
Integration of Object-oriented

Behaviour-modelling Techniques

Holger Lewin

4th April 2007





Abstract: In this diploma thesis I will de�ne the complex modelling technique CUML
that contains the behaviour-modelling techniques CActivities and CNSDs. Integration
of these techniques is achieved through model transformation to a common semantical
domain. Both model transformation and the semantical domain language L3 are de-
�ned in this thesis. Although the de�nition of the Uni�ed Modeling Language (UML)
lacks formal semantics, there are many approaches to formalize semantics for the single
sublanguages of the UML by mapping to a semantical domain. Nevertheless there is
no approach de�ning formal semantics to a set of UML sublanguages that would allow
complete modelling of object-oriented software systems. Such an approach would require
the semantical integration of di�erent behaviour modelling techniques.
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1 Introduction

With the Uni�ed Modeling Language (UML) as an accumulation of the most popular
semi-formal visual languages for specifying object-oriented software systems, the present
day software engineer has a wide variety of behaviour-modelling techniques to choose
from. In the context of Model Driven Architecture (MDA), however, it is no longer
su�cient to model a system's behaviour from di�erent views i.e. with di�erent types of
diagrams. The more complex a system is and the larger the number of persons or di�erent
enterprises sharing the modelling process, the more important becomes the integration of
the di�erent views of the model, with the objectives of model checking, making statements
about model properties and last but not least automated code generation. This requires
a common formal semantics for all modelling techniques used in the model.
The UML De�nition [6] lacks a complete formal semantics. The following two ap-

proaches could �ll this gap: First, the informal and intuitive semantics de�ned in [6]
could be enhanced to be formal. Sadly, the current condition the UML is in seems to
make this impossible: The UML Superstructure is full of the so called "semantic vari-
ation points" that leave the precise semantics of many concepts to the implementation
platform. Further, it is impossible to formalize the intuitive semantics of UML Activities
inherited from Petri Nets: In [18] it is shown, that there is no form of Petri Nets that
is able to cover all the features of UML Activities yet. A second approach is to de�ne
formal semantics for essential views of the UML, as described in [11]: Formal semantics
are de�ned for a bunch of UML sublanguages that together allow a complete speci�ca-
tion of a system (e.g. Class Diagrams and Statecharts) and form the 'essential' UML.
Diagrams of other kinds can be seen as projections out of the essential part of a model.
Nevertheless it would be necessary to de�ne a common formal semantics for the UML
sublanguages contained in the essential part.
This need to integrate the essential views in order to speci�y common formal semantics

gives rise to the concept of a complex modelling technique introduced in [8]. This complex
modelling technique consists of techniques for structure modelling, and constructive and
descriptive behaviour modelling.

My diploma thesis deals with the integration of the constructive behaviour modelling
techniques of a complex modelling technique on the syntax level. First of all, a com-
plex modelling technique has to be de�ned. [8] proposes CUML as such a technique,
that contains UML Activities and Nassi-Shneiderman Diagrams as constructive behav-
iour modelling techniques. Since CUML is only introduced informally in [8], a formal
syntactical de�nition has to be given �rst. To take up the idea of an essential UML
(see above), I will de�ne CUML as a UML subset by a UML Pro�le in Chapter 2. This
subset contains UML Class Diagrams, UML Actions and UML Activities. Since Nassi-
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Shneiderman Diagrams are not part of the UML, I will de�ne them as a concrete syntax
for a subset of UML Activities.

The integration of the constructive CUML techniques CActivities and CNSDs is achieved
by transformation of CUML models to a semantical domain language. In Chapter 3, I
will motivate and de�ne the Low-Level-Language L3, that has been introduced informally
as a semantical domain for CUML in [8].

My de�nition of the model transformation from CUML to L3 is the issue of Chapter 4.

1.1 MOF and Graph Transformation

The Meta-Object Facility (MOF) is a standard of the Object Management Group (OMG)
for Model Driven Architecture (MDA). Since the languages CUML and L3 are de�ned
using MOF, I will give a short introduction here.

instantiates

Model

instantiates

instantiates instantiates

instantiates
instantiates

Examples:

Meta Model

Model

Real World

MOF Architecture

instantiates

Meta−Meta

instantiates

instantiates

instantiates

instantiates

Metamodel

States of

UML

UML Model

L3

L3 Model

M3 Layer

M2 Layer

M1 Layer

M0 Layer

MOF

Object Structure

Figure 1.1: MOF: 4-layer Architecture

MOF provides a metamodelling architecture consisting of the four layers of models
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depicted in Figure 1.1.
The MOF Metamodel at the M3 layer is actually a meta-meta model describing itself,

which is indicated by the "instantiates"-arrow from and to the M3 icon. This M3 model
is used as a language to describe meta models at the M2 layer as its instances. Examples
of M2 models are the UML and the language L3 introduced in this thesis. The models
that instantiate the M2 models are e.g. a UML model or an L3 model at the M1 layer
that describe e.g. an object-oriented software system. An execution of this system at
runtime is a model placed at the M0 layer.
The intended purpose of MDA is to simplify software development processes and im-

prove the quality of software. This is achieved by formally de�ned models and automated
model transformation. The MOF-de�ned modelling languages - the meta models at the
M2 layer - allow the development of such formally de�ned models1. Transformations of
these models are de�ned at the M2 layer. The models at the M3 layer can be understood
as the input for such a model transformation.
The most popular approaches for MOF model-to-model transformation are the graph

transformation-approach and relational approaches based on the OMG's relational Query/
View/Transformation (QVT) standard. A comparative study of a graph transformation-
based and a relational approach is shown in [13].
For the de�nition of the model transformation from CUML to L3, I will use typed at-

tributed graph transformation. In this approach, the transformation rules refer directly
to instance speci�cations of the meta models of CUML and L3, and de�ne the transfor-
mation in an operational way, which is more convenient for the documentary application
in Section 4.2 than the relational approach. typed attributed graph gransformation of
MOF-based models is formalized in [7].
I will give an intuitive introduction to typed attributed graph transformation by the

little example below. For a formal introduction and deeper insight in the theoretical
foundation of graph transformation consult [10].

0..1

Operation

Activity

Class

Type

ownedOperation
*

class

*
ownedAttribute

class

0..1 0..1

method

specification0..1

0..*

Property
name: String

type

Figure 1.2: Abstract Syntax: CUML Classes

The rule example in Figure 1.3 is de�ned on the abstract syntax of Class Diagrams

1Whereby only the syntax of these models is formally de�ned in the case of UML.
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(see Figure 1.2). Graph transformation rules are visualized as consisting of three parts:
A left-hand-side (LHS), a right-hand-side (RHS) and an arbitrary number of negative
application conditions (NACs). The object structure of the RHS is the quali�cation of
rule application. The rule is executed on every part of the model that matches with this
pattern. So in the context of the example rule, every instance of Operation named init
that is owned by an instance of Class is replaced by an instance of Operation named
similar to the class instance.

name = n

c:Class
name = n

c:Class

LHS:

NAC:=RHS

ownedOperation ownedOperation

RHS:

name = "init"

o:Operation
name = n

:Operation

Figure 1.3: Rule Example

The object structure of the RHS indicates that o:Operation is deleted from the model,
because there is no object with the identi�er o. Deleted objects are depicted red, which
has no formal meaning. The object c:Class appears in both the LHS and the RHS and is
therefore preserved by the rule. Objects appearing only in the RHS are created, like the
operation named init in the example. Objects created by the rule are depicted green,
which is no formalism either. NACs are object structures that can prevent the rule from
being applied on a certain match found in the model. The NAC of the example rule -
which consists of the same object structure as the RHS - indicates, that the rule will not
be applied for a certain class, if there is already an operation with the same name as the
class.

1.2 UML Pro�les and Stereotypes

The UML Superstructure [6] contains the pro�ling mechanism to adapt UML metaclasses
to di�erent purposes, which includes the ability to tailor the UML meta model to di�erent
platforms. A popular example is the adaption of UML components to Enterprise Java
Beans. Such adaptions are grouped in a so-called UML pro�le.

CUML is a restricted form of UML and can therefore be de�ned as a UML pro�le.
This pro�le consists of constraints that are expressed on the UML metaclasses, and of
stereotypes that extend the UML metaclasses. Therefore I will give a short introduction
to the UML pro�ling mechanism, concentrating on stereotypes.
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In a UML pro�le, the metaclasses of the UML Superstructure can be extended by use
of the UML metaclass Stereotype, which is a specialization of Class itself2. Therefore a
stereotype can have properties, that are referred to as tagged values. I will describe the
pro�ling mechanism by use of the CUML stereotype Argument.

parameter

CallOperationAction

OutputPin InputPin

Operation

Argument
<<stereotype>>

Parameter

*
argument0..1

target*
result

0..1 0..1

operation

ownedParameter

Figure 1.4: Abstract Syntax: CallOperationAction

The abstract syntax in Figure 1.4 shows that the stereotype Argument extends the
UML metaclass InputPin. The extension relation is depicted as an arrow pointing from
the stereotype to the metaclass with a �lled arrowhead. If the extension would be anno-
tated with the keyword "required", every instance of InputPin in a model that uses the
pro�le had to be extended by an instance of the stereotype Argument.

parameter

i:InputPin a:Argument

p:Parameter

baseClass

Figure 1.5: Instance Speci�cation: Extended InputPin

The instance speci�cation in Figure 1.5 shows an instance of InputPin extended by
an instance of Argument : The extension relation of the pro�le results in a link be-

2Consult [6] for the abstract syntax of the UML metaclasses contained in the package Pro�les.
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tween the stereotype instance and the metaclass instance, whereas the metaclass in-
stance is available to the stereotype instance at the baseClass link end. The property
Argument::parameter results in the tagged value identifying an instance of Parameter.
The stereotypes and constraints of the UML pro�le, that are introduced during the

discussion of CUML in Chapter 2, are summarized in the appendix in Section 6.2.

1.3 Running Example

I will use a running example for the introduction of the concrete syntax of CUML tech-
niques. A data model for �nite automata will serve as example for a structure model
(see Figure 2.4). Furthermore I will model simple operations on this structure via the
CUML behaviour modelling techniques introduced in Chapter 2 to form an example
CUML model including CClassDiagrams, CActivities and CNSDs.
The results of the transformation of the example class diagram and some of the example

operation speci�cations will document the semantical domain language L3 and the model
transformation from CUML to L3.

1.4 Referred Language Speci�cations

The description of CUML in Chapter 2 frequently refers to the UML 2.1 Superstructure
[6].

1.5 Legend

Text written in Typewriter typeface refers to an OCL expression:
context c inv:

[OCL]

Text written in italics refers to a UML namespace: Kernel::Classi�er

Text written in boldface refers to a value: true

1.6 Tools

This document was created using LATEX. For editing CUML Class Diagrams, CUML
Activity Diagrams, the concrete syntax diagrams of CUML and L3 and the rules of
the model transformation, I have used X�g, which is a drawing application for the X
Windows system. For the CNSD diagrams I have used the latex package StrukTEX.
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2 CUML - Complex Modelling Technique

The Comprehensive/Compact Uni�ed Modelling Language (CUML) as sketched in [8]
is a subset of UML2.0 - if you just consider the abstract syntax of the visual languages
contained. CUML consists of a technique for modelling the structure of a system -
CUML Class Diagrams -, and techniques to model the behaviour constructively - CUML
Activities and CUML Nassi Shneiderman Diagrams (CNSDs), based on the classical
Nassi Shneiderman Diagrams, a well-known informal modelling technique.

The need to restrict the UML for the concrete modelling of software systems arises
from the fact that the UML has to serve multiple purposes. During the development
process of a software system, the behaviour model can be placed on many di�erent levels
of abstraction. With the UML it is possible to express the state of the behaviour model
on each of that levels. Sometimes some aspects of the model are more important than
others: with di�erent kinds of diagrams the UML is able to give di�erent views on the
model. CUML however is designed to specify an object oriented software system on the
lowest level of abstraction with the objective to be able to generate executables for certain
platforms. Therefore comprehensive information about the model on the most concrete
level is required in a CUML model, what leads to the restriction to Class Diagrams and
Activities in CUML.

CNSDs are formally introduced to CUML as concrete syntax for a restriction of UML
Activities. Considering CNSDs one might ask why not use the UML directly instead of
introducing new visual languages for behaviour modelling by tracing them back on UML
concepts? Of course the CNSDs introduced in this chapter are no enrichment of the
UML, but a way to encapsulate constructs of UML Activities that are used frequently.
UML Activities use a token concept for modelling data �ow, similar to the token �ow
of Petri Nets. Especially this informal token semantics is a disadvantage of the UML
Activities. Besides the semantical problems already stated in the introduction in Chapter
1, exact modelling of data �ow leads to the following problems: The activity diagrams
contain a lot of elements that manage token �ow (object nodes, object �ow edges) and
obstruct the view on the main purpose, i.e. the action organization. Further most of the
modelers are used to think data �ow in terms of program code, i.e. access to variables
or attributes, which is very di�erent from the token concept in UML Activities. CNSDs
are designed to solve these two problems: By encapsulating the data �ow in the abstract
syntax, data �ow can be modeled by variable access, so the modeler has not to deal with
token �ow in the concrete syntax, which concentrates on the action organization. This
makes it a lot easier to edit the CActivities, as will be seen from the examples.

In the �rst section of this chapter I will give a short description of CUML Class
Diagrams. Although the structural part of CUML is out of the scope of my thesis, I will
need the structure to rely on when introducing CUML Activities in Section 2.2. Section
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2.3 deals with the CUML Nassi-Shneiderman diagrams as an alternative concrete syntax
for CUML Activities. CUML is described in this chapter by abstract syntax diagrams
of the UML containing the CUML stereotypes. The structure of the abstract syntax of
UML is �attened, i.e. features of abstract superclasses are pulled down to their concrete
subclasses. This might increase the readability for the reader who is not familiar with
the UML metaclass hierarchy. The restrictions of UML to CUML are described by OCL
Constraints. The UML stereotypes and OCL constraints in this chapter form the UML
Pro�le for CUML that can be found in the appendix in Chapter 6.

2.1 CUML Class Diagrams

In order to model the dynamic part of an object-oriented software system, a model of
the static structure is required. Hence I will give a short introduction to CUML class
diagrams �rst. Since my thesis deals with behaviour modelling in the �rst place, the
version of CUML Class Diagrams introduced here only serve the purpose of assigning
properties and operations to a certain class. A more sophisticated handling of the issue
considering such features as inheritance and polymorphy is out of scope and left for future
work.

0..1

Operation

Activity

Class

Type

ownedOperation
*

class

*
ownedAttribute

class

0..1 0..1

method

specification0..1

0..*

Property
name: String

type

Figure 2.1: Abstract Syntax: CUML Classes

Figure 2.1 shows the abstract syntax of CUML Class Diagrams. Since there are no
Interfaces in a CUML model, every Operation or Property has to be owned by a certain
Class. The behaviour of an Operation has to be speci�ed by a CUML Activity. This
leads to the following constraints in the UML Pro�le:

• Every instance of Classi�er is instance of Class.

context Classifier inv:

self.allInstances()->forAll(oclIsTypeOf(Class))

• Every Operation must be owned by a class.

context Operation inv:
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self.class->size() = 1

• Every Property must be owned by a class.

context Property inv:

self.class->size() = 1

• There is exactly one Activity for every particular pairing of an implementing Class
and an Operation.

context Communications::Operation:

inv: self.class->size() = 1 implies

self.method->select(m | m.oclIsTypeOf(Activity))->size() = 1

• There are no autonomous activities, i.e. every activity is associated with a classi�er
as its context.

context StructuredActivities::Activity inv:

self.context->size() = 1

According to the idea of CUML as a comprehensive subset of the UML, we require
maximum signi�cance of the modeled structure: as a matter of course, every Class
referred to in the model has to be given, as well as every Property or Operation of these.

isStatic: Boolean

Type ValueSpecification

name: String

isUnique: Boolean

isOrdered: Boolean

type
upperValue

lowerValue

Property

Figure 2.2: Abstract Syntax: Property

The lower and upper bounds of aMultiplicityElement (such as a Property or Parameter
of an Operation, see Figure 2.2) have to be expressed as an integer and unlimited natural
respectively, so speci�cation of these bounds through expressions that could only be
evaluated to runtime can be avoided.

• Lower and upper bound of a MultiplicityElement have to be expressed as integer
and unlimited natural respectively.

context Kernel::MultiplicityElement inv:

self.lowerValue.oclIsTypeOf(LiteralInteger) and

self.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)
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The UML contains the primitive data type UnlimitedNatural to provide a way to
express an unlimited number designated by the character '*' in the concrete syntax. To
avoid the appearance of the type UnlimitedNatural where it is not necessary i.e. where the
information can be expressed using the type Integer, I restrict the use of UnlimitedNatural
to the following points:

• Instances of LiteralUnlimitedNatural are only allowed as speci�cation of a Multi-
plicityElements upper bound, the capacity of an ObjectNode or the weight of an
ActivityEdge.

context LiteralUnlimitedNatural inv:

self.allInstances()->forAll(n |

MultiplicityElement.allInstances()->exists(upperValue = n) or

ActivityEdge.allInstances()->exists(weight = n) or

ObjectNode.allInstances()->exists(upperBound = n))

0..1

TypeValueSpecification

operation

*
ownedParameter

Parameter

<<enumeration>>
ParameterDirectionKind

isStatic: Boolean

Operation
name:String

name:String

direction: ParameterDirectionKind

type
0..1upperValue

in
out
inout
return

Figure 2.3: Abstract Syntax: Operation

As can be seen from the abstract Syntax of Operation in Figure 2.3, an operation
owns a number of Parameters. In CUML, it is required that a parameter is owned by an
operation, since there are no other behavioural features in CUML than operations.
Another interesting point is the enumeration type ParameterDirectionKind : it provides

the enumeration literals in, out, inout and return, and [6] tells us about the semantics
of ParameterDirectionKind, that a parameter can be passed in, out or in and out of a
behavioural element. If the behavioural element is an operation, it can have one return
parameter. This is a rather poor semantical statement in my opinion. I would expect
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that di�erent kinds of parameters are used to indicate how the values, that are passed
to or from the behaviour by use of a parameter, are handled within the behaviour.
Further the semantics of ParameterDirectionKind in the context of an operation being
the parameterized behaviour is even more unclear.
For CUML, I propose the following semantics of ParameterDirectionKind : out para-

meters do not occur in CUML, since the only parameterized behaviours are operations
and therefore return parameters the only way to pass an object or value out of a behav-
ioural element. An in parameter indicates that the object passed to the operation must
not be changed during operation execution, i.e. the operation has no side-e�ects on this
parameter. Accordingly, an inout parameter indicates side-e�ects on a parameter.

• Every Parameter is owned by an Operation.

context Parameter inv:

self.allInstances().operation->size = 1

• ParameterDirectionKind is restricted to: in, inout and return.

context Parameter inv:

self.direction = in or self.direction = inout or

self.direction = return

As the abstract syntax diagrams show, TypedElements like Property or Parameter do
not have to be typed. In CUML, however, typing of TypedElements is required, what
leads to another constraint:

• Every TypedElement has a type.

context TypedElement inv:

self.allInstances().type->size = 1 or

self.oclIsTypeOf(InputPin)

Some features of the UML require typelessness of typed elements (e.g. TestIdentity-
Action in 2.2.2). To work around this, CUML assumes a common super class for all
classes that are not given any explicit super class in the model. This is common to mod-
ern object-oriented programming languages like Java, and according to those the CUML
root class is called Object. All the Constraints above are part of the UML Pro�le for
CUML: see 6.2.1.

Figure 2.4 shows the class diagram of the running example. There is one package,
named automaton, that contains all classes - Automaton, State, Transition, IO. All classes
except IO have constructor operations that are, needless to say, static operations, which is
indicated by the underlining of the operations. All operations are modelled completely,
i.e. with all their parameters and return type. An automaton consists of states and
transitions, and therefore the class Automaton is associated to the classes State and
Transition via composition associations. This special kind of association indicates, that,
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to use the running example, instances of Automaton are responsible for the lifecycle of
State- and Transition-objects, i.e. these are created and deleted only by Automaton-
objects. The example diagram contains a �use�-dependency to indicate that within the
class Automaton the class IO is used (e.g. calls of IO-operations, access to IO-attributes).

deleteState(name:String)

Automaton():Automaton

addState()
adaptName(name:String):String
addStateWithName(name:String)
nameAllocated(name:String):Boolean

State():State Transition():Transition

states transitions

automatonautomaton

Automaton

automaton

*

Transition

*

State *

*target

stateError(input: State)

source

<<use>>

getStateName(): String

IO

Figure 2.4: CClassDiagram: automaton.

Since the structural part of CUML is out of scope, CUML Class Diagrams are intro-
duced in a basic version here. A more sophisticated version should feature interfaces,
abstract classes and features, visibility etc.
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2.2 CUML Activities

In CUML, Activities are the core technique for modelling behaviour. In a CUML
model the responsibility of a classi�er for its owned behaviour - i.e. what methods have
to be implemented by a class - is de�ned in the structural part by CUML ClassDiagrams.
The behaviour of every concrete method declared in the structural part of the modelling
technique via CClass diagrams has to be associated with exactly one CActivity in the
constructive part 1.So the technique for modeling the methods of a certain class should
focus on the �ow of data/objects and control. Therefore Activities are the technique of
choice.

CUML Activities (CActivities) are a true subset of the UML Activities. This is due
to a number of requirements that have to be full�lled in the special application area of
CUML. As stated before, CActivities will be used to model the behaviour of an object-
oriented software system on the most concrete level of abstraction, so only some of the
concepts of UML Activities are useful.

In this section I will give a short introduction to the abstract and concrete syntax and
the semantics of the features of UML Activities used in CUML Activities.

The semantics of UML Activities, like of every other kind of UML diagram, contain
the so-called 'Semantic Variation Points': The precise semantic is often left to the im-
plementation platform, since the UML is placed on a more general stage of abstraction.
Nevertheless would it be necessary to show the conformity of the semantics of UML and
the formal semantics of CUML once it is constituted.

The behavioural semantics of UML Activities that is part of the UML Superstructure
[6] is partly inherited from Petri Nets. The most simple Petri Nets consist of a directed
graph of places and transitions as nodes. A behavioural semantics is achieved by the �ow
of so-called tokens along the edges. The token can stand for the focus of control, or, in
more sophisticated versions of Petri Nets, for data. So it is possible to model the �ow of
control and data by use of token �ow. Accordingly, there are two kinds of token in UML:
control token and data token. The rules by which the token �ow in UML Activities is
de�ned are introduced below, but I will not give a detailed description, the more so as the
formal semantics of Petri Nets has been adopted in an informal and intuitive way, so that
the semantics of UML Activities is far from being well-de�ned at all: While a mapping
from UML Activities to Colored Petri Nets can be given for a basic version of UML
Activities (see [17]), there is no version of Petri Nets that could serve as a semantical
domain for the complete UML Activities yet (see [18]).

Anyway, the semantics of UML is out of the scope of my thesis and so I will give only
a slight overview of the semantics of UML Activities. For a deeper insight consult [6].

Possibly because some of the features of UML Activities were introduced to UML for
reengineering purposes, i.e. to allow creating an UML model from existing source code,
there is no notation speci�cation for these features in the UML Standard [6]. For these
features including VariableAction, StructuralFeatureAction, TestIdentityAction et al. I

1Note that an Operation, if owned by an Interface, possibly will be implemented by more than one
method.
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will give my own notation. Furthermore the colouring of the CActivities are neither part
of the UML standard nor of CUML.

name: String

return: Stringname: String

name: String

<<AddVariableValue>>
b: Boolean

[b=false]

[b=true]

return: String

name: String

return: Boolean

self.adaptName

self.nameAllocated

IO.getStateName

self.addStateWithName

self.addStateWithName

Figure 2.5: CActivity Diagram: Automaton.addState.
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state: State

return:State

[else] [s = null]

name: String

name: String

target: State

value: State

IO.StateError

result: State

result: State

<<ReadVariable>>
s: State <<ReadVariable>>

s: State

State.deleteOutgoingTransitions

input: State

target: State

State.deleteIncomingTransitions

self.deleteState

self.getStateFromName
s: State

<<WriteVariableValue>>

Figure 2.6: CActivity Diagram: Automaton.deleteState.

The CActivity Diagrams in Figures 2.5 and 2.6 show the behaviour modelling of two op-
erations from the CClass Diagram (2.4): Automaton.addState undAutomaton.deleteState.
In the following short introduction to CActivities I will explain the elements contained
in the diagrams.
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2.2.1 Activity

An Activity mainly consists of Actions, ControlFlow to organize the execution of action,
and ObjectFlows to model the �ow of objects and data from and to actions and in and
out of the Activities.

*

ActivityNode

Activity

ActivityEdge

Variable

0..1
activity

*
node

0..1
activity

*
edge

0..1
activityScope

variable

Figure 2.7: Abstract Syntax: Activity

The abstract syntax in Figure 2.7 shows that an Activity has Variables, ActivityEdges
and ActivityNodes. ActivityEdges and ActivityNodes can also be owned by a SequenceN-
ode, which I will introduce later.

lowerValue

Type ValueSpecification

name: String

Variable

isUnique: Boolean

isOrdered: Boolean

type
upperValue

Figure 2.8: Abstract Syntax: Activity Variable

The associated Activity of a Variable is its scope, so for CUML I require every Variable
to be owned by an Activity.

The abstract syntax in Figure 2.9 shows the graph-like structure formed by activity
nodes and edges. An edge is a connection between two activity nodes along which tokens
�ow. An edge is weighted to specify the maximum number of tokens that can �ow
along the edge on each traversal (default weight: 1 ). Activity edges are associated with
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an instance of ValueSpeci�cation as guard (default: true). The guard expression must
evaluate to true for every token to pass along the edge.

weight

ActivityEdge

ControlFlowObjectFlow

ActivityNode

target
*

source
*

ValueSpecification

incoming

outgoing

guard

Figure 2.9: Abstract Syntax: Flows

A ControlFlow is an activity edge along which only control tokens �ow. A ControlFlow
may not have object nodes at either end, except for object nodes with the prede�ned
control type.

An ObjectFlow can have data or object tokens passing along it. Source and target
have to be object nodes.

ActivityNode

ControlNode ObjectNode Action

Figure 2.10: Abstract Syntax: Nodes

As the abstract syntax diagram in Figure 2.10 shows, the nodes are specialized as
ControlNodes, ObjectNodes and Actions.

CActivities contain control structures from UML Activities on the level of Intermediate-
Activities. This level includes modeling concurrent data and control �ow and branching
of data and control �ow. Figure 2.11 shows the hierarchy of control nodes in the abstract
syntax.
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ActivityFinalNode

InitialNode

ForkNode

JoinNode

DecisionNode

MergeNode

ControlNode

SequenceNode

Figure 2.11: Abstract Syntax: ControlNodes

Execution of a CActivity starts with a control token placed on every InitialNode con-
tained by the CActivity directly 2.

...

Figure 2.12: Concrete Syntax: InitialNode

If a token reaches an ActivityFinalNode, the CActivity is terminated. All executing
actions are terminated and the contents of output parameters are passed to the caller.
All other tokens in the CActivity are destroyed. Every ActivityParameterNode that
corresponds to a return parameter is provided a so called null token, which is an object
token that contains no object.

2A StructuredActivityNode like SequenceNode can also contain InitialNodes
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...

Figure 2.13: Concrete Syntax: ActivityFinalNode

DecisionNode allows branching of �ows via case distinction. The outgoing edges are
associated with instances of ValueSpeci�cation as guards. If the guard of an edge evalu-
ates to true, the token is o�ered to the edge. The guard expressions do not have to be
disjoint or complete.

[...]
...

...

...[else]

Figure 2.14: Concrete Syntax: DecisionNode

MergeNode brings together alternate �ows. Tokens from any of the incoming edges are
o�ered to the outgoing edge.

...

...

...

Figure 2.15: Concrete Syntax: MergeNode

A ForkNode is used for concurrent �ows. The token arriving at a ForkNode is dupli-
cated for every outgoing edge.

...

...

...

Figure 2.16: Concrete Syntax: ForkNode
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JoinNode is used to synchronize concurrent �ows. If a token is o�ered to all incoming
edges, a token is o�ered to the outgoing edge.

...

...

...

Figure 2.17: Concrete Syntax: JoinNode

A sequence node is a container for activity nodes. The contained nodes are executed
according to the �ow relation. When a sequence node starts executing, a control token
is o�ered to all nodes without predecessor.

<<SequenceNode>>

...

... ...

Figure 2.18: Concrete Syntax: SequenceNode

Instances of SequenceNode are used to encapsulate parts of an CUML Activity if CUML
Nassi-Shneiderman Diagrams are used as the concrete syntax.
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{redefines StructuredActivityNode::node}

StructuredActivityNode

ActivityNode

ExecutableNode

SequenceNode

ActivityEdge

executableNode

0..1

edge

inStructuredNode inStructuredNode0..1 0..1

node
0..*0..*

0..*

Figure 2.19: Abstract Syntax: Sequence Node

As the abstract syntax in Figure 2.19 shows, a sequence node can contain activity
nodes and activity edges. In the concrete syntax these are the nodes and edges that are
drawn inside the rectangle notation of the sequence node. Further, the nodes linked to the
sequence node via executableNode link ends are executed, when the sequence node itself
starts execution. Since in CUML I use instances of SequenceNode only to encapsulate
abstract activity fragments that correspond to CUML Nassi-Shneiderman statements in
the concrete syntax, the multiplicity of executableNode link ends is restricted to '1' in
the UML Pro�le 3:

• Every SequenceNode has one ExecutableNode of type InitialNode.

context SequenceNode inv:

self.executableNode->size() = 1 and

self.executableNode.oclIstTypeOf(InitialNode)

Figure 2.20 shows the concrete subclasses of the abstract class ObjectNode. An object
node can contain token conforming to the type of the node. An upper bound speci�es the
maximum number of tokens allowed in an object node (default: unlimited). An object
node can have more than one outgoing edge, nevertheless a token can only traverse one
of the outgoing edges.

3CUML Nassi-Shneiderman diagrams are introduced as concrete syntax for CUML Activities in 2.3
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upperBound

ObjectNode

Pin ActivityParameterNode

ParameterOutputPinInputPin

ValueSpecification

parameter

Figure 2.20: Abstract Syntax: ObjectNodes

A pin is an object node that provides input or output to actions. An action that
represents the execution of parameterized behaviour has one pin for every parameter.
Action execution can only start if all input pins contain the required number of object or
data tokens. The required number of tokens for actions executing operations is indicated
by the multiplicity speci�ed for the parameter of that operation. For actions that read or
write attributes or variables, the number of required tokens depends on the multiplicity
of the attribute or variable respectively.

An instance of ActivityParameterNode provides input and output to activities. If the
activity speci�es the implementation of an operation, number and type of the parameter
nodes have to correspond to the parameters of the associated operation.

2.2.2 Actions

An action represents the execution of behaviour. An action is atomic from the point
of view of the activity containing it, although the executed behaviour may be complex.
Pins provide input and output to actions that represent the execution of parameterized
behaviour. There are actions that represent prede�ned behaviour (e.g. TestIdentity-
Action) and actions that can execute behaviour that is part of the model itself (e.g.
CallOperationAction).
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StructuralFeatureAction

CallOperationAction

TestIdentityAction

ValueSpecificationAction

Action

ReadSelfAction

VariableAction

Figure 2.21: Abstract Syntax: Actions

An action execution starts, when all input data is provided via input pins or the action
is activated via control �ow. After the execution all output data is placed on the output
pins of the action. For a detailed description of the behavioural semantics of UML
Activities inherited from Petri Nets consult [6].
An instance of CallOperationAction invokes the execution of a method. Its input pins

correspond to the operation's parameters. A special target input pin takes in the object
the method is called on. After the execution, a token containing the result of the method
is placed on a return pin.

...

...

target:Automaton

...
Automaton.deleteState

<<CallOperation>>

...

name:String

Figure 2.22: Concrete Syntax: CallOperationAction

The abstract syntax in Figure 2.23 shows that instances of CallOperationAction are
linked to an operation. The pins of the action are not explicitly linked to the parameter
for that they are expected to provide the values. Instead the UML Superstructure requires
the pins of the action to conform to the parameters in type, multiplicity and ordering
by natural language constraints. To make the connection explicit in the UML Pro�le for
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CUML, I introduce a stereotype Argument that extends the UML metaclass InputPin and
is associated with the metaclass Parameter. The parameter connected to the extended pin
has the same type and multiplicity as the pin itself, what is ensured by OCL constraints:

�stereotype� Argument

• Metaclass Pin

• Description If the pin is owned by a CallOperationAction, it has to correspond to
a parameter of the operation.

• Tagged Values

parameter: Parameter The parameter the pin provides the values for.

• Constraints

[1] The associated parameter has the same type as the pin.

context Argument inv:

self.baseClass.type = self.parameter.type

[2] The associated parameter has the same multiplicity as the pin.

context Argument inv:

self.baseClass.multiplicity =

self.parameter.multiplicity

parameter

CallOperationAction

OutputPin InputPin

Operation

Argument
<<stereotype>>

Parameter

*
argument0..1

target*
result

0..1 0..1

operation

ownedParameter

Figure 2.23: Abstract Syntax: CallOperationAction
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StructuralFeatureAction is an abstract class for access to structural features of a clas-
si�er such as an attribute or association end. Execution requires an object token as
input identifying the object which feature will be accessed. Concrete subclasses are:
AddStructuralFeatureValueAction for write access, ReadStructuralFeatureAction for read
access and RemoveStructuralFeatureValueAction for removing values from the structural
feature.

result

StructuralFeatureAction

ReadStructuralFeatureAction WriteStructuralFeatureAction InputPin

StructuralFeature

RemoveStructuralFeatureValueAction

AddStructuralFeatureValueAction
isReplaceAll: Boolean

OutputPin

structuralFeature *

object

0..1

value

0..1 insertAt
0..1

0..1

0..1

Figure 2.24: Abstract Syntax: StructuralFeatureAction

Figure 2.24 shows how the action is linked to a structural feature. The strucutural
feature is required to be static in [6]. For an instance of WriteStructuralFeatureAction
the new value to assign is provided by an input pin. The UML Superstructure seems to
be inconsistent in the point of the type of the pin that provides the new value. In the
description it says: "It has an input pin on which the value that will be added is put."
But the correponding constraint requires the same type for the pin and the classi�er
owning the structural feature. I assume this a bug and that the type of the pin at
the value link end has to have the same type as the structural feature. Multiplicity of
the pin has to be 1. If the structural feature is ordered, the insertion point has to be
provided by the input pin at AddStructuralFeatureValueAction::insertAt. Surprisingly,
[6] de�nes no way to access a value of an ordered structural feature at a certain index. If
AddStructuralFeatureValueAction::isReplaceAll is true, all values of the structural feature
are deleted before the new value is assigned. For further semantical details consult [6].
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...

...

object:Automaton

...
Automaton.states

<<AddStructuralFeatureValue>>

...

value:State

Figure 2.25: Concrete Syntax: AddStructuralFeatureValueAction

Figure 2.25: Since [6] does not contain any speci�c notation, the kind of the action is
just indicated by the name of the UML metaclass in brackets.

...

...

...
<<ReadStructuralFeature>>

Automaton.states

object:Automaton

...

result:State[*]

Figure 2.26: Concrete Syntax: ReadStructuralFeatureAction

Figure 2.26: The result pin is of the same type of the structural feature. Its multiplicity
has to be the same as the feature's, or, if the feature is single-valued, can be multi-valued.
[6] claims this to be helpful in the case the multiplicity of the structural feature changes,
because the action model will not be a�ected. However, the token semantics of an activity
highly depends on the upperBound speci�cations of object nodes, so such decisions have
to be made carefully.

...

...

object:Automaton

Automaton.states

...

value:State

...
<<RemoveStructuralFeatureValue>>

Figure 2.27: Concrete Syntax: RemoveStructuralFeatureValueAction

VariableAction is an abstract class for access to variables of an Activity. Concrete
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subclasses are: AddVariableValueAction for write access, ReadVariableAction for read
access and RemoveVariableValueAction for removing values from the variable.

0..1

Variable

ReadVariableAction

VariableAction

WriteVariableAction

OutputPin

RemoveVariableValueAction

AddVariableValueAction

isReplaceAll: Boolean

InputPin

* variable

0..1

0..1

result

value

insertAt
0..1

Figure 2.28: Abstract Syntax: VariableAction

The abstract syntax of variable actions in Figure 2.28 is very similar to the abstract
syntax of structural feature actions, except from the fact that variable actions are linked
to a variable instead of a structural feature. Further a variable action does not need a
target object.

...
<<AddVariableValue>>

...

a: Automaton
...

value:Automaton

Figure 2.29: Concrete Syntax: AddVariableValueAction

According to [6] a variable has to be owned by either an activity or a structured node
(e.g. sequence node). Since in the Low-Level-Language L3 there is no such concept as
a structured node, the UML pro�le for CUML requires a variable to be owned by an
activity, to avoid name con�icts:
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• A Variable must be owned by an Activity.

context Variable inv:

self.activityScope->oclIsTypeOf(Activity)

...

...

<<ReadVariable>>

a: Automaton
...

result:Automaton

Figure 2.30: Concrete Syntax: ReadVariableAction

A variable is only accessible within the activity that owns it. The concept of variables
within activities was introduced to UML for reengineering purposes, i.e. creating an
activity model from existing program source code. While source code variables that
are only written once can be translated to object �ow easily, [6] proposes a complex
mechanism for the general case, including wrapper objects for variables und use of the
metaclass DataStoreNode, which was originally designed for data base storage. This
shows the weakness of the token concept, because it would cause an activity to contain
a lot of functional behavior concerning the data �ow, whereas the UML views should
abstract from that as far as possible and concentrate on the business behaviour of an
application.

...
<<RemoveVariableValue>>

...

...
automata: Automaton[*]

value:Automaton

Figure 2.31: Concrete Syntax: RemoveVariableValueAction

An instance of ValueSpeci�cationAction can be used to evaluate a given value speci�-
cation. After execution, a token containing the result of the evaluation is placed on the
result pin.
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0..1

ValueSpecificationAction

OutputPinValueSpecification

value result

0..1

Figure 2.32: Abstract Syntax: ValueSpeci�cationAction

In the abstract syntax in Figure 2.32, ValueSpeci�cationAction is linked to ValueSpec-
i�cation. The value speci�cation is either a literal of one of the primitive data types of
the UML (Boolean, UnlimitedNatural, Integer, String), or it is an expression that can
be evaluated at runtime to a certain value. A description of CUML expressions follows
in Section 2.2.3.

...

...

...
<<ValueSpecification>>

true

result: Boolean

Figure 2.33: Concrete Syntax: ValueSpeci�cationAction

In Activities two objects can be compared by a TestIdentityAction. If the two object
tokens consumed contain the same object, a token containing the true value is placed
on the result pin. Otherwise the result is false.

0..1

TestIdentityAction

InputPinOutputPin

result
first

second

0..1

0..1

Figure 2.34: Abstract Syntax: TestIdentityAction

The abstract syntax in Figure 2.34 shows how the input objects for the comparison
are provided by input pins. Multiplicity of these pins is '[1..1]' and [6] requires them to
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have no type. Since for type safety CUML requires every typed element to have a type,
in CUML the input pins have the CUML root type Object. This way the case can be
avoided that a token containing a value of primitve type is placed on the input pins: [6]
de�nes no semantics for this case.

• The input pins of a TestIdentityAction have the type Object.

context TestIdentityAction inv:

self.first.type = Object and

self.second.type = Object

The output pin has the type 'Boolean' and multiplicity '[1..1]'. The semantics of
TestIdentityAction is unde�ned for primitive values in [6]. In CUML, every primitive
value is treated as an object and therefore the comparison will return true for the same
values and false otherwise.

secondfirst

......

result: Boolean

...

<<TestIdentity>>

... ...

Figure 2.35: Concrete Syntax: TestIdentityAction

An instance of ReadSelfAction simply returns the object on which the operation im-
plemented by the activity containing the action is called on (host object). In the case
that within an activity an operation is called on the host object, I recommend to indicate
that in the concrete syntax by adding the pre�x 'self.' to the name of the call action for
simplicity. Same for structural feature actions. For an example, see the activity diagram
in Figure 2.6.

OutputPin

ReadSelfAction
0..1

result

Figure 2.36: Abstract Syntax: ReadSelfAction
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The result pin of an instance of ReadSelfAction (see abstract syntax in Figure 2.36)
has the type of the classi�er that is the context of the activity. In CUML, this is the
class that owns the activity.

2.2.3 Value Speci�cations

A value speci�cation can identi�y a value or instance, or can yield a value or instance
when evaluated. Instances of the subclasses of LiteralSpeci�cation identify a value of one
of the primitive types provided by the UML: Boolean, UnlimitedNatural, Integer and
String. The abstract syntax of literal speci�cations in Figure 2.38 shows that there is
further the metaclass LiteralNull to allow the speci�cation of the absence of a value.

symbol: String

ValueSpecification

Property

Variable

LiteralSpecification

Operation

Parameter

*
operand

expression

<<stereotype>>
CallExpression

0..10..1
0..1

0..1

0..1

0..1

operation

property

variable

property

variable

0..1

0..1 0..1

0..1

<<stereotype>>
ValueExpression

ArgumentExpression
<<stereotype>>

Expression

Figure 2.37: Abstract Syntax: ValueSpeci�cation

An instance of Expression must be evaluated at runtime to a certain value. [6] dec-
scribes an expression as a "node in an expression tree". In fact the tree structure consists
of instances of ValueSpeci�cation, as the abstract syntax diagram of value speci�cations
shows (Figure 2.37). Of course the instances of Expression are the only ones to have
children in this tree structure, identi�ed by the link ends that are instances of the Ex-
pression::operand association end.
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value: UnlimitedNatural

LiteralSpecification

LiteralBoolean LiteralInteger LiteralNull

LiteralString
value: String

value: Boolean value: Integer

LiteralUnlimitedNatural

Figure 2.38: Abstract Syntax: LiteralSpeci�cation

The semantical description in [6] seems a bit fuzzy: the only information about an
expression is expressed by its string attribute 'symbol'. On how to evaluate or even check
consistency of an expression tree, it says: "The interpretation of this symbol depends on
the context of this expression.". To achieve a little of syntactical standard for CUML, I
propose three kinds of entities in a UML model an expression should be able to refer to
within an activity: The structural features of the host classi�er, the operations executable
on the host classi�er and the variables of the activity. To make these relations between
the model elements explicit and to avoid string parsing during the model transformation,
the UML Pro�le for CUML contains the following stereotypes:

�stereotype� ArgumentExpression

• Metaclass Expression

• Description If an Expression represents an argument of an operation call, it is
extended by this stereotype.

• Tagged Values

parameter: Parameter[0..1] Parameter of the Operation of which the ex-
pression is an argument.

• Constraints

[1] The associated parameter is parameter of the operation of which this expres-
sion is an argument.

context ArgumentExpression inv:

self.operand.operation.parameter->includes(self.parameter)
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An expression, that is the operand of an expression referring to a parameterized el-
ement, must be extended by an instance of ArgumentExpression. This stereotype is
introduced to the UML Pro�le for CUML to make the relation between the expression
operand and the parameter explicit.

�stereotype� CallExpression

• Metaclass Expression

• Description If an Expression represents an operation call, it is extended by this
stereotype.

• Tagged Values

operation: Operation[1] The Operation which is called.
property: Property[0..1] Attribute of the enclosing Operations Class designat-

ing the object the operation is called upon.
variable: Variable[0..1] Variable of the enclosing CActivity designating the ob-

ject the operation is called upon.

• Constraints

[1] If the corresponding Operation is not static, one of the following Tagged Values
is set: parameter, property, variable.

context CallExpression inv:

not(self.operation.isStatic) implies

(parameter->size() + property->size() + variable->size() = 1)

[2] If the corresponding Operation is static, none of the following Tagged Values
is set: parameter, property, variable.

context CallExpression inv:

self.operation.isStatic implies

(parameter->size() + property->size() + variable->size() = 0)

Any expression that refers to an operation has to be extended by the stereotype Call-
Expression. The stereotype instance identi�es the operation instance via the operation
end and the target object via the property end, if the operation is called on a property,
or the variable end, if the opertion is called on a variable of the enclosing activity.

�stereotype� ValueExpression

• Metaclass Expression

• Description If an Expression represents an attribute, parameter or variable, it is
extended by this stereotype.
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• Tagged Values

property: Property[0..1] Attribute of the enclosing Operations Class containing
the value.

variable: Variable[0..1] Variable of the enclosing CActivity containing the
value.

• Constraints

[1] One of the following Tagged Values is set: parameter, property, variable.

context ValueExpression inv:

self.operation.isStatic implies

(parameter->size() + property->size() + variable->size() = 1)

An expression referring to a property or a variable has to be extended by the stereotype
ValueExpression. The stereotype instance identi�es the property or variable via the
property end or the variable end respectively.

2.3 CUML Nassi-Shneiderman Diagrams

CActivityDiagrams o�er di�erent ways to model behaviour by using control structures
common to modern programming languages. These control structures include di�erent
forms of case distinction, loops etc. But these features de�ned for UML have the following
disadvantages: Using the structured way to model e.g. iteration over a collection by use of
the UML metaclass StructuredActivityNode, the modeler has to deal with token �ow. As
stated in Section 2.2, modeling token �ow is much di�erent from modeling control or data
�ow in program code and leads to complex low level structures that obstruct the view
on the important parts of an Activity Diagram. If the modeler uses the basic concepts
like DecisionNode/MergeNode for such an iteration, editing the Activity Diagram is such
a pedestrian business, that it can be easily understand why UML modelling is used
by most software enginneers in an intuitive or informal way only, if it is used at all.
Another problem concerning collection iterations is, that the UML does not distinguish
between single-valued and multi-valued types. If an attribute speci�es a collection, it
has a multiplicity greater than 1 and the collection type is given via the meta-attributes
isOrdered and is Unique (see [6], Kernel::Property). So the UML abstracts from generic
collection types o�ered by e.g. the Java Collection framework. The CActivityDiagram
in Figure (2.66) shows, that modeling an iteration over the elements of such an implicit
collection in ActivityDiagrams is much more complex than e.g. the use of the Java
Iterator for the Java Collection Framework.
Therefore it would be useful to have a behaviour speci�cation technique that o�ers the

typical structures of higher programming languages. This will make it easier to create
and edit UML models and increase the use of the UML for specifying behaviour. To
achieve this goal, CUML introduces CUML Nassi-Shneiderman Diagrams (CNSDs).
Although [8] gives examples for Nassi-Shneiderman Diagrams, there is no de�nition of

the concrete syntax of CUML Nassi-Shneiderman Diagrams yet. If you consider, that
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this technique was introduced in [15] that was published more than thirty years ago, it
is clear that its scope has to be extended to �t the needs of today's state of the art of
modelling object-oriented software systems. This will not lead to any problems with the
language de�nition, because [15] introduces Nassi-Shneiderman Diagrams informally as
a form of visual pseudo-code for arbitrary platforms, and this is exactly the way it is
used here.

2.3.1 CNSDs as Concrete Syntax for CActivities

In the following I will point out how the CNSDs are used as a concrete Syntax for
CActivities. To show how the elements of CNSDs are traced back on the abstract syn-
tax of CActivities, I will use CActivity diagrams instead of the abstract syntax of the
examples directly.

The activities that can be presented in the concrete syntax of Nassi-Shneiderman
Diagrams are a true subset of the CUML activities, because every CNSD statement
encapsulates a certain structure of abstract syntax. Activities that contain abstract
syntax fragments that do not conform to the required structure of any CNSD statement
cannot be presented as CNSDs. Therefore it will be necessary to identify the activites
that are contained in the CNSD subset of CUML activities. Figure 2.39 shows that
activities can be extended with an instance of the stereotype CNSDActivity if they are
in the CNSD subset.

Activity
<<stereotype>>
CNSDActivity

Figure 2.39: Abstract Syntax: CNSDActivity

In this section I will describe how every CNSD statement conforms to an activity
structure that is encapsulated by an instance of SequenceNode. From this follows that
the nodes contained directly by an CNSD activity must be instances of SequenceNode
or InitialNode or ActivityFinalNode, what leads to the CNSDActivity constraint 1. Of
course this constraint does not guarantee a correct CNSD activity structure by itself.
In the following I will introduce further constraints that shall assure a correct activity
structure in the abstract syntax for every CNSD statement. Nevertheless I recommend
the de�nition of the language of CNSD Activities in a constructive way, e.g. with a graph
grammar, which would be helpful especially for tool support in the future. Unfortunately
this is out of the scope of my thesis.

�stereotype� CNSDActivity

• Metaclass Activity
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• Description An Activity extended by this stereotype is graphically represented
with the conrete syntax of CNSDs.

• Constraints

[1] The directly contained activity nodes have one of the following types: Ini-
tialNode, ActivityFinalNode, SequenceNode.

context CNSDActivity inv:

self.baseClass.node->forAll(oclIsTypeOf(InitialNode) or

oclIsTypeOf(ActivityFinalNode) or

oclIsTypeOf(SequenceNode))

In the following I will introduce the di�erent types of statements.

Assignment

In CNSDs, a value can be assigned to a variable or a Property. In the little example
in Figure 2.40, the value of an activity variable named 'stateCollection' is assigned to an
attribute 'states' of the class owning the operation speci�ed by the CNSD (indicated by
'self').

self.states = stateCollection

Figure 2.40: CNSD-Assignment.

Figure 2.41 shows the same CActivity as a CActivityDiagram. The value token is
created by a ValueSpeci�cation. The value is assigned to the Property by a AddStruc-
turalFeatureAction. The execution semantics of sequence nodes de�ned in [6] says, that
execution of a sequence node leads to a control token placed on every initial node. Fur-
ther all actions that have no predecessor concerning control �ow are executed. Since I use
sequence nodes just for encapsulation of CNSD statements, I require sequence nodes to
have an initial node that is predecessor to the actions of the statement, to avoid parallel
execution (see 2.2 for the description of sequence nodes). Termination of the execution
of a sequence node requires an instance of ActivityFinalNode.
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State[*]

<<SequenceNode>>

<<ReadVariable>>

stateCollection

self.states
<<AddStructuralFeatureValue>>

State[*]

Figure 2.41: CActivityDiagram-Assignment.

In general, objects or values to be assigned can be retrieved from a ReadStructuralFea-
tureAction, ReadVariableAction or ValueSpeci�cationAction. The value can be asssigned
to a variable with an AddVariableValueAction or to an attribute with an AddStruc-
turalFeatureValueAction. The action that creates the token passes it to the action that
assigns the value of the token. These two actions are encapsulated by an instance of Se-
quenceNode. Figure 2.42 shows the metaclass SequenceNode extended by the stereotype
CNSDAssignment to identify the action that provides the value by the end supplier and
the action that writes the value to a variable or structural feature by the end designator.

designator

<<stereotype>>
CNSDAssignment

Action

SequenceNode

supplier

Figure 2.42: Abstract Syntax: CNSDAssignment

The appropriate type of the supplier action, the object �ow from the supplier to the
designator action and the containment of both actions in the extended sequence node
are ensured by the constraints of the stereotype CNSDAssignment below:
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�stereotype� CNSDAssignment

• Metaclass SequenceNode

• Description A SequenceNode extended by this stereotype is the abstract syntax
of a CNSD assignment statement.

• Tagged Values

designator: Action[1] The action that writes the value to an attribute or
variable.

supplier: Action[1] The action that provides the input value for the des-
ignator action.

• Constraints

[1] The designator action has one of the following types: WriteVariableAction,
WriteStructuralFeatureAction.

context CNSDAssignment inv:

self.designator.oclIsTypeOf(WriteVariableAction) or

self.designator.oclIsTypeOf(WriteStructuralFeatureAction)

[2] The supplier action provides input for the designator action.

context CNSDAssignment inv:

self.supplier.result.outgoing.target =

self.designator.value

[3] Supplier and designator are directly contained by the base class.

context CNSDAssignment inv:

self.baseClass.node.include(self.supplier) and

self.baseClass.node.include(self.designator)

[4] designator is directly contained by the extended sequence node.

context CNSDAssignment inv:

self.baseClass.node->includes(designator)

[5] supplier is directly contained by the extended sequence node.

context CNSDAssignment inv:

self.baseClass.node->includes(supplier)

Operation call

A CNSD OperationCall statement consists of an instance of CallOperationAction which
corresponding operation has no result type. Further it consists of the actions necessary
to deliver the tokens containing the target object and parameters needed.
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self.deleteState(s)

Figure 2.43: CNSD-OperationCall.

The example in Figure 2.43 calls an operation on the context object of the CNSD
(indicated by the UML keyword self ). Figure 2.44 shows the same statement in the
concrete syntax of CActivities. Actually the target object must be delivered to the
action by an object �ow from an instance of ReadSelfAction. For simpli�cation, the
action icon just shows the name of the operation with su�x 'self'.

<<SequenceNode>>

State

State

self.deleteState
<<CallOperation>>

s
<<ReadVariable>>

Figure 2.44: CActivityDiagram-OperationCall.

Figure 2.45 shows how the stereotype CNSDOperationCall is used to identify an in-
stance of CallOperationAction. This instance must be directly contained in the sequence
node, see constraint [1] of CNSDOperationCall.
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opAction

SequenceNode <<stereotype>>
CNSDOperationCall

CallOperationAction

Figure 2.45: Abstract Syntax: CNSDOperationCall.

�stereotype� CNSDOperationCall

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD operation call statement.

• Tagged Values

opAction: CallOperationAction[1] The action that executes the operation.

• Constraints

[1] opAction is directly contained by the extended sequence node.

context CNSDOperationCall inv:

self.baseClass.node->includes(opAction)

The assignment statement and the operation call statement are the only kind of atomic
CNSD statements. If CUML will be extended to e.g. exception handling, more atomic
statements could be necessary. Note that [15] introduces just structural statements like
the ones that follow below.

Statement blocks

Figure 2.46 shows a CNSD that consists of two sequentialized statement blocks. Figure
2.47 shows the same CActivity in the concrete Syntax of CActivity Diagrams. Every
statement block in the CNSD represents a sequence node in the abstract syntax which
encapsulates the behaviour of that statement block. The sequence node of a statement
block is connected to the sequence node of its predecessor statement by control �ow. If
there is no predecessor in the CNSD, it is connected to the initial node. If a statement
block has no successor in the CNSD, the corresponding sequence node is connected to
the �nal node by control �ow.
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statement block 1

statement block 2

Figure 2.46: CNSD-Sequence.

<<SequenceNode>>

<<SequenceNode>>

statement block 1

statement block 2

Figure 2.47: CActivityDiagram-Sequence.

IfElse

Figure 2.48 shows an if-else statement block of a CNSD. It contains the speci�cation
of a boolean value in the guard expression and two traces for the possible values of the
guard expression (true and false). The traces are executed dependent on the evaluation
of the guard expression.
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guard-expression

true false

statement block 1 statement block 2

Figure 2.48: CNSD-IfElse

Figure 2.49 shows how the if-else structure is encapsulated by a sequence node. Case
distinction is modeled with a decision node. The guard expression is an instancce of Val-
ueSpeci�cation associated with the decision node's outgoing egde that has the sequence
node of the true trace as target. The decision node's other outgoing edge is annotated
with the prede�ned guard 'else' (see [6], IntermediateActivities::DecisionNode).

<<SequenceNode>>

[guard−expression]

[else]

statement block 1

statement block 2

<<SequenceNode>>
<<SequenceNode>>

Figure 2.49: CActivityDiagram-IfElse

The example 'Automaton.nameAllocated()' in Figure (2.65) contains an if-else state-
ment block. Figure 2.50 shows the abstract syntax of the stereotype CNSDIfElse: The
sequence nodes containing the if-body and the else-body are identi�ed by the ifNode end
and the elseNode end respectively. The guard expression is reachable via the ifCondition
end and the decision node via the decisionNode end. The structure of the control �ow,
i.e. that the sequence nodes containing the if- and else-body are successors of the decision
node, is assured by the constraints of the stereotype CNSDIfElse.
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ifCondition

DecisionNodeValueSpecification

<<stereotype>>
CNSDIfElseNode

SequenceNode
elseNode ifNode

decisionNode

Figure 2.50: Abstract Syntax: CNSDIfElse.

�stereotype� CNSDIfElse

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD IfElse statement.

• Tagged Values

decisionNode: DecisionNode[1] The DecisionNode evaluating the if condi-
tion.

elseNode: SequenceNode[1] Contains the abstract syntax of the CNSD
else-trace.

ifCondition: ValueSpeci�cation[1] The guard expression of decisionNode.
ifNode: SequenceNode[1] TContains the abstract syntax of the CNSD

if-trace.

• Constraints

[1] The decisionNode has 2 outgoing edges.

context CNSDIfElse inv:

self.decisionNode.outgoing->size() = 2

[2] elseNode and ifNode are successors of decisionNode.

context CNSDIfElse inv:

self.decisionNode.outgoing->collect(source)->

includes(ifNode->union(elseNode))

[3] The ifCondition is guard of the edge from decisionNode to ifNode.

context CNSDIfElse inv:
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self.decisionNode.outgoing->exists(guard = ifCondition and

source = ifNode)

[4] decisionNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(decisionNode)

[5] elseNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(elseNode)

[6] ifNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(ifNode)

While

The while statement consists of a guard expression in a corner-shaped �gure to identify
the embedded statements (see Figure 2.51). If the guard expression evaluates to true, the
embedded statements are executed. This is iterated in a loop until the guard expression
evaluates to false.

guard-expression

statement block

Figure 2.51: CNSD-While

Figure 2.52 shows the same CActivity in a CActivity diagram: the guard expression is
an instance of ValueSpeci�cation on the outgoing edge of a decision node. The embedded
part is encapsulated by a sequence node.
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<<SequenceNode>>

statement block
[guard−expression]

[else]

<<SequenceNode>>

Figure 2.52: CActivityDiagram-While

The abstract syntax in Figure 2.53 shows how the stereotype CNSDWhile is used to
identify the guard expression (loopCondition end), the decision node (decisionNode end)
and the sequence node containing the activity modelling of the loop body (body end):

body

<<stereotype>>
CNSDWhile

SequenceNode

DecisionNodeValueSpecification

loopCondition decisionNode

Figure 2.53: Abstract Syntax: CNSDWhile.

The constraints for the stereotype CNSDWhile assure the correct structure of control
�ow and that the guard annotates the control edge from the decision node to the body.

�stereotype� CNSDWhile

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD While statement.

• Tagged Values
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decisionNode: DecisionNode[1] The DecisionNode evaluating the loop con-
dition.

body: SequenceNode[1] Contains the abstract syntax of the CNSD
loop body.

loopCondition: ValueSpeci�ca-
tion[1]

The guard expression of decisionNode.

• Constraints

[1] The body node is predecessor of the decisionNode.

context CNSDDoWhile inv:

self.body.outgoing.target = decisionNode

[2] The body node is successor of the decisionNode.

context CNSDDoWhile inv:

self.body.incoming.source = decisionNode

[3] The loopCondition is guard of the edge from decisionNode to body.

context CNSDDoWhile inv:

self.body.incoming.guard = loopCondition

[4] The decision node is successor of the InitialNode.

context CNSDDoWhile inv:

self.decisionNode.incoming.source.oclIsTypeOf(InitialNode)

[5] decisionNode is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(decisionNode)

[6] body is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(body)

DoWhile

statement block

guard-expression

Figure 2.54: CNSD-DoWhile

The do-while statement (see Figure 2.54) is very similar to the while statement. The
CActivity diagram can be seen in Figure 2.55.
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statement block
[else]

[guard−expression]

<<SequenceNode>>

<<SequenceNode>>

Figure 2.55: CActivityDiagram-DoWhile

As the Figure 2.56 shows, the stereotype CNSDDoWhile identi�es the same elements
as the stereotype CNSDWhile. But the constraints of CNSDDoWhile ensure the di�erent
structure of control �ow: the sequence node containing the body is successor of a merge
node which is successor of the initial node.

CNSDDoWhile
SequenceNode

DecisionNodeValueSpecification

loopCondition decisionNode

body

<<stereotype>>

Figure 2.56: Abstract Syntax: CNSDDoWhile.

�stereotype� CNSDDoWhile

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD DoWhile statement.

• Tagged Values
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decisionNode: DecisionNode[1] The DecisionNode evaluating the loop con-
dition.

body: SequenceNode[1] Contains the abstract syntax of the CNSD
loop body.

loopCondition: ValueSpeci�ca-
tion[1]

The guard expression of decisionNode.

• Constraints

[1] The body node is predecessor of the decisionNode.

context CNSDDoWhile inv:

self.body.outgoing.target = decisionNode

[2] The body node is successor of the decisionNode.

context CNSDDoWhile inv:

self.body.incoming.source.oclIsTypeOf(MergeNode)

[3] The loopCondition is guard of the edge from decisionNode to body.

context CNSDDoWhile inv:

self.decisionNode.outgoing.guard = loopCondition and

self.body.incoming.source.incoming->

exists(e | e.guard = loopCondition)

[4] The body node is successor of the MergeNode.

context CNSDDoWhile inv:

self.body.incoming.source.oclIsTypeOf(MergeNode)

[5] The body predecessor node is successor of the InitialNode.

context CNSDDoWhile inv:

self.body.incoming.source.incoming.source.

oclIsTypeOf(InitialNode)

[6] decisionNode is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(decisionNode)

[7] body is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(body)

Foreach

The foreach statement is introduced to CNSDs in [8]. It allows iteration over a mul-
tivalued property of a classi�er, i.e. an attribute or owned association end, or over a
multivalued variable. Every element of the multivalued data is accessed once. There is
no speci�c ordering unless there is an ordering speci�ed for the property or variable.

Notationally, the foreach statement specializes the while statement. As the example
in �gure (2.65) shows, the foreach statement is visualized as a while statement with the
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keyword 'foreach' at the top followed by the initialization of the iteration variable: in
the example, an element of 'self.states' is assigned to a variable 's' during each single
iteration.

foreach s:self.states

...

Figure 2.57: CNSD-ForEach

Figure 2.58 shows the same CActivity as Figure 2.57 in the concrete syntax of CActivity
diagrams. The values of the collection (an attribute or variable) are stored in an instance
of CentralBu�erNode, from where token containing the elements are provided to the
sequence node encapsulating the body of the foreach statement severally. In the body
the element value is written to a variable �rst, to make it accessible within the body
recursively. If the execution of the body stops, the next element is retrieved from the
bu�er node and execution of the body starts for the new element value. If execution of
the body stops for the last element of the collection, there is no token left in the sequence
node encapsulating the foreach statement recursively, so execution of this SequenceNode
stops.

If the foreach loop is left via break statement, it is necessary to stop execution and
destroy all tokens contained by o�ering a token to the �nal node (see example in Figure
2.66). Otherwise it would be possible that token remain in the bu�er node. That could
cause a deadlock situation if the foreach statement is contained in the body of another
foreach statement.
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result: State[*]
{weight = *}

<<SequenceNode>>

...

<<SequenceNode>>

value: State

State[*]

s: State

<<AddVariableValue>>

self.states

<<centralBuffer>>

<<ReadStructuralFeature>>

Figure 2.58: CActivityDiagram-Foreach

Figure 2.59 shows the abstract syntax of the stereotype CNSDForEach: the action
that provides the values of the collection, the bu�er for these values, the action that
writes a single value of the collection to the iteration variable and the sequence node
containing the iteration body are identi�ed.
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body

<<stereotype>>
CNSDForEach

ActionCentralBufferNode

AddVariableValueAction

SequenceNode

collectionProviderbuffer

variableAction

Figure 2.59: Abstract Syntax: CNSDForEach.

�stereotype� CNSDForEach

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD ForEach statement.

• Tagged Values

collectionProvider: Action[1] Action that provides the elements
of the collection.

bu�er: CentralBu�erNode[1] Bu�er that stores the elements of
the collection.

variableAction: AddVariableValueAction[1] Action that writes the value of the
variable before each iteration.

body: SequenceNode[1] SequenceNode encapsulating the
body of the foreach statement.

• Constraints

[1] CollectionProvider is of one of the following types: ReadVariableAction, Read-
StructuralFeatureAction.

context CNSDForEach inv:

self.collectionProvider.oclIsTypeOf(ReadVariableAction)

or self.collectionProvider.

oclIsTypeOf(ReadStructuralFeatureAction)

[2] Edge weight from collectionProvider's result pin to bu�er is '*'.

context CNSDForEach inv:

self.collectionProvider.result.outgoing.weight = *
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Case

The example in Figure 2.60 contains a case statement4. The case statement consists
of a given value of any type and traces with guard expressions. A trace will be executed,
if its guard expression can be evaluated to the given value. If the given value could not
be evaluated to any of the guard expressions, the default trace is executed.

If more than one guard expression can be evaluated to the given value, the choice of
the trace to be executed is non-deterministic. Such non-determinisms will be dealt with
on the semantical domain side.

self.getStateKind()

State.startAccept

true

State.accept

true

default

false

Figure 2.60: CNSD: State.isAccepting

Figure 2.61 shows the example in Figure 2.60 as CActivityDiagram. The case dis-
tinction is realized with a decision node again. The traces for the di�erent cases are
encapsulated by a sequence node. For every trace, an outgoing edge of the decision node
leads to the corresponding sequence node. The edges are associated with an expression
that compares the guard expression of the trace to the given value of the case statement.
The sequence node of the default trace is connected to the decision node via a control �ow
associated with the prede�ned 'else'-guard. If there is no body for the default trace, the
activity edge with the else guard has the �nal node as target to avoid deadlock situations.

4The example contains break statements that will be introduced below.
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<<SequenceNode>>

<<SequenceNode>>

[State.startAccept = self.getStateKind()]

[State.accept = self.getStateKind()]

[else]

<<SequenceNode>>

false

<<ValueSpecification>>

<<ValueSpecification>>

true

true

<<ValueSpecification>>

Figure 2.61: CActivity: State.isAccepting

The abstract syntax of CNSDCase in Figure 2.62 shows, that the stereotype is used to
identify the decision node that is responsible for case distinction and the sequence nodes
containing the activity modelling of the di�erent traces.

2..*

DecisionNode

SequenceNode <<stereotype>>
CNSDCase

decisionNode

traces

Figure 2.62: Abstract Syntax: CNSDCase.

�stereotype� CNSDCase

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD case statement.

• Tagged Values
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decisionNode: DecisionNode[1] The decision node implementing the case
distinction.

traces: SequenceNode[*] The sequence nodes that encapsulate the ab-
stract syntaxes of the di�erent traces of the
case statement.

• Constraints

[1] The decision node is predecessor to all traces.

context CNSDCase inv:

self.traces->collect(incoming)->forAll(source = decisionNode)

[2] decisionNode is directly contained by the extended sequence node.

context CNSDCase inv:

self.baseClass.node->includes(decisionNode)

[3] All traces are directly contained by the extended sequence node.

context CNSDCase inv:

self.baseClass.node->includes(traces)

Break

With the break statement the control �ow is passed to the successor of the encapsu-
lating loop (see Figure 2.63). Within a loop, i.e. a while, dowhile or foreach statement,
the encapsulating loop is exited and the successor statement of the loop is executed.

break

Figure 2.63: CNSD-break

The example in Figure 2.66 shows the realization of the break statement in CActivities:
the break statement occurs within a foreach statement in the CNSD (Figure 2.65). The
predecessor statement of the break statement is an assignment ('allocated = true'). The
corresponding sequence node of that assignment in Figure 2.66 is connected to the �nal
node of the foreach statement's sequence node. This causes the execution of the foreach
statement to stop and the successor of the foreach statement is executed.

Return

The return statement (notation s. Figure 2.64) ends the control �ow and provides the
return value of the method. The return value can be an attribute, variable or given value.
The example 'Automaton.nameAllocated' (�gures 2.65, 2.66) contains a return state-

ment with variable. The CActivityDiagram in Figure 2.66 shows, that the return value
is retrieved from an instance of ReadVariableAction and passed to the parameter node
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that corresponds to the return parameter of the activity's operation. The control �ow is
passed to the �nal node of the enclosing CActivity.

The example in Figure 2.60 contains a return statement with ValueSpeci�cation.

Figure 2.64: CNSD-return

2.3.2 Example Diagrams

The example diagrams show the CActivity of the operation Automaton.nameAllocated.
Figure 2.65 is the CNSD representation of this CActivity.

allocated = false

foreach s:self.states

s.name.equals(name)

true false

allocated = true

break

∅

allocated

Figure 2.65: CNSD: Automaton.nameAllocated.

Figure 2.66 is the CActivity Diagram representation of the same CActivity. The struc-
ture of the CActivity Diagram contains the sequence nodes that correspond to the state-
ments of the CNSD in 2.65. But even if this encapsulating sequence nodes would be
eliminated 5, it is obvious that the CNSD representation is much more structured than
the CActivityDiagram. Especially the modelling of the iterator loop is easier to edit and
understand thanks to the compact and intuitive CNSD foreach statement.

5e.g. by the �rst level of the model transformation in 4, leading to the CActivityDiagram in Figure 4.7.
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:State[*]
{weight = *}

:State[1]

:Boolean[1]

:Boolean[1]

[else][s.name.equals(name)]

return:Boolean[1]

:Boolean[1]

:Boolean[1]

name: String[1]

<<centralBuffer>>

[State]

<<AddVariableValue>>

s:State[1]

<<ReadStructuralFeature>>

self.states

<<AddVariableValue>>

allocated:Boolean[1]

<<ValueSpecification>>

true

<<ReadVariable>>

allocated:Boolean[1]

<<AddVariableValue>>

allocated:Boolean[1]

<<ValueSpecification>>

false

<<AddVariableValue>>

name: String[1]

Figure 2.66: CActivityDiagram: Automaton.nameAllocated.
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3 L3 - Semantical Domain Language

In view of the many approaches that de�ne formal semantics for UML Activities by
mapping to a semantical domain, the introduction of another semantical domain like
L3 has to be motivated. There are three main arguments for the introduction of a new
semantical domain for complex modelling techniques:

[1] [16] contains an examination of the semantical domains for UML Activities. Look-
ing at the expressiveness of this semantical domains, it becomes obvious that only
Petri Nets cover data �ow, which is an essential feature of CUML. As stated before,
[18] shows that there is no known version of Petri Nets that covers all features of
UML Activities. Although CUML contains just a restricted version of UML Activ-
ities itself, L3 should not be restricted, since it is supposed to serve as semantical
domain for arbitrary modelling techniques for object-oriented software systems.

[2] L3 is designed as a semantical domain for a complex modelling technique. While
there are a lot of approaches to de�ne semantics for sublanguages of the UML
- e.g. [9]: ASMs for Activities, [12]: Object-Z for Class Diagrams, [14]: Graph
Transformation for State Machines -, there is none that gives a semantical domain
for a set of modelling techniques that contains languages for the speci�cation of the
structure, the behaviour and the reqirements of an object-oriented software system.
The use of existing approaches would lead to the semantical domain consisting of
multiple formalisms, whereas it is in question if they could be combined at all:
especially the way how behaviour references the structure of an object-oriented
system is important at this point. L3 however consists of a structural part, a
constructive part and a descriptive part and the semantics will be de�ned for these
parts together.

[3] The main purposes of this approach are veri�cation and code generation. For veri�-
cation, di�erent semantical domains for the di�erent views of a complex modelling
technique have to be analyzed. This requires interoperability of the semantical
domains, which is often achieved informally: e.g., the connection of behaviour and
structure is often achieved via name mapping. Further the structure of semantical
domains of existing approaches is not very similar to the structure of source code
of object-oriented programming languages, so code generation must be based on
the complex model again, which requires another integration of the views of the
complex model. L3 contains concepts for all important features of object-oriented
programming languages, so that program code can be generated from an L3 model
directly.
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In this chapter I will introduce the Low-Level-Language (L3) by a MOF M2 layer meta
model. Although [8] describes many properties of L3 and gives a lot of examples, there
is still no formal de�nition of this language.
As stated before, L3 is the common semantical domain for arbitrary object-oriented

modelling techniques in the integration concept for complex modelling techniques. There-
fore it has to feature the following properties:

• explicit contents: As we have seen in Chapter 2 looking at the UML, there can
be a lot of information about a model that is contained in this model implicitly.
One disadvantage of this is, that there is information contained in the model that
is not easily accessible, what is bad for the people who have to document, maintain
it etc. I have tried to avoid this in CUML by introducing some stereotypes to
make implicit relations between model elements explicit. Further implicit model
contents can make the work on the semantical domain side - as model checking,
code generation - more di�cult.

• separation of aspects: As stated in Chapter 1, the information in a model
can be divided in structural, constructive and descriptive aspects of the model.
Mixing these up in the modelling techniques can help to make the work of the
system modeller more easy. But in the semantical domain the structure and the
behaviour should be strictly separated from the properties both have to ful�ll in
the implementation. This makes constraints and requirements explicit for model
checking.

• low level concepts: Since L3 should be designed to serve as semantical domain
for arbitrary object-oriented modelling techniques, it has to be a target domain for
model transformation from every possible technique as the source domain. There-
fore the concepts for structure and behaviour modelling in L3 have to be on a low
level of abstraction.

• model tracing: Since the model checking operates on the L3 model, it is necessary
for each L3 model element to be linked to its source element in the CUML model for
modeler feedback. Due to this, the structure of the L3 meta model is very similar to
the structure of the CUML meta model. For the explicit tracing of model elements
an intermediate structure meta model is introduced in 4.1.

In Section 3.1 I will introduce the structural part of L3. Although, as stated above,
the structural issue is out of the scope of my thesis, I will need the structure meta model
to introduce the constructive behaviour modelling part of L3 in Section 3.2. Section 3.3
describes the L3 expression meta model.

3.1 L3 Structure

As stated above, dealing with the structural part of L3 is out of the scope of my thesis
and I will therefore introduce a basic version of the L3 Class Structure that features the
basic concepts I will need for the behaviour part of the meta model below.
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L3Structure

L3Operation
name : String
static : Boolean

L3Attribute

L3Package
name : String

operations

attributes

class

0..*

0..*

0..*

super

0..*
sub

type

0..*

L3Class
name : String

0..*
packages

classes

package

structure
0..1

0..*
contained

container
0..1

Figure 3.1: L3 Structure

Figure 3.1 shows the abstract syntax of the L3 Class Structure: An L3 model is a tree
with the root being an instance of the metaclass L3Structure. Every L3 model contains
exactly one instance of L3Structure:

• L3Structure is a singleton class.

context L3Structure inv:

self->allInstances()->size() = 1

The class structure consists of a number of packages. Root packages are linked to
the class structure directly via the L3Package::structure link end, while nested packages
are linked to the package being the container. There must be no cycle in the package
hierarchy, what is ensured by the following OCL constraint:

• No cycles in the package hierarchy.

context L3Package inv:

self->getContainer(Bag)->excludes(self)

L3Package::getContainer(acc:Bag(L3Package)): Bag(L3Package);

getContainer=

if self.container->size() = 0

then acc

else self.container->getContainer(acc->including(self.container))

endif
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An instance of L3Package must either be directly linked to the class structure or be
contained in another package:

• Every L3Package must have an owner.

context L3Package inv:

self.structure + self.container = 1

As can be seen from the abstract syntax, the inheritance structure in L3 is restricted to
single-inheritance. Every class must be contained in a package. To ensure the hierarchy
of L3Classes to be cycle-free, the following constraint is used:

• No cycles in the class hierarchy.

context L3Class inv:

self->getSuper(Bag)->excludes(self)

L3Class::getSuper(acc:Bag(L3Class)): Bag(L3Class);

getSuper=

if self.super.name = Object

then acc

else self.super->getSuper(acc->including(self.super))

endif

The helper operation in the constraint above shows that there is a default superclass
in L3 named 'Object' that is the root element of any class hierarchy tree.

In Figure 3.2 the abstract syntax of operations in L3 is shown. In a valid L3 model,
every operation must be linked to an instance of L3Method via the L3Operation::method
link end. This method is the speci�cation of the operation's behaviour. The operation is
linked to its parameters via the L3Operation::parameter link end. If the operation can
have side-e�ects on a parameter, this is indicated by the parameter's attribute isOut.
The method's return paramter is identi�ed by the L3Operation::return link end.
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kind: CollectionKind

L3Class

type

L3Method

0..1
return

name : String

parameter
0..*

operation

L3Operation
name : String
static : boolean

method

L3Parameter

isOut: Boolean

Figure 3.2: L3 Operation

Because the language L3 is designed as a backend to be used for model checking and
code generation, there is no concrete syntax. Nevertheless I like to show the results of
the transformations of the examples given in Chapter 2. For the visualization of the class
structure resulting from the class diagram in Figure 2.4 I use a modi�ed form of class
diagrams in Figure 3.3.

automaton

State

State():State

automaton: Automaton

stateError(input: State)

Transition

source: State
target: State

Transition():Transition

automaton: Automaton

transitions: Set(Transition) getStateName(): String

IO

Automaton():Automaton

addState()
adaptName(name:String):String
addStateWithName(name:String)
nameAllocated(name:String):Boolean
deleteState(name:String)

Automaton

states: Set(State)

Figure 3.3: L3 Package: automaton
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The class structure diagram shows, that the UML association ends result in attributes,
so there are no associations in L3. Due to the principle of separation of aspects the
information about the correspondence of the ends of an association is not contained in
the structural part of L3, but leads to the following constraints in the descriptive part:

• Correspondence of states and automaton.

context Automaton inv:

self.states->forAll(automaton = self) and

State.allInstances(s | automaton.states.includes(s))

• Correpondence of transitions and automaton.

context Automaton inv:

self.transitions->forAll(automaton = self) and

Transition.allInstances(t | automaton.transitions.includes(t))

The speci�cation of multiplicities in CUML class diagrams can lead to further con-
straints in the descriptive part of L3. But the desriptive part is out of the scope of
this thesis. The constraints above just illustrate the separation of aspects and shall not
propose a certain modelling technique for the descriptive part.
Another principle mentioned before was the explicit character of L3. The attributes of

the class structure, that were speci�ed as collections by their multiplicity in the CUML
class diagram implicitly are now speci�ed with a collection type explicitly. Table 3.1
shows, how the L3 collection types correspond to the combinations of the attributes
isOrdered and isUnique of the UML metaclass MultiplicityElement. The abstract syntax
of L3 collections is shown in Figure 3.8.

unique not unique

ordered OrderedSet Sequence

not ordered Set Bag

Table 3.1: L3 Collection Types

Another element of the class diagram in Figure 2.4 is the �uses� dependency from
the class Automaton to the class IO. Dependencies can be used in UML models to make
existing relations between model elements more obvious within certain UML views. They
are of no use for the purposes of L3 - i.e. model checking and code generation -, and
therefore will be not translated during model transformation.

3.2 L3 Method

The L3Method metaclass is the L3 concept for behaviour speci�cation. Concerning the
model transformation from CUML to L3, every CUML Activity will be translated into
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an L3 Method. On the �rst glance an L3 Method may look very similar to CUML
Activities, but although they feature the same basic concepts of control �ow there are
two main di�erences: where CUML Activities model the �ow of data via token �ow, the
access to data within L3 Methods is managed via local variables. Further there are no
actions in L3 that are provided with values at their pins, but expressions that feature
operation calls and data access. This is due to the fact, that the abstract syntax of L3
is designed to be close to the domains of code generation, e.g. Java Bytecode or the
Common Intermediate Language (CIL) of the .NET Framework.

Figure 3.4 shows the abstract syntax of L3Method. Every L3 Method consists of
instances of L3Node and L3Edge and has a graph-like structure. An L3 Method has
local variables and arguments.

0..*

L3Method

L3Edge

L3Variable L3Argument

L3Parameter

L3Node

nodes

variables
0..*

parameterarguments
0..*

0..*
edges
0..*

source outgoing

incomingtarget

0..*

Figure 3.4: L3 Method

Every argument of an L3 Method corresponds to a parameter of the operation of which
the method is the speci�cation.

• The corresponding parameter of an L3Argument has to be one of the parameters
of the argument's L3Method and vice versa.

context L3Method inv:

self.argument->collect(parameter) = self.operation.parameter

The abstract syntax diagram in Figure 3.5 shows the concrete subclasses of L3Node.
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L3DecisionNode

L3MergeNode

L3ForkNode

L3JoinNode

L3StartNode

L3EndNode

L3AssignmentNode

L3Node

Figure 3.5: L3 Nodes

Instances of L3StartNode are the nodes where control �ow starts in an L3 method
during execution. A method can have any number of start nodes. Start nodes can have
only one outgoing edge and no incoming edges:

• A start node has no incoming edge.

context L3StartNode inv:

self.incoming->size() = 0

• A start node has one outgoing edge.

context L3StartNode inv:

self.outgoing->size() = 1

If control �ow reaches an L3EndNode during method execution, the execution termi-
nates. An end node can have one incoming edge and no outgoing edge:

• An end node has no incoming edge.

context L3EndNode inv:

self.incoming->size() = 1

• An end node has one outgoing edge.

context L3EndNode inv:

self.outgoing->size() = 0
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L3ForkNode allows parallel control �ow: an instance of this class can have any number
of outgoing edges and one incoming edge. During method execution, all outgoing edges
are traversed simultaneously. Counterpart of L3ForkNode is the metaclass L3JoinNode.
An instance of this can have any number of incoming edges and one outgoing edge.
During execution, the outgoing edge is not traversed until control �ow has activated all
incoming edges. This leads to the following constraints:

• A fork node has one incoming edge.

context L3ForkNode inv:

self.incoming->size() = 1

• A join node has one outgoing edge.

context L3JoinNode inv:

self.outgoing->size() = 1

DecisionNode allows branching of control �ow. The outgoing edges of a decision node
are annotated with an expression 1. During execution, all outgoing edges which guards
evaluate to true are traversed. Only the outgoing edges of decision nodes are allowed to
have guards.

L3Expression

L3Edge

guard
0..1

Figure 3.6: L3 Edge Guard

• An outgoing edge of a decision node has a guard expression.

context L3Edge inv:

self.source->oclIsTypeOf(L3DecisionNode) implies

self.guard->size() = 1

• Other edges have no guard expressions.

context L3Edge inv:

not(self.source->oclIsTypeOf(L3DecisionNode)) implies

self.guard->size() = 0

1Expressions are introduced in 3.3 below.
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Figure 3.7 shows the abstract syntax of L3AssignmentNode. The value to be assigned
is provided by evaluation of the expression at the supplier link end. The value is assigned
to the value container at the designator link end. The L3 concept of value containers is
introduced in Figure 3.8 below.

0..1

L3AssignmentNode

supplier
designator

L3ValueContainer L3Expression

Figure 3.7: L3 AssignmentNode

The type of the designator of an assignment node has to conform to the type of the
supplier. The types of value containers and expressions are indicated by associated
instances of L3Class, since L3 does not deal with primitive data types yet. This issue
is out of the scope of my thesis, so I propose wrapper classes in the L3 model for the
primitive data types. If the supplier expression refers to a call of a static operation, there
must not be a designator:

• Type conformance of designator and supplier 2.

context L3AssignmentNode inv:

self.supplier.type->getSuper()

->including(self.supplier.type)->includes(self.designator.type)

• If the called operation is static, there is no designator.

context L3AssignmentNode inv:

self.supplier.operation.static implies

self.designator->size() = 0

The value containers attributes, variables and arguments, that appear as an assignment
designator within an L3 method, have to be accessible within the method. This is ensured
by the following constraints:

• If a L3Attribute is designator of a L3AssignmentNode, the L3Attribute is accessible
within the L3Method containing the L3AssignmentNode.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->select(designator.oclIsTypeOf(L3Attribute))

->forAll(a | self.operation.class.accessible(a))

2The operation L3Class::getSuper() is de�ned in Section 3.1.
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L3Class::accessible(a: L3Attribute): boolean;

accessible=

if self.attributes->exists(attr | (attr = a) or (attr::accessible(a))

then true

else false

endif

• If an L3Variable is designator of a L3AssignmentNode, the L3Variable must be
contained by the enclosing L3Method.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->select(designator.oclIsTypeOf(L3Variable))

->forAll(v | self.variables->includes(v))

• If an L3Argument is designator of a L3AssignmentNode, it hast to be an argument
of the enclosing L3Method.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->select(designator.oclIsTypeOf(L3Argument)

->forAll(a | self.arguments->includes(a))

L3IteratorL3Attribute

L3Class

L3ValueContainer

type

CollectionKind
<<enumeration>>

Bag

Set

Sequence

OrderedSet

singleValuename: String
kind: CollectionKind

isVariable: Boolean

L3Variable

Figure 3.8: L3 ValueContainer

The abstract syntax of L3 value containers is shown in Figure 3.8. Value containers give
access to values as attributes of classes, iterators for collections, arguments of methods
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and local variables of methods. Every value container can be a collection of any type
(see 3.1 for a characterization of collection types) or a single value. If a variable is an
iterator, it can be operated on with iterator expressions (see 3.3).

Figure 3.9 shows the L3 Method of the L3 Operation Automaton.addState. This
Method is the result of the model transformation I will introduce in 4. Its source CUML
Activity is the example in Figure 2.5.

[b=true][b=false]

self.addStateWithName(v2)

b := self.nameAllocated(v1)

self.addStateWithName(v1)

v1 := IO.getStateName()

v2 := self.adaptName(v1)

Figure 3.9: L3 Method: Automaton.addState
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3.3 L3 Expression

The abstract syntax of L3 Expressions slightly di�ers from that of value speci�cations
in CUML. As can be seen from �gure 3.10, the abstract superclass of expressions is
L3Expression. Any expression is a tree structure, wherein the children of an element are
identi�ed via the operands link end, and the parent of an element is identi�ed via the
parent link end.

type

L3Expression

L3CallExpressionL3ValueExpression

L3Operation

L3Parameter

L3Class

parameter
0..1

target
0..1 operation

L3ValueContainer

0..*

operands

value

L3ValueSpecification

parent
0..1

Figure 3.10: L3 Expression

An instance of L3ValueExpression refers to a L3 value container (see 3.2). Operations
can be called within expressions via L3CallExpression. A call expression identi�es the
value container containing the target object, if it refers to a non-static operation. If
the parent of an expression is a call expression, the former provides values for the argu-
ments needed for method execution, and therefore must be linked to the corresponding
parameter of the operation. This leads to the constraints below:

• If linked to a static operation, a call expression identi�es no target object.

context L3CallOperation inv:

self.operation.static implies

self.target->size() = 0

• If linked to a non-static operation, a call expression identi�es the target object.

context L3CallOperation inv:

not(self.operation.static) implies

self.target->size() = 1
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• If the parent of an expression is a call expression, a corresponding parameter of the
called operation must be speci�ed.

context L3Expression inv:

self.parent->oclIsTypeOf(L3CallExpression) implies

self.parent.operation.parameter->includes(self.parameter)

• Values for all parameters must be provided for call expressions.

context L3CallExpression inv:

self.operands->collect(parameter) = self.operation.parameter

• The operation of a L3CallExpression has to be executable on the target of the
L3CallExpression.

context L3CallExpression inv:

self.target.type.canExecute(self.operation)

L3Class::canExecute(o: L3Operation): boolean;

canExecute=

if self.operations.includes(o)

then true

else if self.super->oclIsTypeOf(Object)

then if self.super->collect(canExecute(o)).includes(true)

then true

else false

endif

else false

endif

endif

Any value container that is referred to in an expression has to be accessible within the
method. This leads to the following constraints:

• If an L3Attribute is value of a ValueExpression, it has to be accessible within the
enclosing L3Method.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->collect(supplier->getAttributes())

->union(self.edges->collect(guard->getAttributes()))

->forAll(a | self.operation.class.accessible(a))

L3Expression::getAttributes(): Bag(L3Attribute);

getAttribute=

if self.value.oclIsTypeOf(L3Attribute)

then self.value

else self.operands->collect(getAttributes())

endif
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• If a L3Variable is value of a ValueExpression, it has to be a variable of the enclosing
L3Method.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->collect(supplier->getVariables())

->union(self.edges->collect(guard->getVariables()))

->forAll(v | self.variables.includes(v))

L3Expression::getVariables(): Bag(L3Variable);

getVariables=

if self.value.oclIsTypeOf(L3Variable)

then self.value

else self.operands->collect(getVariables())

endif

• If a L3Argument is value of a ValueExpression, it has to be an argument of the
enclosing L3Method.

context L3Method inv:

self.nodes->select(oclIsTypeOf(L3AssignmentNode))

->collect(supplier->getArguments())

->union(self.edges->collect(guard->getArguments()))

->forAll(a | self.arguments.includes(a))

L3Expression::getArguments(): Bag(L3Argument);

getAttribute=

if self.value.oclIsTypeOf(L3Argument)

then self.value

else self.operands->collect(getArguments())

endif

Figure 3.11 shows the abstract syntax of L3 value speci�cations. Value speci�cations
allow the speci�cation of values of the primitive data types allowed in a CUML model.
According to [6], the primitive data types in CUML are instances of the UML metaclass
PrimitiveType. For L3 I assume wrapper classes for the primitive types, as mentioned
before, so in an L3 model the concrete subclasses of L3ValueSpeci�cation have an instance
of L3Class as their type. This is just a temporary workaround, because the issue of
primitive data types is out of scope and left for future work.
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L3BoolSpecification
value: Boolean

L3IntSpecification
value: Integer

L3StringSpecification
value: String

L3NullSpecification

L3ValueSpecification

Figure 3.11: L3 ValueSpeci�cation

Looking back at the pedestrian modelling of collection iterators in CUML Activities
in Section 2.3, L3 bene�ts from the explicit collection types at this point. Figure 3.12
shows the abstract syntax of L3IterateExpression. An iterator expression is linked to
the L3 Variable that is the iterator (i.e. the attribute isIterator has the value true).
An iterator variable can be created using the L3IterateCreate expression, that identi�es
the collection the iterator refers to. During iteration the next value is provided by an
instance of L3IterateNext. An L3IterateHasNext expression can be used to query if there
are elements of the collection left for iteration. The example in Figure 3.17 contains
iterator expressions.

L3IterateNext

L3Expression

L3IterateExpression

L3IterateCreate

L3ValueContainer

*

*

collection

iterator

L3Iterator

L3IterateHasNext

Figure 3.12: L3 Iteration Expressions

Since L3 features collection types, it has to provide access to collections. L3 collec-
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tions can be manipulated via instances of L3CollectionExpression. Collection expression
identify the collection that is accessed via the collection link end. The value link end
indenti�es the value that is added to the collection or removed from the collection re-
spectively. If a value is added to an ordered collection type, i.e. Sequence or OrderedSet,
the insertion point can be speci�ed. It would be nice for L3 to feature insertion points
for the removal of values from collections, too, but rather useless in this context, because
CUML lacks this feature, as I already mentioned in Chapter 2. The L3 Method example
in Figure 3.16 includes L3 Collection Expressions.

insertionPoint
L3Expression

L3ValueContainer

L3CollectionExpression
*

collection

value

*L3AddValueExpression

L3RemoveValueExpression

Figure 3.13: L3 Collection Expressions

The abstract syntax diagram in Figure 3.14 shows, that L3 expressions include an
expression for the else trace of decision nodes.

L3Expression

L3ElseExpression

Figure 3.14: L3 Else Expressions

The abstract syntax in Figure 3.15 shows the metaclass L3ComparisonExpression.
This expression compares the values that result from evaluation of its 2 operand expres-
sions. Evaluation of a comparison expression is true, if the values are equal, and false
otherwise.
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L3Expression

L3ComparisonExpression

Figure 3.15: L3 Comparison Expressions

The following constraint ensures that a comparison expression has 2 operand expres-
sions:

• An instance of L3ComparisonExpression has 2 operand expressions.

context L3ComparisonExpression inv:

self.operands->size() = 2

Figure 3.17 shows the L3 Method yielded by model transformation from the CUML
Activity example in �gure 2.66. It features iterating over collections via L3 Expressions.

add(self.states,s)

s := State(name)

Figure 3.16: L3 Diagram: Automaton.addStateWithName

The L3 Method in Figure 3.16 features L3 Collection Expressions.
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[else]

[else]

[hasNext(it1)]

[s.name.equals(name)]

add(allocated,true)

add(allocated,false)

s := next(it1)

add(name,name)

it1 =: iterator(self.states)

Figure 3.17: L3 Diagram: Automaton.nameAllocated
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4 Model Transformation CUML → L3

In Chapter 2 I introduced the UML subset CUML that allows full speci�cation of
object-oriented software systems. Since the semantics of CUML inherited from UML is
de�ned in an intuitive and informal way in [6], I introduced the Low Level Language
(L3) in Chapter 3 that will serve as a semantical domain for CUML. Methodically, any
CUML model will be translated into an L3 model, on which model checking and code
generation works. To achieve this goal, I will introduce a model transformation from
CUML to L3 by graph transformation in this chapter.

In the �rst Section 4.1 I will introduce another meta model: the Intermediate Structure.
This meta model includes both the CUML and the L3 meta model and serves as type
graph for the model transformation. The model transformation itself is given by the
graph transformation system in Section 4.2. This chapter contains no analysis of the
Graph Transformation system concerning termination and con�uence, since this would
be out of scope of this thesis. The main purpose of the model transformation here is
to show how the features of CUML are mapped to L3. Such an analysis may become
necessary for implementation of the model transformation.

A short introduction to transformation of MOF models by graph transformation is
given in 1.1.

4.1 Intermediate Structure

As I pointed out before in the introduction of Chapter 3, the structure of the L3 meta
model being very close to the structure of the CUML meta model allows tracing of L3
model elements back to CUML model elements. The Intermediate Structure consists of
meta model elements that relate the CUML meta model elements and the corresponding
L3 meta model elements.

Type Operation Parameter

RefClass RefOperation RefParam

L3ParameterL3OperationL3Class

RefAttribute

L3Attribute

Attribute

Figure 4.1: Intermediate Structure: Class Structure References
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The abstract syntax in Figure 4.1 shows how CUML metaclasses are related to the
metaclasses of the L3 Class Structure.

RefNode

ActivityNode

L3Node

l3

uml

RefMerge

RefAction

RefJoin

RefDecision

RefFork

RefEnd

RefStart

RefArg

Figure 4.2: Intermediate Structure: Node References

The abstract syntax diagram in Figure 4.2 shows the abstract metaclass RefNode
that relates CUML Activity nodes the correponding L3 Method nodes. Looking at the
concrete subclasses of RefNode it becomes obvious that not for every CUML model
element there is an corresponding L3 model element: While the metaclass RefArg is used
to identi�y instances of ActivityParameterNode as source of L3 Arguments, there is no
element in the Intermediate Structure for another kind of CUML object nodes: the pins
of CUML Actions have no corresponding concept in L3, because the �ow of data tokens
in CUML is translated to variables.
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{redefines l3}

RefAction RefReadAttr

RefCallOp

RefReadVar

ReadStructuralFeatureAction

ReadVariableAction

CallOperationAction

L3AssignmentNode

{redefines uml}

{redefines uml}

{redefines uml}

Figure 4.3: Intermediate Structure: Actions with Output

The abstract syntax in Figure 4.3 shows that the association ends RefNode::uml and
RefNode::l3 are rede�ned for the concrete subclasses of RefNode. Further this is an
example for more than one CUML metaclass being mapped to the same L3 metaclass.
Since all CUML metaclasses shown in the diagram can yield values that have to be stored
in a variable or similar, they are mapped to the metaclass L3AssignmentNode.

The complete Intermediate Structure can be found in the appendix in Section 6.3.1.

4.2 Graph Transformation System

The Transformation System specifying the model transformation from CUML to L3 is
organized in the following 3 levels1:

• Level 0 - Preparation of CUML Models: The structure of CUML Activities is
manipulated, i.e. sequence nodes are eliminated, because in L3 there is no concept
for encapsulated substructures of methods.

• Level 1 - Generation of L3 Class Structure: The transformation of CUML
Class Diagrams into the L3 Structure.

• Level 2 - Generation of L3 Methods: The transformation of CUML Activities
into L3 Methods.

• Level 3 - Generation of L3 Expressions: The transformation of CUML Value
Speci�cations into L3 Expressions.

1The notion 'level' must not be mixed up with the notion 'layer', which has a certain meaning in the
context of Graph Transformation. The levels I used just for grouping of the many rules.
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Since the transformation system consists of many rules, not all of them will be discussed
in this chapter. In the following I will give a slight overview for every level. During the
discussion of a level I will pick out the rules that I consider the most interesting ones.
The transformation system as a whole can be found in the appendix in Section 6.3.2.

4.2.1 Level 0 - Preparation of CUML Models

Since the low level concept of L3 Methods does not feature substructures similar to
sequence nodes in CUML, activities are �attened by eliminating sequence nodes before
the creation of the L3 model. Since the CUML model is changed during the model
transformation, the transformation has to work on a copy of the CUML model.

NAC1:=RHS

s1:SequenceNode
incoming

:ControlFlow
outgoing

s2:SequenceNode

i:InitialNodenode

baseClass

s1:SequenceNode

:CNSDForEach

baseClass

s2:SequenceNode

:CNSDForEach

NAC3:

LHS: RHS:

finalinitial

node
a:ActivityFinalNode node

a:ActivityFinalNode

s1:SequenceNode
incoming

:ControlFlow
outgoing

s2:SequenceNode

i:InitialNodenode

NAC2:

Figure 4.4: Rule: connectFinalInitial

CUML sequence nodes appear in a model as encapsulation of the abstract syntax of
CUML Nassi-Shneiderman diagrams (CNSDs) only. As I mentioned before in Chapter 2,
directly contained nodes of CNSDs are instances of SequenceNode, InitialNode or Activ-
ityFinalNode. So the elimination of sequence nodes on this level is achieved by replacing
control �ow between sequence nodes by new control �ow from the inner structure of the
predecessor sequence node to the inner structure of its successor sequence node (see the
rules in �gure 4.4 and Figure 4.5).

The Negative Application condition of rule 'connectFinalInitial' (Figure 4.4) shows
that a sequence node extended by the stereotype CNSDForEach is an exception 2: If a
sequence node is the abstract syntax of a CNSD foreach statement, it is not translated

2Namely an exception in the natural language meaning of the word.
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into L3 by translation of its inner structure and the identifying encapsulating sequence
node is needed in Level 2. Therefore rule application is forbidden by NAC2 and NAC3
in this case. Execution of the rules in the correct order is ensured by the link �nalIni-
tial between the inner structure of sequence nodes that are connected by control �ow:
the link is created by the rule 'connectFinalInitial' and is required in the LHS of rule
'createConnection'.

LHS:

a1:ActivityNode

a2:ActivityNode

outgoing

incoming

incoming

outgoing

finalInitial

a1:ActivityNode

a2:ActivityNode

f:ActivityFinalNode

i:InitialNode

c1:ControlFlow

c2:ControlFlow

NAC:=RHS

outgoing

incoming

incoming

outgoing

finalInitial

incoming

outgoing

f:ActivityFinalNode

i:InitialNode

c1:ControlFlow

c2:ControlFlow

RHS:

:ControlFlow

Figure 4.5: Rule: createConnection

Similar rules for sequence nodes that are connected to the initial node or the �nal
node of a CUML Activity can be found in the appendix in Figure 6.7 and Figure 6.8
respectively.
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outgoing

:ControlFlow

a1:ActivityNode

a2:ActivityNode

:ControlFlow

a1:ActivityNode

a2:ActivityNode

incoming

outgoing

f:ActivityFinalNode

i:InitialNode

LHS: RHS:

incoming

incoming

outgoing

finalInitial

incoming

outgoing

f:ActivityFinalNode

i:InitialNode

c1:ControlFlow

c2:ControlFlow

Figure 4.6: Rule: deleteSequenceFlow

If the new control �ow between the inner structures is created, the former control �ow
and the intermediate link �nalInitial are deleted by the rule 'deleteSequenceFlow' (see
Figure 4.6 above).

The complete set of rules contained in this level of the model transformation can be
found in the appendix in Chapter 6.3.2: It contains rules for the elimination of sequence
nodes that are not directly contained in an activity but in another sequence node and
therefore can have instances of ControlNode as successor or predecessor.
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:Boolean[1]

:State[*]
{weight = *}

:State[1]

:Boolean[1]

return:Boolean[1]

:Boolean[1]

:Boolean[1]

[else]

SN1

SN2

[s.name.equals(name)]

[State]

<<AddVariableValue>>

<<AddVariableValue>>

s:State[1]

name: String[1]

name: String[1]

<<AddVariableValue>>

<<ReadStructuralFeature>>

self.states

allocated:Boolean[1]

<<ValueSpecification>>

false

<<AddVariableValue>>

allocated:Boolean[1]

<<ValueSpecification>>

true

<<ReadVariable>>

allocated:Boolean[1]

<<centralBuffer>>

Figure 4.7: L3 Diagram after Level 0: Automaton.nameAllocated
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Figure 4.7 shows the CUML Activity Automaton.nameAllocated after application of
the Level 0 rules. There are 2 sequence nodes left in the activity: SN1 has not been
eliminated because of NAC2/NAC3 of rule 'connectFinalInitial'. SN2 has not been elim-
inated, because there are no rules for eliminating sequence nodes without incoming and
outgoing control �ow.

As can be seen from the example, the rules from Level 0 are not only useful for
transformation of CUML Activities into L3 Methods, but also for manipulating CNSDs
for displaying them in the CUML Activity view.

4.2.2 Level 1 - Generation of L3 Class Structure

This level consists of the rules that create the L3 class structure from the abstract syntax
of CUML Class Diagrams.

First of all, the class structure object has to be created by application of the rule 'create-
ClassStructure' (see �gure 6.15 in the appendix). When the class structure object exists,
CUML packages that are not nested within other packages (i.e. root packages of CUML
namespaces) can be created and linked to the class structure by the rule 'createPackage'
(Figure 6.16). Nested packages are translated by the rule 'createNestedPackage' (Figure
6.17). When the corresponding L3 package exists for a CUML package, all its classes can
be created by application of the rule 'createClass'.

NAC:=RHS

i:LiteralInteger
value = 1

r1:RefClass

t:Type

lc:L3Class

i:LiteralInteger
value = 1

r1:RefClass

lc:L3Class

t:Type

RHS:LHS:

attributes

ownedAttribute

upperValue

type

name = nc:Class

r:RefClass

lc:L3Class

p:Property

type

ownedAttribute

upperValue

type

name = nc:Class

r:RefClass

lc:L3Class

p:Property

:RefAttribute

:L3Attribute
name = n
kind = singleValue

Figure 4.8: Rule: createAttribute
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When the L3 classes exist, their features can be created. When attributes are created,
the implicit collection types of CUML have to be translated into the explicit collection
types of L3. The rule 'createAttribute' in Figure 4.8 creates an L3 attribute for a CUML
attribute with upper multiplicity bound 1, i.e. a non-collection attribute.

i:LiteralInteger
value = 1

r1:RefClass

t:Type

lc:L3Class

r1:RefClass

lc:L3Class

t:Typei:LiteralInteger

c:Class

r:RefClass

lc:L3Class

p:Property
isOrdered = false
isUnique = false
name = n

attributes

type

RHS:LHS:

NAC1: NAC2:=RHS

ownedAttribute

upperValue

type

i:LiteralInteger

c:Class

r:RefClass

lc:L3Class

ownedAttribute

upperValue

type

kind = Bag 

p:Property
isOrdered = false
isUnique = false
name = n

:RefAttribute

:L3Attribute
name = n

Figure 4.9: Rule: createAttributeBag

Further rules exist for the creation of attributes of a collection type. Figure 4.9 shows
the rule 'createAttributeBag' for creating an L3 attribute of the collection type Bag. The
rules for creating attributes of the collection types Sequence, Set and OrderedSet can be
found in the appendix (see �gures 6.19, 6.20, 6.21).

CUML operations are translated into L3 operations by application of the rule 'create-
Operation' (see �gure 6.22). When an L3 operation exists, the parameters of the cor-
responding CUML operation can be translated. This requires the translation of CUML
collection types into L3 collection types again. Therefore the transformation system
contains 5 rules for the creation of L3 parameters: 'createParameter' for CUML parame-
ters of non-collection type (see �gure 6.23), and the rules 'createParameterBag' (Figure
6.24), 'createParameterSequence' (Figure 6.25), 'createParameterSet' (Figure 6.26) and
'createOrderedSet' (Figure 6.27) for CUML parameters of one of the collection types. If
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the CUML parameter is of the in direction kind, the isOut attribute of the corresponding
L3 parameter is set to false by application of the rule 'setParamIn' (see Figure 6.28).

Similar rules exist for creation of the return parameter of L3 methods (�gures 6.29 -
6.33).

4.2.3 Level 2 - Generation of L3 Methods

After the translation of CUML class diagrams to the L3 class structure, the L3 methods
can be created using the rules from Level 2.

L3 methods are created for existing L3 operations by aplication of the rule 'cre-
ateMethod' (Figure 6.34). If a method exists, its arguments can be created from the
parameters of the corresponding CUML activity. Luckily there is no need to create the
type of an argument (remember creation of the collection types above), because any ar-
gument is linked to its corresponding operation parameter. Nevertheless translation of
types is necessary when creating the variables of an L3 method: the rules can be found
in Figure 6.36 - 6.40.

When an L3 method exists, the control nodes can be created: Start nodes (rule 'cre-
ateStart', Figure 6.41), end nodes (rule 'createEnd', Figure 6.42), decision nodes (rule
'createDecision', Figure 6.43), merge nodes (rule 'createMerge', Figure 6.44), fork nodes
(rule 'createFork', Figure 6.45) and join nodes (rule 'createJoin', Figure 6.46).

CUML actions with output are translated into L3 assignment nodes. Rule 'createAs-
signNode' in Figure 4.10 translates an instance of a CUML CallOperationAction into an
assignment node.

c:CallOperationAction

a:Activity

:RefAct

a:Activity

:RefAct

NAC:=RHS

c:CallOperationAction

RHS:LHS:

node

la:L3Method

nodes

node

la:L3Method

:RefCallOp

:AssignmentNode

Figure 4.10: Rule: createAssignNode

If the assignment node exists for the operation call, the L3 call expression is created by
application of rule 'createSupplier' in Figure 4.11. The call expression will be completed
by the rules of Level 3 (Section 4.2.4). The designator is created by application of rule
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'createDesignator' (Figure 6.53) for existing assignment nodes.

c:CallOperationAction

a:L3AssignmentNode

lo:L3Operation

c:CallOperationAction

lo:L3Operation

o:Operation

r:RefOp r:RefOp

NAC:=RHS

method

o:Operation

method

LHS: RHS:

operation

r:RefCallOp

r:RefCallOp

supplier

a:L3AssignmentNode

:L3CallExpression

Figure 4.11: Rule: createSupplier

Application of the rules 'createReadFeature' (Figure 6.51) and 'createReadVariable'
(Figure 6.47) creates L3 assignment nodes for instances of CUML ReadStructuralFea-
tureAction and ReadVariableAction respectively. Instances of CUML ValueSpeci�cation-
Action are translated to assignment nodes by application of the rule 'createValueSpeci-
�cation' (see Figure 6.60), instances of TestidentityAction are translated by application
of the rule 'createTestIdentity' (see Figure 6.61).

The creation of L3 iterators from CNSD foreach statements is a litle more complex.
Since CNSD iterators do not have a loop structure consisting of decision/merge nodes,
this structure has to be created on the L3 side explicitly. This is done by application
of the rule 'createIteratorLoop' (see Figure 4.12): The assignment node delivering the
collection is connected to a created L3 merge node. This node merges the control �ow
of �rst-time loop entry and the control �ow returning from the end of the loop. It is
connected to a decision node that branches control �ow to the loop body and to the L3
�nal node that terminates the iteration. Rule 'closeIteratorLoop' (see Figure 6.62) closes
the iterator loop by connecting all ends of control �ow of the body to the merge node of
the loop (see above).
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n:L3AssignmentNode

a:Activity

CNSDForEach

s:SequenceNode

c:Action

rv:RefVarAction

av:AddVariableValueAction
ra:RefAction

a:Activity

CNSDForEach

s:SequenceNode

c:Action

rv:RefVarAction

av:AddVariableValueAction
ra:RefAction

an:L3AssignmentNode an:L3AssignmentNode

RHS:

NAC:=RHS

LHS:

la:L3Method

r:RefAct

node

collectionProvider

baseClass

variableAction

la:L3Method

r:RefAct

node

collectionProvider

baseClass

variableAction

source

target

source

target
source

target

source

target

n:L3AssignmentNode

:L3Edge

:L3DecisionNode

:L3Edge

:L3Edge

:L3EndNode

:L3Edge

:L3MergeNode

Figure 4.12: Rule: createIteratorLoop

The L3 iterator object is created by application of the rules 'createVariableIterator'
(Figure 4.13) for collections provided by variables and 'createAttributeIterator' (Figure
6.63) for collections provided by attributes.
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NAC:=RHS

ra:RefAction
v:Variablerv:RefVar

lv:L3Variable

an:L3AssignmentNode

s:SequenceNode ra:RefAction
v:Variablerv:RefVar

lv:L3Variable

an:L3AssignmentNode

s:SequenceNode

c:ReadVariableAction

suppliercollection
iterator

variable

variable

collectionProviderRHS:LHS:

c:ReadVariableAction
collectionProvider

:L3Iterator

:L3IterateCreate

Figure 4.13: Rule: createVariableIterator

The outgoing edges of the decision node created by the rule 'createIteratorLoop' have
to be annotated with guard expressions. Rule 'createIteratorHasNext' (Figure 4.14)
creates an instance of L3IteratorHasNext as guard for the outgoing edge leading to the
iteration body. The edge leading to the L3 end node terminating the iteration is guarded
by an L3 else expression.

NAC:=RHS

ic:L3IterateCreate

it:L3Iterator

rv:RefVarAction

n:AssignmentNode

av:AddVariableValueAction
ra:RefAction

an:AssignmentNode

:L3Edge

:L3MergeNode

e1:L3Edge

e2:L3Edge

ld:L3DecisionNode

e3:L3Edge

s:SequenceNode c:Action

iterator

suppliersource

target

source

target
source

target

variableAction

source

target

le:L3EndNode

collectionProvider

ic:L3IterateCreate

it:L3Iterator

rv:RefVarAction

n:AssignmentNode

av:AddVariableValueAction
ra:RefAction

an:AssignmentNode

:L3Edge

:L3MergeNode

e1:L3Edge

e2:L3Edge

ld:L3DecisionNode

e3:L3Edge

s:SequenceNode c:Action

guard

RHS:LHS:

guard

iterator

supplier

iterator

source

target

source

target
source

target

variableAction

source

target

le:L3EndNode

collectionProvider

:L3IterateHasNext

:L3ElseExpression

Figure 4.14: Rule: createIteratorHasnext
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Finally, the L3 assignment that assigns a value of the collection to the iteration variable
before each iteration has to be created. Rule 'createIteratorNext' (Figure 4.15) connects
the existing L3 assignment node that corresponds to the instance of AddVariableValue-
Action on the CUML side that assigns the iteration variable to the corresponding L3
variable and a created instance of L3IterateNext.

n:L3AssignmentNode

ic:L3IterateCreate

ra:RefAction

c:Action

s:SequenceNode

rv:RefVarAction

av:AddVariableValueAction

v:Variable

r:RefVar

lv:L3Variable

ic:L3IterateCreate

ra:RefAction

c:Action

s:SequenceNode

rv:RefVarAction

av:AddVariableValueAction

v:Variable

r:RefVar

lv:L3Variable

it:L3Iterator it:L3Iterator

RHS:

NAC:=RHS

LHS:

collectionProvider

variableAction

supplier

variable

collectionProvider

variableAction

supplier

variable

iterator iteratorsupplier

designator

iterator

n:L3AssignmentNode
an:L3AssignmentNodean:L3AssignmentNode

:L3IterateNext

Figure 4.15: Rule: createIteratorNext

4.2.4 Level 3 - Generation of L3 Expressions

Level 3 consists of the rules that create L3 expressions. Most of the CUML actions are
translated to L3 expressions.

The CUML actions that allow manipulation of local variables of activities and at-
tributes of objects are translated to the concrete subtypes of L3CollectionExpression.
There are rules for translating instances of subclasses of StructuralFeatureAction: 'cre-
ateAddValueSFeature' (see Figure 6.57) and 'createRemoveValueSFeature' (see �gure
6.59). The rules for translating variable actions are 'createAddValueVariable' (�gure
6.54) and 'createRemoveValueVariable' (Figure 6.56).

The CUML literal speci�cations of values of the primitive data types Boolean, String
and Integer3 are translated to the value speci�cations of L3 expressions (see Section
3.3). The rules are: 'createBoolSpec' (Figure 6.64), 'createIntSpec' (Figure 6.65), 'creat-
eStringSpec' (Figure 6.66) and the rule 'createNullSpec' (Figure 6.67) for the speci�cation
of the absence of any value.

3The UML pro�le for CUML ensures that in a CUML model values of the type UnlimitedNatural are
used for structural concerns only, i.e. upper multiplicity bounds, capacity of object nodes, weight of
activity edges etc.
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CUML expressions that are UML expressions extended by one of the CUML stereo-
types are of course translated to L3 expressions as well: If a CUML expression is extended
by the stereotype ValueExpression, application of the rule 'createValueExpFromVariable'
(Figure 4.16) - if the CUML expression refers to an activity variable - or the rule 'creat-
eValueExpFromProperty' (Figure 6.68) - if the expression refers to a property - leads to
creation of an L3 value expression.

baseClass

ve:ValueExpression

e:Expression

ve:ValueExpression

e:Expression

v:Variable

baseClass

value

RHS:LHS:

v:Variable

r:RefVar

vl:L3Variable

r:RefVar

vl:L3Variable

NAC:=RHS

:L3ValueExpression:RefValueExp

Figure 4.16: Rule: createValueExpFromVariable

If a CUML expression represents the call of an operation it is extended by the stereo-
type CallExpression. These expressions are translated to L3 call expressions. There are
three rules that create call expressions: 'createCallExpFromProperty' (Figure 4.17) is
applicable if the target object of the operation call is accessed via an attribute.
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NAC:=RHS

baseClass

operation property

r1:RefOperation

o:Operation

e:Expression

lo:L3Operation

r2:RefAttr

p:Property

c:CallExpression

a:L3Attribute

baseClass

operation property

r1:RefOperation

o:Operation

LHS: RHS:

lo:L3Operation

r2:RefAttr

p:Property

c:CallExpression

a:L3Attribute

targetoperation

e:Expression

:RefCallExp

:L3CallExpression

Figure 4.17: Rule: createCallExpFromProperty

If the operation is called on a variable, rule 'createCallExpFromProperty' (Figure 4.17)
is applicable. Rule 'createCallExpStatic' (Figure 6.70) creates calls for static operations.

If a child of a call expression in a CUML expression tree is translated to L3, the
structure that identi�es the child as an argument of the operation call can be created
on the L3 side: this is done by application of the rule 'createArgumentExp' (Figure
4.18). This rule makes use of the stereotype ArgumentExpression, that makes explicit
the relation between the child expression of a call expression and a parameter of the
operation that is called.
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operands

v:ValueSpecification

a:ArgumentExpression

r1:RefExp

le:L3Expression

e:Expression

r2:RefCallExp

lc:L3CallExpression

c:CallExpression

baseClass

p:Parameter r3:RefParam

lp:L3Parameter

NAC:=RHS

v:ValueSpecification

a:ArgumentExpression

r1:RefExp

le:L3Expression

e:Expression

r2:RefCallExp

lc:L3CallExpression

c:CallExpression

baseClass

p:Parameter r3:RefParam

lp:L3Parameter

LHS:

baseClass
operand

parameter

baseClass
operand

parent

parameter

RHS:

parameter

Figure 4.18: Rule: createArgumentExp

But L3 call expressions can be the result of the translation of an instance of a CUML
CallOperationAction as well. In this case the values for the arguments of the operation
call are provided by the data �ow of the enclosing activity. Rule 'createActionArgument'
(see Figure 4.19) creates an instance of L3ValueExpression that relates the corresponding
L3 variable of this data �ow to the correct L3 parameter of the called operation.

101



NAC:=RHS

i:InputPin

p:Parameter

lo:L3Operation

o:Operation

r:RefOp

:L3CallExpression

r1:RefParam

lp:L3Parameter

a:Argument

o:ObjectFlow

r2:RefFlow
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c:CallOperationAction
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ownedParameter method

baseClass
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i:InputPin

p:Parameter

lo:L3Operation

o:Operation

r:RefOp

:L3CallExpression

r1:RefParam

lp:L3Parameter

a:Argument

o:ObjectFlow

r2:RefFlow

lv:L3Variable

c:CallOperationAction

LHS: RHS:

input

ownedParameter method

baseClass

parameter

target

operation

value

parameter

operand parent

:L3ValueExpression

Figure 4.19: Rule: createActionArgument

Level 3 contains the rules for translating control and data �ow of CUML activities.
Rule 'createEdge' (�gure 6.48) creates an L3 edge for every instance of ControlFlow.
Since in CUML activities there can be implicit control �ow - an action starts execution
when all input pins hold a number of tokens that allow execution, even if there is no
incoming control �ow - this control �ow has to be made explicit in L3. This is done by
application of the rule 'createImplicitControl' (see Figure 4.20).
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source

r1:RefNode

l1:L3Node

r2:RefNode

i2:InputPini1:OutputPin

n2:ActivityNoden1:ActivityNode

r1:RefNode

l1:L3Node

r2:RefNode

l2:L3Node

i2:InputPini1:OutputPin

n2:ActivityNoden1:ActivityNode

l2:L3Node

LHS: RHS:

NAC:=RHS

r:RefAct

m:L3Method

a:Activity

output input

o:ObjectFlow

target
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source

r:RefAct

m:L3Method

a:Activity

output input

o:ObjectFlow

target

edge

incomingoutgoing

source target

:L3Edge

Figure 4.20: Rule: createImplicitControl

The creation of explicit L3 control �ow from implicit CUML control �ow may lead to L3
method nodes having more than one incoming edge. Since this may occur even without
application of rule 'createImplicitControl', since CUML, as well as UML, allows implicit
merge4 , elimination of implicit merge is necessary in L3, due to its explicit character.
The explicit L3 merge node is created by application of the rule 'createImplicitMerge'
(see Figure 6.49). Incoming edges of an L3 node having a merge node as predecessor are
connected to this merge node by application of rule 'mergeEdges' (see Figure 6.50).
Since in L3 methods access to objects and values is managed via variables, the object

�ow of an activity is translated to local variables of the corresponding L3 method by
application of the rule 'createVariable' (see Figure 6.47).

4Multiple incoming control �ows of actions are implicitly merged by an assumed merge node that is
target of the control �ows and predecessor of the action.
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5 Conclusion

The motivation for the approach presented in this diploma thesis is the need for a formally
de�ned complex modelling technique, that integrates di�erent modelling techniques by
mapping them to a common semantical domain.

On the one hand with the UML there exists a complex modelling technique for object-
oriented software systems, that includes structural modelling techniques like Class Di-
agrams, constructive techniques like Activities and descriptive techniques like Sequence
Diagrams. But the semantics of the UML de�ned in [6] is incomplete and informal. On
the other hand there exist many approaches that de�ne formal semantics for single sub-
languages of the UML by mapping to a semantical domain. But a combination of these
approaches covering structural, contructive and descriptive techniques would therefore
result in a composite semantical domain, whereas the problem of interoperability arises.

Besides veri�cation of models, automated code generation is one of the main purposes
of Model Driven Architecture. A common semantical domain for the sublanguages of a
complex modelling technique that allows code generation from the models of the seman-
tical domain language could make the development of code generation more convenient.

5.1 Summary

In Chapter 2 I introduced the complex modelling technique CUML. CUML is formally de-
scribed as a restriction to UML by the UML pro�le for CUML. This way CUML bene�ts
from the wide tool support for UML. Since my thesis concentrates on behaviour modelling
techniques, I introduced just a basic version of Class Diagrams as structural modelling
technique of CUML. The behaviour modelling techniques introduced are CActivities as
a UML Activities subset, and CUML Nassi-Shneiderman Diagrams (CNSDs). Nassi-
Shneiderman Diagrams were �rst proposed in [15] informally and used as a structured
form of pseudo-code since. CNSDs are an enhancement of these and feature concepts of
modern programming languages, e.g. iteration over collections. Since CUML is based on
the UML, the abstract syntax of CNSDs had to be expressed by means of the UML meta
model. So I achieved a syntactical de�nition for CNSDs by using them as concrete syntax
for a subset of UML Activities. This fact emphasizes the role of CNSDs as "syntactical
sugar" within CUML. Where CActivities - similar to UML Activities - feature modelling
of data and control �ow by token �ow, CNSDs o�er ways of modelling data and control
�ow that are more convenient for modelers who are used to develop a software system
by writing program source code directly. The introduction of an alternative concrete
syntax is no violation of the UML standard, since [6] calls the proposed notation for
UML Activities optional.
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Consisting of Class Diagrams for modelling the class structure of a system and CAc-
tivitities and CNSDs for modelling the behaviour by specifying the operations of classes,
CUML is a complex modelling technique in the sense I pointed out above. Figure 5.1
shows, that a complete model consisting of CClassDiagrams, CActivities and CNSDs is
translated to the semantical domain.

Semantical Domain

Complex Modelling Technique

Model Transformation

Code Generation

Platform Specific Domain
.NET

Java Bytecode Common Intermediate Language

CUML

CClassDiagrams

CNSDs CActivities

L3

Figure 5.1: From CUML to program code.

In Chapter 3 that introduces the semantical domain language L3 I pointed out 4 main
properties of L3: explicit contents, seperation of aspects, low-level concepts and model
tracing. These properties make L3 ful�ll the requirements of model veri�cation and
code generation: Explicit contents ensure that all information contained in the model is
easily accessible for veri�cation. Separation of structural, constructive and descriptive
aspects structure the model for di�erent veri�cation techniques: The constructive part
is checked against the requirements of the descriptive part, both parts communicate over
the structural part. Model tracing allows the identi�cation of the corresponding CUML
model element for every L3 model element, what is useful for the user feedback of the
L3 model veri�cation. Finally, the low-level concepts of L3 make it easy to develop code
generation routines from L3 to arbitrary object-oriented platforms. The schema in Figure
5.1 depicts Java and .NET CIL as possible target platforms of code generation.
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In Chapter 4 I introduced the model transformation from the complex modelling tech-
nique CUML to the semantical domain language L3 by a graph transformation system.
This transformation is an endogenous model transformation: The meta model, that is
interpreted as the type graph, is an intermediate structure, that imports both the CUML
and the L3 meta model. This intermediate structure consists of meta-classes that relate
a CUML meta-class and an L3 meta-class, that correspond to eachother in the sense of
model tracing mentioned above.

The discussion of the transformation rules has shown, that implicit contents of the
CUML model are translated to explicit constructs of the L3 model (e.g. collection types).
Further the separation of aspects has become obvious: E.g., during transformation of
CUML class diagrams into the L3 class structure I pointed out how the information
concerning CUML associations may lead to both structural and descriptive contents of
the L3 model.

5.2 Possible Extensions

Since my thesis deals with the syntactical integration of the constructive behaviour mod-
elling techniques of CUML only, namely CActivities and CNSDs, there are a number of
possible extensions to CUML. CUML contains just a basic version of class diagrams. A
full featured version should cover polymorphy, interfaces, abstract classes and operations,
and visibility. Further the constructive part could be completed by adding transforma-
tion rules and OCL body constraints for query operations. CUML Activities and CNSDs
could be extended to exception handling. Possible techniques for the descriptive part of
CUML are UML sequence diagrams and OCL constraints.

Enhancement of CUML class diagrams would lead to corresponding increments of
the L3 class structure. Additional constructive CUML techniques can be mapped to
L3 methods in their current version introduced here. CActivities and CNSDs featuring
exceptions would require an exception concept for L3. For the descriptive contents on
the CUML side the corresponding L3 part would have to be developed.

Semantical correctness is out the scope of my thesis. Nevertheless I like to mention
that, although the semantics of UML and therefore that of CUML is de�ned informally by
natural language description, semantical correctness of the model transformation CUML
⇒ L3 will have to be discussed once formal semantics of L3 are de�ned.

5.3 Implementation Notes

Finally I like to sketch an implementation for the approach introduced in this thesis as
plugin for the Eclipse integrated development environment ([1]). Such an implementation
will map to the schema presented in Figure 5.1.

One of the main reasons for de�ning the complex modelling technique by use of the
UML pro�ling mechanism was to bene�t from tool support for UML. The data model
for implementation of an Eclipse plugin is typically provided by an instantiation of the
Eclipse Modelling Framework (EMF, [2]). The UML2 Eclipse plugin ([5]) provides a
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complete UML 2.0 meta model based on EMF. Since the EMF plugin includes a mecha-
nism to create a meta model for UML pro�les by use of the UML2 plugin, a meta model
for CUML can be easily build from the UML pro�le for CUML in Section 6.2. The editor
for CUML diagrams can be implemented using the Graphical Editing Framework (GEF,
[3]), which allows convenient development of graphical editors for the Eclipse IDE.
The meta model for the semantic domain language L3 can be created as an EMF-based

model.
An important part of a tool for CUML will be the model transformation from CUML

to L3. The Tiger EMF Transformation Project provides a framework for graph-based
EMF transformation, so that the transformation speci�ed by the graph transformation
system in Section [4] can be easily implemented.
The implementation of the routines for veri�cation of semantical domain models highly

depend on the formal veri�cation techniques used. Since EMF provides access to models
via Java interfaces, they probably will be implemented in Java.
The implementation of code generation from L3 models should make use of existing

tools, e.g. the Java Emitter Templates (JET) framework, a generic template engine that
can be used to create source code.
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6 Appendix

6.1 German Summary

Obwohl durch die De�nition der UML keine formale Semantik vorgegeben ist, existieren
viele Ansätze, die eine formale Semantik für Teilsprachen der UML durch Abbildung
in einen semantischen Bereich de�nieren. Trotzdem gibt es keinen solchen Ansatz für
eine Menge von UML-Teilsprachen, die die komplette Modellierung objektorientierter
Softwaresysteme ermöglicht. Ein solcher Ansatz müsste die semantische Integration ver-
schiedener Verhaltensmodellierungstechniken beinhalten. In dieser Diplomarbeit de�niere
ich die komplexe Modellierungstechnik CUML, die die Verhaltensmodellierungstechniken
CActivities und CNSDs enthält. Diese Techniken werden durch Modelltransformation
in einen gemeinsamen semantischen Bereich integriert. Modelltransformation und die
Sprache L3, die den semantischen Bereich syntaktisch de�niert, sind Teil dieser Diplo-
marbeit.

6.2 UML-Pro�le for CUML

6.2.1 Constraints on UML

[1] Every instance of Classi�er is instance of Class.

context Classifier inv:

self.allInstances()->forAll(oclIsTypeOf(Class))

[2] Every Operation must be owned by a class.

context Operation inv:

self.class->size() = 1

[3] Every Property must be owned by a class.

context Property inv:

self.class->size() = 1

[4] Lower and upper bound of a MultiplicityElement have to be expressed as integer
and unlimited natural respectively.

context Kernel::MultiplicityElement inv:

self.lowerValue.oclIsTypeOf(LiteralInteger) and

self.upperValue.oclIsTypeOf(LiteralUnlimitedNatural)
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[5] Instances of LiteralUnlimitedNatural are only allowed as speci�cation of a Multi-
plicityElements upper bound, the capacity of an ObjectNode or the weight of an
ActivityEdge.

context LiteralUnlimitedNatural inv:

self.allInstances()->forAll(n |

MultiplicityElement.allInstances()->exists(upperValue = n) or

ActivityEdge.allInstances()->exists(weight = n) or

ObjectNode.allInstances()->exists(upperBound = n))

[6] Every Parameter is owned by an Operation.

context Parameter inv:

self.allInstances().operation->size = 1

[7] ParameterDirectionKind is restricted to: in, inout and return.

context Parameter inv:

self.direction = in or self.direction = inout or

self.direction = return

[8] Every TypedElement has a type.

context TypedElement inv:

self.allInstances().type->size = 1 or

self.oclIsTypeOf(InputPin)

[9] There is exactly one Activity for every particular pairing of an implementing Class
and an Operation.

context Communications::Operation:

inv: self.class->size() = 1 implies

self.method->select(m | m.oclIsTypeOf(Activity))->size() = 1

[10] There are no autonomous activities, i.e. every activity is associated with a classi�er
as its context.

context StructuredActivities::Activity inv:

self.context->size() = 1

[11] Every Classi�er has at most one generalization.

context Kernel::Classifier inv:

self.generalization->size() < 2

[12] Every SequenceNode has one ExecutableNode of type InitialNode.

context SequenceNode inv:

self.executableNode->size() = 1 and

self.executableNode.oclIstTypeOf(InitialNode)
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[13] Visibility has to be speci�ed for all NamedElements.

context Kernel::NamedElement inv:

self.visibility->size() = 1

[14] The direction of a Parameter is either in or return.

context Parameter inv:

(direction = in) or (direction = out)

[15] Every instance of Type is instance of Class.

context Type inv:

self.allInstances()->forAll(oclIsTypeOf(Class))

[16] Instances of Action are instances of CallOperationAction, StructuralFeatureAction,
ValueSpeci�cationAction, TestIdentityAction, VariableAction, SequenceNode.

context Action inv:

self.oclIsTypeOf(CallOperationAction) or

self.oclIsTypeOf(StructuralFeatureAction) or

self.oclIsTypeOf(ValueSpecificationAction) or

self.oclIsTypeOf(TestIdentityAction) or

self.oclIsTypeOf(VariableAction) or

self.oclIsTypeOf(SequenceNode)

[17] A Variable must be owned by an Activity.

context Variable inv:

self.activityScope->oclIsTypeOf(Activity)

[18] The input pins of a TestIdentityAction have the type Object.

context TestIdentityAction inv:

self.first.type = Object and

self.second.type = Object

6.2.2 Stereotypes

�stereotype� Argument

• Metaclass Pin

• Description If the pin is owned by a CallOperationAction, it has to correspond to
a parameter of the operation.

• Tagged Values

parameter: Parameter The parameter the pin provides the values
for.
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• Constraints

[1] The associated parameter has the same type as the pin.

context Argument inv:

self.baseClass.type = self.parameter.type

[2] The associated parameter has the same multiplicity as the pin.

context Argument inv:

self.baseClass.multiplicity =

self.parameter.multiplicity

�stereotype� ArgumentExpression

• Metaclass Expression

• Description If an Expression represents an argument of an operation call, it is
extended by this stereotype.

• Tagged Values

parameter: Parameter[0..1] Parameter of the Operation of which the ex-
pression is an argument.

• Constraints

[1] The associated parameter is parameter of the operation of which this expres-
sion is an argument.

context ArgumentExpression inv:

self.operand.operation.parameter->includes(self.parameter)

�stereotype� CallExpression

• Metaclass Expression

• Description If an Expression represents an operation call, it is extended by this
stereotype.

• Tagged Values

operation: Operation[1] The Operation which is called.
property: Property[0..1] Attribute of the enclosing Operations Class

designating the object the operation is called
upon.

variable: Variable[0..1] Variable of the enclosing CActivity designat-
ing the object the operation is called upon.

• Constraints

[1] If the corresponding Operation is not static, one of the following Tagged Values
is set: parameter, property, variable.
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context CallExpression inv:

not(self.operation.isStatic) implies

(parameter->size() + property->size() + variable->size() = 1)

[2] If the corresponding Operation is static, none of the following Tagged Values
is set: parameter, property, variable.

context CallExpression inv:

self.operation.isStatic implies

(parameter->size() + property->size() + variable->size() = 0)

�stereotype� ValueExpression

• Metaclass Expression

• Description If an Expression represents an attribute, parameter or variable, it is
extended by this stereotype.

• Tagged Values

property: Property[0..1] Attribute of the enclosing Operations Class
containing the value.

variable: Variable[0..1] Variable of the enclosing CActivity contain-
ing the value.

• Constraints

[1] One of the following Tagged Values is set: parameter, property, variable.

context ValueExpression inv:

self.operation.isStatic implies

(parameter->size() + property->size() + variable->size() = 1)

�stereotype� CNSDActivity

• Metaclass Activity

• Description An Activity extended by this stereotype is graphically represented
with the conrete syntax of CNSDs.

• Constraints

[1] The directly contained activity nodes have one of the following types: Ini-
tialNode, ActivityFinalNode, SequenceNode.

context CNSDActivity inv:

self.baseClass.node->forAll(oclIsTypeOf(InitialNode) or

oclIsTypeOf(ActivityFinalNode) or

oclIsTypeOf(SequenceNode))
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�stereotype� CNSDAssignment

• Metaclass SequenceNode

• Description A SequenceNode extended by this stereotype is the abstract syntax
of a CNSD assignment statement.

• Tagged Values

designator: Action[1] The action that writes the value to an at-
tribute or variable.

supplier: Action[1] The action that provides the input value for
the designator action.

• Constraints

[1] The designator action has one of the following types: WriteVariableAction,
WriteStructuralFeatureAction.

context CNSDAssignment inv:

self.designator.oclIsTypeOf(WriteVariableAction) or

self.designator.oclIsTypeOf(WriteStructuralFeatureAction)

[2] The supplier action provides input for the designator action.

context CNSDAssignment inv:

self.supplier.result.outgoing.target =

self.designator.value

[3] Supplier and designator are directly contained by the base class.

context CNSDAssignment inv:

self.baseClass.node.include(self.supplier) and

self.baseClass.node.include(self.designator)

[4] designator is directly contained by the extended sequence node.

context CNSDAssignment inv:

self.baseClass.node->includes(designator)

[5] supplier is directly contained by the extended sequence node.

context CNSDAssignment inv:

self.baseClass.node->includes(supplier)

�stereotype� CNSDOperationCall

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD operation call statement.

• Tagged Values

opAction: CallOperationAction[1] The action that executes the operation.
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• Constraints

[1] opAction is directly contained by the extended sequence node.

context CNSDOperationCall inv:

self.baseClass.node->includes(opAction)

�stereotype� CNSDIfElse

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD IfElse statement.

• Tagged Values

decisionNode: DecisionNode[1] The DecisionNode evaluating the if condi-
tion.

elseNode: SequenceNode[1] Contains the abstract syntax of the CNSD
else-trace.

ifCondition: ValueSpeci�cation[1] The guard expression of decisionNode.
ifNode: SequenceNode[1] TContains the abstract syntax of the CNSD

if-trace.

• Constraints

[1] The decisionNode has 2 outgoing edges.

context CNSDIfElse inv:

self.decisionNode.outgoing->size() = 2

[2] elseNode and ifNode are successors of decisionNode.

context CNSDIfElse inv:

self.decisionNode.outgoing->collect(source)->

includes(ifNode->union(elseNode))

[3] The ifCondition is guard of the edge from decisionNode to ifNode.

context CNSDIfElse inv:

self.decisionNode.outgoing->exists(guard = ifCondition and

source = ifNode)

[4] decisionNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(decisionNode)

[5] elseNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(elseNode)

[6] ifNode is directly contained by the extended sequence node.

context CNSDIfElse inv:

self.baseClass.node->includes(ifNode)
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�stereotype� CNSDWhile

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD While statement.

• Tagged Values

decisionNode: DecisionNode[1] The DecisionNode evaluating the loop con-
dition.

body: SequenceNode[1] Contains the abstract syntax of the CNSD
loop body.

loopCondition: ValueSpeci�ca-
tion[1]

The guard expression of decisionNode.

• Constraints

[1] The body node is predecessor of the decisionNode.

context CNSDDoWhile inv:

self.body.outgoing.target = decisionNode

[2] The body node is successor of the decisionNode.

context CNSDDoWhile inv:

self.body.incoming.source = decisionNode

[3] The loopCondition is guard of the edge from decisionNode to body.

context CNSDDoWhile inv:

self.body.incoming.guard = loopCondition

[4] The decision node is successor of the InitialNode.

context CNSDDoWhile inv:

self.decisionNode.incoming.source.oclIsTypeOf(InitialNode)

[5] decisionNode is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(decisionNode)

[6] body is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(body)

�stereotype� CNSDWhile

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD While statement.
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• Tagged Values

decisionNode: DecisionNode[1] The DecisionNode evaluating the loop con-
dition.

body: SequenceNode[1] Contains the abstract syntax of the CNSD
loop body.

loopCondition: ValueSpeci�ca-
tion[1]

The guard expression of decisionNode.

• Constraints

[1] The body node is predecessor of the decisionNode.

context CNSDDoWhile inv:

self.body.outgoing.target = decisionNode

[2] The body node is successor of the decisionNode.

context CNSDDoWhile inv:

self.body.incoming.source = decisionNode

[3] The loopCondition is guard of the edge from decisionNode to body.

context CNSDDoWhile inv:

self.body.incoming.guard = loopCondition

[4] The decision node is successor of the InitialNode.

context CNSDDoWhile inv:

self.decisionNode.incoming.source.oclIsTypeOf(InitialNode)

[5] decisionNode is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(decisionNode)

[6] body is directly contained by the extended sequence node.

context CNSDDoWhile inv:

self.baseClass.node->includes(body)

�stereotype� CNSDForEach

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD ForEach statement.

• Tagged Values

collectionProvider: Action[1] Action that provides the elements
of the collection.

bu�er: CentralBu�erNode[1] Bu�er that stores the elements of
the collection.

variableAction: AddVariableValueAction[1] Action that writes the value of the
variable before each iteration.

body: SequenceNode[1] SequenceNode encapsulating the
body of the foreach statement.
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• Constraints

[1] CollectionProvider is of one of the following types: ReadVariableAction, Read-
StructuralFeatureAction.

context CNSDForEach inv:

self.collectionProvider.oclIsTypeOf(ReadVariableAction)

or self.collectionProvider.

oclIsTypeOf(ReadStructuralFeatureAction)

[2] Edge weight from collectionProvider's result pin to bu�er is '*'.

context CNSDForEach inv:

self.collectionProvider.result.outgoing.weight = *

�stereotype� CNSDCase

• Metaclass CompleteStructuredActivities::SequenceNode

• Description A SequenceNode extended by this stereotype encapsulates the ab-
stract syntax of a CNSD case statement.

• Tagged Values

decisionNode: DecisionNode[1] The decision node implementing the case
distinction.

traces: SequenceNode[*] The sequence nodes that encapsulate the ab-
stract syntaxes of the di�erent traces of the
case statement.

• Constraints

[1] The decision node is predecessor to all traces.

context CNSDCase inv:

self.traces->collect(incoming)->forAll(source = decisionNode)

[2] decisionNode is directly contained by the extended sequence node.

context CNSDCase inv:

self.baseClass.node->includes(decisionNode)

[3] All traces are directly contained by the extended sequence node.

context CNSDCase inv:

self.baseClass.node->includes(traces)
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6.3 Model Transformation

6.3.1 Intermediate Structure

Type Operation Parameter

RefClass RefOperation RefParam

L3ParameterL3OperationL3Class

RefAttribute

L3Attribute

Attribute

Figure 6.1: Intermediate Structure: Class Structure References

RefNode

ActivityNode

L3Node

l3

uml

RefMerge

RefAction

RefJoin

RefDecision

RefFork

RefEnd

RefStart

RefArg

Figure 6.2: Intermediate Structure: Node References
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RefArg

ObjectFlow

L3Method L3StartNode L3EndNode

Activity

RefAct

InitialNode

RefStart

ActivityFinalNode

RefEnd

RefFlow

L3Variable

JoinNode

RefJoin

L3JoinNode

ForkNode

RefFork

L3ForkNode

DecisionNode

RefDecision

L3DecisionNode

MergeNode ControlFlow

L3MergeNode

RefMerge RefControl

ActivityParameterNode

RefVar

Variable

L3Variable

L3Edge

{redefines uml} {redefines uml}

{redefines l3} {redefines l3}

{redefines uml} {redefines uml} {redefines uml}

{redefines l3} {redefines l3} {redefines l3}

{redefines uml}

{redefines l3}

L3Argument

Figure 6.3: Intermediate Structure: Control Structures
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{redefines l3}

RefAction RefReadAttr

RefCallOp

RefReadVar

ReadStructuralFeatureAction

ReadVariableAction

CallOperationAction

L3AssignmentNode

{redefines uml}

{redefines uml}

{redefines uml}

Figure 6.4: Intermediate Structure: Actions with Output

ValueSpecification

RexExp

L3Expression

RefCallExp

RefValueExp

RefLitBool

RefLitInt

RefLitString

RefLitUNat

RefLitNull

uml

l3

Figure 6.5: Intermediate Structure: Expressions
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LiteralBoolean

RefCallExp RefValueExp RefLitBool

L3IntSpecificationL3UNatSpecificationL3StringSpecification

RefLitString RefLitUNat RefLitInt

L3CallExpression L3ValueExpression

Expression

LiteralUnlimitedNaturalLiteralString LiteralInteger

LiteralNull

RefLitNull

L3NullSpecification

{redefines uml} {redefines uml}

{redefines uml}

{redefines uml} {redefines uml} {redefines uml}

{redefines uml}

{redefines l3} {redefines l3} {redefines l3}

{redefines l3} {redefines l3} {redefines l3}

{redefines l3}

L3BoolSpecification

Figure 6.6: Intermediate Structure: Expression References
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6.3.2 Transformation Rules

Preparation of CUML Model

RHS:

s2:SequenceNode

:CNSDForEach

ai:InitialNode

a:ActivityNode

ai:InitialNode

a:ActivityNode

s2:SequenceNode

i:InitialNode

:ControlFlow

baseClass

NAC:

node i:InitialNode

source

target

c1:ControlFlow

s2:SequenceNode

c2:ControlFlow

source

target target

source

LHS:

Figure 6.7: Rule: connectInitialSequence

RHS:

s1:SequenceNode

a:ActivityNode

a1:ActivityFinalNode

s1:SequenceNode

f:ControlFlow

a:ActivityNode

s1:SequenceNode

:CNSDForEach

LHS:

a2:ActivityFinalNode

:ControlFlow

node

incoming

outgoing

a1:ActivityFinalNode

a2:ActivityFinalNode

c:ControlFlow

source

target

source

target

NAC:

baseClass

Figure 6.8: Rule: connectSequenceFinal
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RHS:

s:SequenceNode s:SequenceNode

node

an:ActivityNode

a:Activity

node

node

an:ActivityNode

a:Activity

node

LHS:

Figure 6.9: Rule: addNodeActivity

:InitialNode

c1:ControlFlow

s:SequenceNode

a:ActivityNode

c1:ControlFlow

s:SequenceNode

:ControlFlow

a:ActivityNode

c1:ControlFlow

a:ActivityNode

c:ControlNode c:ControlNode
incoming

node

outgoing

incoming

outgoing

incoming

node

node

edge

outgoing

outgoing

LHS:

NAC:

RHS:

node:InitialNode

Figure 6.10: Rule: controlSequenceNode
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node

c1:ControlFlow

s:SequenceNode

a:ActivityNode

c1:ControlFlow

s:SequenceNode

:ControlFlow

a:ActivityNode

c1:ControlFlow

a:ActivityNode

:ActivityFinalNode :ActivityFinalNode

c.ControlNode c.ControlNode

node

node

node

edge

LHS:

NAC:

RHS:

outgoing

incoming

outgoing

incoming

outgoing

incoming

incoming

Figure 6.11: Rule: sequenceControlNode

node

a:Activity a:Activity

:ControlFlow

NAC:

LHS: RHS:

i:InitialNode

i:InitialNode
incoming

Figure 6.12: Rule: deleteInitial
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node

a:ActivityFinal

a:ActivityFinal

a:Activity a:Activity

:ControlFlow

outgoing

NAC:

LHS: RHS:

Figure 6.13: Rule: deleteFinal

NAC3:

:InitialNode
node

a:Activitya:Activity

RHS:

node

LHS:

s:SequenceNode

:ActivityFinalNode
node

s:SequenceNode s:SequenceNode s:SequenceNode

:ControlFlow

target

NAC2:NAC1:

Figure 6.14: Rule: deleteSequence

Create L3Model

RHS:

:ClassStructure

NAC:=RHS

LHS:

Figure 6.15: Rule: createClassStructure
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LHS:
cs:L3ClassStructurecs:L3ClassStructure

:RefPackage

p:Package
name = n

p:Package
name = n

p:Package

:Package
nestedPackage

NAC1: NAC2:=RHS

packages
:L3Package
name = n

RHS:

Figure 6.16: Rule: createPackage

NAC:=RHS

:RefPackage

p:Package
name = n

p:Package
name = n

pc:Package

r:RefPackage

lp:L3Package

nestedPackage

pc:Package

r:RefPackage

lp:L3Package

nestedPackage

:L3Package
name = n

RHS:LHS:

container

contained

Figure 6.17: Rule: createNestedPackage
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NAC:=RHS

lp:L3Package

p:Package

r:RefPackage

lp:L3Package

r:RefPackage

p:Package

c:Class c:Class

:RefClass

:L3Class

ownedType ownedType

RHS:LHS:

Figure 6.18: Rule: createClass

kind = Sequence

i:LiteralInteger
value = 1

r1:RefClass

t:Type

lc:L3Class

:RefAttribute

r1:RefClass

lc:L3Class

t:Type

RHS:LHS:

NAC1: NAC2:=RHS

ownedAttribute

upperValue

type

i:LiteralInteger

p:Property
isOrdered = true
isUnique = false
name = n

c:Class

r:RefClass

lc:L3Class

ownedAttribute

upperValue

type

i:LiteralInteger

p:Property
isOrdered = true
isUnique = false
name = n

c:Class

r:RefClass

lc:L3Class
attributes

type

:L3Attribute
name = n

Figure 6.19: Rule: createAttributeSequence
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type

i:LiteralInteger
value = 1

r1:RefClass

lc:L3Class

t:Type

r1:RefClass

t:Type

lc:L3Class

:RefAttribute

:L3Attribute
name = n
kind = Set

RHS:LHS:

NAC1: NAC2:=RHS

ownedAttribute

upperValue

type

i:LiteralInteger

isOrdered = false
isUnique = true
name = n

c:Class

r:RefClass

lc:L3Class

p:Property ownedAttribute

upperValue

type

i:LiteralInteger

isOrdered = false
isUnique = true
name = n

c:Class

r:RefClass

lc:L3Class

p:Property

attributes

Figure 6.20: Rule: createAttributeSet

attributes

i:LiteralInteger
value = 1

r1:RefClass

t:Type

lc:L3Class

:RefAttribute

r1:RefClass

lc:L3Class

t:Type

RHS:LHS:

NAC1: NAC2:=RHS

upperValue

type

i:LiteralInteger

isOrdered = true
isUnique = true
name = n

p:PropertyownedAttribute
c:Class

r:RefClass

lc:L3Class
:L3Attribute

upperValue

type

i:LiteralInteger

isOrdered = true
isUnique = true
name = n

p:PropertyownedAttribute
c:Class

r:RefClass

lc:L3Class

name = n
kind = OrderedSet

type

Figure 6.21: Rule: createAttributeOrderedSet

129



NAC:=RHS

c:Class

r:RefClass

lc:L3Class
:RefOperation

:L3Operation
name = n
static = stat

o:Operation
name = n

isStatic = stat

c:Class

r:RefClass

lc:L3Class

ownedOperation o:Operation
name = n

isStatic = stat

operations

ownedOperation

RHS:LHS:

Figure 6.22: Rule: createOperation

name = n

i:LiteralInteger
value = 1

lo:L3Operation

r1:RefClass

t:Typei:LiteralInteger
value = 1

lo:L3Operation

r1:RefClass

lc:L3Class

t:Type

:RefParam

NAC:=RHS

lc:L3Class

o:Operation

r:RefOperation

ownedParameter

upperValue

type

p:Parameter

name = n

o:Operation

r:RefOperation

ownedParameter

upperValue

type

p:Parameter
direction = in direction = in

parameter

RHS:LHS:

:L3Parameter
name = n
kind = singleValue

Figure 6.23: Rule: createParameter
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name = n

lo:L3Operation

r1:RefClass

t:Type

lo:L3Operation

r1:RefClass

lc:L3Class

t:Type

:RefParam

lc:L3Class

i:LiteralInteger
value = 1

o:Operation

r:RefOperation

ownedParameter

upperValue

type

o:Operation

r:RefOperation

ownedParameter

upperValue

type

RHS:LHS:

parameter

:L3Parameter
name = n
kind = Bag

NAC1: NAC2:=RHS

i:LiteralInteger i:LiteralInteger

direction = in
isOrdered = false
isUnique = false

p:Parameter
direction = in
isOrdered = false
isUnique = false

p:Parameter

name = n

Figure 6.24: Rule: createParameterBag

name = n

lo:L3Operation

r1:RefClass

t:Type

lo:L3Operation

r1:RefClass

lc:L3Class

t:Type

:RefParam

lc:L3Class

i:LiteralInteger
value = 1

o:Operation

r:RefOperation

ownedParameter

upperValue

type

o:Operation

r:RefOperation

ownedParameter

upperValue

type

RHS:LHS:

parameter

:L3Parameter
name = n
kind = Sequence

NAC1: NAC2:=RHS

i:LiteralInteger i:LiteralInteger

direction = in

isUnique = false

p:Parameter
direction = in
isOrdered = true
isUnique = false

p:Parameter

isOrdered = true

name = n

Figure 6.25: Rule: createParameterSequence
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name = n

lo:L3Operation

r1:RefClass

t:Type

lo:L3Operation

r1:RefClass

lc:L3Class

t:Type

:RefParam

lc:L3Class

i:LiteralInteger
value = 1

o:Operation

r:RefOperation

ownedParameter

upperValue

type

o:Operation

r:RefOperation

ownedParameter

upperValue

type

RHS:LHS:

parameter

:L3Parameter
name = n
kind = Set

NAC1: NAC2:=RHS

i:LiteralInteger i:LiteralInteger

direction = in

isUnique = true

p:Parameter
direction = in
isOrdered = false
isUnique = true

p:Parameter

isOrdered = false

name = n

Figure 6.26: Rule: createParameterSet

name = n

lo:L3Operation

r1:RefClass

t:Type

lo:L3Operation

r1:RefClass

lc:L3Class

t:Type

:RefParam

lc:L3Class

i:LiteralInteger
value = 1

o:Operation

r:RefOperation

ownedParameter

upperValue

type

o:Operation

r:RefOperation

ownedParameter

upperValue

type

RHS:LHS:

parameter

:L3Parameter
name = n
kind = OrderedSet

NAC1: NAC2:=RHS

i:LiteralInteger i:LiteralInteger

direction = in

isUnique = true

p:Parameter
direction = in
isOrdered = true
isUnique = true

p:Parameter

isOrdered = true

name = n

Figure 6.27: Rule: createParameterOrderedSet
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NAC:=RHS

p:Parameter
direction = in

r:RefParam

lp:L3Parameter

p:Parameter
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Figure 6.29: Rule: createReturn
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Figure 6.30: Rule: createReturnBag
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Figure 6.31: Rule: createReturnSequence
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Figure 6.32: Rule: createReturnSet
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Figure 6.33: Rule: createReturnOrderedSet
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Figure 6.34: Rule: createMethod
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Figure 6.35: Rule: createArgument
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Figure 6.36: Rule: createVarSinglevalue
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Figure 6.37: Rule: createVarBag
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Figure 6.38: Rule: createVarSequence
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Figure 6.39: Rule: createVarSet
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Figure 6.40: Rule: createVarOrderedSet
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Figure 6.41: Rule: createStart

139



NAC:

a:Activity

f:ActivityFinalNode

:RefAct

m:L3Method

node a:Activity

:RefAct

m:L3Method

f:ActivityFinalNode

:RefEnd

:L3EndNodenodes

f:ActivityFinalNode

:RefEnd

:L3EndNodenodes

LHS: RHS:

node

Figure 6.42: Rule: createEnd
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Figure 6.43: Rule: createDecision
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Figure 6.44: Rule: createMerge
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Figure 6.45: Rule: createFork
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Figure 6.46: Rule: createJoin
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Figure 6.47: Rule: createVariable
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Figure 6.48: Rule: createEdge
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Figure 6.49: Rule: createImplicitMerge
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Figure 6.52: Rule: createReadVariable
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Figure 6.53: Rule: createDesignator
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Figure 6.54: Rule: createAddValueVariable
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Figure 6.55: Rule: createInsertionVar
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Figure 6.56: Rule: createRemoveValueVariable
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Figure 6.57: Rule: createAddValueSFeature
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Figure 6.58: Rule: createInsertionSF
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Figure 6.59: Rule: createRemoveValueSFeature
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Figure 6.60: Rule: createValueSpeci�cation
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Figure 6.61: Rule: createTestIdentity
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Figure 6.62: Rule: closeIteratorLoop
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Figure 6.63: Rule: createAttributeIterator
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Figure 6.65: Rule: createIntSpec
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Figure 6.66: Rule: createStringSpec
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Figure 6.67: Rule: createNullSpec
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Figure 6.68: Rule: createValueExpFromProperty
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Figure 6.69: Rule: createCallExpFromVariable
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