
GT-VC 2006

Graph Transformation for Verification and

Concurrency

31 August 2006, Bonn, Germany

Satellite workshop of CONCUR 2006

Arend Rensink, Reiko Heckel, Barbara König

Table of Contents

Matching of Bigraphs
Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup,

Robin Milner . 1

Adhesive DPO Parallelism for Monic Matches
(Work-in-progress paper)

Filippo Bonchi, Tobias Heindel . 19

A Graph Abstract Machine Describing Event Structure Composition
(Work-in-progress paper)

Claudia Faggian, Mauro Piccolo .34

Formal Verification of Object-Oriented Graph Grammars Specifications
Ana Paula Lüdtke Ferreira, Luciana Foss, Leila Ribeiro 49

Modeling and Verification of Reliable Messaging by Graph
Transformation Systems

László Gönczy, Máté Kovács, Dániel Varró . 64

Stochastic Graph Transformation Systems with General Distributions
Piotr Kosiuczenko, Georgios Lajios . 80

Verification of Random Graph Transformation Systems
(Work-in-progress paper)

Vitali Kozioura . 95

Termination Criteria for DPO Transformations with Injective Matches
Tihamér Levendovszky, Ulrike Prange, Hartmut Ehrig 102

GT-VC 2006

Matching of Bigraphs

Lars Birkedal 1 Troels Christoffer Damgaard 1

Arne John Glenstrup 1

IT University of Copenhagen, Denmark

Robin Milner 2

University of Cambridge, UK

Abstract

We analyze the matching problem for bigraphs. In particular, we present a sound
and complete inductive characterization of matching of binding bigraphs. Our re-
sults pave the way for a provably correct matching algorithm, as needed for an
implementation of bigraphical reactive systems.

1 Introduction

Over the last decade, a theory of bigraphical reactive systems has been de-
veloped [9,12,14]. Bigraphical reactive systems (BRSs) provide a graphical
model of computation in which both locality and connectivity are prominent.
In essence, a bigraph consists of a place graph; a forest, whose nodes represent
a variety of computational objects, and a link graph, which is a hyper graph
connecting ports of the nodes. Bigraphs can be reconfigured by means of re-
action rules. Loosely speaking, a bigraphical reactive system consists of set of
bigraphs and a set of reaction rules, which can be used to reconfigure the set
of bigraphs. BRSs have been developed with principally two aims in mind:
(1) to be able to model directly important aspects of ubiquitous systems by
focusing on mobile connectivity (the link graph) and mobile locality (the place
graph), and (2) to provide a unification of existing theories by developing a
general theory, in which many existing calculi for concurrency and mobility
may be represented, with a uniform behavioural theory. The latter is achieved
by representing the dynamics of bigraphs by an abstract definition of reaction
rules from which a labelled transition system may be derived in such a way

1 Email: {birkedal,tcd,panic}@itu.dk
2 Email: Robin.Milner@cl.cam.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

1

Birkedal, Damgaard, Glenstrup & Milner

that an associated bisimulation relation is a congruence relation. The unifi-
cation has recovered existing behavioural theories for the π-calculus [9], the
ambient calculus [8], and has contributed to that for Petri nets [11]. Thus the
evaluation of the second aim has so far been encouraging. In [3], Birkedal et
al. initiate an evaluation of the first aim, in particular it is shown how to give
bigraphical models of context-aware systems.

As suggested and argued in [9,1,3] it would be very useful to have an
implementation of the dynamics of bigraphical reactive systems to allow ex-
perimentation and simulation. In the Bigraphical Programming Languages
research project at the IT University, we are working towards such an imple-
mentation. The core problem of implementing the dynamics of bigraphical
reactive systems is the matching problem, that is, to determine for a given bi-
graph and reaction rule whether and how the reaction rule can be applied to
rewrite the bigraph. The topic of the present paper is to analyze the matching
problem.

In Figure 1 we show several bigraphs. Consider the bigraph named a.
It is intended to model two buildings, one belonging to a corporation and
one belonging to a consultancy group. Inside the buildings are laptops with
data nested inside folders. The nesting structure depicts the place graph.
Links are used to name the buildings and, moreover, to model which folders
can be shared between the corporation and the consultancy group and inside
the corporation. Thus the laptop shown in the middle is intended to belong
to a consultant working for the corporation — the consultant has folders
with data belonging to the consultancy group (the link shown to the left)
and folders with data belonging to the corporation (the link shown to the
right). The fact that folders belonging to the corporation should not leave the
corporation is expressed by linking those folders to a so-called binding port
on the corporation building, indicated by the circle.

The abstract semantic definition of matching, as defined in the theory of
bigraphs [9], is roughly as follows (omitting many details): Given a reaction
rule with redex R and reactum R′ (with R and R′ both bigraphs), and a
bigraph a (the agent to be rewritten), if a = C ◦ (R⊗ idZ) ◦ d, then it can be
rewritten to C ◦ (R′⊗ idZ) ◦ d. Here ◦ denotes composition of bigraphs and Z
is the set of names of d. In other words, if the reaction rule matches a, in the
sense that a can be decomposed into a context C, redex R and a parameter
d, then a can be rewritten.

Consider again the example in Figure 1. There is a reaction rule expressed
by the redex R and the reactum R′; the intention of the reaction rule is to
allow copying of data between connected folders in the same nesting hierarchy
(note the link in R between the two folders and the so-called local name y).
The agent a can be written as a composition of C, R and d — formally,
a = C ◦ (R ⊗ idz) ◦ d. Composition works by (1) plugging the roots of R
and d into the holes (aka sites) of C respectively R; (2) fusing together the
connections between folder and z (in d) and z and folder (in C), removing the

2

2

Birkedal, Damgaard, Glenstrup & Milner

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0
Folder

1

Laptop

2
Folder

3

y

R′ =

Laptop

0
Folder

1

Laptop

2
Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. Example of a ground agent a = C ◦ (idz ⊗ R) ◦ d. Reaction rule R → R′

copies data between connected folders.

name z in the process; (3) fusing together the connection between the local
name y and the two folders in R and the name y and the bound port in C,
removing the name y in the process. Note the use of idz in the composition
a = C ◦ (R ⊗ idz) ◦ d; it allows a name z from the parameter d to be “passed
through” the redex and be attached to something in the context C. The
reactum R′ contains a copy of the site numbered 1 in R, expressing that data
is copied between the shared folders. The sites numbered 0 and 2 in R allow
the reaction rule to apply also when the laptops contain other folders than the
two that are connected. Thus a can be rewritten using the reaction rule to

3

3

Birkedal, Damgaard, Glenstrup & Milner

another agent a′ like a but with two data items in the rightmost laptop (the
agent a′ is not shown in Figure 1).

In the present paper we provide an inductive characterization of when
a = C ◦ (R ⊗ idZ) ◦ d holds, by induction on a and R (the input to a match-
ing algorithm). It is a precise characterization in the sense that it is both
sound and complete with respect to the abstract definition. This provides a
detailed analysis of the matching problem, and paves the way for developing
and proving correct an actual matching algorithm (which, given a and R, must
find C, d, and Z such that a = C ◦ (R ⊗ idZ) ◦ d holds). We further include
a discussion of how one may derive matching algorithms from our inductive
characterization. We will report on our work on an actual implementation of
matching in a subsequent paper.

Our inductive characterization is based on normal form theorems for bi-
graphs [12,5], which express how general bigraphs may be decomposed into
a composition of simpler graphs. The normal form theorems and also the
inductive characterization we present here is based on so-called discrete de-
compositions of bigraphs. Discrete bigraphs are bigraphs with a simple form
of linkage. To a large extent, this allows us to analyze matching of a general
bigraph by considering its link graph and place graph separately.

Of course, the matching problem is closely related to the NP-complete
graph embedding problem. Thus we analyze the embedding problem for a
restricted class of graphs, and our inductive characterization makes good use
of the algebraic presentation of such graphs [12,5]. One hopes that matching
implementations will be efficient in practice since redices typically are small.
Furthermore, sorting bigraphs [4] could be a source of early search elimination.

The remainder of this paper is organized as follows. In Section 2 give an
informal description of binding bigraphs. The main contribution of this paper
is in Section 3, where we present our inductive characterization of matching.
Section 4 discusses how the inductive characterization may ensure a correct
and efficient algorithm for matching. In the final sections we discuss related
work and conclude.

For lack of space, most proofs [2] have been omitted from this extended
abstract.

2 Binding Bigraphs

Here we present bigraphs informally; for a formal definition, see [9,5].

2.1 Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph
GL. The place graph is an ordered list of trees indicating location, with roots
r0, . . . , rn, nodes v0, . . . , vk, and a number of special leaves s0, . . . , sm called
sites, while the link graph is a general graph over the node set v0, . . . , vk ex-

4

4

Birkedal, Damgaard, Glenstrup & Milner

tended with inner names x0, . . . , xl, and equipped with hyper edges, indicating
connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the
upper part of Figure 2 (ignore for now the interfaces denoted by “ : · → ·”).
A link is a hyper edge of the link graph, either an internal edge e or a name

Bigraph G : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0x2

x1

e′

v0

v1
v2 v3

e

X = {x0, x1, x2}

Y = {y0, y1, y2}

Place graph GP : 3 → 2
roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e

e′

Fig. 2. Example bigraph illustrated by nesting and as place and link graph.

y. Names and inner names can be global or local, the latter being located at
a specific root or site, respectively. In Figure 2, y0 is located at r0, indicated
by a small ring, and x0 and x2 are located at s2, indicated by writing them
within the site. Global names like y1 and y2 are drawn anywhere at the top,
while global inner names like x1 are drawn anywhere at the bottom. A link,
including internal edges like e′ in the figure, can be located with one binder
(the ring), in which case it is a bound link, otherwise it is free. However, a
bound link must satisfy the scope rule, a simple structural requirement that
all points of the link lie within its location (in the place graph), except for the
binder itself. This prevents y2 and e in the example from being bound.

2.2 Controls

Every node v has a control K which determines a binding and free arity,
indicated by v : K. In the example of Figure 2, we could have vi : Ki, i =
0, 1, 2, 3, where K0 : 0 → 1, K1 : 0 → 2, K2 : 0 → 3, K3 : 1 → 2. The
arities determine the number of bound and free ports of the node, to which
bound and free links, respectively, are connected. Ports and inner names are
collectively referred to as points.

2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis
of bigraph theory [9], our prime interest is in abstract bigraphs, equivalence

5

5

Birkedal, Damgaard, Glenstrup & Milner

classes of concrete bigraphs that differ only in the names of nodes and internal
edges. Abstract bigraphs are illustrated with their node controls, as shown in
Figure 1 with Building, Laptop etc. In what follows, “bigraph” will thus mean
“abstract bigraph.”

2.4 Interfaces

Every bigraph G has two interfaces I and J , written G : I → J , where I is
the inner face and J the outer face. An interface is a triple 〈m, ~X, X〉, where
m is the width (the number of sites or roots), X the entire set of local and

global names, and ~X indicates the locations of each local name, cf. Figure 2.
We let ε = 〈0, [], {}〉; when m = 1 the interface is prime, and if all x ∈ X are

located by ~X, the interface is local.

A bigraph G : I → J is called ground, or an agent, if I = ε, prime if I is
local and J prime, and a wiring if m = n = 0, where m and n are the widths
of I and J , respectively. For I = 〈m, ~X, X〉, bigraph idI : I → I consists of
m roots, each root ri containing just one site si, and a link graph linking each
inner name x ∈ X to name x.

2.5 Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly
one point. The virtue of discrete bigraphs is that any connectivity by internal
edges must be bound, and node ports can be accessed individually by the
names of the outer face. In Figure 1, only R,R′ and d are discrete, because
the free internal edges of a and C have two points. Further, a bigraph is
name-discrete iff it is discrete and every bound link is either an edge, or (if
it is an outer name) has exactly one point. Note that name-discrete implies
discrete.

A bigraph is regular if, for all roots ri′ and rj′ , and all sites si and sj where
si is a descendant of ri′ and sj of rj′ , if i ≤ j then i′ ≤ j′. The bigraphs in
the figures are all regular, the permutation in Table 1 is not. The virtue of
regular bigraphs is that certain permutations can be avoided when composing
them from basic bigraphs.

2.6 Tensor Product, Parallel Product, and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make
the tensor product G1 ⊗ G2 by juxtaposing their place graphs, constructing
the union of their link graphs, and increasing the indexes of sites in G2 by the
number of sites of G1. For instance, bigraph d of Figure 1 is a tensor product
of four primes. We write

⊗n
i Gi for the iterated tensor G0 ⊗ · · · ⊗Gn−1.

The parallel product G1 ||G2 is like the tensor product, except global names
can be shared: if y is shared, all points of y in G1 and G2 become the points
of y in G1 ||G2.

6

6

Birkedal, Damgaard, Glenstrup & Milner

We can compose bigraphs G2 : I → I ′ and G1 : I ′ → J , yielding bigraph
G1 ◦ G2 : I → J , by “plugging in” the roots of G2 into the sites of G1,
eliminating both, and connecting names of G2 with inner names of G1—as
in Figure 1, where a = C ◦ (idz ⊗ R) ◦ d. In the following, we will omit the
‘◦’, and simply write G1G2 for composition, letting it bind tighter than tensor
product.

2.7 Active, Passive and Atomic Controls

In addition to arity, each control is assigned a kind, either atomic, active or
passive, and describe nodes according to their control kinds. We require that
atomic nodes contain no nodes except sites; any site being a descendant of a
passive node is passive, otherwise it is active. If all sites of a bigraph G are
active, G is active.

For Figure 1 we could have Data : atomic(0 → 0), Folder : passive(0 → 1),
Laptop : active(0 → 0), Building : active(1 → 1).

2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and con-
nectivity. To model also dynamics, we introduce bigraphical reactive systems
(BRS) as a collection of rules. Each rule R →% R′ consists of a regular redex
R : I → J , a regular reactum R′ : I ′ → J , and an instantiation %, mapping
each site of R′ to a site of R. Interfaces I = 〈m, ~X, X〉 and I ′ = 〈m′, ~X ′, X ′〉
must be local, and are related by X ′

i = X%(i). We illustrate % by a ‘i := j’, as
shown in Figure 1, whenever %(i) = j 6= i. Given an instantiation % and a dis-
crete bigraph d = d0⊗· · ·⊗dk with prime di’s, we let %(d) = d%(0)⊗· · ·⊗d%(k),
i.e., by copying, discarding and reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗
R)d, with active context C, discrete parameter d, and some set of names Z.
Dynamics is achieved by transforming a into a new agent a′ = C(idZ ⊗R′)d′,
where d′ = %(d)—an example is shown in Figure 1. This definition of a
match is as in [9], except that we here also require R to be regular. This
restriction to regular redexes R (and to discrete parameters d) does not limit
the set of possible reactions. We restrict attention to regular R’s because it
simplifies the inductive characterization of matching by allowing us to omit
trivial permutations.

2.9 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation:] denotes union of sets
required to be disjoint; we write {~Y } for Y0]· · ·]Yn−1 when ~Y = Y0, . . . Yn−1,
and similarly {~y} for {y0, . . . , yn−1}. For interfaces, we write X to mean
〈0, [], X〉, 〈X〉 to mean 〈1, [{}], X〉 and (X) to mean 〈1, [X], X〉.

Any bigraph can be constructed by applying composition, tensor product

7

7

Birkedal, Damgaard, Glenstrup & Milner

and abstraction to a set of basic bigraphs, shown in Table 1 [5]. Given a

Notation Example

Merge mergen : n → 1 merge3 =
0 1 2

Concretion pXq : (X) → 〈X〉 p{z1, z2}q =
0

z1

z1

z2

z2

Abstraction (Y)P
: I → 〈1, [Y], Z] Y 〉 ({y2})({y1})p{y1, y2, z}q =

0
y1

y1

y2

y2

z

z

Substitution
σ

~y/ ~X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =
x1

y1

x2

y2

x3

y3

Renaming
α, β

~y/~x : X → Y [y1, y2, y3]/[x1, x2, x3] =
x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} =
x1 x2 x3

Wiring
ω

(/Z ⊗ α)σ
: X → Y

(/{z2, z4} ⊗ [y1, y2]/[z1, z3])
[z1, z2, z3, z4] /
[{}, {x1, x2}, {x4, x5}, {x6}]

=
y1

x1 x2 x4

y2

x5 x6

Ion
K~y(~X)

: ({ ~X}) → 〈{~y}〉
K[y1,y2]([{x1},{x2,x3},{}]) =

K

y1y2

x1x2x3

Permutation
π

{i 7→ j, . . .}
: m → m {0 7→ 2, 1 7→ 0, 2 7→ 1} =

1 2 0

Table 1
Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

prime P , the abstraction operation localises a subset of its outer names. Note
that the scope rule is necessarily respected since the inner face of a prime P
is required to be local, so all points of P are located within its root. The
abstraction operator is denoted by (·)· that reaches as far right as possible.

For a renaming α : X → Y , we write pαq to mean (id1⊗α)pXq, and when
σ : U → Y , we let σ̂ = (Y)(σ ⊗ id1)pUq.

As an example, the bigraph of Figure 2 can be written

G = (ω ⊗ (({y0})y0/Y pY q) ⊗ p{}q) (((Y)P1) ⊗ P2 ⊗ y2/x1) , where

ω = (/e⊗ id{y1,y2})[y1, y2, e]/[{y1}, {y2, y
′
2, y

′′
2}, {e, e′}], Y = {y0, y

′
0, y

′′
0}

P1 = (id{y0,y1,y′
2,e} ⊗merge2)

(
(id{y0,e} ⊗K0[y′

0])K1[y0,e] ⊗K2[y′′
0 ,y1,y′

2] merge0

)
P2 = (id{e′,y′′

2 } ⊗merge2)(K3[e′,y′′
2]([{x0,x2}]) ⊗ p{}q),

8

8

Birkedal, Damgaard, Glenstrup & Milner

and for Figure 1 we have a = (id{consultancy,corporation} ⊗ /z) (p1 || p2), where

p1 = (idz ⊗ Building[consultancy]([{}])Laptop)Folder[z]Datamerge0

p2 = (idz ⊗ Building[corporation]([{y1,y2}]))({y1, y2})(id{z,y1,y2} ⊗merge2) (p′2 ⊗ p′′2)

p′2 = (id{z,y1} ⊗ Laptopmerge2)(Folder[z]Datamerge0 ⊗ Folder[y1]Datamerge0)

p′′2 = (idy2 ⊗ Laptop)Folder[y2]Datamerge0

Finally, a molecule is a prime with just one outermost node.

3 Inductive Characterization of Matching

In this section we present our inductive characterization of matching. To ease
the presentation we shall disregard the requirement that the context in a match
must be active (it is straightforward to extend the following presentation to
include the active requirement).

3.1 Preliminaries

In this subsection we introduce useful notation and establish some propositions
about how one may decompose bigraphs. To simplify notation we shall simply
write id for identity bigraphs, without a subscript showing the interface, when
it is clear from the context what interface is intended.

The following propositions express how bigraphs may be decomposed into
simpler constitutent components. The proofs follow easily from the normal
form theorem in [5]. Note that ω, α, σ and π range over wirings, renamings,
substitutions and permutations, cf. Table 1.

Proposition 3.1 Any bigraph G can be decomposed into a composition of the
following form

G = (ω ⊗ id)(D ⊗ idY),

where D is discrete and with local innerface. Any other decomposition of G
on this form takes the form G = (ω′ ⊗ id)(D′ ⊗ idY), where ω′ = ω(α ⊗ idY)
and D′ = (α−1 ⊗ id)D, for suitable α.

Proposition 3.2 Any discrete bigraph D of width n with local innerface can
be decomposed such that

D =
(n⊗

i

(σ̂i ⊗ id)Pi

)
π,

where the Pi’s are name-discrete and prime. Any other decomposition on this
form of D takes the form

(⊗n
i (σ̂′

i ⊗ id)P ′
i

)
π′, where, for some α̂i, ρi, for all

i, P ′
i = (α̂i

−1 ⊗ id)Piρi (
⊗n

i ρi)π
′ = π, and σ̂′

i = σ̂iα̂i.

9

9

Birkedal, Damgaard, Glenstrup & Milner

For primes and molecules, the normal form can be found in loc. cit.

One can decompose binding ions K~y(~X) into K~y(~u)

⊗n
i (ui)/(Xi). Such de-

compositions will be useful because of the following proposition, which is a
corollary of Theorem 1, item 1, in [5] (specialized to free discrete ions).

Proposition 3.3 Any free discrete molecule M : I → ({~y}] Z) can be de-
composed as

M = (K~y(~u) ⊗ idZ)P,

where P is a discrete prime. Any other decomposition of M on this form, has
the form (K~y(~x) ⊗ idZ)P ′, where there exists a unique α̂, given by ui 7→ xi,
such that K~y(~u)α̂ = K~y(~x) and P = (α̂ ⊗ idZ)P ′.

3.2 Matching Sentences

We now define matching sentences and rules for deriving valid matching sen-
tences.

Definition 3.4 A matching sentence is a 7-place relation among wirings and
bigraphs, written ωa, ωR, ωC ` a, R ↪→C, d, satisfying that ωa, ωR, ωC are
wirings, and a, R, C, d are discrete bigraphs, R and C have local inner faces,
and R is regular.

Definition 3.5 A matching sentence ωa, ωR, ωC ` a, R ↪→C, d, where ωR :
U → Y , C has global outer names V , and d has global outer names Z, is
valid, denoted ωa, ωR, ωC � a, R ↪→C, d, iff

(id ⊗ ωa)a = (id ⊗ ωC)(C ⊗ idY ⊗ idZ)(ωR ⊗ id)(R ⊗ idZ)d.

Note that for a valid sentence ωa, ωR, ωC ` a, R ↪→C, d, if we let a′ =
(id ⊗ ωa)a, C ′ = (id ⊗ ωC)(C ⊗ idY ⊗ idZ), and R′ = (ωR ⊗ id)R, then a′ =
C ′(R′ ⊗ idZ)d. Conversely, if, for general a′, C ′, R′, d we have a match a′ =
C ′(R′ ⊗ idZ)d, then by Proposition 3.1, we can decompose a′, C ′, and R′ and
obtain a corresponding valid sentence. Thus valid sentences precisely capture
the abstract definition of matching.

3.3 Rules for Matching

In Figure 3 we present a set of rules for inferring matching sentences. In the
premises of the rules perm and ion, and in the conclusion of rules merge,
ion, and switch we require the id’s to have width 0 (hence be link graph
identities). This determines them entirely from the context.

We now explain the rules.

The perm rule simply pushes a permutation on the inside of the context
through the redex, permuting the discrete primes, and producing a pushed-
through permutation π, depending on π and the innerface of the redex, as
stated in the Push-Through Lemma [5].

10

10

Birkedal, Damgaard, Glenstrup & Milner

perm
ωa, ωR, ωC ` a,

⊗m
i Pπ(i) ↪→C, (π ⊗ id)d

ωa, ωR, ωC ` a,
⊗m

i Pi ↪→Cπ, d

par
ωa, ωR, ωC || ω ` a,R ↪→C, d ωb, ωS, ωD || ω ` b, S ↪→D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω ` a⊗ b, R ⊗ S ↪→C ⊗D, d⊗ e

lsub
σa ⊗ ωa, ωR, σC ⊗ ωC ` p, R ↪→P, d σa : Z → W σC : U → W

ωa, ωR, ωC ` (σ̂a ⊗ id)(Z)p, R ↪→(σ̂C ⊗ id)(U)P, d

merge
ωa, ωR, ωC ` a,R ↪→C, d

ωa, ωR, ωC ` (merge ⊗id)a,R ↪→(merge ⊗id)C, d

ion

ωa, ωR, ωC ` (
⊗n

i (vi)/(Xi)⊗ id)p, R ↪→(
⊗n

i (vi)/(Zi)⊗ id)P, d

α = ~y/~u σy : {~y} →
σy || ωa, ωR, σyα || ωC ` (K~y(~X) ⊗ id)p, R ↪→(K~u(~Z) ⊗ id)P, d

switch
ωa, idε, ωC(σR ⊗ ωR ⊗ id) ` p, id ↪→P, d σR : W → U

ωa, ωR, ωC ` p, (σ̂R ⊗ id)(W)P ↪→pUq, d

prime-axiom
ω, idε, ω(α−1 ⊗ id) ` p, id ↪→pαq, p

wiring-axiom
y, XR/∅, y/(XR]Xd) ` idε, idε ↪→ idε, Xd/∅

close

{~yi} = Y {~Zi} = Z σZ
R : U → Z

(
⊗m

i yi/Xi)⊗ (
⊗l

i zi/Xi+m)⊗ σa,

(
⊗m

i yi/Yi)⊗ idU ⊗ σC
R, (

⊗l
i zi/Zi)σZ

R ⊗ σC ⊗ idY ` a,R ↪→C, d

(
⊗m

i /yi yi/Xi)⊗ (
⊗l

i /zi zi/Xi+m)⊗ σa,

(
⊗m

i /yi yi/Yi)⊗ σZ
R ⊗ σC

R, (
⊗l

i /zi zi/Zi)⊗ σC ` a,R ↪→C, d

Fig. 3. Rules for matching binding bigraphs

The par rule explains how to match a product, given two valid matches,
which share some context wiring ω if the two parts of the redex share a
(necessarily global) name, cf. Figure 4.

The lsub rule allows us to match any discrete prime (c.f. Proposition 3.2)
by matching an underlying free (name)discrete prime with the wiring of agent
and context extended with the underlying global substitutions σa and σC. In

11

11

Birkedal, Damgaard, Glenstrup & Milner

K L

xw1y1 y2w2 z

a b

ωa ωb

YC = {w}

YD = {w, z}

x y1 y2 z

x y1 y2

w

w

ω

z

C⊗ idYC
idYD

⊗D

ωC ωD

K L

xw1y1 y2w2 z

R S

ωR ωS

Fig. 4. Matching a product using the par rule

other words, this rule expresses that we can match a bigraph with local names
by matching the corresponding free bigraph (forgetting that the names are
local) and then remember to make the correct names local again.

The merge rule simply states that to match bigraphs with an outer merge
and a global id, we must be able to match the underlying bigraphs.

The ion rule works intuitively by splitting up a binding ion into a free,
discrete ion and an underlying local substitution. For any given match of
discrete primes, we can compose with ions K~y(~X) or K~n(~Z), if we extend the
wirings of agents and contexts with isomorphic wiring on the outer names ~y
and ~n; stated in the rule by requiring that we extend with σy and σyα (where
α = ~y/~n). For example, if we seek to match the agent a = (id ⊗ K~y(~X))p

yielding a context C = (id⊗K~u(~Z))P , then it suffices to consider matching of

a′ = (~v)/(~X)p yielding a context C ′ = (~v)/(~Z), as illustrated in Figure 5.

K

y1 y2

y′1 y′2
σy

p
x1x2x3x4

a

K

u1 u2

y′1 y′2
σyα

P
z1 z2 z3 z4

C

v1 v2 v3

p
x1x2x3x4

a′

v1 v2 v3

P
z1 z2 z3 z4

C ′

Fig. 5. Matching ion agent a yielding context C by matching a′ yielding context C ′

Given an agent and considering an inference tree operationally bottom up,
the rules specify how to decompose the agent while constructing the corre-
sponding context (cf. e.g. the ion rule). At the point where the root of the
redex is matched, the switch rule is applied, switching the redex into con-
text position, so that further decomposition of the agent checks that the redex
matches. Thus, when inferring a match, every rule except switch can be used
in two modes: one where the agent and redex are given, resulting in a context
and parameter; and one where the agent and context are given, resulting in a
parameter.

12

12

Birkedal, Damgaard, Glenstrup & Milner

The prime-axiom and wiring-axiom axioms are our base cases and are
intuitively clear (the latter is used to match bigraphs of zero width).

The close rule allows us to infer a match for open bigraphs and “close”
this match by replacing names in wirings with edges, taking care to split multi-
closures appropriately. For example, the agent a in Figure 6 is matched by
matching agent a′ and then closing the names y, z1 and z2. So internal agent

a R C

K1 K2 L1 L2 M1 M2 K1 K2 L1

z

L2 M1 M2

z

K1 K2 L1 L2 M1 M2

y z2z1

K1 K2 L1

y u1u2

L2 M1 M2

z2

u1

z1

u2y

y

a′ R′ C ′

Fig. 6. Matching closed links within and between redex and context

edges matched by internal redex edges are named yi, and edges matched by
internal context edges are named zi.

Theorem 3.6 The rules for matching in Figure 3 are sound, i.e., any match-
ing sentence that can be derived is valid.

Proof. Straightforward, but tedious, standard algebraic manipulations. 2

The completeness theorem will be proved by induction on the size of valid
sentences, which is defined as follows.

Definition 3.7 The size of a matching sentence ωa, ωR, ωC ` a, R ↪→C, d is
the number of ions in a.

The following lemmas express how a valid sentence may be derived by ap-
plications of inference rules to valid sentences of lesser or equal size. The proofs
proceed by first decomposing the components of the given valid sentence, then
defining the components of the valid sentence(s) claimed to exist and, finally,
verifying that (1) the sentences claimed to exist really are valid and (2) that
the given sentence can indeed be derived as claimed. The decompositions
are obtained via Propositions 3.1, 3.2, and 3.3, and the verifications proceed
using lemmas found in [5] (in particular, the “push-through-lemma,” which
expresses how we can push a permutation “through” a product of primes,
permuting the order in which they appear in the product, and producing a
permutation that reorders the sites in the primes to preserve the inner face).

13

13

Birkedal, Damgaard, Glenstrup & Milner

Lemma 3.8 Every valid sentence ωa, ωR, ωC � a, R ↪→C, d is provable using
the close and the perm rule on a valid sentence, of equal size, of the form
σ′

a, σ
′
R, σ′

C � a, S ↪→
⊗n

i Pi, e.

Lemma 3.9 Every valid sentence σa, σR, σC � a, R ↪→Q ⊗
⊗n

i Pi, d, with P
and Pi prime and discrete, is provable using the par rule on valid sentences, of
lesser or equal size, of the form σP

a , σP
R, σP

C ||σS
C � p, S ↪→P, e and σC

a , σC
R, σC

C ||
σS

C � a′, R′ ↪→
⊗n

i Pi, e
′.

Lemma 3.10 Every valid sentence σa, σR, σC � a, R ↪→ idε, d is provable using
the par and wiring-axiom.

Lemma 3.11 Every valid sentence ωa, ωR, ωC � p, R ↪→P, d, with p and P
prime and discrete, is provable using the lsub rule on a valid sentence, of
lesser or equal size, of the form ω′

a, ω
′
R, ω′

C � p′, R ↪→P ′, d, where p′ and P ′

are discrete free primes.

Lemma 3.12 Every valid sentence σa, σR, σC � p, R ↪→P, d, with p and P
discrete and free primes, is provable using merge, par (iterated), and switch
rules on valid sentences, each of lesser or equal size, and each on one of two
forms:

• σ′
a, σ

′
R, σ′

C � pN , id ↪→PN , e, where pn and PN are free discrete primes,

• σ′
a, σ

′
R, σ′

C � m,S ↪→M, e, where m and M are free discrete molecules.

Lemma 3.13 Every valid sentence σa, σR, σC � m, R ↪→M, d, with m and
M free discrete molecules, is provable using the ion rule on a valid sentence
σ′

a, σ
′
R, σ′

C � p, R ↪→P, d, of lesser size, where p and P are discrete primes.

Lemma 3.14 Every valid sentence σa, σR, σC � p, id ↪→P, e, with p and P
free discrete primes, is provable using the merge and par (iterated) rules
on valid sentences of equal or lesser size, which are either instances of rule
prime-axiom or of the form σ′

a, σ
′
r, σ

′
M � m, R ↪→M, d.

Theorem 3.15 The rules for matching in Figure 3 are complete, i.e., any
valid matching sentence can be derived from the rules.

Proof. By induction on the size of a sentence. By the lemmas above, we have
that all valid sentences with size n can be derived from valid sentences of the
form σa, σR, σC � m, R ↪→M, d, with m and M free discrete molecules, of size
less than or equal to n. By Lemma 3.13, these can be derived from sentences
of size less than n. 2

4 Towards Algorithms for Matching

The completeness theorem tells us that we can find all valid matching sentences
by applications of the rules for matching. Thus the rules for matching define an
algorithm for matching, for instance easily expressed in Prolog, which simply
operates by searching for inference trees using the rules.

14

14

Birkedal, Damgaard, Glenstrup & Milner

Although we can (e.g. in prolog) base a matching algorithm directly upon
the matching rules, we do not claim that an efficient matching algorithm has
to be so based. We have introduced matching rules for a dual purpose: first,
to characterise matching structurally and inductively in order to understand
it (in particular to understand the relation to representations based on normal
forms and to understand where exactly choices between different matches can
be made during matching); second, to provide a point from which to begin
the search for truly efficient matching algorithms, and to verify them. This
rigorous approach to matching is justified, in our view, because matching will
be the workhorse of any implementation of bigraph dynamics.

In practice, one is, of course, interested in minimizing unnecessary blind
search, and thus, e.g., only search for inference trees of a certain form. Indeed,
one can show that it suffices to consider so-called normal inference trees, which
put restrictions on the order in which the inference rules are applied (such
as, e.g., always concluding with the close rule). We shall not include a
formal definition of normal inference trees here, but rather discuss some of
the possibilities for defining normal inference trees. We first remark that to
retain completeness, any definition of normal inference must, of course, ensure
no loss of provability. Looking at the formulations of the lemmas leading up
to the completeness theorem, we see that there are indeed several possibilities
for the definition of normal inference tree. For example, from Lemma 3.8
we see that we are free to conclude each inference tree with close and then
perm or vice versa. Further, in several rules we are allowed to propagate
closed links, even though close intuitively makes that unnecessary. We have
chosen to leave this freedom in the rule system and instead comment on how
we could extend the set of rules to allow even more freedom in chosing our
definition of normal inference tree. This is important when thinking about
implementations, as each definition of normal inference tree corresponds to a
different algorithmic approach to matching.

One may say that the current set of rules naturally give rise to normal
inferences that are a mix between matching the link graph “lazily”or “eagerly”.
Instead of the close rule, one could have amended the par and ion rules
(those with || in the conclusion) such that they would also handle matching of
closures. This would have allowed true “by need” link-matching. Conversely,
one could have amended the close to also compare substitutions, allowing
us to consider matching of discrete bigraphs up to renaming isos on their
outerfaces. If we amended the lsub and switch rules to work accordingly,
this would actually preclude the need for the wirings ωa, ωR, ωC in matching
sentences. It seems, though, that the tedious complexity added into these
rules would mean that we would gain little in removing complexity from the
rules as a whole. Anyhow, these changes would allow us to define a variant
of normal inferences, which would be “strict” in the link graph, in that we
would immediately be able to reject possible matches based on the link graph
(instead of the place graph).

15

15

Birkedal, Damgaard, Glenstrup & Milner

Another possibility would be to add a rule glob, allowing us to match
all wiring stemming from a single prime as global wiring. This idea seems to
indicate that matching in local bigraphs [13] (where there is no global linkage
but instead multilocated names) could be handled similarly, by recasting the
rules to work on local links and just locating names at all roots where they
occur.

4.1 Representations of Graphs

An implementation of matching must, of course, represent bigraphs in some
way. One possibility is to represent bigraphs directly by place and link graphs,
and then implement the normal form lemmas, which express how bigraphs
may be decomposed into simpler bigraphs; then matching can proceed by
induction on the decomposed graph. In general, however, the “decomposition
functions” return sets of possible decompositions, because normal forms are
only unique up to certain permutations. (For example, merge(M1 ⊗ M2) =
merge(M2⊗M1).) A matching implementation needs to explore all the possible
decompositions. This can be made explicit formally, by phrasing the inductive
characterization of matching not on bigraphs but on bigraphical expressions
(syntax), as defined in [12,5]. Doing so forces us to add an inference rule,
which allows one to replace any expression in a matching sentence ωa, ωR, ωC `
a, R ↪→C, d, say a, by another, say a′, that is provably equal via the axioms for
equality in [5]. Doing so clearly yields a complete set of rules on bigraphical
expressions. When defining normal inference trees for these, one seeks, of
course, to restrict the application of the equality axioms. The definition of
normal inference trees will then formally explicate all the possibilities that
a matching algorithm needs to explore. We have worked out a definition of
normal inference tree for matching of place graph expressions and proved it
complete. Based on that experience, we believe it should not be too hard
to work out a suitable definition of normal inference tree binding bigraph
expressions and prove it complete.

5 Conclusion and Related Work

We have presented a sound and complete inductive characterization of match-
ing for binding bigraphs. We are currently working toward an implementation
of matching based upon the characterization.

Bigraphical reactive systems are related to graph transformations systems;
see [6] for a recent comprehensive overview of graph transformation systems.
In particular, bigraph matching is strongly related to the general graph pat-
tern matching (GPM) problem, so general GPM algorithms might be appli-
cable [17,7,10,20]. Due to the special structure of bigraphs, general GPM
algorithms are expected to be inefficient, although some GPM tools [19] use
heuristic search strategies that might be able to discover and exploit bigraph

16

16

Birkedal, Damgaard, Glenstrup & Milner

structure. A special aspect of bigraphs is that we may match a set of sub-
trees with a single node (site) in the redex, and match multiple redex roots in
different places within the agent. Fu [7] handles such wildcard nodes and mul-
tiple patterns, but directly applying his algorithm is not straightforward, as he
attacks the problem of tree isomorphism of rooted graphs unfolded to finite
unbounded depths. The subtree isomorphism problem [15,18,16] is simpler
than GPM, but applying it directly to the place graphs of bigraphs would not
exploit the constraints imposed by the link graphs. Rather, efficient implemen-
tations of bigraph matching should be derived from the initial implementation
by experimenting with different normal inference tree definitions, and combin-
ing it with subtree isomorphism algorithms. The inductive characterization
provided here will make it easier to prove the actual algorithm correct.

6 Acknowledgments

This work was funded in part by the Danish Research Agency (grant no.: 2059-03-0031)
and the IT University of Copenhagen (the LaCoMoCo project).

References

[1] Birkedal, L., Bigraphical Programming Languages—a LaCoMoCo research
project, in: Second UK UbiNet Workshop, Cambridge, 2004, position Paper.

[2] Birkedal, L., T. C. Damgaard, A. J. Glenstrup and R. Milner, Matching of
bigraphs — proofs of soundness and completeness, available on request.

[3] Birkedal, L., S. Debois, E. Elsborg, T. Hildebrandt and H. Niss, Bigraphical
models of context-aware systems, in: L. Aceto and A. Ingólfsdóttir, editors,
FOSSACS ‘06: Proceedings of 9th International Conference on Foundations of
Software Science and Computation Structures, LNCS 3921 (2006), pp. 187–201.

[4] Birkedal, L., S. Debois and T. Hildebrandt, Sortings for reactive systems,
Technical Report 84, IT University of Copenhagen (2006), iSBN 87-7949-124-3.

[5] Damgaard, T. C. and L. Birkedal, Axiomatizing binding bigraphs (revised),
Technical Report TR-2005-71, IT University of Copenhagen (2005).

[6] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic
Graph Transformation,” Monographs in Theoretical Computer Science. An
EATCS Series, Springer, 2006.

[7] Fu, J. J., Directed graph pattern matching and topological embedding, Journal
of Algorithms 22 (1997), pp. 372–391.

[8] Jensen, O. H., “Mobile Processes in Bigraphs,” Ph.D. thesis, Univ. of Cambridge
(2005), forthcoming.

[9] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical
Report 580, University of Cambridge (2004), iSSN 1476-2986.

17

17

Birkedal, Damgaard, Glenstrup & Milner

[10] Larrosa, J. and G. Valiente, Constraint satisfaction algorithms for graph pattern
matching, Mathematical Structures in Computer Science 12 (2002), pp. 403–
422.

[11] Leifer, J. J. and R. Milner, Transition systems, link graphs and Petri nets,
Technical Report 598, University of Cambridge (2004).

[12] Milner, R., Axioms for bigraphical structure, Technical Report 581, University
of Cambridge (2004).

[13] Milner, R., Bigraphs whose names have multiple locality, Technical Report
UCAM-CL-TR-603, University of Cambridge, Computer Laboratory (2004).
URL http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf

[14] Milner, R., Pure bigraphs, Technical Report 614, University of Cambridge
(2005).

[15] Selkow, S. M., The tree-to-tree editing problem, Information Processing Letters
6 (1977), pp. 184–186.

[16] Shamir, R. and D. Tsur, Faster subtree isomorphism, Journal of Algorithms 33
(1999), pp. 267–280.

[17] Ullman, J. D., An algorithm for subgraph isomorphism, Journal of the ACM 23
(1976), pp. 31–42.

[18] Valiente, G., “Algorithms on Trees and Graphs,” Springer, Berlin, 2002.

[19] Varró, G., D. Varró and K. Friedl, Adaptive graph pattern matching for
model transformations using model-sensitive search plans, in: G. Karsai and
G. Taentzer, editors, GraMot 2005, International Workshop on Graph and
Model Transformations, Electronic Notes in Theoretical Computer Science,
2005, pp. 191–205.
URL http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/
gramot05_vvf.pdf

[20] Zündorf, A., Graph pattern matching in PROGRES, in: J. Cuny, H. Ehrig,
G. Engels and G. Rozenberg, editors, Proceedings of the 5th International
Workshop on Graph-Grammars and their Application to Computer Science,
LNCS 1073 (1996), pp. 454–468.

18

18

Adhesive dpo Parallelism for monic matches

Filippo Bonchi, Tobias Heindel

Dipartimento di Informatica, Università di Pisa, Italy

Abstract

This paper presents indispensable technical results of a general theory that will allow
to systematically derive from a given reduction system a behavioral congruence that
respects concurrency. The theory is developed in the setting of adhesive categories
and is based on the work by Ehrig and König on borrowed contexts; the latter are
an instance of relative pushouts, which have been proposed by Leifer and Milner.

In order to lift the concurrency theory of dpo rewriting to borrowed contexts
we will study the special case of dpo rewriting with monic matches in adhesive
categories: more specifically we provide a generalized Butterfly Lemma together
with a Local Church Rosser and Parallelism theorem.

1 Introduction and Motivation

Process calculi are a well established tool to describe interactive systems. The
progression of a process, if it is interpreted as a closed system, is described
by a reduction system (rs); moreover each process is a state of a labeled
transition system (lts), which describes how the process may interact with
its environment: in this case the process is thought of as an open system.
Also the the double pushout approach (dpo) can be used to model closed and
open systems: a reduction step corresponds to a dpo rewrite while interaction
with the environment is described as a transition that is labeled by a borrowed
context, which is a part of the environment. One of the advantages of the
dpo approach is that one can distinguish between concurrent and necessarily
interleaved events of a closed system. Now the main motivation of this paper
to lift this advantage to the setting of open systems, i.e. to provide ltss with
labels that describe concurrent interaction with the environment.

One of the first approaches to derive a lts from a given rs, was presented
in [12]. The transitions of the generated lts are labeled by the “minimal”

1 This work is partially supported by the SegraVis research training network.

Preprint submitted to Elsevier Preprint 14 July 2006

19

contexts that allow a reduction (as a consequence all the internal actions of
a system correspond to transitions which have the “empty” environment as
label). For example in ccs, which has the reduction rule x̄.P | x.Q → P | Q,
the process ā.0 cannot perform any reduction by itself but can only be reduced
in a context of the form [−] | a.P : hence the derived lts contains a transition

ā.0
[−]|a.P

−−−→ P . The main property of the derived lts is that its associated
bisimulation relation is a congruence, i.e. it relates two processes that exhibit
the same behavior w.r.t. to every environment. However to check bisimilarity
one does not need to check all contexts but it is enough to consider the
“minimal” ones, which are given as the labels.

Leifer and Milner’s work [12] has been extended to an enriched category
context by Sassone and Sobocinski in [13], while Ehrig and König developed
a similar framework for dpo rewriting (on Graphs) in [6], called borrowed
context rewriting (dpobc). Finally [14] introduces an encompassing theory
(following the bi-categorical approach of dpo rewriting of [7]). The results
of this last most general work apply to every adhesive category. This means
that given a system specification by an adhesive rewriting system [11] one can
generate a lts with an associated bisimulation congruence.

Whereas rss and ltss are (families of) relations between states of a sys-
tem, the concurrency theory for dpo rewriting is concerned with relations
between the transitions, i.e. the rewrites (see e.g. [9,1]). For example two con-
secutive applications of the rule ◦ ◦← ◦ ◦→ ◦ x◦may result in the graph ◦xx◦.
The two rewrites are sequential independent, i.e. one can swap them without
any further complications; moreover one can even apply them “at the same
time”, that is concurrently : the concurrent application corresponds to a single
application of the parallel rule ◦ ◦← ◦ ◦→ ◦xx◦. In contrast, consider a coffee
vending machine: it can sell a coffee and then a latte macchiato or do this
in the reversed order but not at the same time (unless you operate a buggy
machine which produces a puddle of cappuccino as the result of the concurrent
execution). The latter example explains the difference between the two ccs

processes c̄ | m̄ and c̄.m̄ + m̄.c̄, which nevertheless are equivalent according to
the standard bisimulation of ccs. Also the generated ltss discussed before
do not take into account these finer differences in behavior.

This paper is aimed towards the generation of bisimulation congruences
that do respect concurrency. Here we report about the first steps of research in
this direction. The main idea is to saturate a given set of productions with all
parallel productions and then apply the borrowed context method to generate
a bisimulation congruence that respects concurrency. More specifically, given
an initial set of rules P , we will construct a saturation P̄ that will be used to
synthesize a lts using the results of [14]; the set P̄ contains for every (finite)
subset P ′ ⊆ P and every way in which the members of P ′ might be applied
concurrently the corresponding parallel production.

2

20

One central issue is the apropriate notion of parallel rule. Parallel rules are
usually defined as coproducts in dpo; but this construction cannot be used
in dpobc since there, matching morphisms are required to be monic. The
required notion of parallel rule is given in [9], which studies dpo rewriting
with monic matches (dpo

a/i), for the case of Graphs. However this work
cannot be directly adapted to the adhesive setting since the proofs of its
results depend on coproducts.

2 Local Church Rosser and Parallelism for dpo
a/i

We first recall the essential definitions of dpo rewriting in adhesive categories
as presented in [11], to which we refer the reader for more details. For the
remainder of this section we fix an adhesive category C, to which all mentioned
objects and arrows belong.

Definition 2.1 (Productions and rewriting)

A production p is a span of arrows p = L
l
←−� K

r

−→ R with
monic l. Given an arrow f : L→ C we say that p rewrites

C to D at match f , and we write C
〈f,p〉
==⇒ D if there exists

a diagram containing two pushouts as shown on the right.

L
f

K
l

g

r
R

h

C Ev w D

In the theory of borrowed contexts in adhesive categories, one only encounters
the special case where the matching morphism f is monic, and hence from now
on we will assume all matches to be monic. This fragment of dpo rewriting
in the category of Graphs has been studied in [9] by the name dpoa/i. Their
results involve the strong versions of sequential and parallel independence.

Definition 2.2 ((Strong) parallel and sequential independence) Let

be given productions pi = Li
li←−� Ki

ri
−→ Ri for i ∈ {1, 2} and let there be

given the rewrites D1
〈f1,p1〉⇐==== C

〈f2,p2〉====⇒ D2 (C
〈f1,p1〉====⇒ D1

〈f ′2,p2〉

====⇒ D). They are
parallel (sequential) independent, if there exist morphisms s and t (s′ and t′)
such that they commute in the composed diagram of the rewrites below.

R1 K1 L1

f1

L2

f2

K2

s

R2

D1 E1w1 C

t

E2 w2
D2

L1

f1

K1 R1 L2

f ′2

K2

s′

R2

C E1v1
D1

t

E3 w3 D

They are strongly parallel (sequential) independent if w1 ◦ t and w2 ◦ s (v1 ◦ t′

and w3 ◦ s′) are monic.

In [9] the Parallelism theorem for dpoa/i for the case of Graphs has been
proven. However the proof cannot be lifted directly to adhesive categories

3

21

since it depends on the existence of coproducts. Moreover the Parallelism
theorem for adhesive categories with coproducts presented in [11], does not
transfer to dpoa/i.

Technical contribution

The main idea is to replace coproducts, which are just pushouts from the
empty graph in Graphs, by pushouts. This will allow us to make the dpoa/i

theory of [9] available for adhesive categories. How coproducts can be replaced
by pushouts will be explained in terms of the next definition.

Definition 2.3 Let the following squares be pushouts:

Q
x1x2

A1A2

A
i1i2

Q
y1y2

B1B2

B
j1j2

.

Then we will denote A by A1 +Q A2 and B by B1 +Q B2.

If y1 = f1 ◦ x1 and y2 = f2 ◦ x2 holds for two morphisms f1 and f2,
and f : A → B is the unique morphism which satisfies f ◦ i1 = j1 ◦ f1 and
f ◦ i2 = j2 ◦ f2: then f will be denoted by f1 +Q f2.

p
xaq

y
p
xaq

yIf
we
have
space
we
can
add
a
dia-
gram.

For the initial object 0 the expression A1 +0 A2 is equivalent to A1 + A2,
and similarly for f1 +0 f2 and f1 + f2. This “generalized coproduct” is used
to describe the parallel composition of two rules that rewrite an object in a
parallel independent way: a combined rule is constructed that allows to apply
the two rules “at the same time”, i.e. concurrently. More specifically the two
rules need to be glued together at the intersection of their read-only parts.

Definition 2.4 (Parallel productions) Let p1 = L1

l1
←− K1

r1
−→ R1 and

p2 = L2

l2
←− K2

r2
−→ R2 be productions, and let K1

x1
←− Q

x2
−→ K2 be a span

of morphisms. If the pushouts for all the pairs (l1 ◦ x1, l2 ◦ x2), (x1, x2) and
(r1 ◦ x1, r2 ◦ x2) exist, then the parallel composition of p1 and p2 over Q is

p1 +Q p2 = L1 +Q L2

l1+Ql2
←−−−− K1 +Q K2

r1+Qr2
−−−−→ R1 +Q R2.

The production p1 +Q p2 is called proper if all the morphisms of the three
involved pushout diagrams are monic.2

Now we are ready to formulate the main theorem, which might be of
interest whenever one uses dpoa/i rewriting in adhesive categories. The proof
relies on an adapted version of the Butterfly Lemma of [10] for “generalized”
coproducts (see Appendix).

2 This construction is equivalent to the one given in Definition 9.5 of [9].

4

22

Theorem 2.5 (Parallelism and Local Church Rosser in dpoa/i)

Let p1 = L1

l1
←− K1

r1
−→ R1 and p2 = L2

l2
←− K2

r2
−→ R2 be productions,3 and let

L1
f1

�−→ C and L2
f2

�−→ C be morphisms. Then the following are equivalent.

(i) There are strongly parallel independent rewrites D1
〈f1,p1〉⇐==== C

〈f2,p2〉====⇒ D2.

(ii) There are strongly sequential independent rewrites C
〈f1,p1〉====⇒ D1

〈f ′2,p2〉

====⇒ D.

(iii) There are strongly sequential independent rewrites C
〈f2,p2〉====⇒ D2

〈f ′1,p1〉

====⇒ D.

(iv) There is a rewrite C
〈f1+Qf2,p1+Qp2〉

==========⇒ D with a proper parallel production

p1+Qp2 where Q is constructed as the pullback Q
↗K1→C
→K2

↗ , i.e. Q = K1∩K2.

3 Conclusion and work in progress

Motivated by extending the existing concurrency theory of dpo rewriting
to the interactive setting of dpo with borrowed contexts (dpobc), we have
defined the required kind of parallel productions and proved the Local Church
Rosser and Parallelism theorem for dpoa/i in adhesive categories. Besides
filling this gap in the literature, these theorems might prove useful for future
research concerned with dpoa/i rewriting in adhesive categories. This is not
unlikely since the dpo

a/i approach is more intuitive and more expressive than
dpo as shown in [9]. In fact, dpobc is not the only application where the
requirement of monic matches arises naturally: consider e.g. the work on
processes of adhesive rewriting systems [2] and encondig of nominal calculi [8].

We will use the presented results for the generation of a concurrency re-
specting bisimulation congruence from a given set of rules. More specifically
the construction of parallel rules will be used to generate a closure of all given
productions as follows: given a set of productions P we construct the closure
P̄ via the two rules

p ∈ P

p ∈ P̄

p, p′ ∈ P̄ & Kp
i
←−� Q

j
�−→ Kp′

p +Q p′ ∈ P̄

where Kp denotes the interface of a rule p, i.e. given a rule p = X ← Y → Z

we write Kp for Y .

Usually in borrowed context rewriting and in the more general setting
of the theory of reactive systems, the lts is derived using the set of rules
P , while here we propose to use P̄ . Reconsider the ccs example from the
introduction where we hinted at the difference between the two processes c̄ |m̄
and c̄.m̄+ m̄.c̄. This now can be made formal, since the lts generated from P̄

using the borrowed context technique of [14] allows the former to communicate
with the environment concurrently at the channels m and c (this corresponds

3 These are not required to be linear, as is assumed in [11].

5

23

to the transition c̄ | m̄
[−]|c.P |m.Q

−−−−−−→ P | Q) while the latter cannot (in signs

c̄.m̄ + m̄.c̄
[−]|c.P |m.Q

−−−−−−→X P | Q).

There are several other proposals of bisimulations that respect concurrency
[4, 3, 5] however they are based on the notion of causality. Our proposal
conceptually differs from these since it does not allow the environment to
observe causality but just the possible ways in which a system could interact
with the environment concurrently. In other words, we consider systems as
black boxes, while intuitively the existing equivalences seem to open the black
box by observing causal dependencies. Reconsidering our ccs example, our
proposed bisimilarity distinguishes c̄ | m̄ and c̄.m̄ + m̄.c̄ because an external
observer can parallely communicate with the former but not with the latter,
while the bisimilarities of the cited works distinguish the processes because the
former can perform its transitions independently and the latter cannot. The
subtle interplay between causality and concurrency especially in the context
of borrowed context rewriting is the main interest of ongoing research.

Acknowledgements

We would like to thank Fabio Gadducci, Ugo Montanari and the anonymous
referees for their comments on the paper.

References

[1] Baldan, P., A. Corradini, H. Ehrig, M. Löwe, U. Montanari and F. Rossi,
Concurrent semantics of algebraic graph transformations, in: H. Ehrig, H.-
J. Kreowski, U. Montanari and G. Rozenberg, editors, Handbook of Graph

Grammars and Computing by Graph Transformation (1999), pp. 107–188.

[2] Baldan, P., A. Corradini, T. Heindel, B. König and P. Sobocinski, Processes for

adhesive rewriting systems., in: FoSSaCS, 2006, pp. 202–216.

[3] Baldan, P., A. Corradini and U. Montanari, History preserving bisimulation for

contextual nets., in: D. Bert, C. Choppy and P. D. Mosses, editors, WADT,
Lecture Notes in Computer Science 1827 (1999), pp. 291–310.

[4] Bednarczyk, M. A., Hereditary history preserving bisimulations or what is the

power of the future perfect in program logics, Technical report, Polish Academy
of Sciences, Gdansk (1991).

[5] Best, E., R. R. Devillers, A. Kiehn and L. Pomello, Concurrent bisimulations

in petri nets., Acta Inf. 28 (1991), pp. 231–264.

[6] Ehrig, H. and B. König, Deriving bisimulation congruences in the DPO approach

to graph rewriting, in: Proc. of FOSSACS ’04 (2004), pp. 151–166, LNCS 2987.

6

24

[7] Gadducci, F., R. Heckel and M. Llabrés, A bi-categorical axiomatisation of

concurrent graph rewriting., Electronic Notes Theoretical Computer Science 29

(1999).

[8] Gadducci, F. and U. Montanari, Observing reductions in nominal calculi via

a graphical encoding of processes, in: Processes, Terms and Cycles, 2005, pp.
106–126.

[9] Habel, A., J. Müller and D. Plump, Double-pushout graph transformation

revisited., Mathematical Structures in Computer Science 11 (2001), pp. 637–
688.

[10] Kreowski, H.-J., “Manipulationen von Graphmanipulationen,” Ph.D. thesis,
Technische Universität Berlin (1977).

[11] Lack, S. and P. Sobociński, Adhesive and quasiadhesive categories, Theoretical
Informatics and Applications 39 (2005), pp. 511–546.
URL
http://www.maths.usyd.edu.au:8000/u/stevel/papers/vkjournal.html

[12] Leifer, J. J. and R. Milner, Deriving bisimulation congruences for reactive

systems., in: CONCUR, 2000, pp. 243–258.

[13] Sassone, V. and P. Sobociński, Deriving bisimulation congruences using 2-

categories., Nord. J. Comput. 10 (2003), pp. 163–.

[14] Sassone, V. and P. Sobociński, Reactive systems over cospans, in: Proc. of LICS

’05 (2005), pp. 311–320.

7

25

A The extended Butterfly Lemma

Lemma A.1 (General butterfly lemma)

Q

x1y1 x2 y2

B1

j1

A1f1

i1

A2 f2

i2

B2

j2A

f
B

Q

x1 x2

A1

i1

A2

i2

A
a

C

a1 a2

Q

y1 y2

B1

j1

B2

j2

B
e

E

e1 e2

(A.1)
Let the above be commuting diagrams where all interior squares and the bound-
ary of the left one are pushouts, and f : A → B, a : A → C, and e : B → E

are the unique mediating morphisms, such that

j1 ◦ f1 = f ◦ i1 j2 ◦ f2 = f ◦ i2 (A.2)

a1 = a ◦ i1 a2 = a ◦ i2 (A.3)

e1 = e ◦ j1 e2 = e ◦ j2 (A.4)

Finally let C have pushouts of the two diagrams B1

f1
←− A1

a1
−→ C and

B2
f2
←− A2

a2
−→ C.

Then for any morphism c : C → E the following are equivalent.

(i) There exists a commuting diagram

A1
f1 a1

(∗)

A2
a2 f2

(†)B1

b1

e1

C
c1 c2

c
(‡)

B2

b2

e2

D1

d1

D2

d2

E

where the squares (∗), (†) and (‡) are pushouts.

(ii) The diagram

A

(§)

f

a

B

e

C c E

is a pushout.

Proof.

8

26

(i)⇒ (ii)

First assemble the given diagrams into one.

Q

y1

x1

y2

x2

A1
f1

a1

(∗)

A
i1 i2

a

A2

a2

f2

(†)B1

b1

e1

C
c1 c2

c
(‡)

B2

b2

e2

D1

d1

D2

d2

E

B

j1 j2e

f

(A.5)

Next we need to check that e ◦ f = c ◦ a; for this we will use that i1
and i2 are jointly epic, i.e. we will show that both e ◦ f ◦ i1 = c ◦ a ◦ i1 and
e ◦ f ◦ i2 = c ◦ a ◦ i2 hold.

e ◦ f ◦ i1
:::::

= e ◦ j1
:::::

◦ f1 see Item (i)

= e1
::

◦ f1 Equation (A.4)

= d1 ◦ b1 ◦ f1
::::::

see Diagram (A.5)

= d1 ◦ c1
::::::

◦ a1
::

Square (∗)

= c ◦ a ◦ i1 Region (‡) and Equation (A.3)

By symmetry we get also e ◦ f ◦ i2 = c ◦ a ◦ i2 and hence we have shown that
the square (§) of Item (ii) commutes; it remains to show that it satisfies the
universal property of pushouts.

Hence assume there is a commuting diagram as

A

(§)

f

a

B

e

C c E X

h

k

(A.6)

9

27

Now we have

h ◦ a1
::

= h ◦ a
:::::

◦ i1 Equation (A.3)

= k ◦ f ◦ i1
:::::

Diagram (A.6)

= k ◦ j1 ◦ f1 see Diagram (A.1)

and similarly we derive h ◦ a2 = k ◦ j2 ◦ f2. Because the squares (∗) and
(†) are pushouts there are uniquely determined morphisms z1 : D1 → X and
z2 : D2 → X which satisfy

z1 ◦ c1 = h z2 ◦ c2 = h (A.7)

z1 ◦ b1 = k ◦ j1 z2 ◦ b2 = k ◦ j2. (A.8)

Using Equation (A.7) and the fact that square (‡) is a pushout we derive that
there is exactly one morphism z : E → X such that

z ◦ d1 = z1 and z ◦ d2 = z2 (A.9)

hold. This z is a candidate for the mediating morphism we are are looking for
(see Diagram (A.6)).

In fact we derive

z ◦ e ◦ j1
:::::

= z ◦ e1
::

Equation (A.4)

= z ◦ d1
::::::

◦ b1 see Diagram (A.1)

= z1 ◦ b1
::::::

Equation (A.9)

= k ◦ j1 Equation (A.8)

and by symmetry we may conclude that also z ◦ e ◦ j2 = k ◦ j2. However j1

and j2 are jointly epic, which yields z ◦ e = k. Moreover

z ◦ c
:

= z ◦ d2
::::::

◦ c2 Square (‡)

= z2 ◦ c2
::::::

Equation (A.9)

= h Equation (A.7)

i.e. we have the equalities

z ◦ e = k and z ◦ c = h. (A.10)

It remains to show that z is the unique mediating morphism, i.e. that every

10

28

other morphism ζ : E → X satisfying

ζ ◦ e = k and ζ ◦ c = h (A.11)

is equal to z. So assume that some morphism ζ satisfying Equation (A.11) is
given. We put

ζ1 := ζ ◦ d1 and ζ2 := ζ ◦ d2. (A.12)

Now we derive

ζ1
::

◦ b1 = ζ ◦ d1 ◦ b1
::::::

Equation (A.12)

= ζ ◦ e1
::

by assumption of Item (i)

= ζ ◦ e
::::

◦ j1 Equation (A.4)

= k
:

◦ j1 Equation (A.11)

= z ◦ e ◦ j1
:::::

Equation (A.10)

= z ◦ e1
::

by assumption of Item (i)

= z ◦ d1
::::::

◦ b1 Equation (A.12)

= z1 ◦ b1 Equation (A.9)

and in the same way arrive at ζ2 ◦ b2 = z2 ◦ b2, i.e. we have shown that

ζ1 ◦ b1 = z1 ◦ b1 and ζ2 ◦ b2 = z2 ◦ b2. (A.13)

Further

ζ1
::

◦ c1 = ζ ◦ d1 ◦ c1
::::::

Equation (A.12)

= ζ ◦ c
::::

Square (‡)

= h Equation (A.11)

= z ◦ c
:

Equation (A.10)

= z ◦ d1
::::::

◦ c1 Square (‡)

= z1 ◦ c1 Equation (A.9)

and similarly ζ2 ◦ c2 = z2 ◦ c2 and thus we also have shown

ζ1 ◦ c1 = z1 ◦ c1 and ζ2 ◦ c2 = z2 ◦ c2. (A.14)

Using Equation (A.13) and Equation (A.14) we may conclude that ζ1 = z1 and
ζ2 = z2 since the pairs (b1, c1) and (b2, c2) are jointly epic because the squares

11

29

(∗) and (†) are pushouts. However using Equation (A.12) and Equation (A.9)
we can also derive

ζ ◦ d1 = ζ1 ζ ◦ d2 = ζ2

= z1 = z2

= z ◦ d1 = z ◦ d2,

from which z = ζ follows since d1 and d2 are jointly epic.

(ii)⇒ (i)

By assumption we have the following commuting diagrams.

A1

a1

Ai1 i2

a

A2

a2

C

(A.15a)

B1

e1

Bj1 j2

e

B2

e2

E

(A.15b)

Further we construct the pushouts for the pairs (f1, a1) and (f2, a2), and as-
semble them into the following diagram

Q
x1 x2

A1
f1

a1

(∗)

Ai1 i2
a

A2

a2

f2

(†)B1

b1

C
c1 c2

B2

b2
D1 D2

where the upper triangle commutes by assumption. Now we derive

c ◦ a1
::

= c ◦ a
::::

◦ i1 Diagram (A.15a)

= e ◦ f ◦ i1
:::::

Square (§)

= e ◦ j1
:::::

◦ f1 Diagram (A.1)

= e1 ◦ f1 Diagram (A.15b)

and similarly we we derive c ◦ a2 = e2 ◦ f2. Hence there are unique morphisms
d1 : D1 → E and d2 : D2 → E such that the following hold.

d1 ◦ b1 = e1 and d1 ◦ c1 = c (A.16a)

d2 ◦ b2 = e2 and d2 ◦ c2 = c (A.16b)

12

30

It remains to show that the square C c1
c2D1 d1

D2
d2 E is a pushout.

For this let there be two morphisms h1 : D1 → X and h2 : D2 → X such
that

h1 ◦ c1 = h2 ◦ c2. (A.17)

Hence after defining k1 := h1 ◦ b1 and k2 := h2 ◦ b2,

and because Diagram (A.1) commutes we arrive at the following commut-
ing diagram.

Qy1 y2

x1 x2

A1
f1

a1

(∗)

Ai1 i2
a

A2

a2

f2

(†)B1

b1

C
c1 c2

c
(‡)

B2

b2
D1

d1

D2

d2

E

X

k1 h1
k2h2

(A.18)

Using its commutativity we derive

k1
::

◦ y1
::

= h1 ◦ b1 ◦ f1
::::::

◦ x1

= h1 ◦ c1
:::::::

◦ a1 ◦ x1
:::::::

Equation (A.17)

= h2 ◦ c2 ◦ a2
::::::

◦ x2

= h2 ◦ b2
:::::::

◦ f2 ◦ x2
:::::::

= k2 ◦ y2

and therefore there exists a unique morphism k : B → X such that

k1 = k ◦ j1 and k2 = k ◦ j2. (A.19)

Moreover k1 ◦y1 = k2 ◦y2 implies k1 ◦f1 ◦x1 = k2 ◦f2 ◦x2 by “expansion” of y1

and y2, which provides us with a uniquely determined morphism u : A → X

such that

k1 ◦ f1 = u ◦ i1 and k2 ◦ f2 = u ◦ i2. (A.20)

13

31

Now looking at

Q

x1y1 x2 y2

B1

j1

A1f1

i1

A2 f2

i2

B2

j2A

f
B

X

k1 k2

k

we see that k1 ◦ f1 = k ◦ f ◦ i1 and k2 ◦ f2 = k ◦ f ◦ i2 and hence

k ◦ f = u (A.21)

follows from the characterization of u in (A.20).

However we can also derive the following:

k1
::

◦ f1 = h1 ◦ b1 ◦ f1
::::::

k2
::

◦ f2 = h2 ◦ b2 ◦ f2
::::::

= h1 ◦ c1 ◦ a1
::

= h2 ◦ c2
:::::::

◦ a2
::

= h1 ◦ c1 ◦ a ◦ i1 = h1 ◦ c1 ◦ a ◦ i2

whence h1 ◦ c1 ◦ a = u
(A.21)
= k ◦ f where we used uniqueness of the mediating

morphism u to derive the first equality (see Equation (A.20)). Since h1 ◦ c1 =
h2 ◦ c2 we also get h2 ◦ c2 ◦ a = k ◦ f .

Now since Square (§) is a pushout we know that there is a unique morphism
z : E → X such that

z ◦ c = h and z ◦ e = k where h = h1 ◦ c1 = h2 ◦ c2. (A.22)

This is z is the candidate for the mediating morphism we are looking for.

To show that it is the unique one we will use that b1 and c1 are jointly epic
to derive that z ◦ d1 = h1.

z ◦ d1
::::::

◦ c1
(§)
= z ◦ c

::::

z ◦ d1 ◦ b1
::::::

(A.16a)
= z ◦ e1

::

(A.22)
= h1 ◦ c1

(A.15b)
= z ◦ e

::::

◦ j1

(A.19)
= k1

::

(A.18)
= h1 ◦ b1

14

32

This shows that z ◦ d1 = h1 and mutatis mutandis z ◦ d2 = h2, and z is a
mediating morphism from E → X: it remains to show that it is the only one.

Let ζ : E → X be a morphism such that ζ ◦ d1 = h1 and ζ ◦ d2 = h2 hold;
we have to show that ζ = z. We derive

ζ ◦ c
:

= ζ ◦ d1
::::::

◦ c1 Square (‡)

= h1 ◦ c1
:::::::

by assumption

= z ◦ c Equation (A.22)

If also ζ ◦ e = k then z = ζ holds because e and c are jointly epic; thus it
remains to show that ζ ◦ e = k.

Since j1 and j2 are jointly epic it is enough to show that ζ ◦ e ◦ j1 = k ◦ j1

and ζ ◦ e ◦ j2 = k ◦ j2. However we can derive (see Diagram (A.18)).

k1
::

◦ y1
::

= h1
::

◦ b1 ◦ f1
::::::

◦ x1

= ζ ◦ d1 ◦ c1
::::::

◦ a1 ◦ x1
:::::::

by assumption

= ζ ◦ c ◦ a
::::

◦ i1 ◦ x1

= ζ ◦ e ◦ f ◦ i1
:::::

◦ x1 (§)

= ζ ◦ e ◦ j1 ◦ f1 ◦ x1
:::::::

Diagram (A.1)

= ζ ◦ e ◦ j1 ◦ y1

and mutatis mutandis also k2 ◦ y2 = ζ ◦ e ◦ j2 ◦ y2 This yields that ζ ◦ e is
the unique arrow such that ζ ◦ e ◦ j1 = k1 and ζ ◦ e ◦ j2 = k2. Expanding the
definition of k1 and k2 we arrive at ζ ◦ e ◦ j1 = k ◦ j1 and ζ ◦ e ◦ j2 = k ◦ j2 and
the proof is finished.

15

33

A graph abstract machine describing

event structure composition

Claudia Faggian and Mauro Piccolo
Dip. Matematica Pura e Applicata, Universitá di Padova – PPS, Paris7-CNRS

Abstract

Event structures, Game Semantics strategies and Linear Logic proof-nets arise in
different domains (concurrency, semantics, proof-theory) but can all be described by
means of directed acyclic graphs (dag’s). They are all equipped with a specific notion
of composition, interaction or normalization.

We report on-going work, aiming to investigate the common dynamics which seems
to underly these different structures.

In this paper we focus on confusion free event structures on one side, and linear
strategies [Gir01, FM05] on the other side. We introduce an abstract machine which
is based on (and generalizes) strategies interaction; it processes labelled dag’s, and
provides a common presentation of the composition at work in these different settings.

1 Introduction

Event structures [NPW81], Game Semantics strategies and Linear Logic proof-nets [Gir87]
arise in different domains (concurrency, semantics, proof-theory) but can all be described
by means of directed acyclic graphs (dag’s). They are all equipped with a specific notion
of composition, interaction or normalization. In this paper we report ongoing work whose
first aim is to investigate the common dynamics which appears to underly all these different
structures, and eventually to transfer technologies between these settings.

As a first step in this direction, here we present an abstract machine which processes
labelled dag’s. The machine is based on the dynamics at work when composing Game
Semantics strategies. When applied to linear strategies (in the form introduced in [Gir01] or
[FM05]) the machine implements strategies composition. When applied to event structures,
the result is the same as the paralle composition of event structures defined by Varacca and
Yoshida in [VY06].

Event structures. Event structures are a causal model of concurrency (also called true
concurrency models), i.e. causality, concurrency and conflict are directly represented, as
opposite to interleaving models, which describe the system by means of all possible scheduling
of concurrent actions.

An event structure models parallel computation by means of

• occurrence of events;

• a partial order expressing causal dependency.

Non-determinism is modelled by means of:

• a conflict relation, which expresses how the occurrence of certain events rules out the
occurrence of others.

Two events are concurrent if they are neither causally related, nor in conflict. Events which
are in conflict live in different possible evolutions of the system.

1

34

In this paper we will consider two classes of event structures:
confusion free event structure (where conflict, and hence non-determinism, is well behav-

ing)
conflict free event structures (where there is no conflict, and hence no non-determinism).

Confusion free event structure, are an important class of event structures because the
choices which a process can do are “local” and not influenced by independent actions. In
this sense, confusion freeness generalizes confluence to systems that allow nondeterminism.

A point which is centra to our approach is that a confusion free event structure E can
be seen as a superposition of conflict-free event structures (which we will call the slices of
E): each slice represents a possible and independent evolution of the system.

Because of this, if E is confusion free, the study of several properties can be reduced to
the study of such properties in conflict free event structures.

Game Semantics A distinction between causal and interleaving models is appearing also
in Game Semantics. In this setting, a strategy describes in an abstract way the operational
behaviour of a term. In the standard approach, a strategy is described by sequences of
actions (plays), which represent the traces of the computation. However, there is an active
line of research in Game Semantics aiming at relaxing sequentiality, either with the pur-
pose to have “partial order” models of programming languages or to capture concurrency
[AM99, Mel04, HS02, MW05, SPP05, FM05, CF05, Lai05, GM04]. The underlying idea is
to not completely specify the order in which the actions should be performed, while still
being able to express constraints. Certain tasks may have to be performed before other
tasks; other actions can be performed in parallel, or scheduled in any order. A strategy is
here a directed acyclic graph.

Interaction and composition. Games and strategies provide denotational models for
programming languages and logical systems; games correspond to types (formulas), and
strategies to programs (proofs).

The central notion is that of composition, which models program composition (normal-
ization of proofs).

Confusion free event structures and linear strategies We are interested in relating
strategies and event structures. Abramsky, Mellies, Schalk have already used event struc-
tures in Game Semantics as arenas (i.e. types, or objects). However, our aim is to see event

structures as strategies (i.e. as morphisms).
We focus on the class of linear strategies, i.e. strategies which correspond to the

multiplicative-additive structure of Linear Logic, Linear strategies (as defined in [Gir01]
and then [FM05]) can be described as partial orders with a conflict relation, i.e. as a sort
of event structures, which satisfy a number of conditions. In particular, they are confusion
free. Many of the properties which make the composition work appear to depend only on
confusion freeness .

Our aim is therefore to see confusion free event structures as a generalization of strate-
gies, and the composition of such event structures as strategies composition.

An idea which underlies the work on types by Honda and Yoshida is that typed processes
should be seen as a sort of Hyland-Ong strategies; this is implicit in particular in [VY06],
on which our work builds.

In [VY06], Varacca and Yoshida provide a typing system which guarantees that the com-
position of confusion free event structures is confusion free. The typing is inspired by Linear
logic and Hyland-Ong strategies, and allows them to give an event structure semantics for
(a variant of) Sangiorgi’s πI-calculus.

2

35

In the paper we define composition “operationally”, in such a way that when restricted to
strategies the machine implements strategies composition. Applied to confusion free event
structures, the result is the same as the composition obtained in a more standard way. In
particular, we prove the equivalence with the composition in [VY06].

We believe that the machine provides a simple and direct implementation of event struc-
tures composition.

2 Background

2.1 A sketch of strategies composition

In Game Semantics, the execution of a program is modelled as interaction between two
players; let us call them P (Proponent) and O (Opponent). The role of a strategy is to tell
the player how to respond to a counter-player move. The dialogue between the two players
will produce an interaction (a play).

Figure 1 presents a simplified example of two (sequential) strategies. A specific move
is played by (belongs to) only one of the players, so there are P-moves and O-moves. The
active (positive) move of P are those that P plays, while its passive (negative) moves are
those played by O, and to which P has to respond. In the picture, for each player strategy
we distinguish the actives (positive) moves, i.e. those which belong to that player, with
circles.

Tree strategies (1):

P-player: O-player:

b0

b1

a0

a1

b3

b2

†

a0

a1

b0

b1

b3

...

b2

Interaction (1):

b0b1a0a1b3 . . . b2†

Tree strategies (2):

P-player: O-player:

a0

a1

b0

b1

b3

b2

†

a0

a1

b0

...

b1

b3

b2

Interaction (2):

a0a1b0 . . . b1b3b2†

Figure 1: Tree strategies

Let us look at the strategies (1). According to the P-player strategy, it will start with
b0, then respond with a0 to Opponent move b1, and with † (termination) to Opponent move
b2. Let us make it interact with the O-player strategy. The interaction goes as follows: O
answer to b0 is b1, P answer to b1 is a0, O answer to a0 is a1, and so on.

The algorithm to calculate the interaction is simple. (i.) Start from P-player initial move,
(ii.) Check counter-player answer to that move, that is, go to the corresponding opposite
action, and take the following move. (iii.) Repeat step (ii.) until terminating on †.

Figure 2 illustrates the same ideas for more parallel strategies.
The strategies are here graphs. The way to make them interact is similar to the previous

one, but (1.) there are several threads running in parallel, (2.) on certain moves we need to
synchronize.

2.2 Event structures

Event structures were introduced by Nielsen, Plotkin, and Winskel [NPW81, Win87, WN95],
as a theory combining Petri nets and domain theory.

3

36

Strategies :

b1

b0

b2

†b3

a1

a0

b1

b3

b2

...

b0a0

a1

Opponent:Player:

Interaction :

b1a1

a0

b3

b2

†

...

b0

Figure 2: Graph strategies

Let (E,≤) be a partially ordered set. Elements of E are called events; we assume that E

is at most countable. The order relation is called causality relation.
The downward closure of a subset S ⊆ E is defined by dSe = {e′ : e′ ≤ e, e ∈ S}. For a

singleton, we write dee.
An event structure

1 is a triple (E,≤, ^) such that

• (E,≤) is a partial order, as above;

• For every e ∈ E, dee is finite.

• ^ is an irreflexive and symmetric relation, called conflict relation, which satisfies the
following:

for every e1, e2, e3 ∈ E, if e1 ≤ e2 and e1 ^ e3 then e2 ^ e3.

If e1 ≤ e2 we say that the conflict e2 ^ e3 is inherited from the conflict e1 ^ e3. If a
conflict is not inherited, we say that it is immediate, written ^µ

Causal order and conflict are mutually exclusive. If two events are not causally related
nor in conflict, they are said to be concurrent.

With a slight abuse of notations, we identify an event structure (E,≤, ^) and its set E

of events.

A labelled event structure is an event structure E together with a labelling function
λ : E→ L, where L is a set of labels.

Conflict free A set S ⊆ E is conflict free if it does not contain any two elements in
conflict; in particular, an event structure E is conflict free if its conflict relation is empty.

Hence, a conflict free event structure is simply a partial order.
Observe that dee is conflict free.

Parents and enabling set. Let us introduce two notations that will be useful.
Given e ∈ E

• Parents(e) denotes the set of immediate predecessors of e in ≤ (its preconditions);

• [e) = dee \ {e} is the enabling set of e.

2.3 Confusion free event structures

Confusion free event structures are a class of event structures where every choice is localized
to cells, where a cell is a set of events that are pairwise in immediate conflict, and have the
same enabling set.

1In this paper we say event structures always meaning prime event structures.

4

37

Definition 2.1 (Cell) A cell c is a maximal set of events such that e, e′ ∈ c implies e ^m e′

and [e) = [e′).

Definition 2.2 (Confusion free) E is confusion free if the following holds:

(a.) for all distinct e, e′, e′′ ∈ E, e ^µ e′ and e′ ^µ e′′ implies e ^µ e′′

(b.) for all e, e′ ∈ E, e ^µ e′ implies [e) = [e′)

2.3.1 Example.

Below, we give an example of event structure which is confusion free, and an example of an
event structure which is not. Waved lines denote conflict.

(1.) Confusion free: (2.) Confused state:

t1

t2

t3 t4 t5

t1

t2

t3 t4 t5

The intuition behind. Let T = {t1, t2, t3, t4, t5} be a set of tasks on which an order
(propedeuticity) and a conflict relation are defined. We have to schedule them.

In the confusion free case (1.), the scheduler must start with t1. Then the situation is
the following:

• after t1, the scheduler can choose t5 or either one of t2, t3, t4.

• if the scheduler choose t1 and then one of t2, t3, t4, then it can still schedule t5.

• if the scheduler choose t1 and then t5, then it can still choose to schedule either of
t2, t3, t4.

The case (2.), instead, describe a state which is confused: changing the scheduling of the
tasks, some choices which were available may be no longer available.

If we look at the picture, we see that both t1 and t4 have no precondition, and hence can
be scheduled first. After t1, we can schedule either of t2, t3, t4 if we start with t1. However,
if we schedule t4 first, and then t1, after t1 the choices t2, t3 are no longer available.

3 Typed event structures

In this section we introduce a notion of labelled event structure, where the labelling guar-
antees that the composition of confusion free event structures is a confusion free event
structure.

Our labelling can be seen as a minimalist variant of the typing in [VY06], without the
whole setting of linear types and morphisms; this because here we are only interested in the
preservation of confusion freeness via composition.

Our labelling is indeed a straightforward generalization of the technique developed in
[Gir01] to deal with additive strategies.

A key features of the labelling is that a name identifies a cell (rather than a single event).

5

38

3.1 Names and actions.

We assume a countable set of names N , ranged over by α, β, We are going to label
a confusion free event structure with actions on these names. Let S be an index set. We
define the alphabet N as follows:

N =
∑

i∈S

Ni = {(α, i) : α ∈ Nand i ∈ S}

We say that a = (α, i) uses the name α, and also write name(a) = α.
A (polarized) action is given by an element a ∈ N and a polarity, which can be positive

(a+), negative (a−), or neutral (a±).

Remark 3.1 Actions of opposite polarity (a+, a−) denote matching dual actions, such as c
and c in CCS, or Player/Opponent moves in Game Semantics.

We think of a± as a pair of matching actions a+, a− which have synchronized. A more

traditional and suggestive denotation for a± would be τa.

We use the variable ε to vary over polarities: ε ∈ {+,−,±}. When clear from the context,
or not relevant, we omit the explicit indication of the polarity.

The polarities + and − are said opposite. If a is a positive or negative action, a will
denote its opposite action.

3.2 Interfaces.

We are going to type event structures with an interface. The interface provides in particular
the set of names on which the event structure communicate, and their polarity.

An interface (A, πA) is given by a finite set of names A, and a polarity (positive,
negative, neutral) for each name. The polarization partitions A into three disjoint sets:
positive, negative and neutral names.

Remark 3.2 The positive names can be thought of as sending, the negative name as receiv-

ing, and the neutral names as private.

The interface (A, π) generates the set of actions A =
∑

i∈S Ai = {(α, i) : α ∈ A}. The
polarization of the names extends to the actions with that name.

3.3 Typed event structures.

An event structure of interface A is a tuple (E, A, λ, π) where

• E is an event structure;

• A = (A, πA) is an interface;

• λ : E→ {(α, i) : α ∈ A, i ∈ S} is a labelling function;

• π : E→ {+,−,±} is the polarization induced on the actions by πA.

If λ(e) = (α, i), we say that the event e uses the name α, and write name(e) = α.

Remark 3.3 If λ(e) = a, with a = (α, i), and πA(α) = ε, then e is labelled by the action

aε.

We type an event structure of interface A only when it is confusion free; we ask that:

• all the events in the same cell use the same name (and hence also have the same
polarity).

• two events which use the same name (and the same polarity) are in conflict.

Definition 3.4 An event structure E of interface A has type A, written E : A if it satisfies

the following, for all distinct e1, e2 ∈ E.

6

39

1. if e1 ^µ e2 and λ(e1) = (α, i), then λ(e2) = (α, j), with i 6= j.

2. if name(e1) = name(e2)then e1 ^ e2.

3. e1 ^µ e2 ⇒ Parents(e1) = Parents(e2)

Remark 3.5 E can receive a type if and only if it is confusion free.

Properties 1. and 2. imply 2.2.i; property 3. is equivalent to 2.2.ii.

3.4 Properties of the labelling

Given a labelled event structure E, and a set of events S ⊆ E, we use the notation λS =
{λ(s)|s ∈ S}.

3.4.1 Set of labels identify events

Each event e ∈ E is uniquely identified by the set of labels λdee = {λe′, e′ ≤ e}.

Proposition 3.6 Given e1 6= e2 ∈ E, we have that λde′e 6= λde′e

3.4.2 Conflicts

The conflict relation in typed event structures can be inferred from the labels:

Proposition 3.7 Let E : A a typed event structure and let e1, e2 ∈ E. Then the following

holds:

(∗∗) e1 ^ e2 ⇐⇒ ∃e′
1
≤ e1, e

′
2
≤ e2 : name(e′

1
) = name(e′

2
)

Since in a typed event structure the labels carry all the information on the conflict
relation, from now on, we deal with the conflict implicitly: two distinct events e1 and e2 are
in conflict iff (**) holds.

This allows us to only focus on the partial order.

It is easy to see that

Proposition 3.8 Given e1 6= e2 ∈ E : A, we have that e1 ^µ e2 iff

• e1, e2 use the same name

• [e1) = [e2)

3.4.3 Typed event structures as dag’s

As seen in the previous section, given a typed event structure, we can deal with the conflict
implicitly; we are left to deal only with the partial order E,≤.

In the following, it will be convenient to identify the partial order on E : A with the as-
sociated dag. This in particular allow us to describe composition in terms of graph rewriting.

A directed acyclic graph (dag) G is an oriented graph without (oriented) cycles. We will
write c← b if there is an edge from b to c. It is standard to represent a strict partial order
as a dag, where we have a (non transitive) edge a ← b whenever there is no c such that
a < c and c < b. Conversely (the transitive closure of) a dag is a strict partial order on the
nodes.

In the following, we will identify the partial order on E : A with the associated dag. We
take as canonical representative of E its skeleton (the minimal graph whose transitive closure
is the same as that of E).

Remark 3.9 Observe that, by construction, the skeleton is always defined, even if E can

have a countable number of events (in particular, a cell can have a countable number of

events). In fact, for each event e ∈ E, dee does not contain any conflict, and it is finite.

7

40

4 Composition

We define composition “operationally”, in such a way that when restricted to strategies this
procedure produces strategies composition.

Composition between event structures relies on two notions: synchronization and en-
abling (reachability). Intuitively, to compose, we synchronize (match) events which are
labelled by the same action, and opposite polarity. The synchronization is possible only
between events which have been enabled. We enable (reach) an action only if all the actions
before it have been enabled (reached). We better illustrate this in Section 4.2.

4.1 Compatible interfaces

We compose two event structures when their interfaces are able to communicate.

Definition 4.1 (Compatible interfaces) Let (A, πA) and (C, πC) be two interfaces. The

interfaces A and C are compatible if

for all b ∈ A ∩ C, the polarity of b in A is opposite to the polarity of b in C.

If the interfaces are compatible, we define their composition A� C = (A ∪ C, π) where

π(α) =

πA(α) if α ∈ A \ C
πC(α) if α ∈ C \A
± otherwise

Definition 4.2 (Private and public names) Given two compatible interfaces A, C, we

say that the name α is private if α ∈ A ∩ C, public otherwise.

Example. If A = {a−, b+} and C = {b−, c+}, then A� C = {a−, c+, b±}. The name b is
private, while the names a, c are public.

Composition is only defined on event structures which have compatible interfaces.

4.2 Conflict free composition

Let us first analyze composition in the case of conflict free event structures, i.e. when no
two events are in conflict. This case is very simple and clear, but contains all the dynamics
of the general case.

The key property of this case is the following

If E : A is conflict free, no two events use the same name.

Through this section, let us assume that E1 : A and E2 : C are conflict free and have
compatible interfaces. Their composition E1‖E2 is a conflict free event structure of interface
A� C.

Let us describe the composition by means of a wave of tokens travelling up on E1] E2.
When a private action is reached, to continue, it is necessary to synchronize it with an action
of opposite polarity. Observe that, by construction, there is at most one such action.

Remark 4.3 In E1] E2 there is only one occurrence of each polarized action. For this

reason, in this section, we can identify each event with the polarized action which labels it.

1. If a is public, and its parents have been enabled, then a is enabled. We illustrate this in
the picture below, where the squares mark the enabled nodes.

 a a

8

41

2. If a is private, a+, a− are both present, and their parents have been enabled, then a is
enabled, and the graph is transformed as follows:

 a τaa

end: The actions which have not been enabled are deleted (garbage collection).

The process described above generates a new conflict free event structure (E,≤), where
E is a set of events labelled by the actions which have been enabled; the actions have the
polarity induced by the new interface A� C.

It is straightforward to give a direct recursive definition of E1‖E2. We do not do this
in this Section, but in Section 4.5 we use a definition of this kind to describe composition
in the general case, and to establish the equivalence of our procedure with more standard
definitions.

4.3 Local rewriting rules

The process described in Section 4.2 can be expressed by means of a set of local graph
rewriting rules on E, which we describe in Figure4.3.

 τaa

1. There are a, a, parallel

2. Otherwise:

a

a

Private a:

Figure 3: Graph Rewriting Rules

It is straightforward to show these rules are confluent. By using this fact, one can prove
associativity for the composition.

Proposition 4.4 (Associativity) Let E1 : A, E2 : C, E3 : D be conflict free event struc-

tures. If the interfaces allow the composition, we have that

(E1‖E2)‖E3 = E1‖(E2‖E3)

4.4 Reducing composition to conflict free composition

A confusion free event structures E can be seen as a superposition of conflict-free event
structures (which we call the slices of E). The study of confusion free event structures
can be reduced to the study of conflict free event structures. In particular, composition of
confusion free event structure can be reduced to the composition of its slices.

9

42

4.4.1 Slices

A slice S of E is a downward closed, conflict free subset of E, with the order induced by E.
To choose a (maximal) slice of E corresponds to the selection of a single element in each

cell of E.

4.4.2 Studying composition by slices

A key feature of the composition is that it takes place independently inside each single slices
(Proposition 4.10) .

Several interesting properties of the composition of two event structures (such as conflu-
ence, or deadlocks) can be analyzed as properties of their slices (see 4.9).

Actually, following an approach which is well studied for proof nets and linear strategies,
the process of composition itself could be reduced purely to conflict free composition:

• decompose E into its slices

• compose all slices pairwise

• superpose the composed slices

Proposition 3.6 allows us to perform the superposition, by using the same technique devel-
oped in [Gir01, FM05].

We do not give details here; however, after providing a direct description of composition
in the general case, we show that the study of the composition can be reduced to the study
of conflict free composition (Proposition 4.10).

4.5 Global composition

In this section, we provide a direct description of composition of typed event structures, in
the general case.

Let E1 : A and E2 : C be typed event structures with compatible interfaces. E1‖E2 is an
event structure of interface A� C, obtained as follows.

Case 1. Let e ∈ Ei such that λ(e) = a and name(a) is public.

If S ⊆ E satisfies the following conditions:

parent condition: λS = λ[e).

conflict condition: the set S is conflict free

add to E an event v such that

label: λ(v) = a

edges: for all vi ∈ dSe we have vi ← v

Case 2. Let e1 ∈ E1 and e2 ∈ E2 such that λ(e1) = λ(e2) = b and name(b) is private.

If S = S1 ∪ S2 where S1, S2 ⊆ E satisfy the following conditions

parent condition: λS1 = λ[e1), λS2 = λ[e2).

conflict condition: the set S is conflict free

add to E an event v such that

label: λ(v) = b (this should be thought as τb, since π(b) = ±)

edges: for all vi ∈ dSe we have vi ← v

Remark 4.5 The parent condition checks that the enabling set of e ∈ Ei has been con-

sidered, and relies on Proposition 3.6.

10

43

Remark 4.6 The conflict condition says that in dSe there are no two events using the

same names (we are using Proposition 3.7.)

The conflict condition, essentially guarantees that we are working slice by slice, i.e. in-

dependently in each slice (see Proposition 4.10)

The machine generates E = E1‖E2 step by step; each time we add to E an event v which
refers to [comes from] an event (or a pair of matching events) x in E1] E2. We add v to E

only if:

• the enabling set of x has already an “image” in E;

• this image is conflict free.

To understand the conflict condition, remember that events in conflict are events which
are mutually exclusive. If we need a set of precondition to occur together, they must live in
a conflict free event structure S ⊆ E.

In fact, we can analyze, and even calculate, composition, only by means of conflict free
event structures, as we see in Section

4.5.1 Example of composition

Consider the following event structures

• E1 = {e1, e2, e3, e4} with e1 < e3, e2 < e4 and e1 ^µ e2.

• E2 = {e5, e6} with e5 < e6

and the interfaces A = {α−, β−} and C = {β+, γ−}.
We abbreviate (α, i) into ai, and similarly use bj , ck for actions on β, γ.

Let us consider

• E1 : A with λ(e1) = a1, λ(e2) = a2, λ(e3) = λ(e4) = b1

• E2 : C with λ(e5) = b1, λ(e6) = c1.

Here is a graphical representation of the two event structures:

E1 E2

a1 a2

b1 b1

b1

c1

e2

e3 e4

e5

e6

e1

And here we run the machine:

11

44

v1

name(λ(v1) = name(λ(v2))

e3 ∈ E1 e5 ∈ E2

λ(e3) = λ(e5) = b1
S1 = {v1} S2 = ∅

v1

τb

v3

v2v1

v3 v4

e6 ∈ E1

name(λ(e6)) ∈ C

S = {v3, v1}

v2v1

τbv3 v4

v5
c1

e6 ∈ E1

name(λ(e6)) ∈ C

S = {v2, v4}

v4v3

v5 c1 v6

E1‖E2

e1 ∈ E1

name(λ(e1)) ∈ A

S = ∅

v1

e2 ∈ E1

name(λ(e2)) ∈ A

S = ∅

S1 = {v2} S2 = ∅
λ(e4) = λ(e5) = b1

e4 ∈ E1 e5 ∈ E2

a1

a1

τb τb

a2

a2

τb

a2

v2

v1 a1

τb τb

c1

a1

v2

a2

v2

a2a1

a1

∅

4.5.2 Composition is well defined and associative

Composition of typed event structures produces a typed event structure. Moreover, compo-
sition is associative.

Theorem 4.7 E1‖E2 : A� C

Proof. W.r.t. definition 3.4, conditions 1. and 2. (the properties of the labelling) hold by
construction. We have to verify 3., i.e. that u ^µ v implies [v) = [v). Let Su, Sv the two
subset of the labelled parent condition. [u) = [v) if and only if Su = Sv. By labelling we have
that name(λ(u)) = name(λ(v)) public or private. We develop the public case: the other is
analogous. Without loss of generality we can assume name(λ(u)) ∈ A. Hence there exists
e, d ∈ E1 such that λSu = λ[e) and λSv = λ[e). We have that e ^µ d: this holds (by 1. and
2.) and this conflict cannot be inherited because otherwise also u ^ v should be inherited.
Hence we have λSu = λSv by confusion freeness of E1 and as immediate consequence of
Proposition 3.6, we have Su = Sv, as required.

Remark 4.8 As a consequence, composition of confusion free event structures is confusion

free.

Proposition 4.9 (Associativity) Given E1 : A, E2 : C, E3 : D, if the interfaces allow the

composition, we have that

(E1‖E2)‖E3 = E1‖(E2‖E3) =

Proof. The result follows from Proposition 4.4 and Proposition 4.10. �

4.5.3 Working by slices

Proposition 4.10 (Slices) Let E = E1 : A‖E2 : C. We have the following.

• If S ⊆ E is a slice of E, then there exist two slices S1 ⊆ E1 and S2 ⊆ E2 such that

S = S1 : A‖S2 : C.

• If S1 ⊆ E1 and S2 ⊆ E2 are slices, then S = S1‖S2 is a slice of E.

By reducing composition to composition of conflict free event structures, we can easily
prove associativity.

12

45

5 Discussion

5.1 Relating with standard event structure composition

In this section we want to argument that the abstract machine we have defined produces
the same result as a “standard” approach to event structure composition. To do this, we
choose a specific synchronization algebra, which is that defined in [VY06].

The typing defined by Varacca and Yoshida guarantees that the composition preserves
confusion freeness, and allows the interpretation of a linear fragment of the π calculus.

The labelling induced by their typing is easily seen as a case of the labelling we define
here, hence in particular we can apply our machine.

We have that

Proposition 5.1 If E1, E2 are confusion free event structures typed in the sense of [VY06],

they are also typed in the sense defined here, and their composition E1‖E2 as defined here is

isomorph to the parallel composition as defined in [VY06].

The details are given in [Pic06]

Let as briefly resume what a “standard approach” looks like.

5.1.1 Parallel composition of event structures

A more standard definition for the parallel composition of event structures is that used
[VY06], based on the following ingredients:

1. fix through a synchronization algebra the events which will synchronize and those
which will not. Two events synchronize if they have dual labels (for example one
event has label a and the other a);

2. build the categorical product of the event structures

3. discard some events, and everything above them:

(a) discard all the events of the product which are generated from pair which are not
able to synchronize because they do not have matching labels

(b) discard all the events of the product which are generated from a single private
event: these are events which are private but not “consumed”.

5.2 Linear strategies with parallel composition are a sub-class of

typed event structures

Linear strategies as introduced in [Gir01] and extended to dag’s in [FM05] are labelled dag’s.
The labels are taken in

∑

i∈Pfin(N)

Ni = {(α, i) : α ∈ Nand i ∈ Pfin(N)}

where N are the strings of natural numbers.
The labelling satisfies a certain discipline, which in particular satisfies all the constraints

in Definition 3.4.
As for composition, the machine introduced here extends the LAM machine defined in

[Fag02, FM05] to implement the composition of linear strategies. The new machine has the
same behaviour of the LAM when restricted to strategies. This in particular means that
there is a morphism from strategies to typed event structures, which preserves the paralle
composition.

More precisely, strategies composition decomposes into parallel composition plus hiding,
where parallel composition is the operation we have described here, and the hiding concerns
the τ actions.

13

46

5.3 More comments and future work

The dynamics The machine we have presented makes it immediate what is going on when
composing two labelled event structures E1, E2: we merge together the structure (events,
order and conflicts) of E1, E2 to create a new event structure E. The dynamics appears
the same as that which takes place when composing strategies, λ-terms or Linear Logic
proof-nets.

Bridging Game Semantics and event structures. In future work, we plan to use
event structure as a guide to generalize the definition of strategies. We hope to build on the
work on event structures to extend the approach of Game Semantics, in order to deal with
non determinism, concurrency and process calculi.

Event structures and proof-nets This work meet also another line of research is bring-
ing together graph strategies and proof-nets, which are a graph representation of proofs
introduced by Linear Logic [Gir87] and which are powerful tool for the analysis of normal-
ization. In particular, they have been a fertile tool in the study of functional programming,
in particular for optimization. Observe that proof-net normalization is performed via local
rewriting rules.

We see event structure as a form of multiplicative-additive proof-nets, and hope to be
able to apply some of the technology developed for proof-nets. For example, a key notion
in proof-nets is that of correctness criterion, which states that there are no cyclic path, for
a certain definition of path which is sensitive to the polarity of the nodes. The correctness
criterion has a crucial role in guaranteeing that the normalization (composition) works, and
in fact it guarantees that there are no deadlock. We intend to investigate if a similar notion
could be used on event structure, for an opportune typing, to guarantee that there are no
deadlocks.

Acknowledgments

This work was motivated from discussion with Nabuko Yoshida and Daniele Varacca.
We are in debt with Daniele Varacca for many explanations, comments, and sugges-

tions. We are grateful to Martin Hyland, Emmanuel Beffara, and Pierre-Louis Curien for
interesting discussions.

We also wish to thank the referees for many usefull remarks and suggestions.

References

[AM99] S. Abramsky and P.-A. Mellies. Concurrent games and full completeness. In
Proceedings 15th Annual Symposium on Logic in Computer Science, 1999.

[CF05] P.-L. Curien and C. Faggian. L-nets, strategies and proof-nets. In CSL 05 (Com-

puter Science Logic), LNCS. Springer, 2005.

[Fag02] C. Faggian. Travelling on designs: ludics dynamics. In CSL’02 (Computer Science

Logic), volume 2471 of LNCS. Springer Verlag, 2002.

[FM05] C. Faggian and F. Maurel. Ludics nets, a game model of concurrent interaction.
In Proc. of LICS’05 (Logic in Computer Science). IEEE Computer Society Press,
2005.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir01] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer Science,
11:301–506, 2001.

[GM04] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained con-
currency. In FOSSACS, 2004.

14

47

[HS02] M. Hyland and A. Schalk. Games on graphs and sequentially realizable function-
als. In LICS 02, pages 257–264. IEEE, 2002.

[Lai05] J. Laird. A game semantics of the asynchronous pi-calculus. In Concur 05, volume
3653 of LNCS, 2005.

[Mel04] P.-A. Mellies. Asynchronous games 2 : The true concurrency of innocence. In
CONCUR 04, volume 3170 of LNCS. Springer Verlag, 2004.

[MW05] G. McCusker and M. Wall. Categorical and game semantics for scir. In Galop

2005, pages 157–178, 2005.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Event structures and domains 1. Theo-

retical Computer Science, 13:85–108, 1981.

[Pic06] M. Piccolo. Event structures and strategies. Master’s thesis, Dip. Matematica
Pura e Applicata, Universitá di Padova, 2006.

[SPP05] A. Schalk and J.J. Palacios-Perez. Concrete data structures as games. In CTCS

04, volume 122 of Electr. Notes Theor. Comput. Sci., 2005.

[VY06] D. Varacca and N. Yoshida. Typed event structures and the pi-calculus. In MFPS,
2006.

[Win87] G. Winskel. Event structures. Advances in Petri Nets 1986, Part II, volume 140
of LNCS:561–576, 1987.

[WN95] G. Winskel and M. Nielsen. Handbook of Logic in Computer Science, volume 4,
chapter Models for concurrency. Clarendon Press, 1995.

15

48

GT-VC 2006

Formal Verification of Object-Oriented Graph

Grammars Specifications

Ana Paula Lüdtke Ferreira 1

Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil

Luciana Foss, Leila Ribeiro 2

Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil

Abstract

Concurrent object-oriented systems are ubiquitous due to the importance of net-
works and the current demands for modular, reusable, and easy to develop soft-
ware. However, checking the correctness of such systems is a hard task, mainly
due to concurrency and inheritance aspects. In this paper we present an approach
to the verification of concurrent object-oriented systems. We use graph grammars
equipped with object oriented features (including inheritance and polymorphism)
as the specification formalism, and define a translation from such specifications to
Promela, the input language of the SPIN model checker.

Key words: Graph grammars, object orientation, model checking.

1 Introduction

Software development techniques have evolved over the years to deal with cur-
rent developing demands. The paradigms on which those techniques are based
(especially objects, events and concurrency) make the modeling and coding
processes easier. However, testing and validation of such systems became more
complex, mainly due to the non-deterministic behavior of multiple processes
competing for the same resources. Object-oriented systems features like inher-
itance, polymorphism and dynamic binding of method calls also make static
analysis of limited use in the validation process. Thus, correctness assurance
of concurrent object-oriented systems is a difficult task.

1 Email:anap@unisinos.br
2 Email:{lfoss,leila}@inf.ufrgs.br

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

49

Ferreira, Foss and Ribeiro

The first step to enable correctness proofs of a system is to provide a formal
specification of it. The semantic model can be analyzed to check whether
the desired properties hold. The choice on which specification language to
use depends on the application characteristics, but also on the development
paradigm chosen. We suggest that, if an object-oriented development process
is followed, an adequate formal specification formalism should offer compatible
constructs. Object-oriented graph grammars were first presented in [8] as an
extension of the algebraic single-pushout approach [13] to encompass object-
oriented features such as inheritance, polymorphism, and dynamic binding.
The main contribution of this paper is to present a verification method for
specifications written as object-oriented graph grammars. This method is
based on a translation of such specification to Promela programs. Promela
is the input language of the SPIN model checker [10]. Particularly, features
like inheritance, polymorphism, and dynamic binding will also be faithfully
encoded in Promela.

Our approach for object-oriented verification is a straightforward,
translation-based one, and differs from approaches relying on analysis of the
specification languages per se, such as [2], [12], [1], [15], [16]. We follow a line
of work presented in [5] for graph grammars without object-oriented features.
However, besides building the translations for inheritance, polymorphism and
dynamic binding features, we also do the translation based on a well defined
observational semantics [7] which interprets object-oriented graph grammars
computations from the object-oriented paradigm view. This article is struc-
ture as follows: Sec. 2 presents the main components of object-oriented graphs
and grammars. Sec. 3 presents the guidelines followed for the definition of a
formal translation from object-oriented graph grammars specifications into
Promela programs, followed by an example shown in Sec. 4. The running ex-
ample is a classic problem in the theory of concurrency, known as the Dining
Philosophers problem. Final remarks are presented in Sec. 5.

2 Object-oriented graph grammars

Object-oriented systems consist of instances of previously defined classes hav-
ing an internal structure defined by attributes and communicating among
themselves through message passing. An object-oriented system state con-
sists of objects, together with a set of messages yet to be consumed. Messages
are the triggers of method executions, and their implementation may be rede-
fined within derived classes. Classes and messages are modeled together in a
class-model graph. Formally, class identifiers are graph nodes, attributes are
modeled as hyperarcs (that is, each class may be connected to many others via
an attribute hyperarc), and messages are also modeled as hyperarcs (in which
the target is the destination of the message, and sources are its parameters).
The inheritance hierarchy is defined by imposing a strict relation among the
graph nodes. A strict relation is an irreflexive, acyclic, functional relation,

2

50

Ferreira, Foss and Ribeiro

with the additional property that there is no infinite chain of elements con-
nected through it (the reflexive and transitive closure of a strict relation is a
partial order [7]). Message hyperarcs also possess an order structure, which
reflects the possibility of a derived object to override inherited methods of
its superclasses. A set carrying a reflexive and transitive closure of a strict
relation is called a strict ordered set.

Definition 2.1 [Class-model graph] A class-model graph is a tuple 〈Vv, Ev,

L, src, tar, lab〉 where Vv = 〈V,v∗V 〉 is a strict ordered set of vertices, Ev =
〈E,v∗E〉 is a strict ordered set of (hyper)edges, L = {attr, msg} is an unordered
set of two edge labels, src, tar : E → V ∗ are monotonic order-preserving
functions, called respectively source and target functions, lab : E → L is the
edge labeling function, such that the following constraints hold:

• Structural constraints: for all e ∈ E, the following holds:
(i) if lab(e) = attr then src(e) ∈ V and tar(e) ∈ V ∗, and
(ii) if lab(e) = msg then src(e) ∈ V ∗ and tar(e) ∈ V .

• Order relations constraints: for all e ∈ E, the following holds:
(i) if (e, e′) ∈ vE then lab(e) = lab(e′) = msg,
(ii) if (e, e′) ∈ vE then src(e) = src(e′),
(iii) if (e, e′) ∈ vE then (tar(e), tar(e′)) ∈ v+

V , and
(iv) if (e′, e) ∈ vE and (e′′, e) ∈ vE , with e′ 6= e′′, then (tar(e′), tar(e′′)) /∈

v∗V and (tar(e′′), tar(e′)) /∈ v∗V .

Sets {e ∈ E | lab(e) = attr} and {e ∈ E | lab(e) = msg} are denoted by E|attr

and E|msg, respectively.

Structural constraints assure that hyperarcs modeling attributes and mes-
sages have the correct source and targets. Inheritance and overriding hier-
archies are made explicit by imposing that graph nodes (i.e., classes) and
message edges (i.e., methods) are strict ordered sets. Only single inheritance
is allowed, since vV is required to be a function. The relation between mes-
sage arcs, vE, establishes which methods are overridden within the derived
object, by mapping them. The restrictions applied to vE ensure that methods
are redefined consistently, i.e., only message arcs can be mapped (i), their pa-
rameters are the same (ii), the method being redefined is located somewhere
(strictly) above in the class-model graph (under v+

V) (iii), and only the closest
message with respect to relations vV and vE can be redefined (iv).

Example 2.2 The class-model graph in Figure 1 depicts an object-oriented
system structure for the Dining Philosophers problem. Graph nodes repre-
sent classes: Philosopher, which is derived into two different types: Left-
HandedPhilosopher and Right-HandedPhilosopher (the inheritance relation
is pictured as a dotted arrow); Fork, to represent the shared resources the
philosophers are competing upon; Table, to model both the place where the
philosophers sit and from where forks can be picked up; and ForkHolder, which
can be either a Philosopher or a Table. The attributes are the information

3

51

Ferreira, Foss and Ribeiro

leftFork

rightFork

owner

isAt

Philosopher

Fork

Eat

Thinking

Eating

Acquire

Release

Eat

Eat

Left-Handed
Philosopher

Right-Handed
Philosopher

ForkHolder

Table

Got

Figure 1. Class-model graph for the Dining Philosophers problem.

the elements must possess to compute correctly: a Philosopher sits at a Table,
has a left and a right Fork to get in order to eat; a Fork has an owner, which is
a ForkHolder. Messages stand for the actions performed by the actors in the
program. A Fork can be acquired by a Philosopher, and released by a Philoso-
pher to a Table. A Philosopher can be Thinking, Eating, or receive a message
Eat, which sends him to the process of acquiring his forks, and a message
Got, to notify that a Fork has been acquired. Left-handed and right-handed
philosophers override message Eat, which is indicated by the lines connecting
both hyperarcs.

Class-model graphs can be used as typing structures for states of object-
oriented systems. Before defining such states, that will be object-oriented
graphs, we will define how to map a graph into a class-model graph, and then
impose restrictions to make this mapping compatible with inheritance. Based
on the inheritance and overriding relations, we define auxiliary functions that,
given a class identifier (node), return the sets of attributes (inherited or not)
of this class, and the sets of messages (method triggers) that this class may
receive.

Definition 2.3 [C-typed graph] A C-typed graph GC is a tuple 〈G, t, C〉, where
C = 〈VCv, ECv, L, srcC , tarC , labC〉 is a class-model graph, G = 〈VG, EG, srcG,

tarG〉 is a hypergraph, and t is a pair of total functions 〈tV : VG → VC , tE :
EG → EC〉 such that (t∗V ◦ srcG)vV ∗C

(srcC ◦ tE), and (t∗V ◦ tarG)vV ∗C
(tarC ◦ tE).

Moreover, we define:

• the attribute set function attrG : VG → 2EG returns for each vertex v ∈ VG

the set of attribute edges with source v;

• the message set function msgG : VG → 2EG returns for each vertex v ∈ VG

the set of message edges with target v.

• the extended attribute set function, attr∗C : V → 2E, where attr∗C(v) = {e ∈
E | lab(e) = attr ∧ src(e) ∈ ↑v}, and ↑v is the set of all superclasses of v.

• the extended message set function, msg∗C : V → 2E, where msg∗C(v) = {e ∈

4

52

Ferreira, Foss and Ribeiro

E|msg | tar(e) ∈↑v ∧ ¬∃e′ ∈ E|msg : tar(e′) ∈↑v ∧ e′ vE e}.

C-typed graphs reflect the inheritance of attributes and methods from the
object-oriented paradigm. Notice that they are ordinary hypergraphs typed
over a class-model graph. However, the typing morphism is more flexible than
the traditional one [3]: a C-typed graph edge e can be incident to any C-typed
graph node v as long as its typing edge tE(e) (in C) is incident to a node type
v′ (also in C), such that tV (v) and v′ are connected by the underlying order
relation (i.e., tV (v)v∗VC v′). This definition reflects the fact that an object
can use any attribute belonging to one of its primitive classes, since it was
inherited when the class was specialized.

The extended attribute set function returns the set of all attribute arcs
whose source is v or any other vertex to which v connected via the inheritance
relation v∗V . The extended message set function returns all messages an
object of a specific type may receive. Notice that message redefinition within
objects, expressed by the overriding relation v∗E on the class-model graph, is
taken into account, since only the redefined methods can be seen within the
scope of a specialized class.

For a C-typed graph 〈G, t, C〉, let the total function t∗E : 2EG → 2EC be the
extension of the typing function to edge (or node) sets. Notation t∗E|msg and
t∗E|attr will be used to denote the application of t∗E to sets containing exclu-
sively message and attribute (respectively) hyperarcs. Now we can present a
definition of the kind of graph which represents an object-oriented system.

Definition 2.4 [Object-oriented graph] Let C be a class-model graph. A C-
typed graph 〈G, t, C〉 is an object-oriented graph if and only if all squares
in the diagram below (in Set) commute. If, for each v ∈ VG, the func-
tion t∗E|attr(attrG(v)) is injective, GC is said a strict object-oriented graph.
If t∗E|attr(attrG(v)) is also surjective, GC is called a complete object-oriented
graph.

2EG_

t∗E |msg

²²

VG_

tV
²²

ÂmsgGoo Â attrG // 2EG_

t∗E |attr
²²

2EC VC
Âmsg∗Coo Â attr∗C // 2EC

The left square on the diagram of Def. 2.4 ensures that a message edge can
only target an object if it is typed over one of the edges returned by the ex-
tended message set function applied to the object type. It means that the only
messages allowed are the least ones in the redefinition chain to which the typ-
ing message belongs. This is compatible with the notion of dynamic binding,
since the method actually called by any object is determined by the actual ob-
ject present at a certain computation state. Injectivity of all t∗E|attr(attrG(v)),
v ∈ VG, expresses that all attribute arcs are typed differently (i.e., an object
has no exceeding attribute). Surjectivity means that all attributes defined on
all levels along the class-model graph (via the inheritance relation on nodes)
are present. The definition of a complete object-oriented graph is coherent

5

53

Ferreira, Foss and Ribeiro

owner

isAt

KantThinking

Thinking Nietzche

HegelThinking

Fork1

Fork3

Fork2

isAt

isAt

Table
owner

leftFork

leftFork

leftFork

rightFork

rightFork

rightFork

Figure 2. The initial graph for the Dining Philosophers problem.

with the notion of inheritance within the object-oriented framework, since an
object inherits all attributes, and exactly those, from its primitive classes.

Example 2.5 Figure 2 shows a complete object-oriented graph, typed over
the class-model graph portrayed in Figure 1. Let the three elements called
Kant, Hegel and Nietzsche be Right-HandedPhilosopher, and the other ele-
ments be typed as their names indicate. According to the typing class-model
graph, a Right-HandedPhilosopher has no attribute at all, and also does not
receive a message typed as Thinking. However, since its parent class Philoso-
pher has those arcs connected to it, they can be connected to any derived
object, thus allowing inheritance of elements. To see that, consider the at-
tribute isAt of the right-handed philosopher Kant. The edge it is mapped
to by the typing morphism has as source an element of class Philosopher,
and so (t∗V ◦ srcG)(isAt) = Right-HandedPhilosopher vV ∗C

Philosopher =

(srcC ◦ tE)(isAt), and the morphism is allowed.

Relationships between C-typed graphs can be described by morphisms.

Definition 2.6 [C-typed graph morphism] Let GC
1 = 〈G1, t1, C〉 and GC

2 =
〈G2, t2, C〉 be two C-typed graphs typed over the same class-model graph
C = 〈Vv, Ev, L, src, tar, lab〉. A C-typed graph morphism h : GC

1 → GC
2

between GC
1 and GC

2 , is a pair of partial functions h = 〈hV : VG1 → VG2 , hE :
EG1 → EG2〉 such that the diagram below (in category SetP) commutes, for
all elements v ∈ dom(hV), (t2V ◦ hV)(v) vVC t1V (v), and for all elements
e ∈ dom(hE), (t2E ◦ hE)(e) vEC t1E(e). If (t2E ◦ hE)(e) = t1E(e) for all
elements e ∈ dom(hE), the morphism is said to be strict.

EG1_

srcG1
,tarG1

²²

dom(hE)? _hE?oo ÂhE ! // EG2_

srcG2
,tarG2

²²
V ∗

G1

h∗V // V ∗
G2

A graph morphism is a mapping which preserves hyperarcs sources and

6

54

Ferreira, Foss and Ribeiro

targets. A typed graph morphism also preserves (node and edge) types. Or-
dinary typed graph morphisms [3], however, cannot describe correctly mor-
phisms on object-oriented systems because the existing inheritance relation
among objects causes that actions available for objects of a certain kind are
valid to all objects derived from it. So, an object can be viewed as not being
uniquely typed, but having a type set (namely, the set of all types it is con-
nected via the inheritance relation). Defining a graph morphism compatible
with the underlying order relations assures that polymorphism can be applied
consistently.

The behavior of object-oriented systems (implementation of methods) will
be modeled by rules, in which the left- and right-hand sides are object-oriented
graphs. Besides structural restrictions (imposed by the fact that rules as C-
typed graph morphisms), some others are necessary to assure compatibility
with the concepts of the object paradigm. Particularly, a rule left-hand side
contains exactly one element of type message, and this particular message
must be deleted by the rule application, i.e., each rule represents an object
reaction to a message which is consumed in the process. This demand poses
no unreasonable restriction, since systems may have many rules specifying
reactions to the same type of message (non-determinism) and many rules can
be applied in parallel if their triggers are present at an actual state and the
referred rules are not in conflict [6]. At most one object having attributes will
be allowed on the left-hand side of a rule, along with the requirement that this
same object must be the target of the above cited message. This restriction
implements the principle of information hiding, which states that the internal
configuration (implementation) of an object can only be visible, and therefore
accessed, by itself. The rule morphism must be invertible, to assure that an
object does not have its type changed along the computation. Finally, there
must be a bijection between the edges on both sides, and so an object does
not gain or loose attributes as the computation evolves.

Object-oriented graph grammars are composed by a class-model graph, an
initial state (a complete object-oriented graph) and a set of object-oriented
rules.

Example 2.7 An object-oriented graph grammar for the Dining Philosophers
problem is presented in Figures 3, 4, and 5. All object-oriented rules left- and
right-hand sides are object-oriented graphs typed over the class-model graph
portrayed in Figure 1. However, in order to make the presentation clearer,
all nodes and edges are named after their types, making the typing morphism
explicit.

The semantics of an object-oriented graph grammar is based on rule ap-
plications. Matches and direct derivations are defined in the same way as the
single-pushout approach: a match is a total C-typed graph morphism, and a
direct derivation is the pushout of the match and rule arrows in the category
of object-oriented graphs and their morphisms [9]. Instead of using the usual

7

55

Ferreira, Foss and Ribeiro

Acquire
Fork

Release
Fork

Acquire Fork Table

Philosopher

owner

Fork Table

Got Philosopher

Release

Table

Fork

owner
Philosopher

Table

Fork

owner

Philosopher

Figure 3. Fork rules for the Dining Philosophers problem.

leftFork
Fork

ForkrightFork
isAt

Table

Release

Release

leftFork

Fork

Fork

rightFork

isAt

Table

Stop
Thinking

Stop
Eating

PhilosopherEating
PhilosopherThinking

PhilosopherEatThinking Philosopher

Figure 4. Philosopher rules for the Dining Philosophers problem.

rightFork

Fork

Right-Handed
PhilosopherEat

RHP1st
Fork rightFork

Right-Handed
Philosopher

ForkAcquire

RHP2nd
Fork

rightFork leftFork

Right-Handed
PhilosopherGot

Fork Fork

rightFork leftFork

Right-Handed
Philosopher

Fork ForkAcquire

leftFork

Right-Handed
PhilosopherGot

Fork Fork

leftFork

Right-Handed
PhilosopherEating

RHPStarts
Eating

Figure 5. Right-HandedPhilosopher rules for the Dining Philosophers problem.

transition system induced by the application of rules starting at the initial
graph of the system (states are graphs and transitions are graph morphisms),
we defined an abstract semantics based on observations. This semantics holds
information about events happening in a system (message exchange among
objects), and forgets about system structure. Therefore, although we are not
able to express properties based on object states, we are still allowed to inves-
tigate properties of objects based on how they respond to the rules applied to

8

56

Ferreira, Foss and Ribeiro

them. The abstract semantics is given by a labeled transition system where
its states are the graphs generated by rule applications in the grammar, and
the transition between two states is labeled with the name of the rule applied
together with the object identity the rule was applied to.

Definition 2.8 [Object-oriented graph grammar transition semantics] Let
G = 〈IC , P C , C〉 be an object-oriented graph grammar. The transition se-
mantics of G is given by the labeled transition system T G = 〈S, s0, L,→〉,
where S = {GC | IC⇒∗GC} is the set of states, s0 = IC is the initial state,
L = {〈p, o〉 ∈ P C×VG | G ∈ ST ∧p ∈ ΠE

tG(o)}, is the set of labels, where ΠE
tG(o) is

the grammar set of productions that can be applied to an object of type tG(o),
→ is the transition relation, and object-oriented graphs GC and HC are related
under → if there is an object-oriented graph production r : LC → RC ∈ P C,

an object-oriented match m : LC → GC such that GC r,m
⇒ HC.

3 Translation

The input language of SPIN [10] is Promela (PROtocol/PROcess MEta LAn-
guage) which is a specification language to model state transition systems.
The complete translation algorithm is rather long and will be presented here
informally. Objects are modeled as Promela processes, and message exchange
between objects through asynchronous communication channels. To overcome
the FIFO policy of buffered channels in Promela, the same solution from [5] is
used: a local buffer is used to “shuffle” received messages and so maintain the
non determinist rule application semantics. The inheritance relation appears
as a global array visible to any program element. Subclass polymorphism is
coded through an inspection in this array, to assure that rule matches only
occur if the matched elements are correctly related. Dynamic binding is imple-
mented as a message dispatch procedure within each object process definition.
Differently from classic object-oriented programming languages implementa-
tions [14], where a virtual table determines which method should be called in
execution time, our approach uses a little computational reflection [17], in the
sense that each object (process) is aware of its own type, and that informa-
tion is made available to other entities when they have access to the object
(as an attribute, or as a message parameter). So an object can decide, at run
time, the adequate message to send based on the actual type of the message
receiver.

Each initial graph node is transformed into a process, having as parame-
ters all the targets of its attributes (using an arbitrary total order imposed
on each object attributes). Each initial message is put into the proper object
channel, together with its parameters (the sources of each message arc in the
initial graph). Therefore, targets of attribute edges become processes para-
meters, and message parameters become processes local variables. A process
code (the object behaviour) consists of an infinite loop that continuously tests

9

57

Ferreira, Foss and Ribeiro

(non deterministically) if either a new message has arrived at the object main
channel — in which case the message is retrieved and placed in some empty
slot of the local message buffer — or if there is a message in the local buffer
waiting to be consumed. In the latter case, the message is atomically retrieved
from the buffer and the production it refers to is applied. In case neither the
object channel nor the local message buffer contain any messages to be con-
sumed, the process will jump to the beginning of the main loop, and stay
blocked until a new message arrives.

The matching procedure tests if (i) all attributes are typed correctly, and
(ii) all attribute values are correct. For instance, consider the first rule in
Figure 3. This match will only be possible if the holder of the attribute vertex
(of type Fork) is an object typed as Table. If it is a Philosopher, the match will
not occur, because those two elements are not related by inheritance (although
they both derive from a ForkHolder). Type testing is performed by inspection
on the aforementioned global inheritance array. Now, consider the second rule
from that same figure. The match is possible only if the Philosopher passed
as parameter of message Release is the same one holding the fork. Therefore,
an equality test is carried on between objects which are sources or targets of
distinct arcs.

The choice on which production to apply is performed by a conditional
test for all rules to which a match (for the received message) exist. Since
a conditional test in Promela has a non deterministic result if more than
one conditional is true, the choice of which production to apply is also non
deterministic, as required by the grammar semantics.

Rule application can be described as: (i) object attributes are modified
according to the rule morphism; (ii) a global variable event RuleName is set
with the applied production name; (iii) the set of variables event x, for all
classes to which the type of the production attribute vertex is related by in-
heritance, are set to the object identity; (iv) finally, all messages appearing in
the right-hand side of the applied production are created, and it is particularly
relevant, since it is this procedure which performs dynamic binding. If no rule
is applied (because no match were possible for any production implementing
the received message), then the message is put back in the local buffer, and
marked as inspected. An already inspected message will not be retrieved for
application until a new message arrives. Since only an object can change its
own state, a match for this message could only happen after another produc-
tion is actually applied. This procedure also helps to decrease the program
state space for the verification process.

The right message to send is based on the type of the actual object which
is receiving the message. Since the lower set of any node (respecting the inher-
itance hierarchy) is finite and does not change along the program execution, a
conditional structure takes care of this. For instance, consider the second rule
in Figure 4. A message Eat is sent to a Philosopher. This message, however, is
redefined by all Philosopher subclasses, so one must know the element type to

10

58

Ferreira, Foss and Ribeiro

send the correct message. The code generated is illustrated by the following
pseudo-code:

if (receiving object message channel is not full)

if

. receiving object type is a Philosopher ->

send message Eat for the Philosopher

. receiving object type is a Left-HandedPhilosopher ->

send message Eat for the Left-HandedPhilosopher

. receiving object type is a Right-HandedPhilosopher ->

send message Eat for the Right-HandedPhilosopher

The whole rule application procedure is performed atomically. Therefore,
from the time a message is taken out of the local buffer to the time a rule ap-
plication is completed — by either applying the rule or by putting the message
back to the local buffer, if no match exist for that rule — no other process can
interleave with that execution, because of the atomic keyword. The atom-
icity of the rule application process is necessary, to mimic the way rules are
applied in the graph grammar, where the whole matching and application
procedure is performed in a single step. Furthermore, if interleaving was al-
lowed, errors could appear: if a process is stopped between finding a match
for a production and the application of that production, meanwhile the state
graph could be altered in a way that turns the rule application impossible;
therefore a match/application procedure is considered a critical region of any
object behaviour.

4 Verification

Property verification in SPIN can be done using a multiplicity of methods,
among which there is LTL [11] property verification. Meaningful events to
verification of the Dining Philosophers problem can be stated, for instance, as
“philosopher X starts to eat”, or “fork Y is grabbed by a philosopher”. We
will use the already presented object-oriented graph grammar for the Dining
Philosophers problem as the running example. For reasons of space, we will
verify only the liveness property stated as “anytime a philosopher decides to
eat, he eventually does so”. We will show that this property is false in the
provided model.

SPIN performs model-based verification, which means that properties can
only be defined over states, and not over transitions. The translation we
propose defines a set of global variables to allow verification over events: (i)
one global variable for each class belonging to the class-model graph over
which the grammar is typed, to identify the last object of that type that
had a production applied to it (if a message is received by an object, and
consumed by some rule application, then the object identity is assigned to the
respective variable), and (ii) one global variable to identify which rule was
applied, and it is updated every time such action occurs. Notice that rule

11

59

Ferreira, Foss and Ribeiro

application is not equivalent to message consumption. Although each rule
application corresponds exactly to a response to a received message, there
can be multiple (different) rules implementing actions for the same type of
message. This variable is necessary if one is interested in verify possible orders
in which rules can be applied.

The XSpin tool allows that propositions can be defined in a C-like way,
using the preprocessor macro #define. Those properties can be defined in
terms of the actual objects belonging to the system initial graph. Since we are
only interested in the behaviour of the philosophers, a proposition to identify
each of them is defined as in #define isKant (event Philosopher == Kant).
Propositions for events of interest can be defined using the global variable
for rule identification, as in #define aPhilWantsToEat (event RuleName ==
rule Philosopher StopThinking) or in #define aPhilStartsToEat (event Rule-
Name == rule Philosopher StartsEating). In order to discover if a known
event occurs with a specific object, propositions such as #define philKa-
ntWantsToEat (isKant && aPhilWantsToEat) and #define philKantStart-
sToEat (isKant && aPhilStartsToEat) can be defined.

Using the propositions defined above, LTL properties about the system
behaviour can be written. Property “anytime a philosopher decides to eat,
he eventually does so” can be stated, for philosopher Kant as [] (philKant-
WantsToEat − > <> philKantStartsToEat) where symbols <> and [] stand
for the usual linear temporal logic quantifiers ♦ (eventually) and ¤ (always).
For all philosophers, it can be stated as [] ((philKantWantsToEat − > <>

philKantStartsToEat) && (philHegelWantsToEat − > <> philHegelStart-
sToEat) && (philNietzscheWantsToEat − > <> philNietzscheStartsToEat)).

This last property is not true within the model provided. Figure 6 shows
a graphical counterexample (taken from the model checker output, and gen-
erated by the system developed in [4]) for them. The counterexample shows
three philosophers (Nietzsche, Hegel, and Kant) and their respective forks.
The processes are indicated by the horizontal lines, and the arrows indicate
the messages arriving and departing from each process. Notice that a deadlock
situation is set: each philosopher have grabbed one fork, and a message was
sent to the other fork in an attempt to acquire it. However, since each fork
now has a philosopher owning it, rule AcquireFork cannot ever be applied
again, and all philosophers will wait forever.

5 Conclusions

Object-oriented graph grammars provide a graph-based specification frame-
work for object-oriented systems, where special partial orders represent the
inheritance and overriding hierarchies, making polymorphism and dynamic
binding built-in features of the formalism.

We have presented a (sketch) translation from object-oriented graph gram-
mars specifications into Promela programs. All object-oriented features are

12

60

Ferreira, Foss and Ribeiro

Figure 6. Counterexample of the absence of deadlock property

translated into Promela: inheritance appears as a global array; polymorphism
is implemented in the matching procedure through an inspection on this array;
dynamic binding is implemented through the message dispatching mechanism,
which checks the message receiver type to determine the correct message to
send; information hiding and encapsulation appear naturally on the transla-
tion, since a single process implements each system object. The translation of
graph rules applications establish the existence of matches before the rule can
be applied, and the choice of which message to consume and which production
to apply is non deterministic, as required by the defined grammar semantics.

We are not currently dealing with object creation and deletion, but it is
a straightforward extension to this translation, which is currently being au-
tomatized (using and extension of the XML-based languages GXL and GTXL
[18]). An effort can be done to customize the translation to the application
characteristics, in order to reduce the produced state space.

The translation proposed is arguably semantically sound, in the sense that
no graph system behaviour is removed or introduced by the translation. Even
if there are states in the Promela program that do not correspond to any graph
belonging to the grammar language, those states can always be translated if
they are not part of a rule application procedure. If they are, they cannot
interleave with any other process execution, since rule application is performed
atomically, and hence it suffices to leave the atomic block for the Promela state
can be translated to a graph state. A formal proof of this translation soundness
is being prepared for publication. Finally, we have used a modeling for the

13

61

Ferreira, Foss and Ribeiro

Dining Philosophers problem to illustrate how verification can be performed,
and how errors can be found using our approach.

References

[1] Baldan, P., A. Corradini and B. König, Verifying finite-state graph grammars:

An unfolding-based approach, in: CONCUR, 2004, pp. 83–98.

[2] Burkart, O. and Y.-M. Quemener, Model-checking of infinite graphs defined

by graph grammars, Technical Report 995, IRISA — Institut de Recherche en
Informatique et Systèmes Aléatoires, Rennes (1996).

[3] Corradini, A., U. Montanari and F. Rossi, Graph processes, Fundamentae
Informatica 26 (1996), pp. 241–265.

[4] dos Santos, O. M., “Verificação Formal de Sistemas Distribúıdos Modelados
na Gramática de Grafos Baseada em Objetos,” Masters thesis, Pontif́ıcia
Universidade Católica do Rio Grande do Sul, Porto Alegre (2004), 89p.

[5] Dotti, F. L., L. Foss, L. Ribeiro and O. M. Santos, Verification of object-

based distributed systems, in: E. Najm, U. Nestmann and P. Stevens, editors,
Proceedings of the 6th IFIP TC6/WG6.1 International Conference on Formal

Methods for Open Object-Based Distributed Systems (FMOODS 2003), Lecture
Notes in Computer Science 2884 (2003), pp. 261–275.

[6] Ehrig, H., R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner and
A. Corradini, Algebraic approaches to graph transformation. Part II: single-

pushout approach and comparison with double pushout approach, , 1

(Foundations), World Scientific, Singapore, 1996 pp. 247–312.

[7] Ferreira, A. P. L., “Object-oriented graph grammars,” PhD thesis, Universidade
Federal do Rio Grande do Sul, Porto Alegre, Brazil (2005), 156p.

[8] Ferreira, A. P. L. and L. Ribeiro, Towards object-oriented graphs and grammars,
in: E. Najm, U. Nestmann and P. Stevens, editors, Proceedings of the 6th IFIP

TC6/WG6.1 International Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS 2003), Lecture Notes in Computer
Science 2884 (2003), pp. 16–31.

[9] Ferreira, A. P. L. and L. Ribeiro, Derivations in object-oriented graph

grammars, in: H. Ehrig, G. Engels, F. Parisi-Presicce and G. Rozenberg, editors,
Proceedings of the 2nd International Conference on Graph Transformations

(ICGT 2004), Lecture Notes in Computer Science 3256 (2004), pp. 416–430.

[10] Holzmann, G. J., The model checker SPIN, IEEE Transactions on Software
Engineering 23 (1997), pp. 1–17.

[11] Huth, M. R. A. and M. D. Ryan, “Logic in Computer Science: Modelling and
reasoning about systems,” Cambridge University Press, Cambridge, 2000.

14

62

Ferreira, Foss and Ribeiro

[12] Koch, M., “Integration of Graph Transformation and Temporal Logic for the
Specification of Distributed Systems,” PhD Thesis, Technische Universität
Berlin, Berlin (1999).

[13] Löwe, M., “Extended Algebraic Graph Transformation,” Ph.D. thesis,
Technischen Universität Berlin, Berlin (1991).

[14] Pratt, T. W. and M. V. Zelkowitz, “Programming languages : design and
implementation,” Prentice-Hall, Upper Saddle River, 1996, 3 edition, 654p.

[15] Rensink, A., Towards model checking graph grammars, in: M. Leuschel,
S. Gruner and S. L. Presti, editors, Workshop on Automated Verification of

Critical Systems (AVoCS) (2003), pp. 150–160.

[16] Rensink, A., The GROOVE simulator: A tool for state space generation, in:
J. Pfalz, M. Nagl and B. Böhlen, editors, Applications of Graph Transformations

with Industrial Relevance (AGTIVE), Lecture Notes in Computer Science 3062

(2004), pp. 479–485.

[17] Smith, B. C., “Reflection and Semantics in a Procedural Language,” PhD
Thesis, Massachusetts Institute of Technology, Cambridge, MA (1982), mIT-
LCS-TR-272.

[18] Winter, A., B. Kullbach and V. Riediger, An overview of the GXL graph

exchange language, in: S. Diehl, editor, International Seminar on Software

Visualization, Lecture Notes in Computer Science 2269 (2001), pp. 324–336.

15

63

GT-VC 2006

Modeling and Verification of Reliable
Messaging

by Graph Transformation Systems 4

László Gönczy 1, Máté Kovács 2 and Dániel Varró 3

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Hungary

Abstract

Due to the increasing need of highly dependable services in Service-Oriented Ar-
chitectures (SOA), service-level agreements include more and more frequently such
non-functional aspects as security, safety, availability, reliability, etc. Whenever a
service can no longer be provided with the required QoS, the service requester needs
to switch dynamically to a new service having adequate service parameters after ex-
changing a sequence of messages. In the current paper, we first extend the core SOA
metamodel with parameters required for reliable messaging in services. Then we
model reconfigurations for reliable message delivery by graph transformation rules.
Finally, we carry out a formal verification of the proposed rule set by combining
analysis tools for graph transformation and labeled transition systems.

Keywords: Service Oriented Architecture, Graph Transformation, Reliable Mes-
saging

1 Introduction

Service-Oriented Architectures (SOA) provide a flexible and dynamic platform
for implementing business-critical services. The main business-level driver of
the SOA paradigm is componentization, which raises the level of abstraction
from objects to services in the design process of distributed applications. The
main architectural-level driver of the SOA paradigm is to provide a common
middleware framework for dynamic discovery, interaction and reconfiguration
of service components independently of the actual business environment.

1 Email: gonczy@mit.bme.hu
2 Email: km432@hszk.bme.hu
3 Email: varro@mit.bme.hu
4 This work was partially supported by the SENSORIA European project (IST-3-016004).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

64

Gönczy, Kovács, Varró

Recently, the identification of non-functional parameters of services have
been addressed by various XML-based standards related to web services (such
as WS-Reliable Messaging, WS-Reliable Messaging Policies, etc.). Reliable
messaging between services — where the delivery of a message can be guaran-
teed by the underlying platform by appropriate reconfiguration mechanisms
— plays an important role in many of these standards, because of the growing
need for asynchronous yet reliable Web service invocations. Despite the wide
range of standards addressing the specification of these reliability service prop-
erties, currently only very experimental solutions exist in the industry (such
as RAMP-Toolkit [18] by IBM or RM4GS [22] by a consortium led by Fujitsu-
Siemens, Hitachi and NEC) that actually implement these reconfigurations in
order to maintain the required level of reliability.

In the current paper, we conceptually follow [2] where a semi-formal platform-
independent and a SOA-specific metamodel (ontology) was developed to cap-
ture service architectures on various levels of abstraction in a model-driven
service development process. Furthermore, reconfigurations for service pub-
lishing, querying and binding were captured by graph transformation rules
[6], which provides a visual yet formal, rule and pattern-based specification
formalism widely used in various application areas. This combination of meta-
modeling and graph transformation rules fits well to a model-based develop-
ment process for service middleware.

This paper extends the core metamodel defined in [2] (and overviewed in
Sec.2) by a new package for reliable messaging (Sec. 3.2). Moreover, we pro-
vide new high-level reconfiguration primitives for reliable message delivery in
the form of graph transformation rules (Sec. 4.2) by integrating dependability
techniques [16]. Finally, we carry out a formal verification of the proposed rule
set by combining various analysis tools: the state space of the graph grammar
will be first explored by GROOVE [19] while the generated graph transition
system is transformed into a fromat accepetd by the Labeled Transition Sys-
tem Analyzer (LTSA) tool where the automated formal verification of certain
safety properties is carried out. Our aim is to provide a generic way to capture
the dynamic fault-tolerant behavior of a SOA. In the current paper we used
the reliable messaging as a case study for this.

Note that we first modeled reconfiguration rules for reliable messaging
by graph transformation rules in an ad hoc way in [10]. The current paper
extends that approach by formally verifying the rules by integrating analysis
tools (Sec 5.3). In fact, we managed to find conceptual flaws in this initial
rule set during verification, and thus the current paper already presents the
corrected version of the rules (in Sec. 4.2).

2 Core SOA Metamodel

The main architectural concepts of the domain of service-oriented architec-
tures are captured by a corresponding metamodel. An extract of the meta-

2

65

Gönczy, Kovács, Varró

model of ”core” SOA functionality is shown in Fig. 1. It is based on the
metamodel presented in [2], with minor simplifications and modifications to
keep the current paper better focused.

Fig. 1. Core metamodel of SOA

The core model to service-oriented architectures consists of the following
main elements:

• A component is a basic ”module” in the system which provides a service.

• A service is a set of functionalities with well-defined ports and interfaces.
Note that in the paper, we merge the notions of service (and component)
types and service instances into a single service (component) concept for
the sake of simplicity.

• A port is the communication ”endpoint” (with a set of abstract operations
and messages) where a service can be accessed.

• A connection denotes a bidirectional channel between two ports at run-time.

• An operation is an ”atomic” action with input and output messages. There
can be multiple operations defined on the same port. .

• A message is a set of parameters with pre-defined subtypes such as request,
response, service publication, service query and query results. For the cur-
rent paper we treat these messages on an abstract level regardless of their
actual subtypes. However, we will derive additional subtypes in Sec. 3.2
required for reliable messaging.

• A service description is a descriptor file containing all necessary information
about the runtime cooperation with the service, such as description of port,
operations, messages, etc.

3

66

Gönczy, Kovács, Varró

3 Extensions for Reliable Messaging in Web Services

In this section, after a brief overview on capturing non-functional requirements
in existing web service technologies, we extend the core SOA metamodel by
non-functional attributes required for reliable messaging in order to provide a
model-based solution.

3.1 Non-functional Requirements in Existing Web Service Technologies

While there are several initiatives to define the so-called ”non-functional”
properties of services, such as Web Services Modeling Ontology [25], W3C
Web Services Architecture [24], DublinCore Metadata for ServiceDiscovery
[5], the terminology is still ambiguous.

To illustrate the modeling of non-functional properties by a practical and
simple example, hereby we present a model-based reconfiguration for reliable
messaging to tolerate communication faults. As the consumers of the Web
services are not aware of the details of underlying network protocol, the se-
mantics of the message delivery has to be specified at the application level as
requirements for reliable messaging. This needs a platform-independent rep-
resentation of message attributes, which is reflected by a number of emerging
standards [26,27]. Some reference implementations for popular application
servers like IBM WebSphere or Apache Tomcat are available.

These industrial standards and initiatives usually suppose that the ser-
vice provider signs a contract with each client about the Quality of Service,
measured in terms such as average response time, minimal throughput, type
of message delivery, etc. These contracts are typically identical for classes of
similar clients (roles), for instance, Golden User, Business Partner, Individual
Customer, etc. The runtime service instances send their messages according
to these contracts, while additional information, including such non-functional
aspects, is hidden from the application layer. As a consequence, it is not nec-
essary to modify the original service clients on the consumers’ side.

Additional information is handled by components aware of reliability at-
tributes, called ”Reliable Message Endpoints”. In technological terms, the
header of SOAP envelopes is extended with some attributes by a ”Reliable
Message Endpoint” on the provider’s side, which are then removed from the
messages by another ”Reliable Message Endpoint” at the client side. Since
the concrete format of these attributes in message headers is out of scope, here
we model an abstract envelope concept. In the future, we plan to map such
concepts into existing technologies by model transformation techniques.

3.2 Metamodel Extensions for Reliable Messaging in Services

Now we extend the core SOA metamodel of [2] to capture properties of reliable
messaging between services. After enriching the domain metamodel, our long
term goal is to define a corresponding UML profile to provide extensions to the

4

67

Gönczy, Kovács, Varró

UML language tailored to a specific application domain by introducing domain
concepts, attributes and relations in the form of stereotypes and tagged values.
However, the current paper only focuses on metamodel-level extensions for
reliable messaging in the SOA metamodel.

We first derive a subclass from SOA element in the reliable SOA meta-
model, and then create an association from the child class (e.g. RelMsgEnve-
lope) to the parent class (e.g. Message) in addition. As a result, unreliable
messaging can be carried out by the original SOA reconfiguration rules de-
fined in [2]. Furthermore, the original messages are kept but wrapped into an
envelope by introducing a new association. As a consequence, only very minor
extensions are required to the rules of [2] to transport these envelopes between
services to properly memorize the sender and the receiver of a message.

The extensions of the SOA metamodel for reliable messaging is presented
in Fig. 2:

Fig. 2. Metamodel of Reliability Extensions

• RelMsgSpecification (shortly, RelSpec) is a class for specifying the require-
ments for reliable messaging between SOA services (see association describes,
clientSpec, providerSpec).
· Attribute needsAck is a boolean value to express if an acknowledgement

should be sent to a message. If an acknowledgement arrives to the sender
for a message, then it is guaranteed that the message is received at least
once.

· Attribute filterDuplicates is a boolean value to express that a message
should be accepted and processed by the receiver at most once.

· Attribute timeout is a timer constraint which specifies how much the
sender waits for the acknowledgement of a message before retransmission.

· Attribute maxNumberOfRetrans is an integer which puts an upper limit
on how many times a message can be retransmitted by the sender due to
the lack of acknowledgement from the receiver.

• RelMsgEnvelope (shortly, Envelope) is a subclass of core SOA Message which
serves as an envelope for wrapping up the real message to be sent (wraps).

• ReliabilityProperty (shortly, RelProp) contains the runtime properties of a

5

68

Gönczy, Kovács, Varró

message:
· Attribute numberOfRetrans is a serial number for the envelope which is

increased by one each time the same message is retransmitted.
· Attribute timeElapsed denotes the time elapsed since the (last) transmis-

sion of a message.
The content of the message is also attached to the properties (contentOf)
since the retransmission of the message has to be transparent for the appli-
cation.

• Acknowledgement (shortly, Ack) is a subclass of core SOA Message which
denotes an acknowledgement sent in response to a message.

As this extension is closely related to existing standards, we plan to map
such high-level models into implementations of these standards following a
model-driven approach: runtime values of XML descriptors will be derived
from the attributes of our model.

3.3 Semantics for Message Delivery

In traditional distributed systems, communication middleware have to guar-
antee the desired semantics of message delivery. The most common semantics
are the following:

• At-Least-Once is one of the weakest, requiring that every message has to
arrive to the receiver at least once. This does not exclude the possibility of
sending a message multiple times.

• At-Most-Once is ensuring that a message won’t be sent more than once,
which means the elimination of duplicates.

• Exactly-Once is the ”subset” of the previous ones both messaeg delivery
and filtering of duplicates are guranteed.

There are of course other semantics, hereby we will use At-Least-Once as a
running example since this is the easier to present. However, our methodology
naturally works for the other delivery semantics as well.

4 Reconfiguration for Reliable SOA Messaging by Graph
Transformation

We now propose to describe the reconfiguration mechanisms of reliable SOA
messaging by graph transformation rules (conceptually following [2]).

4.1 Overview of Graph Transformation

A main benefit of using graph transformations as a formal specification paradigm
for capturing reconfiguration rules is that they are visual, intuitive, therefore
they can be understood by service engineers as well. The interested reader

6

69

Gönczy, Kovács, Varró

may find a detailed theoretical discussion of graph transformation in [6], here
we present just a brief overview on it.

Furthermore, graph transformation allows dynamic metamodeling [12] in a
certain domain. The high-level (ontological) concepts are visualized as UML
class diagrams while graph patterns are considered to be UML object dia-
grams to express that concrete models are instances (objects) of the meta-
model (classes) combining the advantage of precise modeling and visual de-
sign.

A graph transformation rule consists of a Left Hand Side (LHS), a Right
Hand Side (RHS) and optionally a Negative Application Condition (NAC).
The LHS is a graph pattern consisting of the mandatory elements which pre-
scribes a precondition for the application of the rule. The RHS is a graph
pattern containing all elements which should be present after the application
of the rule. Elements in the RHS ∩LHS are left unchanged by the execution
of the transformation, elements in LHS \ RHS are deleted while elements in
RHS \ LHS are newly created by the rule. The fulfillment of the negative
condition prevents the rule from being executed on the particular matching.
Hereby we follow the Single Pushout Approach (SPO) approach [6] with neg-
ative application conditions [11].

A graph grammar (GG) consists of a start graph and a set of graph trans-
formation rules. A graph transition system (GTS) represents the state space
generated by a graph grammar. The different states of the GG (i.e. the de-
rived instance graphs) appear as nodes while edges denote state transition
caused by the application of a graph transformation rule. An edge going from
state s1 to state s2 with label r,o represents that from the graph instance s1
one can get graph instance s2 by the application of transformation rule r at
match o.

In this paper, we use a compact visualization of graph transformation rules
(first introduced in the Fujaba framework [8] and used in Groove [19]), when
the entire rule is merged into a single pattern. Newly created elements are de-
noted by solid thick (green) lines (tagged as {new} in the editor) while deleted
elements are depicted by dashed blue lines (tagged as {deleted}). Elements in
the intersection of the LHS and the RHS are visualized normally (in black),
and elements of NAC appear in thick dotted (red) lines. A negative condition
is used in the current paper to prevent the rule from creating infinite number
of new elements on the same matching (e.g. in the case of messaging, the
same message is received only once).

4.2 Reconfiguration Rules

The reliable messaging with at least once message delivery can be assured by
the reconfiguration rules captured by graph transformation in Fig. 3 (using
the Groove notation).

First, the normal messages have to be packed into and wrapped from en-

7

70

Gönczy, Kovács, Varró

(a) SendMsg (b) ReceiveMsg (c) SendAck

(d) OpenEnvelope (e) OpenEnvelopeNoAck

(f) RetransmitMsg (g) CloseEnvelope

(h) Message lost (i) Timeout

(j) Success (k) Failure

Fig. 3. Transformation rules in GROOVE for reliable messaging

8

71

Gönczy, Kovács, Varró

velopes (as in the case of present reliable messaging technologies). Thus, the
messages are wrapped up in the sender side instead of being transmitted (rule
closeEnvelope in Fig. 3(g)) and envelopes are opened before receiving their
content at the receiver side (rules openEnvelope and openEnvelopeNoAck in
Fig. 3(d) and Fig. 3(e) where the two separate rules depend on whether a
message needs an acknowledgement). As the most general type is used for
messages, these rules will match for instances of every subclass of message
class with a reliability specification. Thus, reliable messaging is also provided
for asynchronous service invocations, discovery queries, etc with a typed, at-
tributed graph transformation engine.

Basic delivery modes include AtLeastOnce, AtMostOnce and ExactlyOnce,
determined by the parameters needsAck and filterDuplicates, respectively. Hereby
we consider ’primitives’ as basic operation, supported by the runtime Web ser-
vice platform (such as RAMP) to ensure the desired delivery semantics.

At the sender side, there are basically two message sending modes, depend-
ing on the value of the needsAck parameter of the RelSpec object describing the
requirements for messaging. If this parameter is true, reliable message sending
required for a particular message, which corresponds to the AtLeastOnce mes-
saging semantics. In this case, the sender will wait for an acknowledgement
and consider the transmission of a message successful only if the acknowledge-
ment arrives within the timeout interval. The rule of the successful message
transmission (more precisely, the arrival of an acknowledgement in time) is
shown in Fig. 3(j).

On the other hand, if the acknowledgement does not arrive in time (rule
Timeout, Fig. 3(i)), then the next action (i.e. the next rule to be applied)
depends on the number of retransmitted messages. If the actual retransmis-
sion number of a particular message is smaller than the allowed, then a new
instance of the Envelope class is created and sent with the same content and
a higher retransmission number (rule RetransmitMsg, Fig. 3(f)). If the same
message content cannot be sent again (precondition of rule TransmissionFail-
ure, Fig. 3(k)), then the transmission of the message is considered to be failed.
Note that if no acknowledgement is needed, then no additional rules are ap-
plied at message sending, only the core SendMsg rule matches the instance
graph.

On the receiver side, the messages are acknowledged if needed (see rule
SendAck in Fig. 3(c)), otherwise the core ReceiveMsg rule is applied (Fig. 3(b)).

Additional rules have been introduced to inject faults into the system ac-
cording to a fault model. In our fault model, we assume that the message may
be lost during submission (Fig. 3(h)), or it eventually arrives but a timeout
has already occured (Fig. 3(i)). Acknowledgements can also be lost.

These fault injection rules of Fig. 3 are an extension of [10]. Furthermore,
since we used a richer graph model in our previous work, all the rules had to
be translated into Groove manually (see Sec. 5.2). Finally, during verification,
we also found conceptual flaws in the original rule set. For instance, there we

9

72

Gönczy, Kovács, Varró

erroneously allowed a message to be received by the sender party itself. These
changes are already included in Fig. 3.

5 Verification of Reliable Messaging Rules

5.1 Verification Tool Chain

The transformation rules were implemented in the Groove [19] tool, which
supports the generation of the state space (i.e. a Graph Transition System
- GTS) derived by a graph grammar. Using the Groove simulator, one can
manually inspect the state space from a given start graph for verification
purposes. While this is convenient for early tests of the GT specification, this
is not very convincing in case of large state spaces. Unfortunately, the current
public version of Groove (March, 2006) that we used in our experiments did
not yet support the verification of CTL-like properties (reported recently in
[20]).

For this reason, we decided to carry out the verification of the reconfigura-
tion rules for reliable messaging by post-processing the generated GTS in the
Labeled Transition System Analyzer (LTSA, [15]) tool. This tool supports
the safety, deadlock and liveness analysis of Labeled Transition Systems. A
requirement to be verified is defined by a normal (requirement) process, which
explicitly captures correct and incorrect execution paths (wrt. a subset of
actions) or a property from which the corresponding process is generated au-
tomatically by the tool. For verification runs, the requirement process and
the system process are composed concurrently. The result of verification is
either successful or a counterexample is provided in the form of a transition
sequence which leads to the violation of the requirement.

In order to project GTSs into the input format of LTSAs, a translator was
implemented which takes the GXL input of the GTS generated by Groove and
creates LTSA processes accordingly.

Furthermore, since the LTSA analyzer always checks for the existence of
deadlocks (even if a deadlock means correct termination of the system), we
had to guarantee that the GTS is cyclic by introducing additional ”restart”
graph transformation rules. These rules are applicable to any configuration
and delete all information regarding to the state of the system. Alternatively,
this also could be done by implementing an extension in the translator from
GTS to LTSA to create loops on the final states.

5.2 Groove-specific Adaptations of Transformation Rules

In order to encode the transformation rules into Groove (see Fig.3), we had to
model concepts such as inheritance, types and instantiation in Groove which
supports only labeled edges between nodes. Therefore, the types of the nodes
were modeled as self-edges, and we used multiple edge labels in case of in-
heritance. For instance, the object in the top of Fig. 3(c) has a type of

10

73

Gönczy, Kovács, Varró

Acknowledgement (shortly Ack) which is a specialization of Message. Con-
crete attribute values (such as the counter of the transmitted messages) were
implemented as nodes, linked to their container nodes.

As the current version of Groove had some minor bugs which prevented
the correct handling of primitive datatypes such as integers, the required con-
stant values were inserted as individual nodes (e.g. node with the self-edged
“exceeded” represented the string “exceeded”, etc.). For the same reasons,
we had to properly duplicate the rules which used comparison operations on
integer values. For instance, sending a message for the second and third was
implemented as two different rules.

For the verification of these rules, the graph grammar had to be extended
to ensure that it will have an infinite lifecycle. We ensured the start state could
be reached from any subsequent state by systematic modifications of the rules.
Firstly, two new rules were created to restore the start state of the system
after the (either successful or a failed) transmission of a message. Secondly,
three auxiliary transformations were implemented to delete the unnecessary
elements such as messages, envelopes and acknowledgements to keep the state-
space finite. Third, all other rules were extended by a NAC containing the
success attribute of the MessageProperty class to prevent these rules from being
concurrently executed with the initialization sequence.

5.3 Verification of Properties

We identified the following (non-exclusive) list of important requirements for
reliable messaging:

• The transmission of a message is either successful or failed (but the submis-
sion has a definite result).

• The transmission is considered to be failed exactly when the timeout of the
acknowledgement for the last transmittable message instance is exceeded.

• Incoming messages are read only after being acknowledged (if acknowledge-
ment is required).

• Multiple messages of the same port (to the same or different ports) are
managed correctly, i.e., their runtime properties are handled serapately.

• Sending and receiving normal (unreliable) messages can still be carried out.

When formalizing these requirements in LTSA, we ran into two main prob-
lems. On the one hand, the GTS generated by Groove only contains the ap-
plied rule as labels but no information is provided on the occurrence. For this
reason, we can capture only those requirements where the identity of messages
are irrelevant. In several cases, only a weakened form of the requirement was
actually verified due to this problem. In our opinion, providing also informa-
tion for the matching is an interesting direction for future improvements in
Groove.

11

74

Gönczy, Kovács, Varró

(a) Transmission (b) Failure

(c) Acknowledgement

Fig. 4. Automata of the properties (-1 represents the error state)

On the other hand, LTSA offers a limited way for checking liveness proper-
ties, therefore, our attention was mainly focused on to verify safety properties
of reliable messaging.

The main benefits of using these two tools together was the easy generation
of the available states and an automated check of properties. The previous
requirements were interpreted and formalized in the form of LTSAprocesses /
properties (see Fig. 4) as follows.

• The transmission of a message is either successful or failed: Exactly one
of the transformation rules Success, Failure is applied in each path to the
restart state(Fig. 4(a)).

• The transmission is considered failed exactly in the case when the timeout of
the acknowledgement of the last transmittable message instance is exceeded
(Fig. 4(b)).

• Incoming messages are read only after being acknowledged, i.e. the appli-
cation of the SendAck rules precedes that of the OpenEnvelope rule. Note
that if no acknowledgement is needed, then the property is not violated as
OpenEnvelopeNoAck rule is applied instead (Fig. 4(c)).

By carefully selecting initial models to capture small but typical config-
urations, we were able to verify that our reconfiguration rules fulfill these
requirements. We believe that these models are minimal but representative
configurations which could be extended if this didn’t raise a conflict with the
limitation of the state space generation. On the other hand, some of our
preliminary expectations turned out to be false during the verification (for
instance, that a message lost would always cause timeout).

The main lessons we learned from this verification case study for reconfig-
uration rules used in reliable messaging are the following:

• High-level vs. low-level graph models and rules: We were able to trans-
late (by hand) rich graph transformation rules and models (as used in [10]
with inheritance, types, attributes, etc.) into lower level verification mod-

12

75

Gönczy, Kovács, Varró

els (used in Groove) with relatively simple modeling tricks. Problems have
mainly arisen in case of integer attributes where rules have to be copied to
handle all different matches of the integer attributes. Future support for
core datatypes in Groove would further reduce the complexity of this last
task.

• Testing in Groove: Minor conceptual flaws have been identified in the rules
of [10] by manually inspecting the generated GTS for smaller examples.
However, such manual inspection for deciding the correctness of a property
was infeasible for large state spaces.

• Verification in LTSA: Automated post-processing in LTSA is a feasible
solution for verifying meaningful safety properties with obvious limitations
due to the lack of identity information in the GTS generated by Groove.

6 Related work

Related work in this field usually concentrate either on describing the non-
functional attributes of services, or modeling dynamic aspects of Service Ori-
ented Architectures by graph transformation.

Our work conceptually follows the approach of [2] for specifying services
in SOA. The authors of [3] describe the application of graph transformations
in the runtime matching of behavioral Web service specifications. In [13],
the conformance testing of Web services is based on graph transformations,
focusing on the automated test case generation. However, none of these works
discusses the aspects of reliable messaging. Our aim was to utilize the benefits
of this approach by extending the metamodel and the transformation rules.

Graph transformation is used as a specification technique for dynamic ar-
chitectural reconfigurations in [7] using the algebraic framework CommUnity.
Hirsch uses graph transformations over hypergraphs in [14] to to specify run-
time interactions among components, reconfigurations, and mobility in a given
architectural style. However, the problem of reliable messaging in SOA is not
addressed in either case.

LTSA [15] has already been applied successfully for the formal analysis of
business processes given in the form of BPEL specifications in [9], but reliable
messages are not considered in these papers.

In the future, we plan to investigate the use of other verification tools for
graph grammars. A primary candidate is Augur [21], which uses unfolding
techniques to derive a finite approximation of possible traces in a GTS.

The specification and analysis of fault behaviors have been carried out in [4]
using graph grammars. While this approach is not directly related to SOA,
it may serve as a starting point for incorporating additional dependability
aspects for our research.

Reliable messaging were verified in other papers, (for instance, [1]), our
technique differs mostly in the level of modeling, which is closer to that of the

13

76

Gönczy, Kovács, Varró

usual SOA description, and therefore, is more appropriate to apply for the
verification of fault tolerant mechanisms in SOA.

Finally, in the industrial field, there are existing and emerging specifica-
tions and technologies like [26,27]. However, their use is still ad-hoc and no
model-based design-time support is available for reliable messaging.

7 Conclusion

In this paper we first proposed an extension to the core SOA metamodel of
[2] and a technique to capture the reconfiguration mechanisms to enhance
the development of more robust SOA middleware. Reconfiguration rules for
reliable messaging in SOA have been captured by graph transformation rules.

Then the correctness of these rules were verified by first generating the
state space of the graph grammar by Groove (in the form of graph transition
systems), then transforming it into labeled transition system in order to carry
out formal verification of correctness requirements using the LTSA analyzer
tool.

As the next step in the future, we plan to focus on bridging the gap be-
tween our abstract reconfiguration rules and existing implementation tech-
nologies for reliable web services. The formally verified set of reconfiguration
rules will definitely serve as a sound starting point for this activity. Our long
term goal is to automatically derive implementations of reliable messaging
on various existing platforms based directly upon provenly correct dynamic
reconfiguration mechanisms.

References

[1] P. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans. Modeling and verifying
a bounded retransmission protocol. In Proc. of COST-247 Int. Workshop on
Applied Formal Methods in System Design, 1996, Slovenia.

[2] L. Baresi, R. Heckel, S. Thöne and D. Varró, Style-Based Modeling and
Refinement of Service-Oriented Architectures. To appear in Journal of Software
and Systems Modelling, 2006.

[3] A. Cherchago and R. Heckel. Specification Matching of Web Services Using
Conditional Graph Transformation Rules. In Proc. of Int. Conference on Graph
Transformations, 2004, LNCS Vol.3256., Springer, pp. 304-318.

[4] F. L. Dotti, L. Ribeiro, and O. M. dos Santos. Specification and analysis of fault
behaviours using graph grammars. In Applications of Graph Transformations
with Industrial Relevance, Second Int. Workshop, AGTIVE 2003, USA, vol.
3062 of LNCS, pp. 120–133. Springer, 2003.

[5] DublinCore Metadata Initiative, 2006. http://dublincore.org/

14

77

Gönczy, Kovács, Varró

[6] H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation, Part II: Single
pushout approach and comparison with double pushout approach. In Handbook
of Graph Grammars and Computing by Graph Transformation, volume I:
Foundations, pp. 247–312. World Scientific, 1997.

[7] M. Wermelinger and J. L. Fiadeiro. A graph transformation approach to software
architecture reconfiguration. Science of Comp. Progr., 44(2):133–155, 2002.

[8] T. Fischer, J. Niere, L. Torunski and A. Zündorf, ”Story Diagrams: A new
Graph Transformation Language based on UML and Java”, Proc. Theory and
Application to Graph Transformations (TAGT’98), vol. 1764 of LNCS, 2000,
Springer.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of
web service compositions. In 18th IEEE Int. Conf. on Automated Software
Engineering (ASE 2003), Canada, pp. 152–163. IEEE Computer Society, 2003.

[10] L. Gönczy, D. Varró: Modeling of Reliable Messaging in Service Oriented
Architectures, In Proc. Int. Workshop on Web Service Modeling and Testing
(WS-MATE 2006). To appear.

[11] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative
application conditions. Fundamenta Informaticae, 26(3-4):287313, 1996.

[12] J.H. Hausmann, Heckel, R., Lohmann, M.: Model-based Discovery of Web
Services, In Proc. of the IEEE Int. Conference on Web Services (ICWS), June
6-9, 2004, USA,

[13] R. Heckel, and L. Mariani. Automated Conformance Testing of Web Services.
In Proc. of 8th Int. Conference on Fundamental Approaches to Sofware
Engineering (FASE 2005), vol. 3442 of LNCS, Springer, pp. 34-48.

[14] D. Hirsch. Graph transformation models for software architecture styles. PhD
thesis, Departamento de Computacion, Universidad de Buenos Aires, 2003.

[15] Labelled Transition System Analyser (Version 2.2) http://www-dse.doc.ic.
ac.uk/concurrency/ltsa-v2/index.html

[16] J. Laprie, B. Randell, C. Landwehr, Basic Concepts and Taxonomy of
Dependable and Secure Computing, IEEE Transactions on Dependable and
Secure Computing, (Vol.1, No.1.) (2004) pp. 11-33

[17] Object Management Group. Model Driven Architecture. http://www.omg.
org/mda

[18] Reliable Asynchronous Message Profile (RAMP) Toolkit, IBM alphaworks.
http://www.alphaworks.ibm.com/tech/ramptk

[19] A. Rensink, The GROOVE simulator: A tool for state space generation. In
Proc. of Application of Graph Transformations with Industrial Relevance
(AGTIVE’03), 2003, LNCS Vol.3062, Springer, pp. 479-485.

15

78

Gönczy, Kovács, Varró

[20] Kastenberg H., and Rensink A. Model Checking Dynamic States in GROOVE.
In Proc. of the 13th Int. Workshop on Software Model Checking (SPIN’06),
Volume 3925 of LNCS, Springer-Verlag, 2006, to appear.

[21] B. König and V. Kozioura. Augur - a tool for the analysis of graph
transformation systems. Bulletin of the EATCS, vol. 87:pp. 126–137, 2005.

[22] RM4GS Reference Guide, Version 1.0, FUJITSU LIMITED, Hitachi, Ltd. and
NEC Corporation, 2004.
http://xml.coverpages.org/rm4gs20041125-reference.pdf

[23] Software Engineering for Service-Oriented Overlay Computers (SENSORIA)
European project IST-3-016004. http://sensoria.fast.de

[24] Web Services Architecture, 2004. http://www.w3.org/TR/ws-arch/

[25] Web Service Modeling Ontology (WSMO), W3C Member Submission, 2005.
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/

[26] Web Services Reliable Messaging Protocol (WS-ReliableMessaging) BEA
Systems, IBM, Microsoft Corporation, Inc, and TIBCO Software Inc., 2002.

[27] Web Services Reliable Messaging TC WS-Reliability 1.1 Committee Draft 1.086,
OASIS Open Consortium, 2004.

16

79

GT-VC 2006

Simulation of Generalised Semi-Markov

Processes based on Graph Transformation

Systems

Piotr Kosiuczenko, Georgios Lajios 1

Department of Computer Science

University of Leicester, UK

{pk82, gl51}@mcs.le.ac.uk

Abstract

Stochastic Graph Transformation combines graphical modelling of various software
artefacts with stochastic analysis techniques. Existing approaches are restricted
to processes with exponential time distribution. Such processes are sufficient for
modelling a significant class of stochastic systems, however there are interesting
systems which cannot be specified appropriately in such a framework. In several
cases one needs to consider non-exponential time distributions. This paper proposes
a stochastic model based on graph transformation with general probability distrib-
utions. This model is well suited to represent concurrency and performance aspects
of architecture reconfiguration. It is also possible to apply Monte Carlo simulation
techniques in order to analyse behaviour of complex stochastic systems. The new
model is implemented and used to simulate simple networks.

Key words: Stochastic modelling, graph transformation,
simulation

1 Introduction

The specification of distributed systems, telecommunication systems, multi-
media applications or computer networks must take into account not only
functional properties but also real-time and performance aspects. To analyse
such properties, stochastic methods are required.

Stochastic models like Generalised Semi-Markov Processes (cf. e.g. [13])
have a long history of application, but they do not provide primitives for mod-

1 Corresponding author. This research was partially funded by European Community’s
Human Potential Programme under contract HPRN-CT-2002-00275, [SegraVis].

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

80

Kosiuczenko & Lajios

elling of concurrency aspects. They also lack mechanisms for compositional
specification. Thus models of larger systems tend to be very complex.

There exist several formalisms for the analysis of performance and concur-
rency aspects. We will discuss briefly the most prominent of them. One of the
first models used for this purpose were Stochastic Petri nets [8]. Generalized
Stochastic Petri Nets found a wide acceptance (cf. [1]). Those nets are defined
as usual Petri nets, with the addition of random assignment of a firing delay
to each transition. There is a race condition between all enabled transitions.
In the case of exponential probability distributions, this model corresponds to
Continuous Time Markov Chains (CTMC) [13]. Stochastic Petri nets proved
to be very expressive. They are well suited for specification of concurrency
aspects, but the resulting model is rather low level.

Process algebras provide compositional facilities for modelling of concur-
rent systems. Stochastic process algebras are a natural extension of process
algebras (cf. e.g. [12] and part two of [2]). They are used for performance
modelling. As in the case of Stochastic Petri nets, a non-negative real num-
ber is randomly associated to an action. That number determines the delay
of the corresponding action. While basic approaches rely on continuous-time
Markov chains, there are also extensions to general distributions, based on
Generalised Semi-Markov Processes and Stochastic Automata [2].

Nevertheless, architectural aspects of distributed systems, computer net-
works and mobile applications can be hardly specified with those formalisms.
Especially in the case of high degree of architectural reconfiguration a high
level formalism is needed with facilities for modelling architectural artefacts.
This gave rise to the notion of Stochastic Graph Transformation, which com-
bines the benefits of using graph transformation for system modelling with
the power of stochastic analysis [11] (see also [18]). Those approaches enrich
graph grammars by associating an exponential time distribution to each trans-
formation rule. The distribution models the random delay of rule application.
This model is a special case of a CTMC. There exist powerful model check-
ing tools such as PRISM [14] which can be used for analysing properties of
CTMCs. However, there are several stochastic phenomena, which cannot be
modelled using exponential distribution. For example, file sizes and document
transmission times over HTTP/IP and timeouts in communication protocols
cannot be appropriately modelled with exponential distributions. Further, one
would often like to include results of measurement into the modelling. There
are standard techniques for extracting normal distributions from a random
sample. Sometimes, only the minimum and maximum value of a quantity
are known, thus modelling could be done by assuming a uniform distribution.
Those cases can only be modelled using a wider class of distributions and a
more general model.

In this paper we propose Generalised Stochastic Graph Transformation
Systems to model and analyse architectural evolution with non-exponential
time distributions. States of concurrent systems are modelled by graphs.

2

81

Kosiuczenko & Lajios

Transitions of those systems are modelled by graph transformations. To model
delays, we associate arbitrary continuous probability distributions with graph
transformation rules. Graph transformation executions have delays, which
adhere to those distributions. The model works as follows: a system state is
modelled by a graph and the delay of rule application is measured by a separate
timer. Different rules may be applicable, but only the rule with the smallest
delay can be executed. If a rule is executed, then a new state is reached,
timers corresponding to enabled rules are decreased, timers corresponding to
disabled rules are removed, and new timers are set for rules which become
enabled. Let us observe that graph transformation rules can be in conflict,
and an application of one rule may disable application of another one.

This model is well suited for modelling of concurrency aspects, architec-
tural aspects as well as stochastic aspects. It uses timed events to model the
concurrent execution of events, thereby giving a direct representation of the
intuitive idea that each event has its own timer and will be applied when
its time expired, independent of other events. Our approach can be seen in
the line of research combining high-level modelling techniques with stochastic
analysis.

Stochastic modelling is only useful if there are analysis techniques to in-
vestigate the properties of the systems which are modelled. The more general
a modelling approach is, the more difficult is its analysis. Stochastic model
checkers like PRISM [14] are very powerful tools for Markov Chains, but fail
when more general stochastic processes are involved. Anyway, their power
could not be fully exploited for stochastic graph transformation, because the
complete state space of the model has to be generated first, before model check-
ing tools can be used. This procedure emerged as a serious bottleneck, because
the isomorphism checking involved is very complex. Even systems consisting
of a small number of nodes and edges can lead to an enormous amount of
states, a phenomenon known as state space explosion. When switching to
arbitrary distributions, model checking itself becomes more complex [16].

We propose using Monte Carlo simulation techniques for testing stochas-
tic graph transformation systems with arbitrary distributions. Monte Carlo
Methods are stochastic simulation methods based on pseudo-random numbers.
These methods allow us to make predictions about system’s behaviour. The
simulated system is traversed on randomly chosen paths; those paths simu-
late real-time behaviour. After a sufficient number of such paths is traversed,
knowledge on the probabilistic behaviour the system is gathered, with a cer-
tain confidence interval which can be narrowed by further runs. Simulation is
thus a very well scalable technique. First experiments with simulation have
been promising, and we are currently developing a tool for the analysis of
stochastic graph transformation systems based on these techniques.

The paper is organized as follows: The next section explains why it is nec-
essary to use general distributions. Section 3 presents the underlying notion
of Generalised Semi-Markov Processes. The new model called (Generalized)

3

82

Kosiuczenko & Lajios

Stochastic Graph Transformation System and the corresponding stochastic
process are defined in Section 4. Section 5 explains how Monte Carlo simu-
lation techniques can be used in the case of stochastic graph transformation
systems and presents some experimental results. Section 6 concludes this
paper.

2 Integrating Graph Transformation and general dis-

tributions

Combining graph transformation systems with stochastic models which have
non-exponentially distributed application delays is not as trivial as one might
expect. Graph transformation is intrinsically concurrent; in general, more
than one rule can be applied to a graph. Non-deterministic choice between the
alternatives leads to the problem of sequential and parallel independence [19].
Stochastic graph transformation aims at making this choice stochastic. Rule
applications have stochastic delays, and there is a race between all applicable
rule matches which the fastest contestant wins. Formally, this means that
the stochastic application delay of the rules is computed for each match by
drawing a random sample according to a stochastic specification, and the rule
match with the smallest delay is applied first. For instance, think of a graph
grammar modelling a network where rules connect and disconnect can be
applied to a certain state. For each rule, a probability distribution specifies
the behaviour of these actions. Say, connect is exponentially distributed with
expected value 1 sec, and disconnect is normally distributed with mean 25 sec
and standard deviation 25 sec (truncated at 0). Then, in most cases connect
will win the race, leaving only probability 1% for disconnect. When all actions
are exponentially distributed, evaluating the race condition is easy because of
the memoryless property. This means that the time which had already elapsed
for the “loser” action need not be taken into account for the next race, as the
probability that an exponentially distributed random variable is greater than
t + s conditional on being greater than t is the same as being greater than s.
Therefore, in a continuous-time Markov chain, which is the structure obtained
in the pure exponential case, a transition can be performed and one can forget
about everything which happened before.

In the case of general distributions, this simplification is not possible. In
the example above, if rule disconnect has lost a couple of races, say adding up
to 20 sec, then this waiting time has to be considered, making an application
more probable – about 7% in one step, yielding more than 50% for ten con-
secutive steps. It is this semantics which a modeller presumably intends when
assigning probabilistic waiting times to rules.

Proper assignment of waiting times in the context of graph transforma-
tion means that matches have to be traced through transformation sequences.
The waiting time of a rule application has to be considered for every match of
the rule as long as the match is present. So if a transformation step changes

4

83

Kosiuczenko & Lajios

elements of the graph which are not in conflict with the match, i.e. if the
productions are independent, the old match is still present in the new graph,
and the value of the timer measuring waiting time has to be decreased. We
will address this issue by using unfolding grammars, which allows unique iden-
tification of elements [3].

One solution avoiding waiting times is to approximate general distributions
by introducing virtual states and combining exponential distributed transi-
tions in such a way that the desired distribution results. This is known as
Cox’s method of phase-type distributions [6]. A major drawback of this ap-
proach is that it expands the state space. Also, many interesting distributions
can only be approximated with a very high number of virtual states. The re-
sulting models are not intuitive, as there is no direct correspondence between
the states of the stochastic model and the states of the system. We there-
fore propose a stochastic model which considers waiting times – Generalised
Semi-Markov Processes.

3 Generalised Semi-Markov Processes

Generalising the notion of CTMCs to arbitrary distributions, there are two
options: Semi-Markov Chains [16] or Generalised Semi-Markov Processes. As
discussed above, semantic models of interleaving processes need to consider
waiting times, which are not supported by Semi-Markov Chains. We therefore
vote for the second alternative and adopt the following definition from [2].

Definition 3.1 A generalised semi-Markov scheme (GSMS) is a structure
(Z, E, active, next, F) where

• Z is the set of states;

• E is a set of events;

• active : Z → P(E) assigns a finite set of active events to each state;

• next : Z × E → Z is a partial function that assigns the next state accord-
ing to the current state and the event that is triggered. We assume that
next(z, e) is always defined for z ∈ Z and e ∈ active(z);

• F : E → (R → [0, 1]) assigns to each event a continuous distribution func-
tion such that F (e)(0) = 0; we write Fe instead of F (e).

As initial condition a state z0 ∈ Z is appointed. A generalised semi-Markov
process (GSMP) is the stochastic process defined by a GSMS.

The behaviour of a GSMP can be described as follows. In each state z,
all active events e ∈ active(z) are assigned a real number ρ(e), the remaining
time to execute the event. The next step is determined by the active event
e∗ with smallest number ρ(e). One can think of race between the competing
events which is won by the fastest event. Note that the probability that two
events have the same time is 0 due to the fact that the distribution function is

5

84

Kosiuczenko & Lajios

continuous. Once the event is chosen, the next state is given deterministically
by next(z, e∗). The set New(z, e∗) of newly activated events is defined as

New(z, e∗) = active(next(z, e∗)) \
(

active(z)\{e∗}
)

,

i.e. the events which became active in the new state and have not been active
before. The set Old(z, e∗) is given by all active events that have been active
in the old state (without e∗):

Old(z, e∗) = active(z) ∩
(

active(next(z, e∗)) \ {e∗}
)

.

Now, the value of ρ is determined randomly for all newly activated events e

according to their distribution Fe, and the value of all old events is decreased
by ρ(e∗). Thus the updated function ρ′ is given by

ρ′(e) =

Random(Fe), if e ∈ New(z, e∗)

ρ(e)− ρ(e∗), if e ∈ Old(z, e∗)

where Random(Fe) denotes a random number determined by drawing a sample
according to distribution Fe.

The operational semantics of this model is defined by mapping a GSMP to
a Stochastic Automaton [2]. Despite their more complex semantics, GSMPs
are a direct generalisation of continuous-time Markov chains (CTMC). In fact,
a GSMP in which all events are associated an exponential distribution is a
CTMC. Because of the memoryless property of the exponential distribution,
it is not necessary to consider how long an event has already been active, as
the conditional probability P(X > s + t | X > t) equals P(X > s). GSMPs
provide an excellent basis for modelling state-based systems with arbitrary
distributions.

4 (Generalised) Stochastic Graph Transformation Sys-
tems

In this paper we use the single-pushout approach for graph transformation
[19]. To make the new model more general, we define graphs in a categoric way
instead of set theoretic one. Typed graph transformation is a technique of key
relevance in the modelling of visual languages and in model transformation.
The type graph can be defined in several ways and used for various purposes;
in particular it can be defined as a colimit obtained in a graph unfolding
process [3]. Types can be understood in particular as object IDs.

Definition 4.1 A directed graph is a quadruple G = 〈GV , GE, srcG, tarG〉
with a set of vertices GV , a set of edges GE, and functions srcG : GE → GV

and tarG : GE → GV associating to each edge its source and target vertex.

6

85

Kosiuczenko & Lajios

A graph morphism f : G → H is a pair of functions 〈fV : GV → HV , fE :
GE → HE〉 preserving source and target, i.e., such that fV ◦ srcG = srcH ◦ fE

and fV ◦ tarG = tarH ◦ fE . A partial graph morphism f : G → H is a graph
morphism which is defined on a subgraph dom(f) of G. A typed graph t over
a (fixed) type graph TG is a graph morphism t : G → TG which assigns types
to nodes and edges [7]. A morphism of typed graphs is a graph morphism
compatible with the typing.

A rule p : L
r
→ R consists of a rule name p and an injective partial graph

morphism r. A match for r : L → R into some graph G is a total injective
morphism m : L → G. Given a rule p and a match m for p in a graph G,
the SPO-transformation from G with p at m is the pushout of r and m in the
category of graphs and partial graph morphisms.

L
r //

m

��

R

m∗

��
G

r∗ // H

A graph transformation system 〈TG, P, π, G0〉 consists of a type graph TG,
a set P of rule names and a function π mapping each rule name to a TG-typed
rule π(p) : Lp → Rp. We make use of negative application conditions (NACs)
[9], shown as crossed out nodes and edges in the figures. Images of crossed
out elements must not be present in the instance graph, otherwise the rule is
not applicable. Every crossing line represents one NAC, and all have to be
satisfied in order to apply a rule. Formally, a NAC is given by an injective
morphism n : L → N which maps the left hand side of a rule to a pattern N ,
and a rule is applicable iff its match m : L → G does not factor through n,
i.e. there is no injective (total) morphism f : N → G such that f ◦ n = m.

A generalised 2 stochastic graph transformation system associates with
each rule name a distribution function governing the delay of its application.

Definition 4.2 [stochastic GTS] A (generalised) stochastic graph transfor-
mation system SG = 〈TG, P, π, G0, F 〉 consists of a graph transformation
system G = 〈TG, P, π, G0〉 and a function F : P → (R → [0, 1]) associating
with every rule name a continuous distribution function Fp with F (e)(0) = 0.

Example 4.3 Figure 1 shows the rules of a graph transformation system
modelling a peer-to-peer network. New peers enter the network (rule new),
establish a connection (rule connect), and eventually disappear (rule kill).
The empty graph serves as start graph. We assume that there is no dangling
edge condition preventing connected peers from being killed.

In order to obtain a stochastic graph transformation system, we have to
associate continuous time distributions with the rules. We assume that the
arrival rate of new peers is exponentially distributed with rate λ. This is

2 We call this kind of system generalised as it uses general distributions in contrast to the
approach in [11]. In the rest of the paper, we will omit this word.

7

86

Kosiuczenko & Lajios

p:P
new

p:P
connect

p1:P

p2:P

p:P

p2:P

p:P
kill

Figure 1. Peer-to-peer network: Basic rules

a standard assumption in queuing theory. Let the application delay of rule
connect be governed by a normal distribution with mean µ and standard de-
viation σ. So we assume that most peers tend to be connected approximately
the same time, which is chosen to be the mean of the normal distribution.
Finally, the lifetime of a peer (which corresponds to the application delay of
rule kill) is assumed to have Erlang distribution with shape k and rate κ. The
Erlang distribution specialises to the exponential distribution for k = 1, but
allows a greater flexibility for defining probability densities with peaks later
than time 0. It is therefore often applied for waiting times.

rule name distribution parameters

new 1− e−λx λ = 0.5

connect 1R∞
0 exp(−(t−µ)2/(2σ2))dt

x
∫

0

exp (− (t−µ)2

2σ2)dt µ = 1, σ = 1

kill 1
(k−1)!

γ(k, κx) k = 2, κ = 0.5

The intuitive idea of the semantics of a Stochastic Graph Transformation
System can be explained as follows. In the start state, all matches for all
rules are determined and stored as pairs < rule, match >. We call such a pair
a rule match. For each rule match the application time is set to a random
number corresponding to the distribution the rule obeys. Then, the rule match

8

87

Kosiuczenko & Lajios

with the smallest time is chosen, applied, and the remaining rule matches are
checked. If their match is no more applicable, they are removed. If it is still
applicable to the new graph (we will soon define this thoroughly), its time is
reduced by the time that already elapsed. All new rule matches are computed
and assigned a random application time. Then again, the fastest of them is
chosen for application. So the waiting time of the events which lost the last
race is considered.

We formally define the semantics of a (Generalised) Stochastic Graph
Transformation System by mapping it to GSMP. The rough idea is to define
the set of states as all reachable graphs of the graph transformation system.
An active event in a state is a rule match. Thus, the newly activated events in
a sequence of states are those rule matches which did not exist in the previous
state. We therefore have to compare matches to different reachable graphs,
which can be done by introducing a global name space. For this purpose, the
concept of unfolding grammars [3] comes handy, as it allows to derive from
an arbitrary graph grammar a safe (i.e. injectively typed) grammar providing
a compact representation of the transition system. The unfolding type graph
TG′ can be seen as a global name space, and the rules of the unfolding repre-
sent rule matches of the original grammar (typed over the global name space).
By using the unfolding, we can directly compare matches into different graphs,
just by calculating their intersection in TG′.

Let SG = 〈G, F 〉 be a Generalised Stochastic Graph Transformation Sys-
tem, where G = 〈TG, P, π, G0〉 is a typed graph grammar, and let UG =
〈TG′, P ′, π′, G′

0〉 be the unfolding grammar associated with G (ignoring F).
The construction of the unfolding is explained in detail in [3]. Roughly, the
type graph TG′ is a colimit of the whole transition system which serves as a
global name space, and a rule name p′ ∈ P ′ represents a rule match 〈p, m〉 of
the underlying grammar G, where m is an embedding into TG′.

The unfolding is mapped over the original grammar by the so-called folding
morphism χ = 〈χT , χP 〉 : UG → G. The first component χT : TG′ → TG is a
graph morphism mapping each graph item in the type graph of the unfolding
to the corresponding item in the type graph of the original grammar G. The
second component χP : P ′ → P maps any production occurrence 〈p, m〉 in
the unfolding to the corresponding production p of G.

We are now ready to define the GSMP associated with a Stochastic Graph
Transformation System. The state space Z consists of all graphs reachable
from the start graph by applying the rules from the unfolding grammar. The
set E of events is defined as E := P ′. Rule matches which coincide on the
global name space are thus identified. The set active of active events in a state
G ∈ Z consists of all rules applicable to G. Given such a match, the result of
function next(G, p′) is defined to be the unique graph resulting from applying
rule p′ to G in the unfolding grammar. We assume a concrete deterministic
definition of the pushout.

9

88

Kosiuczenko & Lajios

p:P

limited

p1:P

p2:P
:P

:P

:P

:P

p:P p1:P

p2:P

p:P

smart

p1:P

p2:P

p:P p1:P

p2:P:P

Figure 2. Peer-to-peer network: Alternative shortcut rules

The definition of function F is extended from rule names to events:

Fp′ = Fp for p = χP (p′).

Putting the parts together, we obtain a generalised semi-Markov scheme
(Z, E, active, next, F). The GSMP associated with this scheme defines the
semantics of SG.

5 Analysis

Once a Generalised Semi-Markov Process is obtained, one can analyse its
properties in order to get knowledge on the behaviour of the system which
was modelled. Important aspects include the behaviour on the long run – the
steady state – as well as transient analysis, which gives the probability that a
transition is performed in a certain period of time.

The numerical analysis of stochastic graph transformation systems can be
done in different ways. The approach proposed in [11] consists in generating
the state space of the system, transforming the result to a stochastic model,
and using existing model checking tools to analyse its properties. This pro-
cedure suffers from the drawback that state space generation is very complex
due to the fact that isomorphic graphs have to be determined. When leaving
the realm of exponential distributions, model checking tools become less effi-
cient, and arbitrary distributions are usually not covered. So we use Monte
Carlo simulation as an alternative approach [5]. The intuitive idea is to tra-

10

89

Kosiuczenko & Lajios

verse a number of randomly chosen paths through the system, and thereby
sample information on its behaviour. More precisely, pseudo-random numbers
are generated according to a given distribution. Depending on the outcome of
this pseudo-random experiment, the successor state of the currently occupied
state is chosen. Repeating this procedure results in a path through the system,
and generating a sufficient number of such paths, one can make predictions
on the system’s properties.

The Event Scheduling Scheme proposed in [5, Sect. 10.2] provides a sim-
ulation algorithm for GSMPs. First, an initialisation procedure has to be
performed: The state of the system is set to the initial state, the simulation
time is set to 0. Random numbers t are determined for all events e active in
the initial state, and the scheduled event list is initialised with them, with all
entries sorted in increasing order according to their scheduled times.

After that, the following steps are repeated until some termination condi-
tion is reached:

Step 1 Remove the first entry (e, t) from the scheduled event list.

Step 2 Update the simulation time by advancing it to the new event time t.

Step 3 Update the state according to the state transition function z′ =
next(z, e).

Step 4 Delete from the scheduled event list all entries corresponding to inac-
tive events in z′, i.e. delete all (ek, tk) such that ek /∈ active(z′).

Step 5 Add to the scheduled event list any active event which is not already
scheduled (possibly including the triggering event removed in Step 1). The
scheduled event time is computed by randomly generating a number ac-
cording to the event’s distribution function and adding it to the current
simulation time.

Step 6 Reorder the scheduled event list such that all entries are sorted in
increasing order of their scheduled times.

We prepared an experimental implementation of the event scheduling
scheme in Java, using AGG [21] and the stochastic simulation library SSJ
[15]. AGG is a rule based tool for graph transformation providing a visual
user interface and a Java API. Models are represented by attributed graphs
which are typed by type graphs. AGG is based on the single-pushout ap-
proach, but also allows to simulate the double-pushout approach by check-
ing the identification- and dangling-edge-conditions. The implementation was
used to compare two different strategies for introducing shortcuts in peer-to-
peer networks [10]. Figure 5 shows the rules limited and smart. The first
one adds shortcut connections whenever there is no direct connection, with a
limited total number of three connections for each peer. The latter rule adds
shortcuts whenever there is neither a direct connection, nor a connection via
one other peer. Thus, the shortcut is only added if there is no other peer to
replace peer p in case of failure [17].

11

90

Kosiuczenko & Lajios

Visual Modelling of stochastic graph transformation systems was done with
the AGG graphical user interface. The additional information on the distri-
bution associated with each rule was provided in a text based property file.
Integration of this information into existing tools is an interesting issue as it
would be more convenient for the user.

The main objective of stochastic simulation is to estimate quantities re-
lated to the modelled system by analysing the simulation results. Depending
on whether we are interested in the long run behaviour of the system or in
transient analysis, different simulation techniques have to be applied. We will
shortly discuss both cases.

An interesting long run property of our network example is the proportion
of unconnected peers. It is possible that a system converges to the steady-state
when time progresses and can then be characterised by a discrete distribution
over the state space. This is not always the case, e.g. when the number of
nodes of a stochastic graph transformation system is not limited. However,
we are in general not interested in the steady-state per se, but in the value
of some function, such as for example the proportion of unconnected peers.
These quantities may converge as t →∞, even if no steady-state is reached. A
simulation strategy for the long-run behaviour can be described as follows: Let
T be the length of the simulation run and let the quantity of interest be φ(T).
Extend the simulation to 2T and determine φ(2T). If |φ(2T)− φ(T)| < ε for
some predefined ε, terminate. Otherwise, extend the simulation time T until
the condition holds. Of course, this does not guarantee that |φ(t1)−φ(t2)| < ε

for all t1, t2 > T , because the system may fluctuate, but it is a reasonable
assumption in many practical cases [5].

With transient analysis, the simulation strategy is different. Consider for
instance the probability that a peer which uses the network for 1 hour suffers
disconnection in this period of time. Here, it is not reasonable to extend the
simulation time for more than 1 hour. One simulation run will only give one
sample path, and estimates can be obtained by repeating the simulation with
the same initial conditions, following the method of independent replications
[5]. Statistical analysis of the simulation results involves computation of con-
fidence intervals, which is automised in the SSJ framework [15]. The number
of simulation runs depends on the desired confidence level. Other transient
properties can even involve the simulation time itself. For instance, the aver-
age time until an error occurs might be of interest. In this case, a simulation
run is performed until an error state is reached, after that the next run is
started. The number of runs depends again on the desired confidence interval.

We deployed our experimental implementation to analyse the system from
Example 4.3, to which either rule limited or rule smart was added as short-
cut strategy, and compared the results. Both rules were assumed to obey an
exponential distribution with parameter 1. As start graph, the empty graph
was used. Undirected edges were modelled in AGG by bidirectional one. The
property under investigation was the proportion of unconnected peers in the

12

91

Kosiuczenko & Lajios

long run. The simulation ran over 100,000 transitions, taking approximately 8
hours on a laptop computer with Pentium M 1.40 GHz processor and 500 MB
RAM. Obviously, this time could be reduced significantly on high-capacity
workstations. The result was that rule smart leads to 99.2% of connected
nodes in the long run, while with limited, only 91.4% of the peers are con-
nected.

Time measurement was done in milliseconds using the system time. As
expected, almost the whole computing time was used for calculating matches.
The time needed for one match differed widely depending on the rule and the
size of the instance graph. While rule new does not require any significant
computation time (< 1ms), rule smart was the most time consuming rule,
with a range between 100 and 400 ms for graphs of around ten nodes and
between 20 and 40 edges. More detailed performance measurement is planned
for the future.

The simulation algorithm involves computing all matches of rules to the
current graph, and compare them to old matches, in order to compute the
probabilities correctly. AGG provides an efficient graph pattern matching al-
gorithm for calculating a single match on the basis of a constraint satisfaction
problem. For every match of the current graph, two conditions need to be
checked: First, we have to check whether it is a new match. This can be done
easily by comparing the unique object identities of the graph elements in-
volved. Second, the negative application conditions have to be checked again,
because they may be violated by parts of the graph which had not been present
before the last production. The performance of this procedure proved to be
tolerable for experimental purposes. However, in order to perform more re-
alistic simulations, performance of the implementation needs to be improved.
A possible solution is provided by the database approach presented in [22].
This technique keeps track of all possible matchings of graph transformation
rules in database tables, and updates these tables incrementally to exploit the
fact that rules typically perform only local modifications to models. Database
management systems provide efficient algorithms for computing and updating
views. We plan to take advantage of them for developing an efficient tool.

6 Conclusion

In this paper, we propose a new model of Stochastic Graph Transformation
with general distributions. This model allows us to study a wider class of
systems than the models based on exponential distribution. However analysis
of those models is more complex than the restricted one. There are no powerful
model checking techniques for Generalised Semi-Markov Processes. This can
be partially remedied by Monte Carlo simulation techniques.

In the future we are going to implement a tool for stochastic graph trans-
formation with general distributions. We are going to investigate to what
extend data base management systems can be used for this purpose. Our goal

13

92

Kosiuczenko & Lajios

is also to study more realistic examples. We will further investigate applica-
bility of already existing simulation techniques to stochastic graph rewriting.
On the other hand, we will develop a logic for specification of stochastic prop-
erties in SGT and investigate the possibilities of model checking. In many
systems, there is a mix between stochastic and deterministic behaviour. We
will therefore relate our model to Stochastic Automata.

Acknowledgements. Discussions with Reiko Heckel improved the ideas
presented in this paper. Karsten Ehrig and Olga Runge helped us with AGG.
Many thanks to all of them.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

[2] P. R. D’Argenio, J.-P. Katoen, A theory of stochastic systems: Part I and II,
Information and Computation, Vol. 203, number 1, pages 1–38 and 39–74,
2005.

[3] P. Baldan, A. Corradini, U. Montanari, Unfolding and Event Structure

Semantics for Graph Grammars. FoSSaCS 1999: 73-89

[4] E. Brinksma, H. Hermanns, Process Algebra and Markov Chains, In: Lectures
on Formal Methods and Performance Analysis, editors: Ed Brinksma and H.
Hermanns and J.P. Katoen, Springer LNCS 2090, pages: 183 – 231, 2001

[5] Chr. G. Cassandras, St. Lafortune, Introduction to discrete event systems

Kluwer Academic Publishers, Boston 1999

[6] D.R. Cox, A use of complex probabilities in the theory of stochastic
processes. Proc. Camb. Phil. Soc., 51, 1955, pp. 313-319, 51:313–319, 1955.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic

Graph Transformation. EATCS Monographs in Theoretical Computer
Science, Springer, 2006.

[8] P. J. Haas, G. S. Shedler, Regenerative stochastic Petri nets, Performance
Evaluation, Volume 6, Issue 3 , September 1986, Pages 189-204

[9] Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative
Application Conditions, Fundamenta Informaticae, 26(3,4), 1996, 287 – 313.

[10] R. Heckel, Stochastic analysis of graph transformation systems: A case

study in P2P networks, In H. Dan Van and M. Wirsing, editors, Proc.
Intl. Colloquium on Theoretical Aspects of Computing (ICTAC’05), Hanoi,
Vietnam, volume 3722 of LNCS. Springer-Verlag, October 2005

14

93

Kosiuczenko & Lajios

[11] R. Heckel, G. Lajios, S. Menge, Stochastic Graph Transformation Systems.

In: H. Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg (Hrsg.): Graph
Transformations: Second International Conference, ICGT 2004, Rome, Italy,
September 28–October 1, 2004. Proceedings. Lecture Notes in Computer
Science 3256. Springer, Oktober 2004. pp. 210-225

[12] J. Hillston, M. Ribaudo, Stochastic process algebras: a new approach to

performance modeling. In: K. Bagchi, J. Walrand, G. Zobrist (Eds.),
Modeling and Simulation of Advanced Computer Systems, Gordon Breach,
1998.

[13] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems. Chapman &
Hall, 1995.

[14] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic
model checker. In T. Field, P. Harrison, J. Bradley, and U. Harder, editors,
Proc. 12th International Conference on Modelling Techniques and Tools for

Computer Performance Evaluation (TOOLS’02), volume 2324 of LNCS,
pages 200–204. Springer, 2002.

[15] P. L’Ecuyer, L. Meliani, J. Vaucher, SSJ: A Framework for Stochastic

Simulation in Java, Proceedings of the 2002 Winter Simulation Conference,
IEEE Press, Dec. 2002, 234-242.

[16] G. G. Infante López, H. Hermanns and J.-P. Katoen, Beyond Memoryless

Distributions: Model Checking Semi-Markov Chains PAPM-PROBMIV 2001,
Springer LNCS 2165, pp. 5770, 2001.

[17] L. Mariani, Fault-tolerant routing for p2p systems with unstructured topology.
In Proc. International Symposium on Applications and the Internet (SAINT
2005), Trento (Italy), 2005. IEEE Computer Society.

[18] O. M. Mendizabal, F. L. Dotti, L. Ribeiro, Stochastic Object-Based Graph

Grammars Brazilian Symposium on Formal Methods SBMF-2005, Porto
Alegre

[19] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation: foundations, volume 1. World Scientific, River Edge,
NJ, USA, 1997.

[20] R. Schassberger, Insensitivity of steady-state distributions of generalized

semi-Markov processes, Annals of Probability, 5(1):87-99, 1977.

[21] G. Taentzer, AGG: A Graph Transformation Environment for Modeling

and Validation of Software, Proc. Application of Graph Transformations
with Industrial Relevance (AGTIVE’03), Pfaltz, J. and Nagl, M.,
Charlottesville/Virgina, USA, 2003, http://tfs.cs.tu-berlin.de/agg.

[22] G. Varró, D. Varró: Graph Transformation with Incremental Updates.

In Proc. GT-VMT 2004, Graph Transformation and Visual Modelling
Techniques, Barcelona, Spain, March 2004.

15

94

GT-VC 2006

Verification of Random Graph Transformation

Systems
?

Vitali Kozioura

Universität Duisburg-Essen, Germany

vitali.kozioura@uni-due.de

Abstract

In this paper we describe some statistical results obtained by the verification of
random graph transformation systems (GTSs). As a verification technique we use
over-approximation of GTSs by Petri nets. The idea of the paper is to see how
many of the generated systems can be successfully verified using this technique.

Key words:

1 Introduction

In the last few years a technique for analysing of graph transformation systems
(GTSs) [10] based on approximations has been developed [2]. GTSs are ap-
proximated by Petri graphs which are Petri nets with additional hypergraph
structure. Petri nets can then be analyzed with standard verification tech-
niques. A software tool (Augur) supporting this verification approach has
been developed [4] and a number of successful case studies have been reported
(see for example the case study on red-black trees [1]).

Still, verification remains undecidable in general (because of the Turing-
completeness of GTSs). The interesting question is how many GTSs can be
verified in practice using the over-approximation of GTSs by Petri nets and
standard techniques for analysing Petri nets. This work is a first attempt to
give an answer to this question. We generate some random GTSs and verify
them with help of Augur in order to obtain statistical results. We consider
some classes of GTSs identified by a number of parameters.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

95

Kozioura

Petrigraph

Petrigraph
Refined

TIMEOUTAbstraction Refinement
(m times)

spurious
counter−example

TIMEOUT
Analysis

Approx. Unfold
TIMEOUT

counter++

GTS PROPERTY

VERIFIED

EXAMPLE
COUNTER counter−example

is real
PROPERTY

FALSE

counter = 0

counter > m
UNKNOWN

Fig. 1. Verification technique

2 Verification of Graph Transformation Systems

Fig. 1 depicts the verification technique which is used in this paper. We
have a GTS and a (reachability) property 1 we want to verify as an input
of the system and first of all we construct a Petri graph which is an over-
approximation of a GTS having both hypergraph and Petri net structures [2].
In the analysis block we first calculate the Petri net marking corresponding to
the property to verify (which is usually obtained from a regular expression on
the hypergraph structure of the Petri graph [8]). The marking is then analysed
with the help of a coverability algorithm [7]. If the marking is not coverable,
then we terminate with “VERIFIED”. This means that the corresponding
subgraph (described by the regular expression and a corresponding marking)
cannot be reached during the reduction of the GTS. Otherwise we have two
possibilities. The obtained trace to the coverable marking (counter-example)
can be real or spurious (i.e., reproducible only in the over-approximation and
not in the original GTS). In the case of a real counter-example we terminate
with “PROPERTY FALSE”. Otherwise we start a counter-example guided
abstraction refinement procedure [3,6] and obtain a refined Petri graph. The
refinement procedure can be iterated a predefined number of times. If we still
do not have a verification result, then we terminate with “UNKNOWN”. For
each operation a timeout is set. If the timeout is reached, the verification
process stops with “TIMEOUT”. We say that the verification problem for
GTS is solved if the property is verified or we have found a (non-spurious)
counter-example.

? Research supported by DFG project SANDS.
1 Checking reachability property for GTSs is already a rather complex problem, and we
restrict our experiments to it, instead of checking general temporal properties of GTSs.

2

96

Kozioura

3 Random Graph Transformation Systems

In this paper we generate GTS with hyperedges having arity (number of con-
nected nodes) one or two. Edges can be labeled (we consider two labels for
each arity). We do not allow two edges having the same labels to be on the
left-hand side of the rule. We also do not delete any nodes. Therefore we
describe below only the nodes being added to the right-hand side of the rule.

The following parameters describe the class of generated GTS:

(i) Minimal/Maximal number of nodes in the left-hand side of the rule.
(ii) Minimal/Maximal number of additional nodes in the right-hand side of

the rule (see the explanation above).
(iii) Minimal/Maximal number of edges in the left-hand side of the rule.
(iv) Minimal/Maximal number of edges in the right-hand side of the rule.
(v) Minimal/Maximal number of nodes in the initial graph.
(vi) Minimal/Maximal number of edges in the initial graph.
(vii) Minimal/Maximal number of rules.

In this paper we consider the following classes of random systems defined
by their parameters.

(i) (1, 2; 0, 1; 1, 2; 1, 2; 2, 5; 2, 5; 3, 5)

(ii) (1, 2; 0, 2; 1, 3; 1, 3; 2, 5; 3, 7; 3, 7)

(iii) (2, 3; 1, 5; 3, 7; 3, 7; 3, 10; 3, 10; 5, 10)

Each class of GTSs is strictly included in the next one. In each class we
generate 100 GTSs. The numbers are relative small because we tried to keep
the sizes of generated GTSs manageable in order to obtain enough statistical
material.

In each GTS we insert additionally the special rule “Error”, where the
left-hand side is random and the right-hand side consists of an edge labelled
“Error”. The property we want to verify is “the Error rule cannot be applied
in the generated GTS”. If the rule “Error” can be applied, then the verification
algorithm (Fig 1) should give the answer “FALSE” and generates a counter-
example. If the rule “Error” cannot be applied, then we should obtain the
answer “VERIFIED”. Fig. 2 represents an example of a generated GTS from
the first class.

4 Statistical Results

The experiments have been done on 2*Xeon 2.4 GHz, 2GB RAM. We fix 3
iterations for the abstraction refinement procedure and 30 minutes as timeout
value. In Table 1 average values obtained during the verification of generated
systems are represented, namely the number of nodes, edges and transitions
in the constructed over-approximations and the verification times (including
the timeouts). The verification time is measured in seconds and represents

3

97

Kozioura

1_2

1_1 2_2

2_2

1_1

Initial graph

1.
1

1
2_2

2

2_1

1_1
1

2
2.

3.

4.

1_1

2_1

1
1_1

1

2_1

2_1
12_1

2_2
1

2_1
1

Error
Error:

2_1

Fig. 2. Example of a generated GTS (first class of systems)

the time of the whole verification procedure.

system class nodes edges transitions verification time

1 4.21 7.67 4.07 0.01

2 7.47 14.5 10.55 59.87

3 10.01 22.28 25.78 351.53

Table 1
Average values of the verified systems.

Diagrams in Fig. 3 ((a),(b) and (c), ignore (d) for the moment) describe the
distribution of the verification results for the three classes of random systems
described above.

An interesting value is also the total number of refinement steps during
the verification of one class of GTSs. This value grows rather quickly: 0 steps
for the first class of systems, 18 steps for the second class and 83 steps for
the third class. But note that the number of refinement steps for each GTS
is restricted by 3.

As we can see in Fig. 3 we have successfully solved the verification prob-
lem for all 100 GTSs in the first class of systems whereas in the third class
the number of problems we could not solve is one third of the number of
solved systems. This pictures gives us an idea of possibilities and constraints
of the verification approach based on the over-approximation of GTSs with
Petri nets. To achieve better verification results we can increase the number
of refinement steps and/or the timeout interval. If we start the verification
procedure for the same systems from the third class with maximally five re-
finement steps and with two hours timeout, then we can additionally solve the

4

98

Kozioura

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
����� ����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

25

50

75

25

50

75
(a) first class (b) second class

25

50

75

25

50

75
(c) third class I (d) third class II

COUNTER
EXAMPLE

COUNTER
EXAMPLE

COUNTER
EXAMPLE

COUNTER
EXAMPLE

VERIFIED VERIFIED

VERIFIED VERIFIED

TIMEOUT

TIMEOUT

TIMEOUT

TIMEOUT

UNKNOWN

UNKNOWNUNKNOWN

UNKNOWN

Fig. 3. Statistic of verification results

verification problem for five more GTSs, Fig. 3(d). The average verification
results in this case are represented in Table 2. The total number of abstraction
refinement steps is 109.

system class nodes edges transitions verification time

3 11.87 26.57 33.06 1273.74

Table 2
Average values for the third class with five refinement steps and two hours

timeout

5 Conclusion

In this paper we considered statistical results of the verification of random
GTSs by approximating them with Petri nets. The verification technique
is implemented in Augur 1 and this tool has been used as a basis for our
experiments. The purpose of the paper is to show how many of the random
GTSs can be verified with this technique. Obviously the systems appearing
in real case studies differ from random systems by having a more regular
structure, but this papers gives us some (approximative) notion about the
possibilities and difficulties of this approach.

The statistical results can be seen as rather positive and hence the ver-
ification approach of approximating GTSs by Petri nets can be seen as a
promising approach for the verification of GTSs. Of course it will also be

5

99

Kozioura

necessary to compare these results with related results stemming from other
methods. However we are currently not aware of any such results for random
systems which have been published.

Some experimental results on the verification of GTSs have been reported
in [9]. Note that we are here working in a different setting since we consider
potentially infinite state GTSs, whereas [9] considers finite state GTSs.

As future work we mention here experiments on random GTSs with higher
degrees of hyperedges, checking the effect of individual parameters on the re-
sults, experiments with generic systems (random GTSs generated according
to some regular template), experiments with attributed GTSs and experi-
ments with a new version of the tool Augur 2 [5], which is currently under
development.

References

[1] Paolo Baldan, Andrea Corradini, Javier Esparza, Tobias Heindel, Barbara
König, and Vitali Kozioura. Verifying red-black trees. In Proc. of COSMICAH

’05, 2005. Proceedings available as report RR-05-04 (Queen Mary, University
of London).

[2] Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis
technique for graph transformation systems. In Proc. of CONCUR ’01, pages
381–395. Springer-Verlag, 2001. LNCS 2154.

[3] E. Clarke, S. Grumberg, S. Jha, and H. Lu, Y. und Veith. Counterexample-
guided abstraction refinement. In Computer-Aided Verification, pages 154–169.
Springer, 2000. LNCS 1855.

[4] Barbara König and Vitali Kozioura. Augur—a tool for the analysis of
graph transformation systems. EATCS Bulletin, 87:125–137, November 2005.
Appeared in The Formal Specification Column.

[5] Barbara König and Vitali Kozioura. Augur 2—a new version of a tool for the
analysis of graph transformation systems. In Proc. of GT-VMT ’06 (Workshop

on Graph Transformation and Visual Modeling Techniques), pages 195–204,
2006. ENTCS.

[6] Barbara König and Vitali Kozioura. Counterexample-guided abstraction
refinement for the analysis of graph transformation systems. In Proc. of TACAS

’06, pages 197–211. Springer, 2006. LNCS.

[7] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, Germany, 1985.

[8] Nicolas Relange. Verifikation dynamischer Systeme: Reguläre Ausdrücke
zur Spezifikation verbotener Pfade. Master’s thesis, Universität Stuttgart,
September 2004. No. 2192.

6

100

Kozioura

[9] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model checking graph
transformations: A comparison of two approaches. In Proc. ICGT 2004: Second

International Conference on Graph Transformation, volume 3256 of LNCS,
pages 226–241, Rome, Italy, 2004. Springer.

[10] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

7

101

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Termination Criteria for DPO Transformations
with Injective Matches

Tihamér Levendovszky 1

Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Hungary

Ulrike Prange 2 Hartmut Ehrig 2

Department of Software Engineering and Theoretical Computer Science
Technical University of Berlin

Germany

Abstract

Reasoning about graph and model transformation systems is an important means
to underpin model-driven software engineering, such as Model-Driven Architecture
(MDA) and Model Integrated Computing (MIC). Termination criteria for graph and
model transformation systems have become a focused area recently. This paper pro-
vides termination criteria for graph and model transformation systems with injective
matches and finite input structure. It proposes a treatment for infinite sequences
of rule applications, and takes attribute conditions, negative application conditions,
and type constraints into account. The results are illustrated on case studies ex-
cerpted from real-world transformations, which show the termination properties of
the frequently used ”transitive closure” and ”leaf collector” transformation idioms.
An intuitive comparison with other approaches is also given.

Key words: Termination Criteria, Graph Transformation, Model
Transformation, DPO Approach

1 Introduction

Statements about termination of graph and model transformation systems
have been proven recently, and a few transformation tools already support
checking termination criteria [12]. This issue has mainly arisen for the follow-
ing reason. When graph transformation is used for model transformation, the

1 Email: tihamer@aut.bme.hu
2 Email: {uprange,ehrig}@cs.tu-berlin.de

c©2006 Published by Elsevier Science B. V.

102

Levendovszky et al.

objective is to create an output mode either from the ground up or modify-
ing existing models. If an output model must be achieved, a transformation
must provide it within a finite number of steps. Therefore, examining the
termination properties of the transformation can help to find an error in the
model transformation. Taking into account that one of the most important
applications of graph transformation is model transformation, well-developed
termination criteria can be useful support for this application area.

When transforming a model, one or more input graph, a set of rules and
constraints are available along with a control structure. The nontermination
can be caused by the (i) input graph or (ii) the executed sequence of the
rules. In the first case several examples can be constructed that illustrate
nontermination. Assume a transformation rule takes an attribute of a node,
and decrements it each time when the rule is fired. The rule has a constraint
that it cannot be applied for zero attribute value. When infinity is allowed
as the initial value of the attribute, this rule can be applied forever. A more
obvious example is an input graph with infinite size. However, in practical
model transformation applications, the input model is stored on a computer
or on a distributed computer system. Therefore, assuming finite input graphs
does not restrict the practical scope of the results.

The nontermination caused by a sequence of finite rules is more interesting
for model transformation and its tool support. In this case the transformation
either becomes stagnant or starts consuming the available system resources.
An example for the stagnation case would be a transformation consisting of
two rules executed in a loop after each other. The first rule creates an element,
the second one deletes it. The transformation does not consume all the avail-
able system resources, but never stops. In our experience, the most prevalent
reason is that the designer must have forgotten a constraint from the rules,
and it is really useful to warn him of this fact. When a transformation needs
a growing amount of system resources, the underlying reason can be twofold.
(i) This transformation needs a stronger execution environment, or (ii) the
transformation is nonterminating in nature, thus, there is no execution envi-
ronment strong enough to perform this transformation. For instance, if a rule
creates a node and can be executed exhaustively, it never stops creating nodes.
Termination analysis can be a basis to prove that a stronger computational
environment is needed, or the transformation suffers from an unintended side
effect.

We use the formal framework of Adhesive High-Level Replacement (AHLR)
Systems [6] applied to typed attributed graphs. We assume finite input struc-
tures and rules. Since this problem is algorithmically undecidable, we prove
termination properties which can be used to examine the termination proper-
ties of the individual transformations analytically.

The main line of thought in this paper is as follows. The sequential rule
applications are substituted with the composition of the rules. If one can show
for the infinite rule sequences that the left-hand side of their composition tends

2

103

Levendovszky et al.

to infinity, then the rule sequence terminates, since only finitely many elements
are available in the start graph. This does not necessarily hold if one element
in the rule can be matched to multiple elements in the host graph. Therefore,
injective matches are assumed.

2 Backgrounds

Since we use the formalism and the results of the AHLR approach, we sum-
marize the necessary definitions and results, based on [6]. In these definitions,
we always mean typed, attributed graphs by mentioning graphs, which are
defined as follows.

Definition 2.1 An E-graph EG = (VG, VD, EG, ENA, EEA, (srcj, tarj)j∈{G,NA,

EA}) consists of graph and data nodes VG and VD, and graph, node attribute
and edge attribute edges EG, ENAand EEA, respectively. The domains and
codomains of the source and target functions srcj and tarj for the correspond-
ing edges Ej are depicted below.

VG EGtarG
ll

srcGrr

ENA

srcNA

OO

tarNA

EE
E

""E
EE

EEA

srcEA

OO

tarEA
yy

y

||yy
y

VD

Given a signature DSIG = (S, OP) with attribute value sorts SD ⊆ S, an
attributed graph AG = (EG, D) is an E-graph EG together with a DSIG-

algebra D such that VD =
•⋃

s∈SD

Ds.

Given an attributed graph TG as type graph, a (typed attributed) graph
G = (AG, t) is an attributed graph AG together with a typing morphism
t : AG→ TG.

Typed attributed graphs and the corresponding morphisms form the cat-
egory AGraphsATG.

We define a function to measure the size of a graph G.

Definition 2.2 Given a graph G = ((VG, VD, EG, ENA, EEA, (srcj, tarj)j∈{G,

NA,EA}), D), the size of G is denoted by |G| and calculated as follows: |G| =
|VG|+ |EG|+ |ENA|+ |EEA|. G is finite if |G| <∞.

We do not count the data nodes, since there may be infinitely many of
them, but those relevant for the actual graph are linked by the attribute
edges, which we do count. Moreover, the data part cannot be changed by
applying a production.

3

104

Levendovszky et al.

Definition 2.3 A production p = (L
l←− K

r−→ R) consists of finite graphs L,
K and R, called left hand side, gluing graph and right hand side respectively,
and two injective graph morphisms l and r that preserve the data part.

For practical purposes, it is important to restrict the applicability of a pro-
duction by application conditions. In particular, we use negative application
conditions, which forbid the existence of a certain subgraph.

Definition 2.4 A negative application condition of a production p = (L
l←−

K
r−→ R) is of the form NAC(x), where x : L → X is an injective graph

morphism. A graph morphism m : L→ G satisfies NAC(x) if there does not
exist an injective graph morphism p : X → G with p ◦ x = m.

X

p�
@@

@

 @
@@

Lxoo

m

��

Kloo r // R

G

Two graph productions (rules) are presented in Figure 1. The upper rule is
applied first, as long as it can be matched against the input graph. A negative
application condition ensures that at most one dashed arrow can be created
between two vertices. The rule below ”short-circuits” a dashed path with a
length of two edges as long as possible. The resulted construct is referred to
as transitive closure.

Fig. 1. Two productions computing the transitive closure

Definition 2.5 Given a graph production p = (L
l←− K

r−→ R) and a graph G
with a graph morphism m : L → G, called match. If m satisfies all negative
application conditions of p, a direct graph transformation G

p,m +3H from G to
a graph H is given by the following double pushout (DPO) diagram, where
(1) and (2) are pushouts.

X

p�
@@

@

 @
@@

Lxoo

m

��
(1)

Kloo

k
��

r //

(2)

R

n

��
G Dfoo g // H

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct graph transformations is called a

4

105

Levendovszky et al.

graph transformation and is denoted as G0

∗ +3 Gn . For n = 0 we have the

identical graph transformation G0

id +3 G0 .

We say p is applicable to G via m, if m satisfies the NACs of p, pushouts (1)
and (2) exist, and the resulting graph H satisfies additional constraints given
by the system. In this paper we assume injective matches m and comatches
n.

Definition 2.6 A graph transformation system GTS = (P) consists of a set
of graph productions P with or without negative application conditions. For a
graph transformation system, there may be given a set of finite input graphs.

Remark 2.7 In Definition 2.6, we do not take arbitrary constraints into ac-
count. However, the results in this paper can treat all sorts of constraints,
including those that are not formally defined, since their satisfaction is con-
tained in the applicability of a production, therefore, they have been integrated
into the definition dealing with the applicability of a production, and thus, it
appears in Definition 3.1.

Primarily, we need a definition for the termination of a graph transforma-
tion system. We extend the definition used in [10]. In [5], the treatment of a
layering control structure is added to this definition. We extend the definition
in such a way that an arbitrary control structure can be handled.

Definition 2.8 A graph transformation system GTS = (P) terminates if
there is no infinite sequence of direct graph transformations G0 ⇒ G1 ⇒ ...
applying rules from P starting from any input graph G0, with respect to the
control structure of the given graph transformation system.

Up to now, the following definition of E-concurrent productions and the
Concurrency Theorem have not been extended to productions with some kind
of application conditions. Therefore we consider only plain productions in the
following definition and theorem, as given in [6]. The results contributed in
Section 3 are also valid when the rules contain negative application conditions.

Definition 2.9 Given two productions p1 = (L1
l1←− K1

r1−→ R1) and p2 =

(L2
l2←− K2

r2−→ R2), an E-dependency relation (E, e1, e2) is given by a graph
E and injective morphisms e1 : R1 → E, e2 : L2 → E, which are jointly

surjective. The E-concurrent production p1 ∗E p2 is a production p = (L
l←−

K
r−→ R) computed based on the following diagram, where double squares

(1)(2) and (3)(4) form double pushouts, and (5) is a pullback. Note that the
injectivity of e1 and e2 implies that of k1, m1, k2, and n2.

5

106

Levendovszky et al.

L1

m1

��
(1)

K1l1oo

k1

��

r1 //

(2)

R1

e1

???
?

��?
??

?

L2

e2
��

�

�����
� (3)

K2l2oo

k2

��

r2 //

(3) (4)

R2

n2

��
L K

′
1l′oo //E

(5)

K
′
2

oo r′ //R

K

k′
1PPPPPPP

ggPPPPPPP
k′
2nnnnnnn

77nnnnnn
lUUUUUUUUUUUU

jjUUUUUUUUUUUU riiiiiiiiiii

44iiiiiiiiiiii

This definition can be applied recursively, using an E-concurrent produc-
tion for p1.

A transformation G
p1,m1 +3H

p2,m2 +3G′ is called E-related to p1 ∗E p2 if there
exist morphisms h : E → H, c1 : K

′
1 → D1 and c2 : K

′
2 → D2 such that

h ◦ e1 = n1, h ◦ e2 = m2, (6) and (7) commute and (8) and (9) are pushouts.

L1

m1

��

K1l1oo

k1

��

r1 //

��

R1

e1

???
?

��?
??

?

n1

��

L2

e2
��

�

�����
�

m1

��

K2l2oo

k2

��

r2 //

��

R2

n2

��

K
′
1

(6)

c1

��

//

(8)

E

h

��

K
′
2

oo

c2

��
(9)

(7)

G D1
oo //H D2

oo //G′

Theorem 2.10 (Concurrency Theorem) Let (E, e1, e2) be an E-dependency
relation for the productions p1 and p2 leading to the E-concurrent production
p1 ∗E p2.

(i) Synthesis: Given an E-related transformation sequence G ⇒ H ⇒ G′

via p1 and p2, then there is a synthesis construction leading to a direct
transformation G⇒ G′ via p1 ∗E p2.

(ii) Analysis: Given a direct transformation G⇒ G′ via p1 ∗E p2, then there
is an analysis construction leading to an E-related transformation G ⇒
H ⇒ G′ via p1 and p2.

(iii) Bijective correspondence: The synthesis and analysis constructions are
inverse to each other up to isomorphism.

H

p2

NNN
NNN

NNN
NNN

"*NNN
NN

NNN
NN

G

p1qqqqqq
qqqqqq

4<qqqqq
qqqqq

p1∗Ep2 +3G′

3 A General Criterion for Injective Matches

In this section, we provide a general approach for termination within the scope
of the DPO approach. These results also apply when the rules contain negative
application conditions and other constraints.

Definition 3.1 An E-concurrent production p∗ is an E-based composition
if there is at least one input graph G0 with an E-related transformation

6

107

Levendovszky et al.

G0
p∗ +3H.

This definition is required, because for the DPO approach, the definition
of E-concurrent productions and the Concurrency Theorem have not been ex-
tended to handle negative application conditions and other constraints. More-
over, this definition guarantees, among others, that the constraints enforced
by p1 do not contradict to the constraints necessary for the application of
p2. Typical examples for constraints are attribute constraints, negative ap-
plication conditions, type conformance for metamodels, constraints from the
control flow branches, but other constructs are also possible.

In most of the practical cases it is simple to find such an input graph for
an E-concurrent production, when there is no contradiction between the rules.
Then, the left hand side of this rule is already an input graph, or it can be
extended with regard to possible constraints.

An example for composing the bottom rule in Figure 1 with itself via a
chosen E1 is depicted in Figure 2.

Fig. 2. An E-based composition of Rule 2 with itself

Definition 3.2 Consider a possibly infinite sequence of graph productions pi,
(i = 1, 2, ...) and a sequence of E-dependency relations ((Ei, e

∗
i , ei+1)) leading

to a sequence of their E-based compositions (p∗i = (L∗
i ← K∗

i → R∗
i)) with

p∗1 = p1 and p∗n = (p1 ∗E1 p2) ∗E2 ... ∗En pn.

A cumulative LHS series of this sequence is the graph series L∗
n consisting

of the left-hand side graphs of p∗n. Moreover, a cumulative size series of a
production sequence is the nonnegative integer series |L∗

n|.

It is possible that there are several cumulative LHS series of a given pro-
duction sequence, since, in general, two rules can be composed in different
ways, choosing different E-dependency relations. For instance, if we want to
compute p∗3 for our example, then we take the cumulative rule p∗2, and com-
pose it with the bottom rule from Figure 1. There are several possibilities to
choose E2: (i) we can short-circuit the path 1− 2− 3

′
, (ii) 1− 3− 3

′
, or (iii)

R∗
2 and L do not fully overlap. It is easy to see that in the first two cases L∗

3

is isomorphic to L∗
2, but in the third case L∗

2 must be extended to obtain L∗
3.

7

108

Levendovszky et al.

However, there is no case, when L∗
3 is smaller than L∗

2. If we consider injective
matches only, this is true for the DPO approach in general.

Lemma 3.3 The sequence |L∗
i | (Def. 3.2) is monotonic nondecreasing. If

Ei
∼= R∗

i , L∗
i remains unchanged, thus, |L∗

i | =
∣∣L∗

i+1

∣∣. Otherwise, L∗
i � L∗

i+1

and |L∗
i | <

∣∣L∗
i+1

∣∣, but L∗
i+1 always contains an isomorphic subgraph of L∗

i .

Proof. Since there is an injective morphism m∗
i : L∗

i → L∗
i+1, we have |L∗

i | ≤∣∣L∗
i+1

∣∣, and L∗
i+1 contains an isomorphic subgraph of L∗

i .

Pushouts along isomorphisms are pullbacks, and pushouts and pullbacks
are closed under isomorphism. Therefore, if Ei

∼= R∗
i , we have isomorphisms

k∗i and m∗
i , which means that L∗

i
∼= L∗

i+1 and |L∗
i | =

∣∣L∗
i+1

∣∣.
If Ei � R∗

i , there are items x ∈ Ei\e∗i (R∗
i), which have preimage in K∗′

i+1 but
not in K∗

i , because (2) is a pushout. For (1) being a pushout, these items have
to be added to L∗

i to obtain L∗
i+1, therefore L∗

i � L∗
i+1, and |L∗

i | <
∣∣L∗

i+1

∣∣. 2

L∗
i

m∗
i

��
(1)

K∗
i

l∗i
oo

k∗
i
��

r∗i
//

(2)

R∗
i

e∗i

CC
C

!!C
CCC

Li+1

ei+1
xxx

x

||xx
xx

(3)

Ki+1li+1oo

��

ri+1 //

(3) (4)

Ri+1

��
L∗

i+1 K∗′
i+1l∗

′
i

oo //Ei

(5)

K
′
i+1

oo r
′
i+1
//R∗

i+1

K∗
i+1

k1iQQQQQQ

hhQQQQQQ
k2illlllll

55llllllll∗i+1VVVVVVVVVVV

jjVVVVVVVVVVV
r∗i+1hhhhhhhhhhhh

33hhhhhhhhhhhh

Theorem 3.4 A GTS = (P) (Def. 2.6)terminates if for all infinite cumula-
tive LHS sequences (L∗

i) of the graph productions created from the members of
P , it holds that

lim
i→∞
|L∗

i | =∞.

Note that we assume finite input graphs and injective matches.

Proof. We rely on the fact that if the constraints are satisfied, the E-based
compositions are E-concurrent productions as well. Therefore, we can apply
Theorem 2.10 for the topological part of the transformation, when we can
assume that the constraints hold, which means the existence of the E-based
composition.

In AGraphsATG, Theorem 2.10 holds. Suppose there is an infinite trans-

formation G0

p1
+3 G1

+3 Then there is a sequence of E-concurrent pro-

ductions p∗i leading to the transformations G0

p∗i +3 Gi (Theorem 2.10). All

these productions are also E-based compositions with cumulative LHS series
L∗

i . Since limi→∞ |L∗
i | = ∞, there exists an N ∈ N with |G0| < |L∗

N |. But
this means that there is no injective match m∗

N : L∗
N → G0, i.e. p∗N is not

applicable to G0. 2

8

109

Levendovszky et al.

The opposite direction of Theorem 3.4 does not hold in general, but for a
finite number of input graphs. In this case, no infinite sequences of E-based
compositions can be constructed.

Theorem 3.5 If a GTS = (P) (Def. 2.6) terminates and we have only a
finite number of input graphs up to isomorphism, then there are no infinite
cumulative LHS sequences (L∗

i) of graph productions created from the members
of P .

Proof. Assume that GTS terminates and there is an infinite sequence (p∗i)
of E-based compositions.

For each p∗i there exists an input graph Gi with an E-related transformation

Gi
p∗i ,mi +3Hi. Since there are only finite many input graphs, at least one of them

has to appear infinitely many often. This means we have an input graph G

with ∀N ∈ N∃j > N : G
p∗j +3Hj. From Theorem 2.10 it follows that all p∗i

are applicable to G leading to an infinite transformation sequence. 2

From Theorem 3.4 the next statement follows:

Lemma 3.6 If L∗
i � L∗

i+1,∀i for every cumulative LHS series (Def. 3.2),
then the GTS terminates. If each graph appears only finitely many times in
all cumulative LHS series, the GTS still terminates.

Proof. Considering the first statement of the lemma, if two subsequent graphs
in the cumulative LHS sequence are not isomorphic, they must grow in size
because of Lemma 3.3. According to Theorem 3.4, this means that the GTS
terminates.

Taking a cumulative LHS series at any position i, it grows in size within
finite number of steps if there are only finite number of graphs in the series
that are isomorphic to L∗

i . The series must grow because of Lemma 3.3. Then
we have limi→∞ |L∗

i | =∞, and the GTS terminates because of Theorem 3.4.2

4 Case Studies

To show the practical relevance of the presented termination criteria, two case
studies are provided. We take two transformation idioms from [1], and ana-
lyze their termination properties. Obviously, there are other proofs for these
case studies, but we would like to illustrate how the technique contributed in
this paper works for practical software model transformations, where the tool
supports strict control flow constructs.

4.1 Transitive Closure

Using Theorem 3.4, we show that the transitive closure terminates. This is
a frequently used transformation pattern. In case of variation of the ’class

9

110

Levendovszky et al.

model to relational database management system (RDBMS) model’ transfor-
mation [12] (also referred to as object-relational mapping), the traversal of
the inheritance hierarchy and the association chains are performed using the
transitive closure pattern.

Lemma 4.1 The injective application of the transitive closure rule (the bot-
tom rule in Figure 1) terminates for all finite input graphs.

Proof. There are two cases. (i) When constructing Ek, it is not isomorphic
to R∗

k. This means that in this case L∗
k must be extended to obtain L∗

k+1

by Lemma 3.3. Therefore, in these steps, the cumulative LHS series grows.
(ii) The other case needs more attention, since the cumulative LHS series
does not grow in every step this time. We show that at a given stage of the
transformation, this is possible finite times only. Suppose Ek

∼= R∗
k when

constructing p∗k+1 from p∗k and the original rule p. This leads only to a valid
E-based composition if there is no dashed edge between ek+1(1) and ek+1(3)
in Ek. In R∗

k+1 no new nodes are added, but an additional edge (compared
with R∗

k). Thus, after finite many steps we can only construct E-concurrency
relations not isomorphic to the right hand side. This stems from the fact that
the negative application condition forbids creating dashed edges between the
nodes where there is one already. This means that an LHS can appear only a
finite number of times in the cumulative LHS sequence, therefore, according
to Lemma 3.6 the GTS terminates. 2

4.2 Leaf Collector

The LeafCollector pattern is used to find the leaf elements in a tree struc-
ture. This idiom has been distilled from the transformation flattening a hi-
erarchical data flow diagrams to a flat data flow representation [1]. In fact,
LeafCollector does not modify the input graph, but finds a place where the
next rule can be applied. Therefore, LeafCollector is a useful idiom of many
software model transformations, and it is worth examining its termination
properties.

Fig. 3. The Leaf Collector Transformation Idiom

A possible formulation of the pattern is depicted in Figure 3. This idiom
is particularly interesting, because it strongly builds on a sophisticated con-
trol structure of the transformation tool. The diamond in the figure can be
implemented in several ways. In GReAT [1], it is implemented as test rule,

10

111

Levendovszky et al.

whereas it is a branch condition in VIATRA [13] and VMTS [11]. The other
required feature is parameter passing. This means that host graph nodes and
edges matched in one of the previous rules can be passed to a subsequent
rule. The matching algorithm considers these elements already bound. This
can accelerate the matching process, and facilitates the separation of complex
rules. If there are no passed parameters, the matching algorithm starts to
match with unbound elements. In our example, the rule is bound to any of
the suitable places in the input graph on the first execution. On the subse-
quent runs, the graph node matched to the rule node 2 is passed to the rule
node 1. Therefore, the matching algorithm finds a node adjacent to the one
passed as a parameter. The output of this idiom is node1 when it is a leaf.
Therefore, node1 is passed further along the branch where the ellipses are
depicted. The parameter passing mechanism is implemented with different
syntax in the aforementioned tools, thus, we focus on the notion only without
formalizing it. From the mathematical point of view, this construct is modeled
as a restriction on the possible E-based compositions.

Since the idiom is obviously not concerned with self-loops, injective matches
are assumed. Then we compute the E-based composition of the rule with it-
self. In this case it is rather simple, because the parameter passing reduces
the number of the possible E-dependency relations to one.

Fig. 4. E-based Composition for Leaf Collector - Acyclic Case

Lemma 4.2 The transformation Leaf Collector (depicted in Figure 3) termi-
nates if and only if the input graph does not contain a directed cycle.

Proof. Firstly, we compute the E-based composition of the rule with itself.

Because of the parameter passing, the Ei is created as follows: R∗
i contains

only one node ni that is a target of an incoming edge and it is not a source
of any outgoing edge. Then the node 1(i) in Li+1 is mapped to ni in Ei, the
others are mapped to different vertices and edges.

1(i) in Li+1 can either be mapped to an Ei element that is not mapped to
any R∗

i element, or otherwise. Based on that there are two possible categories
of E-dependency relations. The first option is depicted in Figure 4 for p∗2.

11

112

Levendovszky et al.

Since there are only control conditions, it is the same as the E-concurrent
production, where the E1 is determined by the parameter passing. The control
structure limits the number of the composed productions only. Obviously, L∗

i ,
Ki∗, and R∗

i are the same, because the rule does not change the input graph:
it searches for a specific element.

Pushouts along isomorphisms are pullbacks, and pushouts and pullbacks
are closed under isomorphism. Therefore, Ei

∼= L∗
i+1. Thus, L∗

i is a directed
path consisting of i edges. This means that in this case the transformation
terminates according to Theorem 3.4.

When 1(i) in Li+1 is mapped to an Ei element that is mapped to any
R∗

i element, it automatically creates a directed cycle. An example for this
structure is depicted in Figure 5. In this case it is possible that we have a
nonincreasing cumulative size series. According to Theorem 3.5, it is possible
that this structure does not terminate. 2

Fig. 5. E-based Composition for Leaf Collector - Cyclic Case

According to Lemma 4.2, if the input graph does not contain directed
cycles, the transformation terminates, otherwise it is possible that the trans-
formation does not terminate. In practice, this condition can be guaranteed in
model transformation systems. (i) Most of the modeler tools offer a contain-
ment hierarchy, and along this hierarchy it is ensured by the tool that there
are no directed cycles. (ii) Directed cycles in inheritance hierarchy causes
semantical problems, it may also be forbidden by the tool.

If there are no such constraints in the model, the Leaf Collector should
be extended with additional construct in order to avoid nontermination. A
possible solution is to add an isProcessed attribute to the nodes, which is
false by default, and set by the rule if it is matched. Another solution is to
introduce helper edges between the processed nodes, and introduce NACs to
forbid the match at the same place again.

This case study illustrates that with the proposed termination analysis
method, we could obtain the structure that causes the nontermination. There-
fore, this technique is suitable for constructive analysis besides the decision
issues.

12

113

Levendovszky et al.

5 Related Work

In [2], termination criteria have been developed for graph rewriting applied
to program transformation. The criteria aim at this specific problem domain.
The approach assumes that there can be no parallel edges with the same
labels between two nodes. This leads to a termination criteria for specific
(edge-accumulative) rules if the label and node sets are finite. Moreover,
subtractive rules are investigated, which are conceptually similar to deletion
layers examined in [5]. These results assume more restricted types of rules,
compared to those analyzed in this paper.

In [3], a theory has been developed for the DPO approach. It provides
abstract termination criteria by a measure function F . The paper also shows
concrete termination criteria such as the number of nodes, the number of
edges. Based on this assumption, it proves termination criteria for other
control structures. However, these criteria are violated in the second case
study with respect to the concrete criteria of edge and node numbers. However,
no explicit relationship has been established between the proposed definition
of a termination criterion and the notion that the transformation stops within
a finite number of steps.

In [5], results have been developed for layered grammars. These results for-
malize and extend the contributions provided in [7] [4]. The provided criterion
ensures that the creation of all objects of a type should precede the deletion
of the object of this type. Therefore, a layer deleting an object of a given type
cannot create such an object, nor the subsequent rules. This means that the
productions in a deletion layers terminate for the reasons detailed above if the
types are taken into consideration.

A nondeletion layer cannot contain rules that delete a node. It is ensured
by a negative application condition that a rule cannot be applied twice at the
same match. Furthermore, if a rule creates an object of a given type, it is not
allowed to match any object of that type in that or any subsequent layers.
Since Layer 0 uses the finite input graph, and there cannot be a match at the
same place, and the rules in Layer 0 cannot create elements of a type whose
instances they match, the rules can be executed only a finite number of times.
The next layer terminates for similar reasons: it can only use elements of a
type whose instances have already been created. Since Layer 0 has terminated,
Layer 1 is passed a finite graph, thus, the situation is similar to that in case
of Layer 0.

In our context, this means that only a finite fully overlapping (Ei
∼= R∗

i)
sequences are possible, since the the NAC forbids the E-based composition at
a given position more than once. Otherwise |L∗

i |must increase. Unfortunately,
there are situations, where these criteria do not hold. In our first case study,
the second rule matches and creates an element of the same type.

The methods discussed as related work are not restricted to injective
matches as opposed to our approach.

13

114

Levendovszky et al.

6 Conclusions

A novel contribution of this paper is to provide termination criteria for general
productions allowing recursion within the scope of DPO and typed attributed
graph transformation, assuming injective matches. This can be a theoretical
basis to prove that certain control flows of rules are terminating, where the
other - algorithmically underpinned - criteria cannot be applied. In general,
however, it is hard to find all the possible sequences of graph productions, and
prove that the corresponding series |L∗

i | exceeds all limits. This is expected,
since the termination of a GTS is undecidable [10]. However, the stricter and
the more deterministic the ordering of the rules is, the higher is the chance
that we can deal with the sequences. For example, in the tool Visual Modeling
and Transformation System (VMTS) [11], the control structures are as strict
as possible, and nondeterminism is avoided if possible. Moreover, parameter
passing between the rules (external causalities) decrease the number of the
possible Ek graphs, since the nodes and edges connected by a morphism from
R∗

k to Lk+1 must be mapped to the same nodes and edges in Ek. We have
also contributed two case studies, which solve the termination issue of two
frequently used transformation idioms called ”transitive closure” and ”leaf
collector”.

Another contribution is that in the composition of the productions in Def-
inition 3.1, attributes are also considered, and the proposed method is open
to other constraint specification approaches. Furthermore, it regards control
structures and parameter passing.

Future work includes the extension of these results to noninjective matches.
Furthermore, constraint checking to decide whether a composition rule exists
is not simple in the general case, when not only the attributes set by the
transformation steps are considered. Also, we would like to analyze more id-
ioms and frequent building blocks. A library of building blocks with proven
termination properties may help the tools to overcome the algorithmic unde-
cidability. Since where the algorithms fail, the structural investigation can
offer a solution.

7 Acknowledgments

The activities described in this paper were supported, in part, by the SegraVis
Training Network and by the National Office for Research and Technology
(Hungary).

References

[1] Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G:
Reusable Idioms and Patterns in Graph Transformation Languages 2004. Proc.

14

115

Levendovszky et al.

2nd International Workshop on Graph Based Tools (GraBaTs 2004). Satellite
workshop of ICGT 2004, Rome, Italy, 2004.

[2] Assmann, U., Graph rewrite systems for program optimization, ACM TOPLAS
22, 2000, pp. 583-637

[3] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: “Termination of High-
Level Replacement Units with Application to Model Transformation”, VLFM
2004, Electronic Notes of Theoretical Comp.Sci. (ENTCS) vol.127, no.4 (2005),
Elsevier, pp. 71-86.

[4] Bottoni, P., Taentzer, G., Schuerr, A. Efficient Parsing of Visual Languages
based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In Proc. Visual Languages 2000 IEEE Computer Society. pp.: 59-60.

[5] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay,Sz.:
“Termination Criteria for Model Transformation”, FASE 2005, LNCS, pp. 49-
63.

[6] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: “Fundamentals of Algebraic
Graph Transformation”, EATCS Monographs in Theoretical Computer Science,
Springer, 2006

[7] de Lara, J., Taentzer, G. 2004. Automated Model Transformation and its
Validation with AToM3 and AGG. In DIAGRAMS2004 (Cambridge, UK).
Lecture Notes in Artificial Intelligence 2980, pp.: 182198. Springer.

[8] Lengyel, L., Levendovszky, T., Charaf, H.: “Eliminating Crosscutting
Constraints from Visual Model Transformation Rules”, ACM/IEEE 7th
International Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica,
October 2, 2005.

[9] Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: “A Systematic Approach
to Metamodeling Environments and Model Transformation Systems in VMTS”,
Electronic Notes in Theoretical Computer Science, International Workshop on
Graph-Based Tools (GraBaTs) Rome, 2004.

[10] Plump, D.: “Termination of graph rewriting is undecidable”, Fundamenta
Informaticae, 33(2):201209, 1998

[11] VMTS Web Site, http://avalon.aut.bme.hu/∼tihamer/research/vmts

[12] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky,
T., Prange, U., Varró, D., Varró-Gyapay, Sz.: Model Transformation by
Graph Transformation: A Comparative Study,ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, Montego
Bay, Jamaica, 2005

[13] Varró, D.: Automated Model Transformations for the Analysis of IT Systems.
PhD thesis, Budapest University of Technology and Economics, Department of
Measurement and Information Systems (2004)

15

116

