Event

:Action

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

2:T

:SV

2:T

1:SV
source source

NAC1 NAC21:StateVertex

source

2:Transition2:Transition

1:StateVertex

InsertStateVertex_source_Transition

source source

2

InsertInitialState_source_TransitionNewObj,
InsertCompositeState_source_TransitionNewObj,
InsertFinalState_source_TransitionNewObj,
InsertSimpleState_source_TransitionNewObj

:Event :Action

:FinalState

:FinalState

Fig. 2. Example Grammar Rules 1

creates an instance of the meta model pattern under certain conditions. An
instance-generating graph grammar also requires a start graph and a type
graph. The start graph will be the empty graph and the type graph is obtained
by converting the meta model class diagram to a type graph. Given a concrete
meta model, assembling the rules derived, the type graph created and the
empty start graph will lead to an instance-generating graph grammar for this
meta model. For a detailed description see [EKTW05]. Overall, we use the
concept of layered graph grammars [EEdL+05] to order rule applications. In
the following, we describe the rules that we derive for the meta model of state
machines (see Figure 1).

First, we will get a create rule for each non-abstract class within the meta
model, allowing us to create an arbitrary number of instances of all non-
abstract classes. The rules of layer 1 are applied arbitrarily often, meaning
that layer 1 does not terminate and has to be interrupted by user interaction
or after a random time period. For the sample meta model we get the rules
createStateMachine, createCompositeState, createSimpleState, createFinalState,
createInitialState, createTransition, createEvent, and createAction in layer 1.

Layer 2 consists of rules for link creation for associations with multiplicity
[1, 1] at one association end. The rules have to be applied as long as possi-
ble. We have rules that create links between existing instances and rules that
create an instance (of a concrete type) and a link to this instance starting
at an instance that is not yet connected to another instance. New instances
can only be created if there are not enough instances in the graph what is
ensured by (negative) application conditions. For the association source be-
tween StateVertex and Transition, we derive four rules: one rule creates a link
source between an existing StateVertex and an existing Transition. Further,

156

Winkelmann, Taentzer, Ehrig, Küster

Grammar Rule Example GraphLayer Application Conditions

1:FinalState

target

2:Transition2:Transition

2 InsertFinalState_target_Transition

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

source sourcetarget

:FinalState
target

InsertInitialState_target_TransitionNewObj,
InsertCompositeState_target_TransitionNewObj,
InsertSimpleState_target_TransitionNewObj,
InsertStateVertex_target_Transition

:Event :Action

1:FinalState

2:T

:SV

2:T

1:SV

NAC1 NAC2

target target

:CS

NAC1:CompositeState

top

1:StateMachine1:StateMachine

2 InsertCompositeState_target_StateMachineNewObj

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition :Transition

top

source sourcetarget

:FinalState
target

:Event :Action

Fig. 3. Example Grammar Rules 2

for each concrete class that inherits from class StateVertex one rule is derived
that creates the StateVertex, an InitialState, a CompositeState, SimpleState or a
FinalState, and the link source. Note that the abstract class StateVertex could
be matched to any of its concrete subclasses InitialState, CompositeState, Fi-
nalState, and SimpleState. For the association target between StateVertex and
Transition, similar rules are derived. For the association top between StateMa-
chine and CompositeState, we derive two rules. One of them is shown in Figure
3, creating a CompositeState to a StateMachine if no CompositeState exists in
the instance graph.

Layer 3 consists of rules creating links for associations with multiplicity
[0, 1] or [0, ∗] at the association ends. The graph grammar derivation rules
in layer 3 can be applied arbitrarily often. The rules in layer 3 are termi-
nating. But in order to generate all possible instances, the rule application
can be interrupted by user interaction or after a random time period. The
rules create links between existing instances, so they have negative application
conditions prohibiting the insertion of more links than allowed by the meta
model cardinalities. For the running example, the rules of layer 3 are shown
in Figure 4.

We further get rules that insert links for the association between Transi-
tion and Action and the association between Transition and Event as well as
association between CompositeState and StateVertex.

The example rules shown in Figures 2 - 4 construct a simple instance
graph consisting of a StateMachine with its top CompositeState containing
three state vertices and two transitions between them. In the application

157

Winkelmann, Taentzer, Ehrig, Küster

Example Grammar Rule Example GraphLayer Application Conditions

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition
:Transition

top

source sourcetarget

:FinalState
target

subVertexsubVertex
subVertex

3 InsertTransition_effect_Action

3 InsertTransition_trigger_Event

:Event :Action

1:Transition

effect

2:Action2:Action

1: Transition

trigger effect

1:T

effect

:A

NAC1 NAC2 NAC3

:T

2:A

1:T

2:A

effect effect

2:SV

:CS

2:SV

1:CS

NAC1 NAC21:CompositeState

subVertex

2:StateVertex2:StateVertex

1:CompositeState

InsertCompositeState_subVertex_StateVertex3

subVertex
subVertex

Fig. 4. Example Grammar Rules 3

conditions shown in Figures 2 - 4 the node types are abbreviated (CS for
CompositeState etc.).

4 Translation of Restricted OCL Constraints into Graph
Constraints

Up to now there is no general way to transform OCL constraints into equiva-
lent graph constraints, which are introduced in [EEHP04]. As a first approach,
we show how restricted OCL constraints can be translated to equivalent graph
constraints. In contrast to the translation of meta models to graph grammars
which was described formally in the previous chapters, we discuss first ideas
for the translation of OCL constraints only and sketch how they can be en-
sured. Besides having one common formalism the motivations for translating
OCL constraints into graph constraints is their later consideration within the
derivation process (sketched below).

We restrict OCL constraints to equality, size, and attribute operations for
navigation expressions, called restricted OCL constraints. In future work, OCL
constraints and graph constraints have to be further compared concerning
their expressiveness.
Graph constraints are properties on graphs which have to be fulfilled. They
are used to express contextual conditions like the existence or non-existence
of certain nodes and edges or certain subgraphs in a given graph. Application
conditions for rules were first introduced in [EEHP04]. They restrict the
capability of rules, e.g. a rule can be applied if certain nodes and edges or
certain subgraphs in the given graph exist or do not exist.

Definition 4.1 [graph constraint] Graph constraints over an object P are
defined inductively as follows: For a graph morphism x : P → C, ∃x is a
(basic) graph constraint over P. For a graph morphism x : P → C and a graph

158

Winkelmann, Taentzer, Ehrig, Küster

1:Transitiontsource=n= ∃ (Sn) ∧ ¬ ∃ (1:Transition Sn+1) ,

1:Transitionttarget=n= ∃ (Tn) ∧ ¬ ∃ (1:Transition Tn+1) , with n ≥ 1 and

1:Transition:StateVertex

:StateVertex

source
source

1

.
n. .

1:Transition:StateVertex

:StateVertex

target
target

1

.
n. .

Sn = Tn =

Fig. 5. All Transitions have exactly n source [target] vertices

1:Transition 1:Transition ,∀ (∨n∈N+ (csource=n ∧ ctarget=n))

Fig. 6. All Transitions have the same number of source and target vertices

constraint c over C, ∀(x, c) and ∃(x, c) are (conditional) graph constraints over
P . For graph constraints c, ci(i ∈ I) [over P], true, false, ¬c, ∧i∈Ici and ∨i∈Ici

are (Boolean) graph constraints [over P].

A graph morphism p : P → G satisfies a basic graph constraint ∃x if there
exists a graph morphism q : C → G with q ◦ x = p. A graph morphism
p : P → G satisfies a conditional graph constraint ∀(x, c) [∃(x, c)] if for all
[some] graph morphisms q : C → G with q ◦ x = p, q satisfies c. A graph
morphism p satisfies a Boolean graph constraint ¬c if p does not satisfy c; p
satisfies ∨i∈Ici [∧i∈Ici] if p satisfies all [some] ci with i ∈ I.

A graph morphism p : P → G satisfies a basic graph constraint ∃x if there
exists a graph morphism q : C → G with q ◦ x = p. A graph morphism
p : P → G satisfies a conditional graph constraint ∀(x, c) [∃(x, c)] if for all
[some] graph morphisms q : C → G with q ◦ x = p, q satisfies c. A graph
morphism p satisfies a Boolean graph constraint ¬c if p does not satisfy c; p
satisfies ∨i∈Ici [∧i∈Ici] if p satisfies all [some] ci with i ∈ I.

A graph G satisfies a graph constraint c of the form ∃x, ∃(x, d) [∀(x, d)] if
all [some] graph morphisms p : P → G satisfy c. A graph G satisfies ¬c if G
does not satisfy c and ∨i∈Ici [∧i∈Ici] if it satisfies all [some] ci with i ∈ I.

With this definition of graph constraints the counting of elements is pos-
sible. For the state chart example we can express graph properties like: ”All
Transitions have exactly n source [target] vertices” (Figure 5), or ”All Transi-
tions have the same number of source and target vertices”(Figure 6). Therefore
we define Boolean graph constraints tsource=n and ttarget=n expressing that the
Transition has n source [target] vertices and not n+1 source [target] vertices,
where Sn[Tn] denotes the star with n sources [targets]. In the conditional
graph constraint in Figure 6 we need the basic graph constraint that maps
only a Transition node to a Transition node, since the Transition node in Sn

has to be the same as in Tn.

The restricted OCL constraints that can be translated are divided into
atomic navigation expressions and complex navigation expressions.

159

Winkelmann, Taentzer, Ehrig, Küster

Equivalent Graph ConditionsOCL constraint

self.ass1->size()=1

1:Class1 :Class2ass1
1:Class1

self.ass1->size()>=2

b) Class1 constraint2:

1:Class1

2:Class2

5:ass1

a) Class1 constraint1:

self.ass1=self.ass2.ass3
3:Class3

4:Class2

7:ass3

6:ass2
1:Class1

2,4:Class2

5:ass1

3:Class3
7:ass3

6:ass2

c) Class1 constraint3:

1:Class1 :Class2
ass1

:Class2ass1

1:Class1 1:Class1 :Class2
ass1

:Class2ass1

∃

∃

∃

∃¬

Fig. 7. Examples for Translation of OCL Constraints

Atomic navigation expressions:

Atomic navigation expressions are OCL expressions that

• express equivalent navigations,

• end with operation size() (if the result is compared with constants),

• end with operations isEmpty(), notEmpty() or isUnique(), or

• end with attribute operations (not considered explicitly in the paper).

The navigation expressions contain navigation along association ends or asso-
ciation classes only.

Atomic navigation expressions can be transformed into basic graph con-
straints of the form ∃x or boolean formulae over basic graph constraints.

A navigation expression stating that two navigations have the same result,
like self.ass1=self.ass2.ass3, can be transformed into a graph constraint, see
Figure 7 a). Here the conclusion of the constraint ensures that ass1 and ass3
are connected to the same instance of Class2.

Operation size() can be translated into a Boolean graph constraint that is
composed of two basic graph constraints, see Figure 7 b). The first constraint
ensures that there exist the minimum number (= value of the constant) of
association ends, the second prohibits the existence of more than the con-
stant value association ends. If the comparison operation is ≤ or ≥ the OCL
constraint can be translated into just one graph constraint.

Operations isEmpty() and notEmpty() can be translated back to a size()
operation: self.ass1->isEmpty() is translated back to self.ass1->size()=0,
self.ass1->notEmpty() to self.ass1->size()>=1.

Collection operation isUnique() can be translated into a size() operation,
if the body of the collection operation is a navigation expression ending at an
instance set: self.ass1->isUnique(navexp) is translated back to

160

Winkelmann, Taentzer, Ehrig, Küster

self.ass1.navexp->size()<=1.

Complex navigation expressions:

Definition 4.2 [complex navigation expressions] Atomic navigation expres-
sions are complex navigation expressions. Given complex navigation expres-
sions a, b and c, expressions not(a), a and b, a or b, a implies b, and if a then
b else c are complex navigation expressions.

Complex navigation expressions can be transformed into conditional graph
constraints as described in the following.

An OCL expression of the form a implies b is equivalent to the expression
not(a) or b. So we have to translate not(a) or b into an equivalent conditional
graph constraint. First the expressions a and b are transformed into graph
constraints ca and cb as described above. We have to combine the two graph
constraints ca and cb by the operator ∧, and therefore we have to find the part
that has to be identified in both expressions. So we build the intersection ex-
pression of the premise and the conclusion, that is a navigation part contained
in both expressions (in the example constraint for Transition in Figure 8, the
node of type Transition is in this intersection only). This intersection expres-
sion ie occurs in the left graph of the graph constraints ca and cb. Having ca,
cb and ie, we can build a conditional graph constraint that is equivalent to
the OCL constraints as follows: Build the basic graph constraint b : ie → ie.
Build the conditional graph constraint ∃(b,¬(ca) ∨ (cb)), where the intersec-
tion expression is mapped to the corresponding elements in ca and cb. See the
description of Figure 8 for an example.
OCL constraints of the form if a then b else c can be translated back into two
implies operations: (a implies b) and ((not a) implies c). The implies expres-
sions are translated as described before into two graph constraints which then
are combined by the logical operator (∧) to a new one that is equivalent to
the OCL constraint.

Ensuring of graph constraints:

Ensuring of graph constraints can be done in two ways: One is to check
constraints once the overall derivation of an instance model has terminated
which would also be the approach followed when checking OCL constraints
directly. However, this leads to the generation of a large number of non-valid
instances in between. A more promising approach is to take the constraints
into consideration during the derivation process: For each class in the meta
model the corresponding graph constraints can be identified. For rules of layer
1, constraints are ignored. For rules of layer 2 and 3, negative constraints of
the form ¬∃x, ¬∃(x, c), ¬∀(x, c), where x is a basic graph constraint and
c is a graph constraint, for the participating classes are evaluated before a
possible application of a rule. If the resulting instance violates a constraint, the
previous application of a rule is not executed. Here we use the translation of

161

Winkelmann, Taentzer, Ehrig, Küster

Equivalent Graph ConstraintsOCL constraint

source.oclIsTypeOf(InitialState)
implies
target.oclIsKindOf(State)

Transition:

2:InitialState

1:Transition

3:source

2:StateVertex

1:Transition

3:source

4:State

1:Transition

5:target

4:StateVertex

1:Transition

5:target

1:Transition

¬ ∨

1:Transition ,

∀

∃

incoming->size()>=1 1:FinalState :Transitionincoming
1:FinalState

outgoing->size()=0 :FinalState :Transitionoutgoing

FinalState:

FinalState:

InitialState:
incoming->size()=0 :InitialState :Transitionincoming

∃

∃

∃¬

¬

Fig. 8. Translation of OCL Constraints for Statechart Meta Model

graph constraints to application conditions as presented in [EEHP04]. Positive
constraints of the form ∃x, ∃(x, c), ∀(x, c) are checked after termination of
layer 3. If a positive constraint is violated, the model can be fixed by adding
additional elements required by the positive constraint. It remains to future
work to determine those negative constraints that can be violated by adding
the elements required by a positive constraint and to extend the formalization
in the previous sections to constraints.

Translation of the OCL constraints for the statechart meta model:

Figure 8 shows the translation of the OCL constraints for the simple state-
chart meta model example in Figure 1. The first translates the OCL constraint
context FinalState inv: self.incoming->size()>=1 (that is an atomic navigation
expression) into an equivalent basic graph constraint. This constraint corre-
sponds to the size()-operation constraint shown in Figure 7 c). The second
translates the OCL constraint context FinalState inv: self.outgoing->size()=0
into an equivalent basic graph constraint, corresponding to the graph con-
straints shown in Figure 7 b). Note, that the positive graph constraint is
not needed if size() is compared to 0. The third one is similar. The OCL
constraint context Transition inv: self.source.oclIsTypeOf(InitialState) implies
self.target.oclIsKindOf(State) is a complex navigation expression. It is equiva-
lent to the expression (not(self.source.oclIsTypeOf(InitialState))) or
(self.target.oclIsKindOf(State)), stating that each source instance of a Tran-
sition instance is not an InitialState or the target instance is a State. The two
OCL expressions can be translated into two basic graph constraints shown in
Figure 8 (the lower part of the last graph constraint). We have to combine
the two basic graph constraints by operator ∨ and we have to express that
the Transition instance in one expression is the same as in the other expres-
sion. Therefore we have to build the intersection expression of the premise and

162

Winkelmann, Taentzer, Ehrig, Küster

the conclusion, which contains the Transition only. The complete conditional
graph constraint states: all nodes of type Transition have a source node of type
InitialState or a target node of type State. This is equivalent to: Transitions
outgoing InitialStates must always target a State.

5 Related Work

One of the related problems is the one of automated snapshot generation
for class diagrams for validation and testing purposes, tackled by Gogolla et
al. [GBR05]. In their approach, properties that the snapshot has to fulfill are
specified in OCL. For each class and association, object and link generation
procedures are specified using the language ASSL. In order to fulfill constraints
and invariants, ASSL offers try and select commands which allow the search
for an appropriate object and backtracking if constraints are not fulfilled. The
overall approach allows snapshot generation taking into account invariants but
also requires the explicit encoding of constraints in generation commands. As
such, the problem tackled by automatic snapshot generation is different from
the meta model to graph grammar translation.

Formal methods such as Alloy [All00] can also be used for instance gen-
eration: After translating a class diagram to Alloy one can use the instance
generation within Alloy to generate an instance or to show that no instances
exist. This instance generation relies on the use of SAT solvers and can also
enumerate all possible instances. In contrast to such an approach, our ap-
proach aims at the construction of a grammar for the metamodel and thus
establishes a bridge between metamodel-based and grammar-based definition
of visual languages.

6 Conclusion and Future Work

In this paper we have presented the main concepts for translating a meta
model to an instance generating graph grammar. This translation has been
illustrated by a simple statecharts example. The meta classes and associations
as well as their multiplicities are translated directly to type graph, start graph
and graph rules. To handle also the OCL constraints during the instance gen-
eration process, they are first translated to graph constraints and then partly
to application conditions of rules. In this paper, we discussed this translation
process for restricted OCL constraints. In future work, OCL constraints and
graph constraints have to be further compared concerning their expressive-
ness. Moreover, we started to give OCL a new kind of semantics which has to
be set into relation with other OCL semantics.

Automatic derivation of instances from meta models is a complex task
which needs tool support. So far, we have automated the construction of an
instance generating graph grammar by providing a model transformation that
automatically derives an instance generating graph grammar from a meta

163

Winkelmann, Taentzer, Ehrig, Küster

model. For a complete description of this implementation we refer to the
URL http://tfs.cs.tu-berlin.de/agg/MM2GraGra. Although the current
model transformation does not support all features of meta models yet, it
nevertheless shows the feasibility of our approach. We plan to investigate the
usage of our techniques for systematic testing of model transformations at
different development stages of our generation algorithm.

References

[All00] The Alloy Analyzer - 3.0 Beta http: // alloy. mit. edu/ , 2000.

[BEdLT04] R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating
Meta Modelling with Graph Transformation for Efficient Visual
Language Definition and Model Manipulation. In M. Wermelinger and
T. Margaria-Steffens, editors, Proc. Fundamental Aspects of Software
Engineering 2004, volume 2984. Springer LNCS, 2004.

[BS97] A. S. Boujarwah and K. Saleh. Compiler test case generation methods:
a survey and assessment. Information and Software Technology,
39(9):617–625, 1997.

[EEdL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and
S. Varró-Gyapay. Termination criteria for model transformation. In
M. Wermelinger and T. Margaria-Steffen, editors, Proc. Fundamental
Approaches to Software Engineering (FASE), volume 2984 of Lecture
Notes in Computer Science, pages 214–228. Springer Verlag, 2005.

[EEHP04] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints
and application conditions: From graphs to high-level structures. In
F. Parisi-Presicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int.
Conference on Graph Transformation (ICGT’04), LNCS 3256, pages
287–303, Rome, Italy, October 2004. Springer.

[EKTW05] K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Automatically
Generating Instances of Meta Models based on a Graph Grammar
Approach. Technical Report 2005–09, Technical University of Berlin,
Dept. of Computer Science, November 2005. To appear.

[GBR05] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL
Models in USE by Automatic Snapshot Generation. Software and
Systems Modeling, 2005. To appear.

[Obj05] Object Management Group (OMG). OCL 2.0 Specification. OMG
document ptc/2005-06-06, June 2005.

[UML03] Object Management Group (OMG). UML 2.0 Superstructure Final
Adopted Specification. OMG document pts/03-08-02, August 2003.

164

