
An Integration Concept for Complex
Modelling Techniques

Benjamin Braatz
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
bbraatz@cs.tu-berlin.de

Abstract. In this paper a concept for the integration of complex modelling techniques
like e. g. UML is proposed. The integration is done by translating complex models
consisting of parts following different modelling paradigms into a common low-level
language, which is designed to be minimalistic enough to serve as a source for code
generation and verification. On the other hand the low-level language should be ex-
pressive enough to allow the integration of the most common structural, behavioural,
and constraint modelling languages. As an example for a complex modelling technique
a derivation of the UML, which focuses on a small subset of the UML diagrams, but
also adds some additional techniques, is considered. Moreover, a low-level language
for object-oriented modelling techniques is sketched.

Keywords: UML, Semantic Integration, Code Generation

1 Introduction

Contemporary modelling techniques follow a large variety of different paradigms.
For example, the Unified Modeling Language (UML, see [7]) contains state ma-
chines, activity diagrams, sequence and collaboration diagrams, and the Object
Constraint Language (OCL, see [8]) to describe the behaviour of a modelled
system. Other techniques like structured flowcharts as introduced by Nassi and
Shneiderman (see [6]), graph transformation systems (see e. g. [4]), different
kinds of process algebras and Petri nets, and temporal or modal logic formalisms
are also in common use.

It would be very desirable to be able to use multiple techniques from this
wealth of possibilities in one project, in order to describe the various aspects of
the system with the technique, which fits best. This approach can, however, only
develop its full potential, if the interconnections between the used techniques are
made explicit. Ideally all applied techniques should be semantically integrated,
i. e. interpreted in a common semantic domain.

This paper proposes an abstract concept introduced in Sect. 2 for integrating
complex, multi-paradigm modelling techniques by translating complex models
into a low-level language, which is designed to facilitate the defintion of a formal
semantics, the generation of code from models, and the formal verification of
models.

81

An Integration Concept for Complex Modelling . . . Benjamin Braatz

In Sect. 3 a complex modelling technique based on the UML is introduced,
which is then translated exemplarily into an object-oriented low-level language
sketched in Sect. 4. Finally, in Sect. 5 the approach is summarised, related work
is discussed and some ideas for future work are given.

2 Abstract Integration Concept

The concept proposed in this paper assumes a complex modelling technique,
given by a class Mod of models containing parts, which are described following
multiple paradigms. These models are translated into a low-level language,
given by a class L3 of low-level models, leading to a function Int : Mod→ L3.
The low-level language should contain the essential information included in the
complex models, but encode it in a paradigm-independent way. Each low-level
model L ∈ L3 can be decomposed into its constructive part Beh(L) and its
descriptive part Prop(L), which share a common structural part Str(L). (Cf.
Fig. 1.)

Mod

Mod

L3
Int

L

Str
Str

)L(Str

Beh

Constr

(Beh)L
CStr

(=)

DescrProp

()LProp

(=)

DStr

Figure 1: Relations between complex and low-level models

The rationale behind this decomposition is the strict seperation of the mod-
elled behaviour and the properties, which have to be fulfilled by the behaviour.
This seperation aids in providing tools for the low-level language. The con-
structive behaviour models can be used as a basis for code generation and as
the axioms or models in verification, while the descriptive property models are
suited to serve as a foundation for tests and as the target or specification in ver-
ification. The common structure models are needed to facilitate the connection
between both parts of an L3 model.

Note, that the seperation of concerns is established only in the low-level
language. The complex modelling technique may, and most often will, combine
constructive, descriptive, and structural aspects in the same diagrams. For
example, a UML class diagram contains mostly structural information, but may
also exhibit constraints like the multiplicities of attributes and associations or
OCL pre-post-conditions and invariants, which are to be translated into the
descriptive part of the corresponding low-level language model. It may even
contain some OCL body constraints for query operations, which do not alter the

82

Benjamin Braatz An Integration Concept for Complex Modelling . . .

state of the system. Such constraints already specify the complete behaviour of
the operation in question and may therefore be translated into the constructive
part of the L3 model.

A formal semantics for the low-level language will be provided by assigning a
class of formal system representations Sys(Str) to each structural model Str , a
subclass SemStr (Prop) of all systems satisfying the specified properties to each
descriptive model Prop, and a single constructed system BuildStr (Beh) to each
constructive model Beh. (Cf. Fig. 2.)

Str

Descr

Constr

Prop

Beh

Str Sys (Str)

BuildStr (Beh)

Prop(StrSem)

Figure 2: Semantics of low-level models

The exact definition of the semantic domain and functions is out of the scope
of this paper. A draft version of such a semantics can be found in [3], which is
based on transformation systems (see [5]) and adhesive high-level replacement
systems (see [4]).

The formal semantics provides for the definition of consistency of a model by
requiring that the behavioural part of the model satisfies the properties stated
in the descriptive part, i. e. a low-level language model L ∈ L3 is consistent iff

BuildStr(L)(Beh(L)) ∈ SemStr(L)(Prop(L)) .

By composition with the integration function Int the formal semantics and the
notion of consistency are also applicable to the complex modelling technique
Mod.

The advantages of this approach lie in the decoupling of the complex mod-
elling technique from the low-level language, for which the formal semantics is
defined, and for which tools for generation and verification can be written. On
the one hand, the semantics and tools do not have to deal with all the subtleties
and “syntactic sugar” of the complex modelling technique, but can be based
on the more minimalistic low-level language. On the other hand, the complex
modelling technique can be enhanced by additional techniques rather easily, be-
cause only the class Mod and the integration function Int have to be adopted.
Semantics and tools for extensions of the complex technique are then obtained
automatically.

In the next section the idea of a complex integrated modelling technique will
be illustrated by a small multi-paradigm modelling technique derived from the
UML, while in Sect. 4 an object-oriented low-level language will be sketched.

83

An Integration Concept for Complex Modelling . . . Benjamin Braatz

3 CUML – The Complex Modelling Technique

As complex modelling technique we consider a derivation of the UML, which
we will call CUML (Compact, Comprehensive, and Constructive UML). It uses
only some of the features of UML, namely class diagrams, activity diagrams,
and OCL constraints, but enhances them with transformation rules and struc-
tured flowcharts (also known as Nassi-Shneiderman diagrams, see [6]). These
extensions were already proposed in [2] to yield a constructive, object-oriented
modelling technique.

According to the intention of this paper, CUML is designed to allow code
generation and formal verification. Therefore, we require stricter modelling than
the original UML, which allows to leave a lot of features unspecified and describe
requirements, actions, and other model properties in natural language.

We will describe the ideas along a small example of a shopping cart ap-
plication, whose class diagram is shown in Fig. 3. The shopping cart itself is
modelled by the Cart class containing Item instances, which in turn reference
the corresponding Product instance. Instances of the class Catalog are used to
administrate the Product instances.

pkg shopping

quantity:Integer

Item(c:Cart,p:Product,q:Integer):Item
merge(i:Item)

Item
0..*

1cat

prods
prod

1
name:String
price:Integer

Product(c:Catalog,n:String,p:Integer):Product

Cart():Cart
getTotalCost():Integer{query}
mergeItems()

0..*items

1cart

Cart

Product

Catalog():Catalog
search(n:String):Product[0..*]{query}

Catalog

Figure 3: Class diagram of the example

Besides the usual features of class diagrams (declaring signatures of classes
with properties and operations, as well as associations with multiplicities and
navigability), we also use the possibility to specify if an operation is static for
the constructors of the classes by underlining them and the possibility to specify
if an operation is a query, i e. if it changes the state of the system.

These queries are on the one hand an operation for calculating the total
cost of the items in a shopping cart, on the other hand a search operation on
the products in a catalog. They are specified in Fig. 4(a) and 4(b) by OCL
body constraints, which are an adequate choice because of the freeness from
side effects in OCL. The total cost is calculated by iterating over the items in a
shopping cart and adding the number mulitplied by the price of a single product,
while searching is realised by the select operation predefined in OCL.

84

Benjamin Braatz An Integration Concept for Complex Modelling . . .

context shopping::Cart::getTotalCost()
body: self.items−>iterate(i:Item,sum:Integer=0|

sum+i.quantity*i.prod.price)

(a) Cart.getTotalCost operation

context

body:

shopping::Catalog::search(n:String):Set(Product)
self.prods−>select(name=n)

(b) Catalog.search operation

context shopping::Item::merge(i:Item)
pre:

post:

self.prod=i.prod
self.cart=i.cart

self.quantity=self.quantity@pre+
i.quantity@pre

not self.cart.items−>includes(i)

(c) Item.merge operation

context shopping::Cart::mergeitems()
post: self.items−>forAll(i1,i2:Item|

i1<>i2 implies i1.prod<>i2.prod)
self.items@pre.prod−>asSet()=

self.items.prod−>asSet()

(d) Cart.mergeItems operation

Figure 4: OCL constraints for the example

In contrast to the body constraints, the OCL pre-post conditions in Fig. 4(c)
and 4(d) do not model the corresponding operations completely but merely
specify some requirements. These operations are intended to merge items in the
shopping cart, which reference the same product.

In order to model operations for local changes of the system, CUML uses a
transformation rule notation as shown in Fig. 5. The advantage of this notation
over activity diagrams and similar techniques is the declarative nature of trans-
formation rules, which make the effects of operations on the object configuration
readily visible by showing the relevant part of the system before the operation
on the left-hand side and after the operation on the right-hand side.

The constructor for products in Fig. 5(a) creates a new product with the
given name and price and adds the result to the given catalog, while the con-
structor for items in Fig. 5(b) creates a new item in the given shopping cart
associated to the given product with the given quantity. The third rule in
Fig. 5(c) models the behaviour of the operation for merging items in a shopping
cart. The left-hand side of this rule shows that the operation is only applicable
if the cart and the product of the item on which the operation is called and the
parameter item are identical. The right-hand side then models the effect of the
operation, where the parameter item is deleted and the quantities of self and
parameter item are accumulated in self.

While OCL constraints follow a functional side-effect free paradigm suitable
for modelling queries and transformation rules realise a declarative approach
adequate for local changes of the system, the third behavioural technique we
want to use in CUML is an imperative one, which can be used to model algo-

85

An Integration Concept for Complex Modelling . . . Benjamin Braatz

rule

c:Catalog

name=n
price=p

return:Product c:Catalog
prods cat

shopping::Product::Product(c,n,p)

(a) Product constructor

rule

c:Cart

p:Product

cart

items
prod

c:Cart

quantity=q

p:Productreturn:Item

shopping::Item::Item(c,p,q)

(b) Item constructor

rule

itemscart

cart

prod

prod

cart items
self:Item

p:Product

i:Item

c:Cart c:Cart
quantity=quantity@pre+

self:Item

items

i.quantity@pre

prod

p:Product

shopping::Item::merge(i)

(c) Item.merge operation

Figure 5: Transformation rules for the example

rithmic operations. In Fig. 6, we see a structured flowchart for the operation
merging all items with identical products in a shopping cart.

flow

for i:self.items

for j:self.items

i.prod=j.prodandi<>j

i.merge(j)

shopping::Cart::mergeItems()

Figure 6: Flowchart for Cart.mergeItems operation

These structured flowcharts are a derivation of the flowcharts of Nassi and
Shneiderman in [6]. In the example we can see that one of the advantages over
graph-like techniques like activity diagrams and state machines is the visibility
of the algorithmic structure with two nested iterations and a decision. Such
algorithmic details are complicated to model adequately in graph-like modelling
techniques.

However, we also want to integrate activity diagrams into CUML, because
they are an adequate modelling technique for operations, which are less algo-
rithmic, but rather workflow-like, though we do not have an example for such
an operation in our small example.

In the next section we sketch, how the different techniques presented in this
section may be integrated into a common object-oriented low-level language.

86

Benjamin Braatz An Integration Concept for Complex Modelling . . .

4 L3 – The Low-Level Language

As already stated in the abstract concept in Sect. 2, the low-level language will
be subdivided into structural, descriptive, and constructive aspects. We will use
a notation close to the UML notation for low-level models. In an implementation
of this concept, low-level models would probably not be visualised at all, but
rather only used in the backend, so that the developer only has to deal with
(C)UML diagrams.

In Fig. 7, the structural part of the low-level model of the example is shown.
It is still very similar to the class diagram, but abstracts from properties, which
have to be fulfilled by the implementation rather than being ensured directly by
the structure. Associations and properties are both translated into attributes,
where the inverseness of the association ends will be required in the descriptive
part. Likewise multiplicities are only considered in deciding if an attribute or
parameter is a reference to a single object or a collection of objects, representing
the multiplicities 0..1 and 0..*, respectively. Other multiplicities will also be
considered in the property model.

prods:Set(Product)

search(n:String):Set(Product)
Catalog():Catalog

Catalog Product

Product(c:Catalog,n:String,p:Integer):Product

price:Integer
name:String
cat:Catalog

Item

cart:Cart

Item(c:Cart,p:Product,q:Integer):Item
merge(i:Item)

quantity:Integer
prod:Product

mergeItems()
getTotalCost():Integer
Cart():Cart

items:Set(Item)

Cart

Str

Figure 7: Structural low-level model of the example

In order to be able to represent all kinds of collections available in the UML,
the low-level language should support sets, bags, sequences, and ordered sets.
These collection types are retained in the low-level model rather than being
flattened, because the code generation is likely to be able to translate them
to structures provided by the underlying platform, e. g. the Java Collection
Framework, directly.

The descriptive model in Fig. 8 contains translations of the association and
multiplicity constraints from the class diagram and the OCL pre-post conditions,
where all these are translated into first-order logic. A special keyword query is
introduced to capture the property of an operation being a query.

Associations and multiplicities are invariants of object configurations. In
order to be able to reuse them, abbreviations for these invariants are defined in
the upper part of Fig. 8. Invariants are added to all pre and post conditions of all
operations (except for the queries, since they preserve the object configuration,
anyway). Moreover, the OCL pre-post conditions are translated into first-order

87

An Integration Concept for Complex Modelling . . . Benjamin Braatz

assocCartItems: for all

for all

multProd:

multCat:

for all

for all

for all

i:Item,c:Cart: i.cart=c <=> i
p:Product,c:Catalog: p.cat=c <=> p in c.prods

i:Items: i.cart
i:Items: i.prod
p:Product: p.cat defined

Cart::getTotalCost()

multCart:

assocCatProds:

query

pre: assocCartItems,assocCatProds,

defined

defined

in c.items

Item::Item(c:Cart,p:Product,q:Integer):Item

multCart,multProd,multCat

assocCartItems,assocCatProds,post:

Catalog::search(n:String):Set(Product)

Product::Product(c:Catalog,n:String,p:Integer):Product
query

assocCartItems,assocCatProds,pre:

multCart,multProd,multCat

multCart,multProd,multCat

Item::merge(i:Item)

assocCartItems,assocCatProds,post:

multCart,multProd,multCat

Cart::mergeItems()
pre: pre:assocCartItems,assocCatProds,

multCart,multProd,multCat,

self.cart=i,self.prod=i,
q1:=self.quantity,q2:=i.quantity

post:

not i in self.cart.items
self.quantity=q1+q2

assocCartItems,assocCatProds,

multCart,multProd,multCat,

assocCartItems,assocCatProds,

(i1<>i2 => i1.prod<>i2.prod)
i1,i2:Item: i1,i2for all in self.items =>

multCart,multProd,multCat,

assocCartItems,assocCatProds,post:

oldits:=self.items.prod
multCart,multProd,multCat,

for all p:Product:
p in oldits <=> p in self.items.prod

Prop

Figure 8: Descriptive low-level model of the example

logic, where the OCL @pre expressions are interpreted by using variables bound
at pre time and reused at post time.

Now, the different behavioural techniques are translated into the low-level
language, where constructive low-level models are visualised in the style of UML
acitivity diagrams. But, while complex activity diagrams might employ a lot of
features and “syntactic sugar” like e. g. complex object flows or OCL constraints
as guards, the constructive low-level models may only use a very limited set of
atomic actions, which we will see in the following examples.

In Fig. 9, the translations of the OCL body constraints are depicted. Since
both operations iterate over a collection of objects, we need atoms to support
this iteration. The actions iterate, hasnext, and next serve this purpose.
When generating code from a low-level model, these should map relatively easy
to iterator concepts on the target platform. The getTotalCost operation in
Fig. 9(a) only uses assignments to the return variable and simple arithmetic
calculations in addition to the iteration actions, while the search operation in
Fig. 9(b) also uses atoms {} and add for manipulating a set of objects.

In Fig. 10, the translations of the transformation rules from Fig. 5 are given.
Here, we see that the low-level language also supports parallelism. This can be
employed when generating code for a target platform also supporting parallelis-
ing independent activities, like e. g. the .NET platform. The possible parallelism
arises from the fact, that transformation rules do not prescribe a certain order,
in which the changes to the object configuration shall be applied. The exact
model transformation from the high-level transformation rules to the low-level
language is out of the scope of this paper.

88

Benjamin Braatz An Integration Concept for Complex Modelling . . .

Beh Cart::getTotalCost():Integer

return := 0

return := return +
i.quantity * i.prod.price

hasnext[

[else]

(it)]

(self.items)iterateit :=

nexti:Item := (it)

(a) Cart.getTotalCost

Beh

hasnext[(it)]

iterateit :=

Catalog::search(n:String):Set(Product)

return := {}

(self.prods)

next (it)p:Product :=

[else]

[else]

[p.name=n]

add (return,p)

(b) Catalog.search

Figure 9: Contructive low-level model for OCL constraints

The two constructor models in Fig. 10(a) and 10(b) make use of the atom
new, which allocates a new uninitialised object. In Fig. 10(c), where the merge
operation is modelled, we see how patterns in the left-hand side of a rule are
translated into a decision constraining the applicability of the rule. Moreover, we
see that attributes, which are accessed with an @pre notation in the right-hand
side of a rule, are saved into variables prior to applying the changes. The merge
operation also makes use of an additional atom remove for the manipulation
of object sets and the discard atom for ending the life cycle of an object.
The latter may be ignored, when generating code for a platform with garbage
collection, but may be useful on other platforms like C++, where objects have
to be destroyed explicitly.

Finally, in Fig. 11, the translation of the small flowchart from Fig. 6 is given.
It uses two nested iterations over the same set and as a last kind of atomic action
a call to another operation.

Now, we have seen the whole low-level model of our small example. As
stated before, its purpose is the facilitation of code generation and verification.
The suitability of the constructive model parts for code generation should be
quite obvious, since the atoms used in the model are quite close to the basic
instructions on common object-oriented platforms or the operations available on
their collection implementations, respectively. For verification, a first approach
could be the definition of a Hoare-like calculus, such that the per-operation
requirements in the descriptive model could be verified along the structure of
the corresponding operations.

89

An Integration Concept for Complex Modelling . . . Benjamin Braatz

Beh

return := new Product

add (c.prods,return)return.cat := creturn.price := preturn.name := n

Product::Product(c:Catalog,n:String,p:Integer):Product

(a) Product.Product

Beh

add

Item::Item(c:Cart,p:Product,q:Integer):Item

return.quantity := q return.cart := creturn.prod := p (c.items,return)

return := new Item

(b) Item.Item

Beh Item::merge(i:Item)

[self.cart=i.cart and self.prod=i.prod]

q1:Integer := self.quantity q2:Integer := i.quantity

(self.cart.items,i)

discard i

self.quantity := q1+q2

[else]

remove

(c) Item.merge

Figure 10: Contructive low-level model for transformation rules

90

Benjamin Braatz An Integration Concept for Complex Modelling . . .

iterate (self.items)

i:Item := next (iti)

itj := iterate (self.items)

j:Item := next (itj)

i.merge(j)

[hasnext (iti)]

[hasnext (itj)]

[i<>j and i.prod=j.prod]

[else]

[else]

[else]

Beh Cart::mergeItems()

iti :=

Figure 11: Constructive low-level model for flowchart

5 Summary, Related and Future Work

In this paper an abstract concept for the integration of complex multi-paradigm
modelling techniques was proposed. It is build around the idea of translating
complex, user-friendly models into a minimalistic, machine- and theory-friendly
low-level language. This low-level language can be divided into structural, de-
scriptive, and constructive elements, which is useful to ease code generation and
verification.

As an instantiation of the concept, a complex modelling technique based
on the UML and an object-oriented low-level language were sketched. The
UML-based modelling technique uses behavioural techniques from different par-
adigms, namely functional OCL constraints, declarative transformation rules,
and imperative flowcharts, while in the low-level language all these techniques
are translated into the same style of low-level action flows.

A lot of formalisms have been proposed as rigorous foundations for complex
modelling techniques. For example, a mapping from UML 1.3 activity dia-
grams to abstract state machines is proposed by Börger et al. (see [1]). Other
approaches try to use process algebras as a semantic domain. While these pro-
posals have the advantage of readily available verification and analysis tools,
they need a lot of encoding to represent complex structures using the means of
the algebraic formalisms, which reduces the intuition behind the translations.
Moreover, the approach in this paper targets generation of code for the behav-
ioural models, where algebraic formalisms would be a detour, given that UML
activities already have a rather imperative structure.

91

An Integration Concept for Complex Modelling . . . Benjamin Braatz

In [9], Störrle and Hausmann evaluate the possibility to use Petri nets as
a semantic domain for UML activity diagrams, which is also suggested by the
UML specification itself. They come to the conlusion, that, in order to integrate
all possibilities of activity diagrams, different variants of Petri nets would have
to be integrated in a new formalism, which would then have neither tools nor
theory available. This observation may also serve as a reason for deriving the
new low-level language proposed in this paper, which is specifically designed to
capture the features of complex object-oriented systems.

A first point of future work is the establishment of meta-models for both
CUML and the low-level language and the development of a tool-supported
model transformation between these models, which implements the translation
sketched in this paper. Furthermore, the implementation of a proof-of-concept
code generator for the low-level language is planned.

In order to retain compatibility with the widely used UML standard and
other UML tools, we will try to formalise CUML as a UML profile, so that class
diagrams, OCL expressions and activity diagrams are restricted to the subclass
we consider, and transformation rules and flowcharts are realised as concrete
syntaxes for special kinds of UML activities.

On the theoretical side, a formal semantics for the low-level language will
be developed, which will also allow to reason about compositionality of low-
level and complex models. For this purpose, concepts of visibility and imports
of model elements will be introduced into the modelling techniques. A formal
semantics will also allow the development of formal refinements and refactorings
of models.

Moreover, formal analysis methods and tools should be developed for the
low-level language, where exisiting work on verification techniques for graph
transformation systems could serve as a basis, since the formal semantics will
execute the low-level models by rules, which are very similar to graph rewriting
rules.

Finally, the extension of the complex modelling technique with domain-
specific extensions is an interesting line of future research. These extensions
should be possible rather easily, because of the modular structure of the ap-
proach. The low-level language can be left unchanged and the new domain-
specific language only has to be translated into this fixed low-level language,
where new domain-specific languages can either be translated into correspond-
ing UML diagrams providing for an indirect integration, formulated as an ad-
ditional UML profile with its own translation into the low-level language, or
equipped with a meta-model independent of the UML meta-model.

References

[1] Börger, E., A. Cavarra and E. Riccobene, An ASM semantics for uml activ-
ity diagrams, in: Algebraic Methodology and Software Technology, AMAST
2000, LNCS 1816, Springer, 2000 pp. 293–308.

92

Benjamin Braatz An Integration Concept for Complex Modelling . . .

[2] Braatz, B., A rule-based, integrated modelling approach for object-oriented
systems, in: Graph Transformation and Visual Modeling Techniques (GT-
VMT 2006), ENTCS (2006), to appear.

[3] Braatz, B. and A. R. Kniep, Integration of object-oriented modelling tech-
niques (2006), draft version available from http://tfs.cs.tu-berlin.de/
~bbraatz/papers/BK06-TR.pdf.

[4] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Alge-
braic Graph Transformation,” Monographs in Theoretical Computer Science,
Springer, 2006.

[5] Große-Rhode, M., “Semantic Integration of Heterogeneous Software Specifi-
cations,” Monographs in Theoretical Computer Science, Springer, 2004.

[6] Nassi, I. and B. Shneiderman, Flowchart techniques for structured pro-
gramming, ACM SIGPLAN Notices 8 (1973), pp. 12–26, http://www.
geocities.com/SiliconValley/Way/4748/nsd.html.

[7] Object Management Group, “UML Superstructure Specification, v2.0,”
(2005), http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[8] Object Management Group, “Object Constraint Language, v2.0,” (2006),
http://www.omg.org/cgi-bin/doc?formal/2006-05-01.

[9] Störrle, H. and J. H. Hausmann, Towards a formal semantics for UML 2.0
activities, in: Software Engineering, SE 2005, 2005, available from http:
//www.pst.informatik.uni-muenchen.de/~stoerrle/.

93

