
GT-VC 2007

Behavior-Preserving Simulation-to-Animation
Model and Rule Transformations

Claudia Ermel1 and Hartmut Ehrig2

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin,

Germany

Abstract

In the framework of graph transformation, simulation rules define the operational behavior of visual models.
Moreover, it has been shown already how to construct animation rules from simulation rules by so-called
S2A-transformation. In contrast to simulation rules, animation rules use symbols representing entities from
the application domain in a user-oriented visualization. Using animation views for model execution pro-
vides better insights of model behavior to users, leading to an earlier detection of model inconsistencies.
Hence, an important requirement of the animation view construction is the preservation of the behavior
of the original visual model. This means, we have to show on the one hand semantical correctness of the
S2A-transformation, and, on the other hand, semantical correctness of a suitable backwards-transformation
A2S . Semantical correctness of a model and rule transformation means that for each sequence of the source
system we find a corresponding sequence in the target system. S2A-transformation has been considered in
our contribution to GraMoT 2006. In this paper, we give a precise definition for animation-to-simulation
(A2S) backward transformation, and show under which conditions semantical correctness of an A2S back-
ward transformation can be obtained. The main result states the conditions for S2A-transformations to
be behavior-preserving. The result is applied to analyze the behavior of a Radio Clock model’s S2A-
transformation.

Keywords: graph transformation, model and rule transformation, semantical correctness, simulation,
animation, behavior-preserving transformation

1 Introduction

In recent years, visual models represented by graphs have become very popular in
model-based software development, as the wide-spread use of UML and Petri nets
proves. For the definition of an operational semantics for visual models, the trans-
formation of graphs plays a similar central role as term rewriting in the traditional
case of textual models. The area of graph transformation provides a rule-based
setting to express the semantics of visual models (see e.g. [3]). The objective of
simulation rules (graph transformation rules for simulation) is their application to
the states of a visual model, deriving subsequent model states, thus characterizing

1 Email: lieske@cs.tu-berlin.de
2 Email: ehrig@cs.tu-berlin.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:lieske@cs.tu-berlin.de
mailto:ehrig@cs.tu-berlin.de


Ermel and Ehrig

system evolution. A simulation scenario, i.e. a sequence of simulation steps, can be
visualized by showing the states before and after each rule application as graphs.

For validation purposes, simulation may be extended to a domain specific view,
called animation view [8], which allows one to define scenario visualizations which
are closer to the application domain than the abstract, graph-based model. Such an
animation view is defined by extending the alphabet of the original visual modeling
language by symbols representing entities from the application domain. The sim-
ulation rules for a specific visual model are translated to so-called animation rules
conforming to the animation view by performing a simulation-to-animation model
and rule transformation (S2A transformation), realizing a consistent mapping from
simulation steps to animation steps. This visualization of animation steps in the an-
imation view is called animation, in contrast to simulation, where simulation steps
are shown as changes of the underlying abstract graph model.

S2A transformation is defined by a set of graph transformation rules, called S2A
rules, and an additional formal construction allowing for applying S2A rules to sim-
ulation rules in order to obtain animation rules, which define the model behavior in
the animation view. An important requirement of S2A transformation is that the
behavior of the model is preserved in the animation view to ensure that validation
results can be conferred to the original model. This means, on the one hand, se-
mantical correctness of the S2A transformation, and, on the other hand, semantical
correctness of a suitable backward transformation A2S . Semantical correctness of
S2A means that for each simulation sequence of the model we find a corresponding
animation sequence in the animation view, and has been considered in [6]. Seman-
tical correctness of A2S means that for each animation sequence in the animation
view we find a corresponding simulation sequence in the original model.

In this paper, we give a precise definition for animation-to-simulation (A2S )
model and rule backward transformation, and show under which conditions se-
mantical correctness of A2S backward transformation can be obtained, thus giving
criteria for S2A-transformations to be behavior-preserving. In our approach, an
S2A transformation generates one animation step for each simulation step, and the
corresponding A2S transformation relates each animation step to a simulation step.
Please note that there are more general definitions for the semantical correctness
of model transformations which establish a correspondence between one simulation
step in the source model and a sequence of simulation steps in the target model
[1]. For S2A transformation it is sufficient to relate single simulation and animation
steps. Intermediate animation states providing smooth state transitions are possible
nonetheless: They are defined by enriching an animation rule by animation opera-
tions to specify continual changes of object properties. Since animation operations
leave the states before and after a rule application unchanged, they do not influence
behavior-preserving S2A transformations. Our approach has been implemented in
the generic visual modeling environment GenGED [5,9]. The implementation in-
cludes an animation editor to define animation operations visually, and to export
animation scenarios to the SVG format [18].

The paper is organized as follows: In Section 2, our running example, an anima-
tion view for a Radio Clock Statechart, is introduced. Section 3 reviews the basic
concepts of simulation, animation, and model and rule transformation. In Section 4,

2



Ermel and Ehrig

the main result on semantical correctness of S2A transformation is reviewed. As
new contribution in this paper, it is shown that for each S2A transformation there
exists a corresponding A2S backward-transformation. Semantical correctness of
A2S transformations is shown for the case without negative application conditions
(NACs). Extensions to cope with NACs are discussed. Section 5 discusses related
work, and Section 6 concludes the paper.

2 Case Study: Radio Clock

In this section, we illustrate the concepts simulation and animation along the well-
known Radio Clock case study from Harel [10]. The behavior of a radio clock is
modeled by the nested Statechart shown in Fig. 1.

Fig. 1. Radio Clock Statechart

The radio clock display can show alternatively the time, the date or the alarm
time. The changes between the modes are modeled by transitions labeled with the
event mode. The nested state Alarm allows one to change to modes for setting the
hours and the minutes (transition Select) of the alarm time. A Set event increments
the number of hours or minutes which are currently displayed.

The abstract syntax graph of the Radio Clock Statechart is the given by the
graph GI in Fig. 2.

Fig. 2. Abstract Syntax Graph GI of the Radio Clock Statechart

The set of model-specific simulation rules PS = {paddObject, paddEvent, pdownTime,

pdownDisp, pupAlarm, pupClock, pmodeTD
, pmodeDA

, pmodeAD
, pselectH , pselectM , pselectD,

psetH , psetM} to be applied to GI contains initialization rules which generate an
object node with initial attribute values, set the current pointer to the top level state
Radio Clock, and fill the event queue. Additional simulation rules are defined which
realize the actual simulation, processing the events in the queue. For each superstate
there is a rule moving the current pointer down to its initial substate. Analogously,
there are rules moving the pointer from a substate to its superstate. For each
transition there is a rule which moves the pointer from the transitions’s source state
to its target state and removes the triggering event from the queue. The full set
PS of simulation rules is given in [7]. Fig. 3 shows the sample simulation rule psetH

3



Ermel and Ehrig

for the transition set whose source and target is the state Set:Hours. In addition to
processing the event set, this rule increments the hour value of the alarm time.

Fig. 3. A Simulation Rule psetH

A domain-specific animation view of the Radio Clock is illustrated in Fig. 4. The
two snapshots from a possible simulation run of the Statechart in Fig. 1 correspond
to the active state Set:Hours before and after the set event has been processed. The
animation view shows directly the current display of the clock and indicates by a
red light that in the current state the hours may be set. Furthermore, buttons are
shown either to proceed to the state where the minutes may be set (button Select),
or to switch back to the Time display (button Mode).

Fig. 4. Animation View Snapshots for the Radio Clock

3 Basic Concepts of Simulation and Animation

We use typed algebraic graph transformation systems (TGTS) in the double-
pushout-approach (DPO) [3] which have proven to be an adequate formalism for
visual language (VL) modeling. A VL is modeled by a type graph capturing the
definition of the underlying visual alphabet, i.e. the symbols and relations which
are available. Sentences or diagrams of the VL are given by graphs typed over the
type graph. We distinguish abstract and concrete syntax in alphabets and models,
where the concrete syntax includes the abstract symbols and relations, and addi-
tionally defines graphics for their visualization. Formally, a VL can be considered
as a subclass of graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams like Statecharts, an operational semantics can be given
by a set of simulation rules PS , using the abstract syntax of the modeling VL,
defined by simulation type graph TGS . A simulation rule p = (L← I → R) ∈ PS is
a TGS-typed graph transformation rule, consisting of a left-hand side L, an interface
I, a right-hand side R, and two injective morphisms. Applying rule p to a graph G

means to find a match of L
m−→ G and to replace the occurrence m(L) of L in G by

R leading to the target graph G′. Such a graph transformation step is denoted by

G
(p,m)
=⇒ G′, or simply by G⇒ G′. In the DPO approach, the deletion of m(L) and the

addition of R are described by two pushouts (a DPO) in the category GraphsTG of
typed graphs. A rule p may be extended by a set of negative application conditions
(NACs) [3], describing situations in which the rule should not be applied to G.
Formally, match L

m−→ G satisfies NAC L
n−→ N if there does not exist an injective

graph morphism N
x−→ G with x ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of

graph transformation steps is called transformation and denoted as G0
∗⇒ Gn. A

4



Ermel and Ehrig

transformation G0
∗⇒ Gn, where rules from P are applied as long as possible (i.e.

as long as matches can be found satisfying the NACs), is denoted by G0
P !=⇒ Gn.

We regard a model’s simulation language V LS , typed over the simulation alpha-
bet TGS , as a sublanguage of the modeling language V L, such that all diagrams
GS ∈ V LS represent different states of the same model during simulation. Based
on V LS , the operational semantics of a model is given by a simulation specification.

Definition 3.1 (Simulation Specification) Given a visual language VLS typed
over TGS , i.e. VLS ⊆ GraphsTGS

, a simulation specification SimSpecVLS
=

(VLS , PS) over VLS is given by a TGTS (TGS , PS) such that VLS is closed under
simulation steps, i.e. GS ∈ VLS and GS ⇒ HS via pS ∈ PS implies HS ∈ VLS .
The rules pS in PS are called simulation rules.

The simulation specification SimSpecV LS
= (VLS , PS) for the Radio Clock con-

sists of the simulation language VLS typed over TGS , where TGS is the simulation
alphabet depicted in the left-hand side of Fig. 5, PS is the set of simulation rules, and
VLS consists of all graphs that can occur in any Radio Clock simulation scenario:
VLS = {GS |∃GI

PS∗=⇒ GS}, where GI is the initial graph shown in Fig. 2.
In order to visualize the model behavior, an animation view type graph TGA

is defined, which is a disjoint union of the simulation alphabet TGS and the new
visualization alphabet TGV . Fig. 5 shows the animation view type graph TGA for
the Radio Clock, where TGV consists of visualization symbols for a domain-specific
view of the radio clock modes. The abstract syntax symbols of TGV are connected
to their concrete representation graphics by layout arcs. The graphics are part of
the type graph, but they are not needed in the animation rules since layout arcs
express a 1-to-1-correspondence between abstract symbols and their graphics.

Fig. 5. Simulation and Animation Type Graphs for the Radio Clock

Three radio clock modes are visualized by five different displays: a date display,
a time display, and three alarm displays showing the alarm time but differing in
the states of two red lights which indicate the states Display (both lights off), Set:Hours

(light SetH on), and Set:Minutes (light SetM on). A state in the Statechart corresponds
to a display in the animation view. Thus, during animation, the display for the
current active state is shown and displays the corresponding attribute values of the
object pointer’s attributes.

In order to transform a simulation specification to an animation view, we de-
fine an S2A transformation S2A = (S2AM ,S2AR) consisting of a simulation-to-
animation model transformation S2AM , and a corresponding rule transformation

5



Ermel and Ehrig

S2AR. The S2AM transformation applies S2A transformation rules from a rule
set Q to each GS ∈ V LS as long as possible, adding symbols from the applica-
tion domain to the model state graphs. The resulting set of graphs comprises the
animation language V LA.

Definition 3.2 (S2AM-Transformation) Given a simulation specification
SimSpecV LS

= (V LS , PS) with VLS typed over TGS and a type graph TGA,
called animation type graph, with TGS ⊆ TGA, a simulation-to-animation model
transformation, short S2AM -transformation, S2AM : V LS → V LA is given by
S2AM = (VLS , TGA, Q) where (TGA, Q) is a TGTS with non-deleting rules q ∈ Q,

and S2AM -transformations GS
Q !
=⇒ GA with GS ∈ VLS . The animation language

VLA is defined by VLA = {GA| ∃ GS ∈ VLS ∧ GS
Q !
=⇒ GA}. This means,

GS
Q !
=⇒ GA implies GS ∈ VLS and GA ∈ VLA, where each intermediate step

Gi
qi=⇒ Gi+1 is called S2AM-step.

Our aim is not only to transform model states but to obtain a complete ani-
mation specification, including animation rules, from the simulation specification.
Hence, we define a construction allowing us to apply the S2A transformation rules
from Q also to the simulation rules, resulting in a set of animation rules. The
following definition reviews the construction for rewriting rules by rules from [6].

Definition 3.3 (Transformation of Rules by Non-Deleting Rules) Given a

non-deleting rule q = (Lq → Rq) and a rule p1 = (L1
l1← I1

r1→ R1), then q is
applicable to p1 leading to a rule transformation step p1

q _*4 p2 , if the precondition
of one of the following three cases is satisfied, and p2 = (L2

l2← I2
r2→ R2) is defined

according to the corresponding construction.

Case (1)

Precondition (1): There is a match Lq
h−→ I1.

Construction (1): I2, L2, and R2 are defined by pushouts
(1), (1a) and (1b), leading to injective morphisms l2 and r2.

Lq

h

��

q //

(1 )

Rq

��
I1

r1

��

l1
�����

�

qI // I2

l2�����
�

r2

��

L1 qL

(1a) // L2

R1 qR

(1b) // R2

Case (2)

Precondition (2): There is no match Lq
h−→ I1, but a match

Lq
h′
−→ L1.

Construction (2): L2 is defined by pushout (2), and I2 = I1,
R2 = R1, r2 = r1, and l2 = qL ◦ l1.

Lq

h′

��

q //

(2 )

Rq

��
L1

qL // L2

Case (3)

Precondition (3): There are no matches Lq
h−→ I1 and

Lq
h′
−→ L1, but there is a match Lq

h′′
−→ R1.

Construction (3): R2 is defined by pushout (3), and L2 =
L1, I2 = I1, l2 = l1, and r2 = qL ◦ r1.

Lq

h′′

��

q //

(3 )

Rq

��
R1

qR // R2

6



Ermel and Ehrig

Def. 3.3 extends the construction for rewriting rules by rules given by Parisi-
Presicce in [14], where a rule q is only applicable to a rule p if it is applicable
to the interface graph I of p. This means, q cannot be applied if p deletes or
generates objects which q needs. In this paper, we want to add animation symbols
to simulation rules even if the S2A transformation rule is not applicable to the
interface of the simulation rule: Case (1) in Def. 3.3 corresponds to the notion of
rule rewriting in [14], adapted to non-deleting S2A transformation rules. In Case
(2), the S2A transformation rule q is not applicable to the interface I, but to the
left-hand side of a rule p1, and in Case (3), q is not applicable to I, but to the
right-hand side of p1. Note that it is possible that both Case (2) and Case (3) can
be true for different matches of q. Then, q is applied in a first step to L1 according
to (2), and in a second step to R1 according to (3).

Def. 3.3 now allows us to define an S2AR transformation of rules, leading to
an S2A transformation S2A = (S2AM ,S2AR) from the simulation specification
SimSpecV LS

to the animation specification AnimSpecV LA
.

Definition 3.4 (S2AR-Transformation) Given a simulation specification
SimSpecV LS

= (VLS , PS) and an S2AM -transformation S2AM = (VLS , TGA, Q),
then a simulation-to-animation rule transformation, short S2AR-trafo,
S2AR : PS → PA is given by S2AR = (PS , TGA, Q) and S2AR transfor-

mation sequence pS
Q !_*4 pA with pS ∈ PS , where rule transformation steps

p1
q _*4 p2 with q ∈ Q (see Def. 3.3) are applied as long as possible. The

animation rules PA are defined by PA = {pA| ∃ pS ∈ PS ∧ pS
Q !_ *4 pA }. This

means pS
Q !_*4 pA implies pS ∈ PS and pA ∈ PA, where each intermediate step

pi
qi _*4 pi+1 is called S2AR-step.

In our Radio Clock example, the S2A transformation rules Q = {qClock, qDate,

qTime, qDisp, qSetH , qSetM} add visualization symbols to the simulation rule graphs
and to the initial radio clock graph. The initial S2A rule qClock adds the root symbol
Clock to all graphs it is applied to. The remaining S2A rules add visualization symbols
depending on the state of the current pointer. We visualize only basic states which do
not have any substates. Superstates are not shown in the animation view, as they
are considered as transient states which are active on the way of the current pointer
up and down the state hierarchy between two basic states, but have no concrete
visualization graphics themselves.

The full set Q of S2A rules is given in [7]. The top row of Fig. 6 shows the sample
S2A transformation rule qsetH which adds a SetHours symbol and links it to the clock
symbol in the case that the current pointer points to the state named “Set:Hours”. The
attributes are set accordingly. Note that each S2A rule q has to be applied at most
once at the same match, which is formalized by a NAC Lq → Nq, such that Nq and
Rq are isomorphic. A sample S2AR transformation step p′setH

qsetH_*4 pA
setH is shown

in Fig. 6. Here, S2A rule Lq
qsetH−→ Rq is applied to the rule p′setH , according to

Case (1) of Def. 3.3. Rule p′setH = (L′ ← I ′ → R′) in Fig. 6 corresponds to rule
p1 = (L1 ← I1 → R1) in Def. 3.3. The result of the rule rewriting step in Fig. 6 is
rule pA

setH = (LA ← IA → RA), which corresponds to rule p2 = (L2 ← I2 → R2) in
Def. 3.3. Rule pA

setH is a completely transformed animation rule, since no more S2A

7



Ermel and Ehrig

Fig. 6. S2A Transformation Step p′
setH

qsetH−→ pA
setH

rules are applicable to it. Note that variables for node attributes can be assigned to
other variables or to expressions. For instance, in Fig. 6, the variable h for attribute
AlarmH in I ′ is assigned to the expression incr(h) in R′ by the morphism I ′

r′
−→ R′.

Hence, a resulting animation rule can contain variables or expressions for attributes
to be assigned to corresponding attribute values in graphs when the animation rule
is applied.

Definition 3.5 (Animation Specification and S2A Transformation) Given
a simulation specification SimSpecV LS

= (VLS , PS), an S2AM transformation
S2AM : VLS → VLA and an S2AR transformation S2AR : PS → PA, then

(i) AnimSpecV LA
= (VLA, PA) is called animation specification, and each trans-

formation step GA
pA=⇒ HA with GA,HA ∈ VLA and pA ∈ PA is called anima-

tion step.

(ii) S2A : SimSpecV LS
→ AnimSpecV LA

, defined by S2A = (S2AM ,S2AR)
is called simulation-to-animation model and rule transformation, short S2A
transformation.

The Radio Clock animation specification AnimSpecV LA
= (VLA, PA) based on

the S2A transformation S2A = (S2AM , S2AR) is given by the animation language
VLA, obtained by the Radio Clock S2AM transformation, and the animation rules
PA, obtained by the Radio Clock S2AR transformation. The full set PA of animation
rules is given in [7].

Fig. 7 shows a sample animation scenario in the concrete notation of the an-
imation view, where animation rules from PA are applied. The first state of the
scenario in Fig. 7 is obtained by applying the initial animation rules setting the at-
tribute values, initializing the event queue with the events mode, mode, select, set, mode,
and processing the first mode event. The subsequent animation steps result from
applying animation rules for processing the remaining events or for moving up and
down the state hierarchy.

8



Ermel and Ehrig

Fig. 7. Radio Clock Animation Scenario

4 Behavior-Preserving S2A Transformations

In this section, we continue the general theory of Section 3 and study properties
of behavior-preserving S2A-transformations, i.e. S2A-transformations which are se-
mantically correct and where a semantically correct A2S -backward-transformation
exists. After reviewing semantical correctness of S2A transformation (which has
been treated in depth in [6]), we define the construction of an A2S -backward-
transformation for a given S2A-transformation, and give requirements for the se-
mantical correctness of A2S . The main result in Theorem 4.14 states the conditions
for S2A transformations being behavior-preserving.

4.1 Semantical correctness of S2A-transformations

In our case, semantical correctness of an S2A-transformation means that for each
simulation step GS

pS=⇒ HS there is a corresponding animation step GA
pA=⇒ HA

where GA (resp. HA) are obtained by S2A model transformation from GS (resp.
HS), and pA by S2A rule transformation from pS . Note that this is a special case
of semantical correctness defined in [1], where instead of a single step GA

pA=⇒ HA

more general sequences GA
∗=⇒ HA and HS

∗=⇒ HA are allowed.

Definition 4.1 (Semantical Correctness of S2A Transformations)
An S2A-transformation S2A : SimSpecV LS

→ AnimSpecV LA
given by S2A =

(S2AM : VLS → VLA,S2AR : PS → PA) is semantically correct, if
we have for each simulation step GS

pS=⇒ HS with GS ∈ VLS and each

S2AR-transformation sequence pS
Q !_ *4 pA (see Def. 3.4):

(i) S2AM -transformation sequences GS
Q !
=⇒ GA and

HS
Q !
=⇒ HA, and

(ii) an animation step GA
pA=⇒ HA

GS
Q ! +3

pS

��

GA

pA

��

Q ! _*4

HS
Q ! +3 HA

In [6,7], it is shown that the following properties have to be fulfilled by an S2A-
transformation in order to be semantically correct:

Definition 4.2 (Termination of S2AM and Rule Compatibility of S2A)
An S2AM transformation S2AM : VLS → VLA is terminating if each transfor-
mation GS

Q ∗
=⇒ Gn can be extended to GS

Q ∗
=⇒ Gn

Q ∗
=⇒ Gm such that no q ∈ Q

is applicable to Gm anymore. An S2A-transformation S2A = (S2AM : VLS →
VLA,S2AR : PS → PA) with S2AM = (VLS , TGA, Q) is called rule compatible,
if for all pA ∈ PA and q ∈ Q we have that pA and q are parallel and sequential
independent. More precisely, for each G

pA=⇒ H with GS
Q ∗
=⇒ G and HS

Q ∗
=⇒ H for

some GS , HS ∈ VLS and each G
q

=⇒ G′ (resp. H
q

=⇒ H ′) we have parallel (resp.
sequential) independence of G

pA=⇒ H and G
q

=⇒ G′ (resp. H
q

=⇒ H ′).

9



Ermel and Ehrig

Without giving the proof (which can be found in [6]), Theorem 4.3 states the
main result from [6], concerning semantical correctness of S2A-transformation.

Theorem 4.3 (Semantical Correctness of S2A)
Each S2A-transformation S2A = (S2AM ,S2AR) is semantically correct, provided
that S2A is rule compatible, and S2AM is terminating.

4.2 Construction of A2S-Backward-Transformations

In this section we consider the relation between an animation specification
AnimSpecV LA

and the corresponding simulation specification SimuSpecV LS
re-

lated by S2A transformation. We show in Theorem 4.10 that for each S2A transfor-
mation there is a backward transformation A2S : AnimSpecV LA

→ SimSpecV LS
,

i.e. we get A2S ◦ S2A ⊆ IdV LS

Definition 4.4 (Characterization of Backward Transformations)

(i) Given an S2AM transformation S2AM : V LS → V LA, then a transformation
A2SM : V LA → V LS is called backward transformation of S2AM if we have

A2SM ◦ S2AM ⊆ IdV LS
,

i.e. ∀GS , G′
S ∈ V LS , GA ∈ V LA : [(GS , GA) ∈ S2AM , (G′

S , GA) ∈ S2AM =⇒
GS = G′

S ]

(ii) Given an S2AR transformation S2AR : PS → PA, then the transformtion
A2SR : PA → PS is called backward transformation of S2AR if we have

A2SR ◦ S2AR ⊆ IdPS
.

(iii) Given backward transformations A2SM of S2AM and A2SR of S2AR,
then A2S = (A2SM ,A2SR) is called backward transformation of
S2A = (S2AM ,S2AR).

Remark 4.5 All transformations in Def. 4.4 are considered as relations, and ◦ is
the relational composition. If S2AM is total, we also require A2SM to be total and
A2SM ◦ S2AM = IdV LS

, and analogously for S2AR and A2SR.

For an S2A transformation, we define an A2S backward transformation by
restriction of graphs and rules to TGS in Def. 4.6. and show in Theorem 4.10
(using the propositions Prop. 4.7 and 4.8) that A2S has the desired property
A2S ◦ S2A ⊆ IdV LS

. If S2AM is total, we even get A2S ◦ S2A = IdV LS
.

Definition 4.6 (A2S Transformation) Given an S2A transformation S2A =
(S2AM : V LS → V LA,S2AR : PS → PA) : SimSpecV LS

→ AnimSpecV LA
,

then the transformation A2S : AnimSpecV LA
→ SimSpecV LS

is defined by
A2S = (A2SM ,A2SR) is called animation-to-simulation model and rule transfor-
mation, short A2S transformation, where

(i) A2SM : V LA → V LS is the animation-to-simulation model transformation,
short A2SM transformation, defined by restriction to TGS , i.e. A2SM (GA) =
GA|TGS

, and

(ii) A2SR : PA → PS is the animation-to-simulation rule transformation, short
A2SR transformation, defined by restriction to TGS , i.e. A2SR(pA) = pA|TGS

.

10



Ermel and Ehrig

In the subsequent propositions Prop. 4.7 and 4.8, we use the notion of layered type-
increasing TGTS to denote a typed graph transformation system with rule layers,
where elements generated by a rule q ∈ Q belonging to rule
layer i generate only elements typed over new types in TGi+1

which do not occur already in Lq, such that Rq|TGi = Lq,
i.e. the diagram to the right is a pullback for all q ∈ Q.

Lq
q //

��
(PB)

Rq

��
TGi

� � // TGi+1

This property allows us to construct a parallel rule qi from all rules q belonging to
rule layer i, such that for q = qi we also have the pullback (PB).

Proposition 4.7 (Restriction of S2AM to TGS)
Given an S2AM transformation S2AM : V LS → V LA based
on a layered type-increasing TGTS (TGA, Q) with TGS ⊆
TGA, then we have: GS

Q !
=⇒ GA with GS ∈ V LS implies

GA|TGS
= GS, i.e. the diagram to the right is a pullback.

GS
q //

��
(PB)

GA

��
TGS

� � // TGA

Proof. Given GS
Q !
=⇒ GA, we can assume to have a sequence GS = G0

q0=⇒ G1
q1=⇒

..
qn=⇒ Gn+1 = GA where each qi is either a parallel rule, composed of all q ∈ Q

with rule layer i, or an identity step. In each single step we have in the first case
pushout (1) and the commutative square (2), where the typing Gi+1 → TGi+1 is
induced from Gi → TGi and pushout (1), and Lqi → TGi, Rqi → TGi+1 are given
by our layered type-increasing GTS (TGA, Q), such that the outer diagram (1 + 2)
is a pullback and all horizontal morphisms are monomorphisms.

Lqi

qi //

��
(1)

��

Rqi

��

��

Gi
q′
i //

��
(2)

Gi+1

���
�
�

TGi
� � // TGi+1

Gi

��

id //

(3)

Gi+1

��
TGi

� � // TGi+1

Hence, by pushout-pullback-decomposition property (see e.g. [3]), we get that
(2) is a pullback. In the case that qi = id, diagram (3) is a pullback because
TGi ↪→ TGi+1 is monomorphism. This leads to the following sequence of pullbacks,
which can be composed to one pullback:

GS = G0
//

��
(PB0)

,,
G1

//

��
(PB1)

G2
//

��

... // Gn
//

��
(PBn)

Gn+1 = GA

��
TGS = TG0

� � //
22TG1

� � // TG2
� � // ...�

� // TGn
� � // TGn+1 = TGA

2

Proposition 4.8 (Restriction of S2AR to TGS)
Given an S2AR transformation S2AR : PS →
PA based on a layered type-increasing TGTS
(TGA, Q) with TGS ⊆ TGA, then we have:
pS

Q !_*4 pA with pS ∈ PS implies pA|TGS
= pS,

i.e. for pS = (LS ← IS → RS), pA = (LA ←
IA → RA) the double cube to the right commutes
with pullbacks in the diagonal squares.

LS

�����
�

��

IS
oo

��

�����
�

// RS

��

�����
�

LA

��

IA
oo

��

// RA

��

TGi

����
�

TGi
idoo

����
�

id // TGi

����
�

TGi+1 TGi+1id
oo

id
// TGi+1

11



Ermel and Ehrig

Proof Sketch. (for a full proof see [5])

Given pS
Q !_ *4 pA , we consider the subse-

quences according to the layers Qi of Q,

pS = p0
Q0!_*4 p1

Q1!_*4 p2...pn
Qn!_ *4 pn+1 = pA

and show that for each i = 0, .., n the double
cube to the right exists with pullbacks in the di-
agonal squares, which can be composed to the
required double cube with pS and pA.

Li

����
�

��

Ii
oo

��

�����
�

// Ri

��

����
�

Li+1

��

Ii+1
oo

��

// Ri+1

��

TGi

����
�

TGi

����
�

id //idoo TGi

����
�

TGi+1 TGi+1id
oo

id
// TGi+1

2

Remark 4.9 Proposition 4.7 implies that there exists a TGTS embedding f :
SimSpecV LS

→ AnimSpecV LA
given by f = (TGS

fTG−→ TGA, PS
fP−→ PA), where

fTG is the type graph inclusion, and fP maps each simulation rule pS to the rule
pA resulting from the S2AR transformation. TGTS embeddings are morphisms
between typed graph transformation systems, defined categorically via so-called
retyping functors between categories GraphsTG and GraphsTG′ of typed graph
transformation systems (see [5], Sect. 2.1.3).

Theorem 4.10 (A2S is Backward Transformation of S2A) Given an S2A
transformation S2A = (S2AM : V LS → V LA, S2AR : PS → PA) based on a
layered type-increasing GTS (TGA, Q) with TGS ⊆ TGA, then the transformation
A2S : AnimSpecV LA

→ SimSpecV LS
defined according to Def. 4.6, is a backward

transformation of S2A in the sense of the characterization of backward transforma-
tions given in Def. 4.4.

Proof. A2SM : V LA → V LS for GA ∈ V LA with GS
Q !
=⇒ GA for GS ∈ V LS maps

GA to GS , because GA|TGS
= GS by Prop. 4.7. This implies A2SM ◦ S2AM ⊆

IDV LS
. Analogously, A2SR : PA → PS for pA ∈ PA with pS

Q !_*4 pA for pS ∈ PS

maps pA to pS , because we have pA|TGS
= pS by Prop. 4.8. This implies A2SR ◦

S2AR ⊆ IDPS
. Hence, A2SM ,A2SR and A2S = (A2SM ,A2SR) are backward

transformations of S2AM ,S2AR and S2A, respectively, according to Def. 4.4. 2

4.3 Semantical Correctness of A2S-Backward-Transformations

Given an A2S backward transformation of A2S with A2S = (A2SM, A2SR) :
AnimSpecV LA

→ SimSpecV LS
such that A2SR(pA) = pS for pA ∈ PA, pS ∈ PS

and A2SM (GA) = GS for GA ∈ V LA, GS ∈ V LS , then the graph HS resulting
from the simulation step GS

pS=⇒ HS and the graph HA resulting from the anima-
tion step GA

pA=⇒ HA should be related by A2SM backward transformation, i.e.
A2SM (HA) = HS .

Definition 4.11 (Semantical Correctness of A2S Transformation)
An A2S transformation A2S : AnimSpecV LA

→ Sim-
SpecV LS

given by A2S = (A2SM : V LA → V LS , A2SR :
PA → PS) is semantically correct if for each animation step
GA

pA=⇒ HA with GA,HA ∈ V LA and A2SM (GA) = GS

and A2SR(pA) = pS , there is a corresponding simulation
step GS

pS=⇒ HS with A2SM (HA) = HS .

GA
A2SM //

pA

��

GS

pS

��

A2SR //

HA
A2SM // HS

12



Ermel and Ehrig

Theorem 4.12 (Semantical Correctness of A2S Backward Transformation)
Each A2S backward transformation A2S = (A2SM ,A2SR) of an S2A transforma-
tion S2A = (S2AM ,S2AR) is semantically correct.

Proof Sketch. (for a full proof see [5])
The semantical correctness of A2S backward transformation holds due to the fact
that the S2A transformation induces a TGTS embedding from SimSpecV LS

to
AnimSpecV LA

(see Remark to Fact 4.8). TGTS embeddings reflect the behavior
in the sense that if we have a transformation GA

pA,mA=⇒ HA in AnimSpecV LA
, we

get the transformation GS
pS ,mS=⇒ HS in SimSpecV LS

, where the matches are related
by mA|TGS

= mS . Basically, the proof works by construction of the double cube
shown below, where the front squares are pushouts corresponding to a rewriting
step GA

pA=⇒ HA in the DPO approach, applying the animation rule pA = (LA ←
IA → RA) to graph GA. It is shown that the diagonal squares are all pullbacks.
Thus, the Van-Kampen property (see [3]) can be used to prove that the back squares
are also pushouts, which correspond to the rewriting step GS

pS=⇒ HS in the DPO
approach, applying the rule pS = (LS ← IS → RS) to GS , where GS = GA|TGS

.
LS

�����
�

��

IS
oo

��

�����
�

// RS

��

�����
�

LA

��

IA
oo

��

// RA

��

TGS

�����
�

GS
oo

�����
�

CS
oo

�����
�

// HS

�����
�

// TGS

�����
�

TGA GA
oo CA

oo // HA
// TGA

2

4.4 Behavior-Preserving S2A Transformations

We now present the main result in Theorem 4.14, stating the conditions for S2A
transformations being behavior-preserving, based on Theorems 4.3 and 4.12.

Definition 4.13 (Behavior-Preserving S2A Transformations)
Given an S2A model and rule transformation S2A = (S2AM ,S2AR) :
SimSpecV LS

→ AnimSpecV LA
(Def. 3.5), and the corresponding A2S backward-

transformation A2S = (A2SM ,A2SR) : AnimSpecV LA
→ SimSpecV LS

(Def. 4.6),
we say that S2A is behavior-preserving, if

(i) S2A is semantically correct (acc. to Def. 4.1), and

(ii) A2S is semantically correct (acc. to Def. 4.11)

Theorem 4.14 (Behavior-Preserving S2A Transformation) An S2A trans-
formation S2A = (S2AM ,S2AR) : SimSpecV LS

→ AnimSpecV LA
is behavior-

preserving if

(i) S2A is rule-compatible, and S2AM is terminating (Def. 4.2),

(ii) A2S is constructed according to Def. 4.6,

Proof. By Theorem 4.3 we have that S2A is semantically correct for rule-
compatible S2A and terminating S2AM . By Theorem 4.10 and Theorem 4.12 we
know that A2S is a valid backward-transformation of S2A and that A2S is seman-

13



Ermel and Ehrig

tically correct. Hence, according to Def. 4.13, S2A is a behavior-preserving model
and rule transformation. 2

Finally, we can consider semantical equivalence of SimSpecV LS
and

AnimSpecV LA
, which requires behavior-preserving S2A, such that S2A and A2S

are inverse to each other, i.e. A2S ◦ S2A = Id and S2A ◦A2S = Id . It is shown in
[5] that we have semantical equivalence if S2A is behavior-preserving, and the S2A
transformation rules in Q are confluent.

4.5 Extension by Negative Application Conditions

Considering rules with NACs both for the S2A rules in Q (now of the form
q = (Nq ← Lq → Rq)), and for the simulation rules in PS (now of the form
pS = (Ni ← L ← I → R)), has the following consequences on the construction of
the animation specification by S2A transformation: Def. 3.3 has to be extended to
deal with the additional transformation of NACs in Cases (1) and (2) (in Case (3),
the NACs remain unchanged). Moreover, a new Case (4) has to be added covering
the case that preconditions (1) - (3) are not satisfied, but there are matches into
Ni. Furthermore, the preconditions for all cases now also require the satisfaction
of NACq = (Lq

n−→ Nq). To extend rule compatibility (Def. 4.2), in addition to
parallel and sequential independence in the case without NACs, we have to require
that the induced matches satisfy the corresponding NACs. The proof of semantical
correctness of S2A transformations with NACs requires also NAC-compatibility of
S2AM and S2AR for all q ∈ Q and Gi

pi=⇒ Hi. NAC-compatibility of S2AM means
that if q is applicable to a rule pS , then each match of q in Gi (resp. Hi) satisfies
NACq. NAC-compatibility of S2AR means that if pi

q _*4 pi+1 satisfies NACq , and
Gi

pi=⇒ Hi satisfies NAC (pi) then Gi+1
pi+1=⇒ Hi+1 satisfies NAC (pi+1 ). Considering

these additional requirements, we can show that each S2A-transformation S2A =
(S2AM , S2AR) is semantically correct including NACs, provided that S2A is rule
compatible, S2AM is terminating and S2A is NAC-compatible. This extends The-
orem 4.3 and Theorem 4.14, where now rule compatibility and termination have to
be required with NACs (for the complete extended theorems see [7,5]).

Moreover, the proofs of Prop. 4.7 and 4.8 can be extended to NACs in a straight-
forward way. An additional property has to be required to get semantical correctness
of A2S (Theorem 4.12), namely NAC-compatibility of A2S . Fortunately, NAC-
compatibility can be shown in general for all A2S -transformations (see [5] for the
complete proof of Prop. 4.15).

Proposition 4.15 (NAC-Compatibility of A2S Transformations) An A2S
transformation A2S = (A2SM : V LA → V LS ,A2SR : PA → PS) is NAC-
compatible in the following sense: Let GS = A2SM (GA) and pS = A2SR(pA).
Then, if GA

pA=⇒ HA satisfies NAC(pA) then GS
pS=⇒ HS satisfies NAC(pS).

4.6 Behavior Preservation in the Radio Clock Case Study

Using the extended theorems, we can show behavior preservation of our Radio Clock
S2A transformation (see [5,7]). Termination is shown to be fulfilled for general S2A
transformation systems based on layered type-increasing TGTS. Moreover, it is

14



Ermel and Ehrig

shown that each S2AR transformation is NAC-compatible provided that we have
layered type-increasing TGTS, as our case study has. NAC-compatibility of S2AM
has been shown explicitly for the Radio Clock in [7]. For the Radio Clock case study,
we even have semantical equivalence of SimSpecV LS

and AnimSpecV LA
, since the

Radio Clock S2A transformation is shown to be confluent in [5].

5 Related Work

To ensure the correctness of model transformations, Varró et al. [15,17] use graph
transformation rules to specify the dynamic behavior of systems and generate a
transition system for each instance model. Based on the transition system, a model
checker verifies certain dynamic consistency properties by model checking the source
and target models. In [13], a method is presented to verify the semantical equiv-
alence for particular model transformations. It is shown by finding bisimulations
that a target model preserves the semantics of the source model with respect to
a particular property. This technique does not prove the correctness of the model
transformation rules in general, as we propose in this paper for the restricted case
of S2A transformation rules. The formal background of bisimulations for graph
transformations has been considered also in e.g. [4].

Backward transformations are also of interest in the context of bidirectional
model transformations based on triple graph grammars [16]. In [2], it has been
investigated under which conditions a given forward transformation has an inverse
backward transformation, but semantical correctness has not yet been considered.

There exist related tool-oriented approaches, where different visual representa-
tions are used to visualize a model’s behavior. One example is the reactive animation
approach by Harel [11], where behavior is specified by UML diagrams. The ani-
mated representation of the system behavior is implemented by linking UML tools
to pure animation tools like Macromedia Flash or Director [12]. Hence, the
mapping from simulation to animation views happens at the implementation level
and is neither specified formally, nor shown to be behavior-preserving. Analogously,
different Petri net tools also offer support for customized Petri net animations In
general, approaches to enhance the front end of CASE tools for simulating/anima-
ting the behavior of models are restricted to one specific modeling language.

6 Conclusion and Ongoing Work

In this paper we have reviewed the definition for simulation-to-animation (S2A)
model and rule transformations, and defined a corresponding A2S -backward trans-
formation A2S : SimSpecV LS

→ AnimSpecV LA
, essentially given by restriction of

all graphs and rules to the simulation type graph TGS . The main results show
under which conditions an A2S transformation is semantically correct, in the cases
without and with negative application conditions. Having semantical correctness
both of S2A and of A2S , we have a behavior-preserving simulation-to-animation
(S2A) model and rule transformation system. The results have been used to show
that the S2A transformation of our radio clock case study preserves the behavior.

The theory has been presented in the DPO-approach for typed graphs, but it

15



Ermel and Ehrig

can also be extended to typed attributed graphs, where injective graph morphisms
are replaced by suitable classes M and M ′ of typed attributed graph morphisms for
rules and NACs, respectively [3].

Future work is planned to generalize our approach formalizing behavior-
preserving model and rule transformations from S2A transformations to other kinds
of model transformations based on graph transformation, especially to triple graph
grammar specifications.

References

[1] Ehrig, H. and K. Ehrig, Overview of Formal Concepts for Model Transformations based on
Typed Attributed Graph Transformation, in: Proc. International Workshop on Graph and Model
Transformation (GraMoT’05), ENTCS 152 (2005).

[2] Ehrig, H., K. Ehrig, C. Ermel, F. Hermann and G. Taentzer, Information preserving bidirectional
model transformations, in: M. B. Dwyer and A. Lopes, editors, Fundamental Approaches to Software
Engineering, LNCS 4422 (2007), pp. 72–86.

[3] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,”
EATCS Monographs in Theoretical Computer Science, Springer Verlag, 2006.

[4] Ehrig, H. and B. Koenig, Deriving bisimulation congruences in the dpo approach to graph rewriting,
in: Proc. FOSSACS 2004, LNCS 2987 (2004), pp. 151–166.

[5] Ermel, C., “Simulation and Animation of Visual Languages based on Typed Algebraic Graph
Transformation,” Ph.D. thesis, TU Berlin, Fak. IV (2006).

[6] Ermel, C., H. Ehrig and K. Ehrig, Semantical Correctness of Simulation-to-Animation Model and
Rule Transformation, in: Proc. Workshop Graph and Model Transformation (GraMoT’06), Electronic
Communications of the EASST 4 (2006).

[7] Ermel, C., H. Ehrig and K. Ehrig, Semantical Correctness of Simulation-to-Animation Model and Rule
Transformation: Long Version, Technical Report 2006/10, TU Berlin, Fak. IV (2006).
URL http://iv.tu-berlin.de/TechnBerichte/2006/2006-10.pdf

[8] Ermel, C., K. Hölscher, S. Kuske and P. Ziemann, Animated Simulation of Integrated UML Behavioral
Models based on Graph Transformation, in: M. Erwig and A. Schürr, editors, Proc. IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’05) (2005).

[9] GenGED Homepage, http://tfs.cs.tu-berlin.de/genged.

[10] Harel, D., Statecharts: a visual formalism for complex systems, Science of Computer Programming 8
(1987), pp. 231–274.

[11] Harel, D., S. Efroni and I. Cohen, Reactive Animation, in: Proc. Formal Methods for Components and
Objects (FMCO’02), LNCS 2852 (2003), pp. 136–153.

[12] Macromedia, Inc., “Macromedia Flash MX 2004 and Director MX 2004,” (2004), http://www.
macromedia.com/software/.

[13] Narayanan, A. and G. Karsai, Towards Verifying ModelTransformations, in: Proc. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT’06) (2006).

[14] Parisi-Presicce, F., Transformation of Graph Grammars, in: 5th Int. Workshop on Graph Grammars
and their Application to Computer Science, LNCS 1073 (1996).

[15] Schmidt, Á. and D. Varró, Checkvml: A tool for model checking visual modeling languages., in: Proc.
UML, Modeling Languages and Applications (UML’03), LNCS 2863 (2003), pp. 92–95.

[16] Schürr, A., Specification of Graph Translators with Triple Graph Grammars, in: Workshop on Graph-
Theoretic Concepts in Computer Science, LNCS 903 (1994), pp. 151–163.

[17] Varró, D., Automated formal verification of visual modeling languages by model checking., Software
and System Modeling 3 (2004), pp. 85–113.

[18] WWW Consortium, “Scalable Vector Graphics Specification.” (2003), http://www.w3.org/TR/svg11/.

16

http://iv.tu-berlin.de/TechnBerichte/2006/2006-10.pdf
http://tfs.cs.tu-berlin.de/genged
http://www.macromedia.com/software/
http://www.macromedia.com/software/
http://www.w3.org/TR/svg11/

	Introduction
	Case Study: Radio Clock
	Basic Concepts of Simulation and Animation
	Behavior-Preserving S2A Transformations
	Semantical correctness of S2A-transformations
	Construction of A2S-Backward-Transformations
	Semantical Correctness of A2S-Backward-Transformations
	Behavior-Preserving S2A Transformations
	Extension by Negative Application Conditions
	Behavior Preservation in the Radio Clock Case Study

	Related Work
	Conclusion and Ongoing Work
	References

