
A Visual Editor for Reconfigurable Object Nets
based on the ECLIPSE Graphical Editor Framework

Enrico Biermann, Claudia Ermel, Frank Hermann and Tony Modica
Technische Universität Berlin, Germany

{enrico,lieske,frank,modica}@cs.tu-berlin.de

Abstract
The main idea behind Reconfigurable Object Nets (RONs) is the integration of transition firing and rule-based net structure
transformation of place/transition nets during system simulation. RONs are high-level nets with two types of tokens: object
nets (place/transition nets) and net transformation rules (a dedicated type of graph transformation rules). Firing of high-level
transitions may involve firing of object net transitions, transporting object net tokens through the high-level net, and applying
net transformation rules to object nets. Net transformations include net modifications such as merging or splitting of object
nets, and net refinement. This approach increases the expressiveness of Petri nets and is especially suited to model mobile
distributed processes. The paper presents a visual editor for RONs which has been developed in a student project at TU Berlin
in summer 2007. The visual editor itself has been realized as a plug-in for ECLIPSE using the ECLIPSE Modeling Framework
(EMF) and Graphical Editor Framework (GEF) plug-ins.

Keywords: Petri nets, net transformation, graph transformation, visual editor, reconfigurable object nets, Eclipse, GEF

1 Introduction

Modelling the adaption of a system to a changing environment has become a significant topic in recent years.
Application areas cover e.g. computer supported cooperative work, multi agent systems, dynamic process mining
or mobile ad-hoc networks (MANETs). Especially in the context of our project Formal modeling and analysis of
flexible processes in mobile ad-hoc networks [PEH07, For06] we aim to develop a formal technique which on the
one hand enables the modeling of flexible processes in MANETs and on the other hand supports changes of the
network topology and the transformation of processes. This can be achieved by an appropriate integration of graph
transformation, nets and processes in high-level net classes.

The main idea behind Reconfigurable Object Nets (RONs) is the integration of transition firing and rule-based
net structure transformation of place/transition nets during system simulation. RONs are high-level nets with
two types of tokens: object nets (place/transition nets) and net transformation rules (a dedicated type of graph
transformation rules). Thus, on the one hand, RONs follow the paradigm “nets as tokens”, introduced by Valk in
[Val98], and, on the other hand, extend this paradigm to “nets and rules as tokens” in order to allow for modelling
net structure changes (reconfigurations) of object nets. Firing of RON-transitions may involve firing of object
net transitions, transporting object net tokens through the high-level net, and applying net transformation rules to
object nets. Net transformation rules model net modifications such as merging or splitting of object nets, and net
refinements.

A rule r consists of a left-hand side L related to a right-hand side R and describes the local replacement of L
by R. Similar to the concept of graph transformations [EEPT06], each application of a rule r = (L → R) to a
source net N1 leads to a net transformation step N1

r=⇒ N2, where in the source net N1 the subnet corresponding



to the left-hand side L is replaced by the subnet corresponding to the right-hand side R, yielding the target net N2.
Rule-based Petri net transformations have been treated in depth in e.g. [EP04, PU03].

The formal basis for RONs is given in [HME05], where high-level nets with nets and rules as tokens are defined
algebraically, based on algebraic high-level nets [PER95]. Here we present a visual editor for RONs which has been
developed in a student project at the TU Berlin in summer 2007. The visual editor itself has been realized as a plug-
in for ECLIPSE using the ECLIPSE Modeling Framework (EMF) [EMF06] and Graphical Editor Framework (GEF)
[GEF06] plug-ins. In RONs, as presented in this paper, the algebraic operations defined for rule applications and
transition firing are modeled as special RON-transition types which have a fixed firing semantics. This facilitates
the implementation of the RON editor and simulator since no parser for algebraic specifications is needed. It turned
out that the four RON-transition types are adequate to model various interesting examples. More information on
RONs, case studies and downloads of the RON tools are available on our RON homepage [RON07].

Section 2 introduces RONs along the running example of distributed producers/consumers. After a brief
overview of the ECLIPSE Graphical Editor Framework, the milestones of the students’ project and the different
parts of the RON tool are explained in Section 3. Section 4 gives an outlook on future extensions of the tool.

2 Reconfigurable Object Nets: An Example

In our example RONs are applied to model a distributed system of producers and consumers where several produc-
ers and consumers may interact with each other. In the initial state of the sample RON in Fig. 1 potential producers
and consumers are distributed on different Net places as independent object nets without interaction. Producer

Figure 1: Distributed Producers/Consumers modelled as RON

nets may fire, e.g. they can produce items and place them on the buffer place. Firing in object nets is triggered
by firing a RON transition of type FIRE, which takes one object net with marking M from the Net place in its
pre-domain and puts the same object net, now marked by one of the possible successor markings of M , into all of



its post-domain places. For producer-consumer interaction, a producer net can be merged with a consumer net by
firing the RON transition ProdMeetsCons of type APPLYRULE. A transition of this type takes an object net from
each of the pre-domain Net places, a rule from the pre-domain Rule place, applies this rule to the disjoint union of
all the taken object nets and puts the resulting net to all post-domain Net places. The rule merge-PC, depicted in
Fig. 2, glues a producer object net and a consumer object net by inserting a connect transition between both buffers.
A so-called negative application condition (NAC) forbids the application of the rule if there already exists a connect
transition. Note that the transition ProdMeetsCons controls which producer interacts with which consumer.

By firing the FIRE transition Deal, in the glued net the consumer now can consume items produced by the
producer as long as there are tokens on the place Prod-Buffer. Moreover, the producer may also produce more items
and put them to the buffer. After the deal has been finished, the nets are separated again by firing the APPLYRULE
transition Disconnect. This applies rule separate-PC in Fig. 2 to the glued net which deletes the connect transition
from the net.

Figure 2: Rules for gluing and for separating a producer and a consumer net

Note that the resulting net, which is put on place Prod/Cons, is still one single object net which consists of two
unconnected components. In order to split these components into two object nets, a transition of type SPLIT has to
be fired. Firing RON transition FinishMeeting results in two separate object nets on place Prod and Cons. In a last
step, the now separated producer and consumer nets are returned to their initial places by firing the STANDARD
transitions ProdLeaves and ConsLeaves. STANDARD transitions simply remove a net token from each pre-domain
place and add the disjoint union of all removed object nets to each of the post-domain Net places. In our example,
this means that the STANDARD transitions may also put the object nets back to the “wrong” initial place. It is
possible to avoid such behaviour by using APPLYRULE transitions instead where rules check the object nets for the
occurrence of a producer or consumer place, respectively.

3 An Editor for RONs

Conceptually, the visual editor for RONs is divided into four main components which were scheduled to be imple-
mented in four milestones, building on each other, each resulting in software which could be run and tested. Hence,
the project consisted of short development cycles leading to fast results and error recognition.

Similar student projects dealing with the development of visual editors as ECLIPSE plug-ins have been carried
out by our research group for some years now. It emerged that after a short period of getting used to GEF the
students could concentrate on devising and implementing advanced domain specific editing features.

In addition to the usual advantages like Java’s platform independence and ECLIPSE being a powerful IDE and
available as open source we could make use of ECLIPSE’s highly extensible plug-in architecture. We employ
the ECLIPSE Modeling Framework (EMF) to automatically generate data model code for the editor from class
diagrams and to handle persistence operations.

The Graphical Editor Framework (GEF) provides means of implementing a visual editor based on the Model-
View-Controller pattern relying on ECLIPSE’s Standard Widget Toolkit (SWT). It supports many operations and
features common to most graphical editors like zooming, various layouting of figures, support for drag & drop etc.



To prevent the students from struggling with ECLIPSE’s internal details especially at the beginning of the project
we provided an abstract framework of an editor demonstrating several concepts and techniques ECLIPSE and GEF
offer, e.g. graphical views showing multiple models for rules.

In the following, we present the results of the four milestones, i.e. the RON tree view based on the EMF model
for RONs, and the visual editors for object nets, for transformation rules and for high-level nets with the four
transition types FIRE, APPLYRULE, SPLIT and STANDARD. Fig. 3 shows a screenshot of the RON editor showing
all views and editors.

RON Tree View. View 1 in Fig. 3 shows the main editor component, a tree view for the complete RON model
from which the graphical views can be opened by double-click.

Figure 3: The RON Environment for Editing and Simulating Reconfigurable Object Nets



Object Net Editor. The first component to be implemented was a graphical editor for object nets, i.e. the net
tokens on the RON’s net-typed places. This component is actually a place/transition net editor, allowing the simu-
lation of firing transitions. Its implementation could be reused for the rule editor and the RON editor as well. An
object editor panel is shown in Fig. 3, View 2 , holding the object net ProdCons, which models producer-consumer
interaction.

Transformation Rule Editor. In the second milestone the RON framework was extended by an editor for trans-
formation rules. It mainly consists of three editor panels, one for the left-hand side (LHS), one for the right-hand
side(RHS) and one for a negative application condition(NAC) (see view 3 in Fig. 3). Each editor panel is basi-
cally an object net editor itself, but with the additional possibility to relate the object nets by defining mappings on
places and transitions. Mappings are realized by the mapping tool of the rule editor that allows the matching of
LHS objects to RHS or NAC objects to indicate which objects are preserved by the rule. In the editor, mappings
are indicated by corresponding object colouring. In order to ensure that the mapping specified by the mapping tool
is also a valid Petri net morphism, it is checked for each mapped transition that all places in its pre- (post-)domain
in the LHS are mapped to the corresponding places in the pre- (post-)domain of in the RHS. Another restriction is
that all rules are injective, so different LHS objects must be mapped to different RHS objects. Note that the object
net ProdCons in Fig. 3, View 2 , is the result from applying rule mergePC to two object nets Prod1 and Cons2
from the places Producers and Consumers, respectively. (For the situation before the rule is applied, see Fig. 1).

High-Level Net Editor. The third extension of the RON editor involved editing of high-level nets which control
object net behaviour and rule applications to object nets. Such a high-level net is drawn in the RON editor panel,
shown in Fig. 3, View 4 . Here, NET places carrying object net tokens are blue containers marked by an “O” for
Object Nets. RULE places carrying transformation rules are green containers marked by an “R” for Rules. Each
transition type has a special graphical icon as visualization: for FIRE, for APPLYRULE, for SPLIT,
and for STANDARD. Enabled RON-transitions are coloured, disabled ones are gray.

Simulation of RONs. A RON transition is fired when double-clicked. The simulation of firing transitions of
kinds STANDARD, FIRE, and SPLIT has been implemented directly in the editor. In order to simulate firing of
APPLYRULE transitions, internally the RON editor was extended by a converter to AGG, an engine to perform and
analyze algebraic graph transformations [AGG]. If the user gives the command to fire an APPLYRULE transition he
has to select the rule and the object net token(s) in the pre-domain the rule should be applied to. This is realized in
the user interface shown in Fig. 3, View 4 , by ordering the tokens in the corresponding NET and RULE containers
in a way that the uppermost tokens are the ones considered by the rule application. Furthermore, the user is asked
for a match defining the occurrence of the rule’s left-hand side in the selected object net. Optionally, AGG can find
or complete partial matches and propose them to the user in the RON editor. With the selected rule, match, and
object net AGG computes the result of the transformation which is put on the post-domain places according to the
firing semantics explained in Section 2.

4 Conclusion and Ongoing Work

Modelling mobile and distributed systems requires a modelling language which covers both, change and coordina-
tion. RONs meet these conditions and we have shown its power on a reduced but instructive example modelling
interaction between producers and consumers. The abstract high-level net controls the flow, selection and use of
object tokens being object nets but also rules for reconfiguration. Thus the details on the object level are hidden in
these tokens such that they can be modelled separately keeping the view on the high-level net concise.



Currently, RONs use specialized transitions in the high-level view, but we intend to extend the presented editor
to cover full algebraic high-level nets, such that a high-level transition is controlled by firing conditions and arc
inscriptions consisting of terms and attributes. Furthermore, rule specification shall be extended to cope also with
P/T net morphisms which are not injective. This would allow net transformations like gluing and cloning while
RONs are restricted to connecting object nets via new P/T net transitions. Additionally, we plan to allow tokens in
rules, such that a rule application will depend on the presence of tokens, i.e. on the state of an object net. Finally,
the editor for RONs shall be extended by analysis features like a check of conflicts between object net transition
firing and rule application according to [EHP+07].

References
[AGG] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation. EATCS
Monographs in Theoretical Computer Science. Springer Verlag, 2006.

[EHP+07] H. Ehrig, K. Hoffmann, J. Padberg, U. Prange, and C. Ermel. Independence of net transformations and token
firing in reconfigurable place/transition systems. In Proc. Conf. on Application and Theory of Petri Nets and
Other Models of Concurrency, volume 4546 of LNCS, pages 104–123. Springer, 2007.

[EMF06] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.2.0, 2006. http://www.eclipse.org/emf.

[EP04] H. Ehrig and J. Padberg. Graph grammars and Petri net transformations. In Lectures on Concurrency and Petri
Nets, volume 3098 of LNCS, pages 496–536. Springer, 2004.

[For06] ForMAlNET. DFG Project, Technical University of Berlin. Formal Modeling and Analysis of Flexible Processes
in Mobile Ad-hoc Networks, 2006. http://www.tfs.cs.tu-berlin.de/formalnet.

[GEF06] Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) – Version 3.2, 2006. http://www.eclipse.org/
gef.

[HME05] K. Hoffmann, T. Mossakowski, and H. Ehrig. High-Level Nets with Nets and Rules as Tokens. In Proc. Conf. on
Application and Theory of Petri Nets and other Models of Concurrency, volume 3536 of LNCS, pages 268–288.
Springer, 2005.

[PEH07] J. Padberg, H. Ehrig, and K. Hoffmann. Formal modeling and analysis of flexible processes in mobile ad-hoc
networks. EATCS Bulletin, 91:128–132, 2007.

[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation systems. Mathematical Structures
in Computer Science, 5:217–256, 1995.

[PU03] J. Padberg and M. Urbášek. Rule-Based Refinement of Petri Nets: A Survey. In Ehrig et al. Advances in Petri
Nets: Petri Net Technology for Communication Based Systems, volume 2472 of LNCS, pages 161–196. Springer,
2003.

[RON07] Student’s Project. TFS, Technical University of Berlin. Reconfigurable Object Nets, 2007. http://www.tfs.cs.
tu-berlin.de/roneditor.

[Val98] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In Proc. Conf. on Application
and Theory of Petri Nets, volume 2987 of LNCS, pages 1–25. Springer, 1998.


