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Abstract

Reconfigurable place/transition systems are Petri nets
with initial markings and a set of rules which allow the mod-
ification of the net during runtime in order to adapt the net
to new requirements. For the transformation of Petri nets,
adhesive high-level replacement systems have been recently
introduced as a new categorical framework in the double
pushout approach.

In this paper, we analyze concurrency in reconfigurable
place/transition systems. We show that place/transition
systems are a weak adhesive high-level replacement cate-
gory, which allows us to apply the developed theory also to
tranformations within reconfigurable place/transition sys-
tems. Furthermore, we analyze under which conditions
net transformations and token firing can be executed in ar-
bitrary order. As an illustrating example, reconfigurable
place/transition systems are applied in a mobile network
scenario.

1. Introduction

Petri nets are an important modeling technique to de-
scribe discrete distributed systems. Their nondeterministic
firing steps are well-suited for modeling the concurrent be-
havior of such systems.

As the adaptation of a system to a changing environment
gets more and more important, Petri nets that can be trans-
formed during runtime have become a significant topic in
the recent years. Application areas cover e.g. computer
supported cooperative work, multi agent systems, dynamic

∗This work has been partly funded by the research projectfor MA`NET
(see http://tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

process mining and mobile networks. Moreover, this ap-
proach increases the expressiveness of Petri nets and allows
a formal description of dynamic changes.

In [23], the concept of reconfigurable place/transition
(P/T) systems was introduced for modeling changes of the
net structure while the system is kept running. In detail, a
reconfigurable P/T system consists of a P/T system and a
set of rules, so that not only the follower marking can be
computed but also the net structure can be changed by rule
application. So, a new P/T system is obtained that is more
appropriate with respect to some requirements of the envi-
ronment. In this paper, we give the formal foundation for
transformations of P/T systems and show how to deal with
conflict situations of transformation and token firing.

For rule-based transformations of P/T systems we use
the framework of adhesive high-level replacement (HLR)
systems [18, 19] that is inspired by graph transformation
systems [36]. Adhesive HLR systems have been recently
introduced as a new categorical framework for graph trans-
formation in the double pushout approach [18, 19]. They
combine the well-known framework of HLR systems with
the framework of adhesive categories introduced by Lack
and Sobociński [26]. The main concept behind adhesive
categories are the so-called van Kampen squares. These en-
sure that pushouts along monomorphisms are stable under
pullbacks and, vice versa, that pullbacks are stable under
combined pushouts and pullbacks. In the case of adhesive
HLR categories, the class of all monomorphisms is replaced
by a subclassM of monomorphisms closed under compo-
sition and decomposition.

Within the framework of adhesive HLR systems, there
are many interesting results concerning the applicabilityof
rules, the embedding and extension of transformations, par-
allel and sequential dependence and independence, and con-
currency of rule applications.



In this paper, we present the formal foundations for in-
dependence of evaluation steps in P/T systems. The next
evolution step of such a system can be obtained either by to-
ken firing or by the application of one of the available rules.
Given two evaluation steps, the question arises whether one
of these steps can be postponed after the realization of the
other one, yielding the same result. For two firing steps of
P/T systems, the independence conditions are well-known.
Concerning the independence of transformations, we show
that the category of P/T systems is a weak adhesive HLR
category which allows the application of the developed the-
ory also to tranformations within reconfigurable P/T sys-
tems. This theory comprises many results concerning local
confluence, parallelism and concurrency, and hence gives
precise notions for concurrent or conflicting situations of
transformations in reconfigurable P/T systems. Further-
more, we analyze under which conditions a net transfor-
mation step and a firing step are independent of each other
leading to the notions of parallel, coparallel and sequential
independence. Our work is illustrated by an example in the
area of mobile emergency scenarios.

This paper is organized as follows. In Section 2, we in-
troduce reconfigurable P/T systems. The notion of weak
adhesive HLR categories and adhesive HLR systems is pre-
sented in Section 3. In Section 4, we analyze the applica-
bility of rules to P/T systems and show that the category
PTSys used for reconfigurable P/T systems is a weak ad-
hesive HLR category. Our main theorems concerning the
parallel and sequential independence of net transformation
and token firing are achieved in Section 6. In Section 7,
we show how these concepts and results can be put into the
more general framework of algebraic higher-order nets. Fi-
nally, we give a conclusion and outline related and future
work in Section 8.

2. Reconfigurable P/T Systems

In this section, we formalize reconfigurable P/T systems
as introduced in [23]. As net formalism we use P/T systems
following the notation of “Petri nets are Monoids” in [28].

Definition 1 (P/T system) A P/T net is given byPN =
(P, T, pre, post) with placesP , transitionsT , and pre and
post domain functionspre, post : T → P⊕.

A P/T systemPS = (PN, M) is a P/T netPN with
markingM ∈ P⊕.

P⊕ is the free commutative monoid overP . The bi-
nary operation⊕ leads to the monoid notation, e.g.M =
2p1 ⊕ 3p2 means that we have two tokens on placep1 and
three tokens onp2. Note thatM can also be considered as
a functionM : P → N, where only for a finite setP ′ ⊆ P
we haveM(p) ≥ 1 with p ∈ P ′. We can switch between
these notations by defining

∑
p∈P M(p) · p = M ∈ P⊕.

Moreover, for M1, M2 ∈ P⊕ we haveM1 ≤ M2 if
M1(p) ≤ M2(p) for all p ∈ P . A transition t ∈ T is
M -enabled for a markingM ∈ P⊕ if we havepre(t) ≤
M , and in this case the follower markingM ′ is given by

M ′ = M 	 pre(t)⊕ post(t) and(PN, M)
t
−→ (PN, M ′)

is called a firing step. Note that	 is the inverse of⊕, and
M1 	M2 is only defined if we haveM2 ≤M1.

In order to define rules and transformations of P/T sys-
tems we introduce P/T morphisms which preserve firing
steps by Condition (1) below. Additionally they require
that the initial marking at corresponding places is increasing
(Condition (2)) or equal (Condition (3)).

Definition 2 (P/T Morphism) Given P/T systemsPSi =
(PNi, Mi) with PNi = (Pi, Ti, prei, posti) for i = 1, 2, a
P/T morphismf : (PN1, M1) → (PN2, M2) is given by
f = (fP , fT ) with functionsfP : P1 → P2 andfT : T1 →
T2 satisfying

(1) f⊕

P ◦ pre1 = pre2 ◦ fT andf⊕

P ◦ post1 = post2 ◦ fT ,

(2) M1(p) ≤M2(fP (p)) for all p ∈ P1.

Note that the extensionf⊕

P : P⊕

1 → P⊕

2 of fP : P1 →
P2 is defined byf⊕

P (
∑n

i=1 ki · pi) =
∑n

i=1 ki · fP (pi). (1)
means thatf is compatible with pre and post domains, and
(2) that the initial marking ofPN1 at placep is smaller or
equal to that ofPN2 atfP (p).

Moreover, the P/T morphismf is calledstrict if fP and
fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

P/T systems and P/T morphisms form the category
PTSys, where the composition of P/T morphisms is de-
fined componentwise for places and transitions.

Remark For our morphisms we do not always have
f⊕

P (M1) ≤ M2. E.g., M1 = p1 ⊕ p2, M2 = p and
fP (p1) = fP (p2) = p impliesf⊕

P (M1) = 2p > p = M2,
butM1(p1) = M1(p2) = 1 = M2(p).

P/T Nets and morphisms satisfying(1) form the category
PTNet.

Now we are able to define reconfigurable P/T systems,
which allow the modification of the net structure using rules
and net transformations of P/T systems, which are instanti-
ations of the corresponding categorical concepts defined in
Section 3.

Definition 3 (Reconfigurable P/T System)Given a P/T
system(PN, M) and a setRULES of rules, areconfig-
urable P/T systemis defined by((PN, M), RULES).

Example 1 We will illustrate the main idea of reconfig-
urable P/T systems in the area of a mobile scenario. This
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Figure 1. Cooperative process of the team and firing stepsSelect BuildingandGo to Destination

work is part of a collaboration with some research projects
where the main focus is on an adaptive workflow manage-
ment system for mobile ad-hoc networks, specifically tar-
geted to emergency scenarios1.

Our scenario takes place in an archaeological disas-
ter/recovery mission: after an earthquake, a team (led by
a team leader) is equipped with mobile devices (laptops and
PDAs) and sent to the affected area to evaluate the state of
archaeological sites and the state of precarious buildings.
The goal is to draw a situation map in order to schedule
restructuring jobs. The team is considered as an overall
mobile ad-hoc network in which the team leader’s device
coordinates the other team members’ devices by providing
suitable information (e.g. maps, sensible objects, etc.) and
assigning activities. For our example, we assume a team
consisting of a team leader as picture store device and two
team members as camera device and bridge device, respec-
tively. A typical cooperative process to be enacted by a team
is shown in Fig. 1 as P/T system(PN1, M1), where only the
team leader and one of the team members are yet involved
in activities.

The work of the team is modeled by firing steps. So to
start the activities of the camera device the follower mark-
ing of the P/T system(PN1, M1) is computed by firing
the transitionSelect Buildingleading to the P/T system
(PN1, M

′
1) in Fig. 1. Afterwards, the next task can be ex-

1MAIS: http://www.mais-project.it,
IST FP6WORKPAD: http://www.workpad-project.eu/,
MOBIDIS: http://www.dis.uniroma1.it/pub/mecella/
projects/MobiDIS

ecuted by firing the transitionGo to Destinationleading to
the P/T system(PN1, M

′′
1 ) etc.

As a reaction to changing requirements, rules can be ap-

plied to the net. A ruleprod = ((L, ML)
l
← (K, MK)

r
→

(R, MR)) is given by three P/T systems and a span of two
strict P/T morphismsl andr (see Def. 6). For the applica-
tion of the rule to the P/T system(PN1, M1), we addition-
ally need a match morphismm that identifies the relevant
parts.

The activity of taking a picture can be refined into
single steps by the ruleprodphoto, which is depicted
in the top row of Fig. 2. The application of this
rule to the net(PN1, M1) leads to the transformation

(PN1, M1)
prodphoto,m

=⇒ (PN2, M2) shown in Fig. 2.

To predict a situation of disconnection, a movement ac-
tivity of the bridge device has to be introduced in our sys-
tem. In more detail, the workflow has to be extended by a
task to follow the camera device. For this reason we pro-
vide the ruleprodfollow depicted in the upper row in Fig.

3. Then the transformation step(PN2, M2)
prodfollow,m′

=⇒
(PN3, M3) is shown in Fig. 3.

Summarizing, our reconfigurable P/T system
((PN1, M1), {prodphoto, prodfollow}) consists of
the P/T system (PN1, M1) and the set of rules
{prodphoto, prodfollow} as described above.
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Figure 2. Transformation step(PN1, M1)
prodphoto,m

=⇒ (PN2, M2)

Conflicts in Reconfigurable P/T Systems

The traditional concurrency situation in P/T systems
without capacities is that two transitions with overlapping
pre domain are both enabled and together require more to-
kens than available in the current marking. As the P/T sys-
tem can evolve in two different ways, the notions of conflict
and concurrency become more complex. We illustrate the
situation in Fig. 4, where we have a P/T system(PN0, M0)
and two transitions that are both enabled leading to firing

steps(PN0, M0)
t1−→ (PN0, M

′
0) and (PN0, M0)

t2−→

(PN0, M
′′
0 ), and two transformations(PN0, M0)

prod1,m1
=⇒

(PN1, M1) and (PN0, M0)
prod2,m2

=⇒ (PN2, M2) via the
corresponding rules and matches.

The squares(1) . . .(4) can be obtained under the follow-
ing conditions:

For square (1), we have the usual condition thatt1 andt2
need to be conflict free, so that both can fire in arbitrary

order or in parallel yielding the same marking.

For squares(2) and (3), we require parallel indepen-
dence as introduced in Section 6. Parallel indepen-
dence allows the execution of the transformation step
and the firing step in arbitrary order leading to the same
P/T system. Parallel independence of a transition and
a transformation is given – roughly stated – if the cor-
responding transition is not deleted by the transforma-
tion and the follower marking is still sufficient for the
match of the transformation.

For square (4), we use results for adhesive HLR systems
that ensure parallel or sequential application of both
rules (see Section 3).

In [18], the following main results for adhesive HLR sys-
tems are shown for weak adhesive HLR categories:
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Figure 3. Transformation step(PN2, M2)
prodfollow,m′

=⇒ (PN3, M3)

1. Local Church-Rosser Theorem,

2. Parallelism Theorem,

3. Concurrency Theorem.

The Local Church-Rosser Theorem allows one to apply
two transformationsG =⇒ H1 via prod1 andG =⇒ H2

via prod2 in an arbitrary order leading to the same result
H , provided that they are parallel independent. In this
case, both rules can also be applied in parallel, leading to
a parallel transformationG =⇒ H via the parallel rule
prod1 + prod2. This second main result is called the Par-
allelism Theorem and requires binary coproducts together
with compatibility withM (i.e. f, g ∈M⇒ f + g ∈M).
The Concurrency Theorem is concerned with the simultane-
ous execution of causally dependent transformations, where
a concurrent ruleprod1 ∗ prod2 can be constructed leading
to a direct transformationG =⇒ H via prod1 ∗ prod2 (see
Ex. 2).

(PN0, M
′′′
0 ) (PN0, M

′
0) (PN1, M

′
1)

(PN0, M
′′
0 ) (PN0, M0) (PN1, M1)

(PN2, M
′
2) (PN2, M2) (PN3, M3)

(3) (4)

(1) (2)

t2 prod1,m′

1

t2 prod1,m1

t′2 prod1,m′′

1

t1 t1 t′1

prod2,m′

2 prod2,m2 prod2,m′′

2

Figure 4. Concurrency in reconfigurable P/T sys-
tems

3. Adhesive HLR Categories and Systems

In this section, we give a short introduction to weak ad-
hesive HLR categories and summarize some important re-
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sults for adhesive HLR systems (see [18]).
The intuitive idea of (weak) adhesive HLR categories are

categories with suitable pushouts and pullbacks which are
compatible with each other. More precisely the definition is
based on so-called van Kampen squares.

The idea of a van Kampen (VK) square is that of a
pushout which is stable under pullbacks, and vice versa
that pullbacks are stable under combined pushouts and pull-
backs.

Definition 4 (van Kampen square) A pushout (1) is avan
Kampen squareif for any commutative cube (2) with (1) in
the bottom and the back faces being pullbacks holds: the top
face is a pushout if and only if the front faces are pullbacks.

A′

B′

A

B

C′

D′

C

D
(2)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

A B

C D

(1)

m

f

n

g

Not even in the categorySets of sets and functions each
pushout is a van Kampen square. Therefore, in (weak) ad-
hesive HLR categories only those VK squares of Def. 4 are
considered wherem is in a classM of monomorphisms. A
pushout (1) withm ∈ M and arbitraryf is called a pushout
alongM.

The main difference between (weak) adhesive HLR cat-
egories as described in [18, 19] and adhesive categories
introduced in [26] is that a distinguished classM of
monomorphisms is considered instead of all monomor-
phisms, so that only pushouts alongM-morphisms have to
be VK squares. In the weak case, only special cubes are
considered for the VK square property.

Definition 5 ((weak) adhesive HLR category)A cate-
gory C with a morphism classM is a (weak) adhesive
HLR category, if

1. M is a class of monomorphisms closed under iso-
morphisms, composition (f : A → B ∈ M, g :
B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition
(g ◦ f ∈M, g ∈M⇒ f ∈ M),

2. C has pushouts and pullbacks alongM-morphisms
andM-morphisms are closed under pushouts and pull-
backs,

3. pushouts inC alongM-morphisms are (weak) VK
squares.

For a weak VK square, the VK square property holds for all
commutative cubes withm ∈ M and (f ∈ M or b, c, d ∈
M) (see Def. 4).

Remark M-morphisms closed under pushouts means that
given a pushout(1) in Def. 4 withm ∈ M it follows that
n ∈ M. Analogously,n ∈ M impliesm ∈ M for pull-
backs.

The categoriesSets of sets and functions andGraphs
of graphs and graph morphisms are adhesive HLR cate-
gories for the classM of all monomorphisms. The cat-
egoriesElemNets of elementary nets andPTNet of
place/transition nets with the classM of all correspond-
ing monomorphisms fail to be adhesive HLR categories, but
they are weak adhesive HLR categories (see [35]).

Now we are able to generalize graph transformation sys-
tems, grammars and languages in the sense of [17, 18].

In general, an adhesive HLR system is based on rules (or
productions) that describe in an abstract way how objects
in this system can be transformed. An application of a rule
is called a direct transformation and describes how an ob-
ject is actually changed by the rule. A sequence of these
applications yields a transformation.

Definition 6 (rule and transformation) Given a (weak)

adhesive HLR category(C,M), a rule prod = (L
l
←

K
r
→ R) consists of three objectsL, K andR called left

hand side, gluing object and right hand side, respectively,
and morphismsl : K → L, r : K → R with l, r ∈M.

Given a ruleprod = (L
l
← K

r
→ R) and an object

G with a morphismm : L → G, called match, adi-

rect transformationG
prod,m
=⇒ H from G to an objectH

is given by the following diagram, where (1) and (2) are
pushouts. A sequenceG0 =⇒ G1 =⇒ ... =⇒ Gn of direct
transformations is called atransformationand is denoted as
G0

∗
=⇒ Gn.

L K R

G D H

(1) (2)

l r

m k n

f g

An adhesive HLR systemAHS = (C,M, RULES) con-
sists of a (weak) adhesive HLR category(C,M) and a set
of rulesRULES.

4. P/T Systems as Weak Adhesive HLR
Category

In this section, we show that the categoryPTSys
used for reconfigurable P/T systems together with the class
Mstrict of strict P/T morphisms is a weak adhesive HLR
category. Therefore, we have to verify the properties of Def.
5.

First we shall show that pushouts alongMstrict-
morphisms exist and preserveMstrict-morphisms.
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Theorem 1 Pushouts in PTSys
along Mstrict exist and preserve
Mstrict-morphisms, i.e. given P/T
morphismsf and m with m strict,
then the pushout (PO) exists andn is
also a strict P/T morphism.

PS0 PS1

PS2 PS3

(PO)

m

f

n

g

Construction Givenf, m ∈ PTSys with m ∈ Mstrict

we constructPN3 as pushout inPTNet, i.e. component-
wise inSets on places and transitions. The markingM3 is
defined by

(1) ∀p1 ∈ P1\m(P0): M3(g(p1)) = M1(p1)

(2) ∀p2 ∈ P2\f(P0): M3(n(p2)) = M2(p2)

(3) ∀p0 ∈ P0: M3(n ◦ f(p0)) = M2(f(p0))

Remark Actually, we haveM3 = g⊕(M1 	m⊕(M0)) ⊕
n⊕(M2). (2) and(3) can be integrated, i.e. it is sufficient
to define∀p2 ∈ P2: M3(n(p2)) = M2(p2).

PROOF Since PN3 is a pushout inPTNet with g, n
jointly surjective we construct a marking for all places
p3 ∈ P3. (1) and (2) are well-defined becauseg and n
are injective onP1\m(P0) andP2\f(P0), respectively. (3)
is well-defined because forn(f(p0)) = n(f(p′0)), n being
injective impliesf(p0) = f(p′0) and henceM2(f(p0)) =
M2(f(p′0)).

First we shall show thatg, n are P/T morphisms andn is
strict.

1. ∀p1 ∈ P1 we have:

1. p1 ∈ P1\m(P0) andM1(p1)
(1)
= M3(g(p1)) or

2. ∃p0 ∈ P0 with p1 = m(p0) and M1(p1) =

M1(m(p0))
m0 strict

= M0(p0)
f∈PTSys

≤ M2(f(p0))
(3)
=

M3(n(f(p0))) = M3(g(m(p0))) = M3(g(p1)).
This meansg ∈ PTSys.

2. ∀p2 ∈ P2 we have:

1. p2 ∈ P2\f(P0) andM2(p2)
(2)
= M3(n(p2)) or

2. ∃p0 ∈ P0 with p2 = f(p0) and M2(p2) =

M2(f(p0))
(3)
= M3(n(f(p0))) = M3(n(p2)).

This meansn ∈ PTSys andn is strict.

It remains to show the pushout property.
Given morphismsh, k ∈ PTSys with h◦f = k◦m, we

have a unique induced morphismx in PTNet with x◦n =
h andx ◦ g = k. We shall show thatx ∈ PTSys, i.e.
M3(p3) ≤M4(x(p3)) for all p3 ∈ P3.

PS0 PS1

PS2 PS3

PS4

(PO)

m

f

n

g

h

k

x

1. For p3 = g(p1) with p1 ∈ P1\m(P0) we have

M3(p3) = M3(g(p1))
(1)
= M1(p1)

k∈PTSys

≤
M4(k(p1)) = M4(x(g(p1))) = M4(x(p3)).

2. For p3 = n(p2) with p2 ∈ P2 we haveM3(p3) =

M3(n(p2))
(2) or (3)

= M2(p2)
h∈PTSys

≤ M4(h(p2)) =
M4(x(n(p2))) = M4(x(p3)). 2

As next property, we shall show that pullbacks
along Mstrict-morphisms exist and preserveMstrict-
morphisms.

Theorem 2 Pullbacks in PTSys
along Mstrict exist and preserve
Mstrict-morphisms, i.e. given P/T
morphismsg andn with n strict, then
the pullback (PB) exists andm is also
a strict P/T morphism.

PS0 PS1

PS2 PS3

(PB)

m

f

n

g

Construction Giveng, n ∈ PTSys with n ∈ Mstrict

we constructPN0 as pullback inPTNet, i.e. component-
wise inSets on places and transitions. The markingM0 is
defined by

(∗) ∀p0 ∈ P0 : M0(p0) = M1(m(p0)).

PROOF Obviously,M0 is a well-defined marking. We have
to show thatf, m are P/T morphisms andm is strict.

1. ∀p0 ∈ P0 we have:M0(p0)
(∗)
= M1(m(p0))

g∈PTSys

≤

M3(g(m(p0))) = M3(n(f(p0)))
n strict
= M2(f(p0)).

This meansf ∈ PTSys.

2. ∀p0 ∈ P0 we have: M0(p0)
(∗)
= M1(m(p0)), this

meansm ∈ PTSys andm is strict.

It remains to show the pullback property.
Given morphismsh, k ∈ PTSys with n ◦h = g ◦ k, we

have a unique induced morphismx in PTNet with f ◦x =
h andm ◦ x = k. We shall show thatx ∈ PTSys, i.e.
M4(p4) ≤M0(x(p4)) for all p4 ∈ P4.

PS0 PS1

PS2 PS3

PS4

(PB)

m

f

n

g

h

kx

For p4 ∈ P4 we haveM4(p4)
k∈PTSys

≤ M1(k(p4)) =

M1(m(x(p4)))
m strict

= M0(x(p4)). 2
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It remains to show the weak VK property for P/T sys-
tems. We know that(PTNet,M) is a weak adhesive HLR
category for the classM of injective morphisms [18, 35],
hence pushouts inPTNet along injective morphisms are
van Kampen squares. But we have to give an explicit
proof for the markings inPTSys, because diagrams in
PTSys as in Thm. 1 withm, n ∈ Mstrict, which are
componentwise pushouts in theP - andT -component, are
not necessarily pushouts inPTSys, since we may have
M3(g(p1)) > M1(p1) for somep1 ∈ P1\m(P0).

Theorem 3 Pushouts in PTSys along Mstrict-
morphisms are van Kampen squares.

PROOF Given the following commutative cube (C) with
m ∈ Mstrict and (f ∈ Mstrict or b, c, d ∈ Mstrict),
where the bottom face is a pushout and the back faces are
pullbacks, we have to show that the top face is a pushout if
and only if the front faces are pullbacks.

PS′
0

PS′
1

PS0

PS1

PS′
2

PS′
3

PS2

PS3
(C)

m′

a

f ′

g′

b

m
f

n′

c

d

n
g

”⇒” If the top face is a pushout then the front faces
are pullbacks inPTNet, since all squares are pushouts
or pullbacks inPTNet, respectively, where the weak VK
property holds. For pullbacks as in Thm. 2 withm, n ∈
Mstrict, the markingM0 of PN0 is completely determined
by the fact thatm ∈ Mstrict. Hence a diagram inPTSys
with m, n ∈ Mstrict is a pullback inPTSys if and only if
it is a pullback inPTNet if and only if it is a component-
wise pullback inSets. This means, the front faces are also
pullbacks inPTSys.

”⇐” If the front faces are pullbacks we know that the
top face is a pushout inPTNet. To show that it is also a
pushout inPTSys we have to verify the conditions (1)-(3)
from the construction in Thm. 1.

(1) For p′1 ∈ P ′
1\m

′(P ′
0)) we have to show that

M ′
3(g

′(p′1)) = M ′
1(p

′
1).

If f is strict then alsog andg′ are strict, since the bot-
tom face is a pushout and the right front face is a pull-
back, andMstrict is preserved by both pushouts and
pullbacks. This means thatM ′

1(p
′
1) = M ′

3(g
′(p′1)).

Otherwiseb andd are strict. Since the right back face
is a pullback we haveb(p′1) ∈ P1\m(P0). With the
bottom face being a pushout we have

(a) M3(g(b(p′1)))
(1)
= M1(b(p

′

1)).

It follows that M ′
3(g

′(p′1))
d strict
= M3(d(g′(p′1))) =

M3(g(b(p′1)))
(a)
= M1(b(p

′
1))

b strict
= M ′

1(p
′
1).

(2) and (3) For p′2 ∈ P ′
2 we have to show that

M ′
3(n

′(p′2)) = M ′
2(p

′
2).

With m being strict alson andn′ are strict, since the
bottom face is a pushout and the left front face is a pull-
back, andMstrict is preserved by both pushouts and
pullbacks. This means thatM ′

2(p
′
2) = M ′

3(n
′(p′2)).

2

We are now ready to show that the category of P/T sys-
tems with the classMstrict of strict P/T morphisms is a
weak adhesive HLR category.

Theorem 4 The category(PTSys,Mstrict) is a weak ad-
hesive HLR category.

PROOF By Thm. 1 and Thm. 2, we have pushouts and pull-
backs alongMstrict-morphisms inPTSys, andMstrict is
closed under pushouts and pullbacks. Moreover,Mstrict is
closed under composition and decomposition, because for
strict morphismsf : PS1 → PS2, g : PS2 → PS3 we
haveM1(p) = M2(f(p)) = M3(g ◦ f(p)) andM1(p) =
M3(g ◦f(p)) impliesM1(p) = M2(f(p)) = M3(g ◦f(p)).
By Thm. 3, pushouts along strict P/T morphisms are weak
van Kampen squares, hence(PTSys,Mstrict) is a weak
adhesive HLR category. 2

Since(PTSys,Mstrict) is a weak adhesive HLR cat-
egory, we can apply the results for adhesive HLR systems
given in [18] to reconfigurable P/T systems. Especially, the
Local Church-Rosser, Parallelism and Concurrency Theo-
rems as discussed in Section 3 are valid inPTSys, where
only for the Parallelism Theorem we need as additional
property binary coproducts compatible withMstrict, which
can be easily verified.

Example 2 If we analyze the two transformations from Ex.
1 depicted in Figs. 2 and 3 we find out that they are sequen-
tially dependent, sinceprodphoto creates the transitionSend
Photoswhich is used in the match of the transformation

(PN2, M2)
prodfollow,m′

=⇒ (PN3, M3). In this case, we can
apply the Concurrency Theorem and construct a concurrent
rule prodconc = prodphoto ∗ prodfollow that describes the
concurrent changes of the net done by the transformations.
This rule is depicted in the top row of Fig. 5 and leads to the

direct transformation(PN1, M1)
prodconc,m′′

=⇒ (PN3, M3),
integrating the effects of the two single transformations into
one direct one.
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Go to Destination

Make Photo

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Select Building

Matching

Select Building

Matching

Select Building

Matching

Make Photo

(P N1, M1) (P N′′, M′′) (P N3, M3)

l3

m′′

r3

(L3, ML3
) (K3, MK3

) (R3, MR3
)

Figure 5. Direct transformation of(PN1, M1) via the concurrent ruleprodconc

5. Applicability of Rules to P/T Systems

In this section, we analyze under which condition a rule
can be applied to a P/T system.

For the application of a ruleprod = ((L, ML)
l
←

(K, MK)
r
→ (R, MR)) to a P/T system(PN1, M1) we

need pushouts in the categoryPTSys. Especially we are
interested in pushouts of the form (2), wherer is a strict
andk is a general P/T morphism. The existence of these
pushouts has been shown in Thm. 1.

(L, ML) (K, MK) (R, MR)

(PN1, M1) (PN0, M0) (PN2, M2)

(1) (2)

l r

m k n

f g

Vice versa, for a given matchm: (L, ML) →

(PN1, M1) we have to construct a P/T system(PN0, M0)
such that (1) becomes a pushout. This construction requires
the following gluing condition which has to be satisfied in
order to apply a rule at a given match.

Definition 7 (Gluing Condition for P/T Systems) For a

rule prod = ((L, ML)
l
← (K, MK)

r
→ (R, MR)) and a

matchm : (L, ML) → (PN1, M1), the gluing pointsGP ,
the dangling pointsDP and the identification pointsIP of
L are defined by

GP = l(PK ∪ TK),
DP = {p ∈ PL | ∃t ∈ (T1 \mT (TL)) :

mP (p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL | ∃p

′ ∈ PL :
p 6= p′ ∧mP (p) = mP (p′)},

∪ {t ∈ TL | ∃t
′ ∈ TL :

t 6= t′ ∧mT (t) = mT (t′)}.
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A P/T morphismm : (L, ML) → (PN1, M1) and a
strict morphisml : (K, MK)→ (L, ML) satisfy the gluing
condition if all dangling and identification points are gluing
points, i.e.

DP ∪ IP ⊆ GP,

andm is strict on places to be deleted, i.e.

(∗) ∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Example 3 In Figs. 2 and 3, two example transformations
of P/T systems are shown. In both cases, we have the dan-
gling pointsDP = PL, while the set of identification points
IP is empty. So, the given matches satisfy the gluing con-
dition, because the gluing pointsGP are equal to the sets of
placesPL, and all places are preserved.

Note that we have not yet considered the firing of the
rule nets(L, ML), (K, MK) and(R, MR) as up to now no
relevant use could be found. Nevertheless, from a the-
oretical point of view the simultaneous firing of the nets
(L, ML), (K, MK) and(R, MR) is easy as the morphisms
are marking strict. The firing of only one of these nets re-
quires interesting extensions of the gluing condition.

Now we show that the gluing condition is a sufficient and
necessary condition for the application of a ruleprod via a
matchm.

Theorem 5 Given P/T morphismsl : (K, MK) →
(L, ML) and m : (L, ML) → (PN1, M1) with l being
strict, then the pushout complement(PN0, M0) together
with P/T morphismsk : (K, MK) → (PN0, M0) and
f : (PN0, M0) → (PN1, M1) exists inPTSys if and
only if the gluing condition is satisfied.

PROOF If the pushout complement exists, then we have
DP ∪ IP ⊆ GP as in PTNet, and the gluing condi-
tion for markings is satisfied by the pushout construction
for markings (see Thm. 1).

Vice versa, given the gluing condition we constructPN0

as the pushout complement inPTNet, which is unique up
to isomorphism, and defineM0 by

(4) ∀p0 ∈ P0 : M0(p0) = M1(f(p0)).

Now let M ′
1 be the marking ofPN1 defined by the

pushout construction in Thm. 1, i.e.

(1) ∀p ∈ PL\l(PK): M ′
1(m(p)) = ML(p)

(2) and (3)∀p0 ∈ P0: M ′
1(f(p0)) = M0(p0)

We have to show thatM1 = M ′
1.

(1) ∀p ∈ PL\l(PK) we haveM ′
1(m(p))

(1)
= ML(p)

(∗)
=

M1(m(p)).

(2) and (3) ∀p0 ∈ P0 we haveM ′
1(f(p0))

(2) or (3)
=

M0(p0)
(4)
= M1(f(p0)).

This meansM1 = M ′
1 and (PN0, M0) is the pushout

complement ofm andl. 2

Remark The uniqueness of the pushout complement fol-
lows from the fact thatPTSys is a weak adhesive HLR
category (see Thm. 4).

Theorem 6 A rule prod = ((L, ML)
l
← (K, MK)

r
→

(R, MR)) is applicable at a matchm : (L, ML) →
(PN1, M1) if and only if the gluing condition is satisfied for
l andm. In this case, we obtain a P/T system(PN0, M0)

leading to a net transformation step(PN1, M1)
prod,m
=⇒

(PN2, M2) consisting of the following pushout diagrams
(1) and (2). The P/T morphismn : (R, MR) →
(PN2, M2) is called comatch of the transformation.

(L, ML) (K, MK) (R, MR)

(PN1, M1) (PN0, M0) (PN2, M2)

(1) (2)

l r

m k n

f g

PROOF This follows directly from Thms. 1 and 5. 2

6. Independence of Net Transformation and
Token Firing

In this section we analyze under which conditions a net
transformation and a firing step of a reconfigurable P/T sys-
tem as introduced in Section 2 can be executed in arbitrary
order. These conditions are called (co-)parallel and sequen-
tial independence.

We start with the situation where a transformation step
and a firing step are applied to the same P/T system. This
leads to the notion of parallel independence.

Definition 8 (Parallel Independence)Given a production

prod = ((L, ML)
l
← (K, MK)

r
→ (R, MR)), a transfor-

mation step(PN1, M1)
prod,m
=⇒ (PN2, M2) of P/T systems

and a firing step(PN1, M1)
t1−→ (PN1, M

′
1) for a tran-

sition t1 ∈ T1, the transformation and the firing step are
called parallel independent if

(1) t1 is not deleted by the transformation step and

(2) ML(p) ≤M ′
1(m(p)) for all p ∈ PL.

Parallel independence allows the execution of the trans-
formation step and the firing step in arbitrary order leading
to the same P/T system.
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Theorem 7 Given parallel independent steps

(PN1, M1)
prod,m
=⇒ (PN2, M2) and (PN1, M1)

t1−→
(PN1, M

′
1) with t1 ∈ T1 then there is a corresponding

t2 ∈ T2 with firing step(PN2, M2)
t2−→ (PN2, M

′
2) and a

transformation step(PN1, M
′
1)

prod,m′

=⇒ (PN2, M
′
2) with

the same markingM ′
2.

(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

t1

t2

prod,m

prod,m′

Remark In Def. 8, Cond. (1) is needed to firet2 in
(PN2, M2), and Cond. (2) is needed to obtain a valid
matchm′ in (PN1, M

′
1). Note thatm′(x) = m(x) for all

x ∈ PL ∪ TL.

PROOF Parallel independence implies thatt1 ∈ T1 is

preserved by the transformation step(PN1, M1)
prod,m
=⇒

(PN2, M2). Hence there is a uniquet0 ∈ T0 with l∗(t0) =
t1. Let t2 = r∗(t0) ∈ T2 in the following pushouts(1) and
(2), wherel∗ andr∗ are strict.

(L, ML) (K, MK) (R, MR)

(PN1, M1) (PN0, M0) (PN2, M2)

(1) (2)

l r

m n

l∗ r∗

Now t1 being enabled underM1 in PN1 implies
pre1(t1) ≤ M1. Moreover, l∗ and r∗ strict implies
pre0(t0) ≤ M0 andpre2(t2) ≤ M2. Hencet2 is enabled
underM2 in PN2 and we defineM ′

2 = M2 	 pre2(t2) ⊕
post2(t2).

Now we consider the second transformation step, with
m′ defined bym′(x) = m(x) for x ∈ PL ∪ TL.

(L, ML) (K, MK) (R, MR)

(PN1, M
′
1) (PN0, M

′
0) (PN2, M

′
2)

(1′) (2′)

l r

m′ n′

l′∗ r′∗

m′ is a P/T morphism if for allp ∈ PL we have

(a) ML(p) ≤M ′
1(m

′(p)),

and the matchm′ is applicable atM ′
1 if

(b) IP ∪DP ⊆ GP and for allp ∈ PL\l(PK) we have
ML(p) = M ′

1(m(p)) (see gluing condition in Def. 7).

Cond. (a) is given by Cond. (2) in Def. 8, be-

cause we assume that(PN1, M1)
prod,m
=⇒ (PN2, M2) and

(PN1, M1)
t1−→ (PN1, M

′
1) with t1 ∈ T1 are parallel in-

dependent. Moreover, the matchm being applicable atM1

implies IP ∪ DP ⊆ GP , and for allp ∈ PL\l(PK) we
haveML(p) = M1(m(p)) = M ′

1(m(p)) by Lem. 1 be-

low using the fact that there is a firing step(PN1, M1)
t1−→

(PN1, M
′
1). The application ofprod alongm′ leads to the

P/T system(PN2, M
′′
2 ), wherel′∗(x) = l∗(x), r′∗(x) =

r∗(x) for all x ∈ P0 ∪ T0, and n′(x) = n(x) for all
x ∈ PR ∪ TR.

Finally, it remains to show thatM ′
2 = M ′′

2 . By con-

struction of the transformation steps(PN1, M1)
prod,m
=⇒

(PN2, M2) and(PN1, M
′
1)

prod,m′

=⇒ (PN2, M
′′
2 ) we have

(1) ∀p0 ∈ P0: M2(r
∗(p0)) = M0(p0) = M1(l

∗(p0)),

(2) ∀p ∈ PR\r(PK): M2(n(p)) = MR(p),

(3) ∀p0 ∈ P0: M ′′
2 (r∗(p0)) = M ′

0(p0) = M ′
1(l

∗(p0)) and

(4) ∀p ∈ PR\r(PK): M ′′
2 (n′(p)) = MR(p).

By construction of the firing steps(PN1, M1)
t1−→

(PN1, M
′
1) and(PN2, M2)

t2−→ (PN2, M
′
2) we have

(5) ∀p1 ∈ P1: M ′
1(p1) = M1(p1) 	 pre1(t1)(p1) ⊕

post1(t1)(p1) and

(6) ∀p2 ∈ P2: M ′
2(p2) = M2(p2) 	 pre2(t2)(p2) ⊕

post2(t2)(p2).

Moreover,l∗ and r∗ strict implies the injectivity ofl∗

andr∗ and we have

(7) ∀p0 ∈ P0:
pre0(t0)(p0) = pre1(t1)(l

∗(p0)) = pre2(t2)(r
∗(p0))

and
post0(t0)(p0) = post1(t1)(l

∗(p0)) =
post2(t2)(r

∗(p0)).

To show that this implies

(8) M ′
2 = M ′′

2 ,

it is sufficient to show

(8a) ∀p ∈ PR\r(PK): M ′′
2 (n′(p)) = M ′

2(n(p)) and

(8b) ∀p0 ∈ P0: M ′′
2 (r∗(p0)) = M ′

2(r
∗(p0)).

First we show that condition (8a) is satisfied. For allp ∈
PR\r(PK) we have

M ′′

2 (n′(p))
(4)
= MR(p)

(2)
= M2(n(p))

(6)
= M ′

2(n(p)),
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becausen(p) is neither in the pre domain nor in the post
domain oft2, which are inr∗(P0) becauset2 is not created
by the rule (see Lem. 1, applied to the inverse ruleprod−1).

Next we show that condition (8b) is satisfied. For all
p0 ∈ P0 we have

M ′′
2 (r∗(p0))

(3)
= M ′

0(p0)
(3)
= M ′

1(l
∗(p0))

(5)
= M1(l

∗(p0))	 pre1(t1)(l
∗(p0))

⊕post1(t1)(l
∗(p0))

(1),(7)
= M2(r

∗(p0))	 pre2(t2)(r
∗(p0))

⊕post2(t2)(r
∗(p0))

(6)
= M ′

2(r
∗(p0))

2

It remains to show Lemma 1 which is used in the proof
of Thm. 7.

Lemma 1 For all p ∈ PL\l(PK) we havem(p) 6∈
dom(t1), wheredom(t1) is union of pre and post domain
of t1, andt1 is not deleted.

PROOF Assumem(p) ∈ dom(t1).

Case 1 (t1 = m(t) for t ∈ TL): t1 not being deleted im-
plies t ∈ l(TK). Hence there existsp′ ∈ dom(t) ⊆
l(PK), such thatm(p′) = m(p); but this is a contra-
diction to p ∈ PL\l(PK) and the fact thatm cannot
identify elements ofl(PK) andPL\l(PK).

Case 2 (t1 /∈ m(TL)): m(p) ∈ dom(t1) implies by the
gluing condition in Def. 7 thatp ∈ l(PK), but this is a
contradiction top ∈ PL\l(PK).

2

Example 4 Analogously to Fig. 1, firing the transition
Select Buildingin (PN2, M2) leads to the firing step

(PN2, M2)
Select Building
−→ (PN2, M

′
2). This firing step and the

transformation step(PN2, M2)
prodfollow,m′

=⇒ (PN3, M3)
(see Fig. 3) are parallel independent because the transi-
tionSelect Buildingis not deleted by the transformation step
and the markingML is empty. Thus, the firing step can be
postponed after the transformation step or, vice versa, the
rule prodfollow can be applied after token firing yielding
the same result(PN3, M

′
3) in Fig. 6.

In contrast, the firing step(PN2, M
′
2)

Go to Destination
−→

(PN2, M
′′
2 ) and the transformation step

(PN2, M
′
2)

prodfollow,m′′′

=⇒ (PN3, M
′
3) (see Fig. 7)

are not parallel independent because the transitionGo to
Destinationis deleted by the transformation step, i.e. it is
not included in the interfaceK. In fact, the new transition

Follow Camera

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device

(P N3, M′

3)

Figure 6. P/T-system(PN3, M
′
3)

Go to Destinationin (PN3, M
′
3) could be fired leading to

(PN3, M
′′
3 ) and vice versa we could applyprodfollow to

(PN2, M
′′
2 ) leading to the P/T system(PN3, M

′′′
3 ), but

M ′′
3 6= M ′′′

3 .

In the first diagram in Thm. 7, we have required that
the upper pair of steps is parallel independent leading to the
lower pair of steps. Now we consider the situations that the
left, right or lower pairs of steps are given – with a suitable
notion of independence – such that the right, left and upper
pairs of steps can be constructed, respectively.

Definition 9 (Sequential and Coparallel Independence)

Given the following diagram withprod = ((L, ML)
l
←

(K, MK)
r
→ (R, MR)), matches m and m′ with

m(x) = m′(x) for x ∈ PL ∪ TL, and comatchesn andn′

with n(x) = n′(x) for x ∈ PR ∪ TR, we say that

(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

t1

t2

prod,m,n

prod,m′,n′

1. the left pair of steps, short((prod, m, n), t2), is se-
quentially independent if

(a) t2 is not created by the transformation step and

(b) MR(p) ≤M ′
2(n(p)) for all p ∈ PR,
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Go to Destination

Follow Team
Member 3

Send Photos

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Matching

Zoom on
damaged part

Capture Scene

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Follow Team
Member 3

Select Building

Matching

n′′′

(P N3, M′

3)(P N′′′, M′′′)(P N2, M′

2)

(L2, ML2
) (K2, MK2

) (R1, MR2
)

l2 r2

m′′′

Figure 7. Transformation step(PN2, M
′
2)

prodfollow,m′′′

=⇒ (PN3, M
′
3)

2. the right pair of steps, short(t1, prod(m′, n′)), is se-
quentially independent if

(a) t1 is not deleted by the transformation step and

(b) ML(p) ≤M1(m
′(p)) for all p ∈ PL,

3. the lower pair of steps, short(t2, (prod, m′, n′)), is co-
parallel independent if

(a) t2 is not created by the transformation step and

(b) MR(p) ≤M2(n
′(p)) for all p ∈ PR.

Example 5 The pair of steps (Select Building,
(prodfollow , m′′′, n′′′)) depicted in Fig. 8 is sequen-
tially independent because the transitionSelect Buildingis
not deleted by the transformation step and the markingML

is empty.
Analogously, the pair of steps((prodfollow , m′, n′),

Select Building) depicted in Fig. 9 is sequentially indepen-

dent because the transitionSelect Buildingis not created by
the transformation step and the markingMR is empty.

For the same reason the pair(Select Building,
(prodfollow , m′′′, n′′′)) is coparallel independent.

Remark Note that for prod = ((L, ML)
l
←

(K, MK)
r
→ (R, MR)) we haveprod−1 = ((R, MR)

r
←

(K, MK)
l
→ (L, ML)) and each direct transformation

(PN1, M1)
prod,m
=⇒ (PN2, M2) with matchm, comatchn

and pushout diagrams(1) and(2) as given in Def. 6 leads

to a direct transformation(PN2, M2)
prod−1,n

=⇒ (PN1, M1)
with matchn and comatchm by interchanging pushout
diagrams(1) and(2).

Given a firing step(PN1, M1)
t1−→ (PN1, M

′
1) with

M ′
1 = M1 	 pre1(t1) ⊕ post1(t1) we can formally de-

fine an inverse firing step(PN1, M
′
1)

t
−1
1−→ (PN1, M1) with

M1 = M ′
1	 post1(t1)⊕ pre1(t1) if post1(t1) ≤M ′

1, such
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Figure 9. Pair of steps((prodfollow , m′, n′), Select Building)
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that firing and inverse firing are inverse to each other.
Formally, all the notions of independence in Def. 9

can be traced back to parallel independence using in-
verse transformation steps based on(prod−1, n, m) and
(prod−1, n′, m′) and inverse firing stepst−1

1 andt−1
2 in the

following diagram.

(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

prod−1,n,m

prod,m,n

prod−1,n′,m′

prod,m′,n′

t
−1
1

t1

t
−1
2

t2

Then we have:

1. ((prod, m, n), t2) is sequentially independent iff
((prod−1, n, m), t2) is parallel independent.

2. (t1, (prod, m′, n′)) is sequentially independent iff
((prod, m′, n′), t−1

1 ) is parallel independent.

3. (t2, (prod, m′, n′)) is coparallel independent iff
((prod−1, n′, m′), t−1

2 ) is parallel independent.

Now we are able to extend Thm. 7 on parallel indepen-
dence showing that resulting steps in the first diagram of
Thm. 7 are sequentially and coparallel independent.

Theorem 8 In Thm. 7, where we start with parallel inde-
pendence of the upper steps in the following diagram with
matchm and comatchn, we have in addition the following
sequential and coparallel independence in the following di-
agram:

(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

t1

t2

prod,m,n

prod,m′,n′

1. The left pair of steps, short((prod, m, n), t2), is se-
quentially independent.

2. The right pair of steps, short(t1, (prod, m′, n′)), is
sequentially independent.

3. The lower pair of steps, short(t2, (prod, m′, n′)), is
coparallel independent.

PROOF We use the proof of Thm. 7.

1. (a) t2 is not created because it corresponds tot1 ∈
T1 which is not deleted.

(b) We haveMR(p) ≤ M ′
2(n(p)) for all p ∈ PR by

construction of the pushout(2′) with M ′′
2 = M ′

2.

2. (a) t1 is not deleted by the assumption of parallel in-
dependence.

(b) ML(p) ≤ M1(m(p)) for all p ∈ PL by pushout
(1).

3. (a) t2 is not created as shown in the proof of 1.(a).

(b) MR(p) ≤ M2(n(p)) for all p ∈ PR by pushout
(2).

2

In Thm. 8 we have shown that parallel independence
implies sequential and coparallel independence. Now we
show vice versa that sequential (coparallel) independence
implies parallel and coparallel (parallel and sequential)in-
dependence.

Theorem 9 1. Given the left sequentially independent
steps in diagram(1) then also the right steps exist such
that the upper (right, lower) pair is parallel (sequen-
tially, coparallel) independent.

2. Given the right sequentially independent steps in di-
agram(1) then also the left steps exist such that the
upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in dia-
gram (1) then also the upper steps exist such that the
upper (left,right) pair is parallel (sequentially, sequen-
tially) independent.

(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

t1

t2

prod,m,n

prod,m′,n′

(1)

PROOF 1. Using Rem. 6, left sequential independence in
(1) corresponds to parallel independence in (2).
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(PN1, M1)

(PN1, M
′
1)(PN2, M2)

(PN2, M
′
2)

t1

t2

prod−1,n,m

prod−1,n′,m′

(2)

Applying Thms. 7 and 8 to the left pair in (2) we ob-
tain the right pair such that the upper and lower pairs
are sequentially and the right pair is coparallel inde-
pendent. This implies by Rem. 6 that the upper (right,
lower) pairs in (1) are parallel (sequentially, coparallel)
independent.

The proofs of items 2. and 3. are analogous to the proof
of item 1. 2

7. General Framework of Net Transformations

In [23], we have introduced the paradigm ”nets and rules
as tokens” using a high-level model with suitable data type
part. This model called algebraic higher-order (AHO) sys-
tem (instead of high-level net and replacement system as in
[23]) exploits some form of control not only on rule appli-
cation but also on token firing. In general, an AHO system
is defined by an algebraic high-level net with system places
and rule places as for example shown in Fig. 10, where the
marking is given by a suitable P/T system resp. rule on these
places. For a detailed description of the data type part, i.e.
the AHO-SYSTEM signature and corresponding algebraA,
we refer to [23].

In the following, we review the behavior of AHO sys-
tems according to [23]. With the symbolV ar(t) we indi-
cate the set of variables of a transitiont, i.e. the set of all
variables occurring in pre and post domains and in the firing
condition oft. The markingM determines the distribution
of P/T systems and rules in an AHO system, which are ele-
ments of a given higher-order algebraA.

Intuitively, P/T systems and rules can be moved along
AHO system arcs and can be modified during the firing
of transitions. The follower marking is computed by the
evaluation of net inscriptions in a variable assignmentv :
V ar(t) → A. The transitiont is enabled in a markingM
if and only if (t, v) is consistent, that is if the evaluation
of the firing condition is fulfilled. Then the follower mark-
ing after firing of transitiont is defined by removing tokens
corresponding to the net inscription in the pre domain oft
and adding tokens corresponding to the net inscription in
the post domain oft.

The transitions in the AHO system in Fig. 10 realize on
the one hand firing steps and on the other hand transforma-
tion steps as indicated by the net inscriptionsfire(n, t) and

transform(r, m), respectively. The initial marking is the
reconfigurable P/T system given in Ex. 1, i.e. the P/T sys-
tem(PN1, M1) given in Fig. 1 is on the placep1, while the
marking of the placep2 is given by the rulesprodphoto and
prodfollow given in Figs. 2 and 3, respectively. To compute
the follower marking of the P/T system we use the transi-
tion token gameof the AHO system. First, the variablen
is assigned to the P/T-system(PN1, M1) and the variablet
to the transitionSelect Building. Because this transition is
enabled in the P/T system, the firing condition is fulfilled.
Finally, due to the evaluation of the termfire(n, t), we ob-
tain the new P/T system(PN1, M

′
1) (see Fig. 1).

For changing the structure of P/T systems, the transition
transformationis provided in Fig. 10. Again, we have to
give an assignmentv for the variables of the transition, i.e.
variablesn, m andr, wherev(n) = (PN1, M1), v(m) is
a suitable match morphism andv(r) = prodphoto. The
firing condition cod m = n ensures that the codomain
of the match morphism is equal to(PN1, M1), while the
second conditionapplicable(r, m) checks the gluing con-
dition, i.e. if the ruleprodphoto is applicable with match
m. Afterwards, the transformation step depicted in Fig.
2 is computed by the evaluation of the net inscription
transform(r, m) and the effect of firing the transition
transformationis the removal of the P/T system(PN1, M1)
from placep1 and adding the P/T system(PN2, M2) to it.

The pair (or sequence) of firing and transformation steps
discussed in the last sections is reflected by firing of the
transitions one after the other in our AHO system. Thus,
the results presented in this paper are most important for
the analysis of AHO systems.

8. Conclusion

In this paper, we have shown that the categoryPTSys
of P/T systems, i.e. place/transition nets with markings,
is a weak adhesive HLR category for the classMstrict of
strict P/T morphisms. This allows the application of the rich
theory for adhesive HLR systems like the Local Church-
Rosser, Parallelismus and Concurrency Theorems to trans-
formations within reconfigurable P/T systems. Moreover,
we have transferred the results of the Local Church-Rosser
Theorem to the consecutive evolution of a P/T system by to-
ken firings and rule applications. We have presented neces-
sary and sufficient conditions for (co-)parallel and sequen-
tial independence and have shown, that provided that these
conditions are satisfied, firing and transformation steps can
be performed in any order, yielding the same result. Also,
we have correlated these conditions, i.e. that parallel in-
dependence implies sequential and coparallel independence
and, vice versa, sequential (coparallel) independence im-
plies parallel and coparallel (parallel and sequential) inde-
pendence.
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Figure 10. Algebraic higher-order system

Related Work

Transformations of nets can be considered in various
ways. Transformations of Petri nets to a different Petri net
class (e.g. in [8, 10, 37]), to another modeling technique
or vice versa (e.g in [3, 6, 15, 25, 34, 14]) are well exam-
ined and have yielded many important results. Transforma-
tion of one net into another without changing the net class
is often used for purposes of forming a hierarchy in terms
of reductions or abstraction (e.g. in [22, 16, 21, 12, 9]), or
transformations are used to detect specific properties of nets
(e.g. in [4, 5, 7, 29]).

Net transformations that aim directly at changing the
net in arbitrary ways as known from graph transformations
were developed as a special case of HLR systems e.g. in
[18]. The general approach can be restricted to transforma-
tions that preserve specific properties as safety or liveness
(see [31, 33]). Closely related are those approaches that
propose changing nets in specific ways in order to preserve
specific semantic properties, as equivalent (I/O-) behavior
(e.g in [2, 11]), invariants (e.g. in [13]) or liveness (e.g.in
[20, 38]).

In [23], the concept of ”nets and rules as tokens” has
been introduced that is most important to model changes
of the net structure while the system is kept running. This
concept of has been used in [32] for a layered architecture
for modeling workflows in mobile ad-hoc networks, so that
changes given by net transformation are taken into account
and the way consistency is maintained is realized by the way
rules are applied.

In [27], rewriting of Petri nets in terms of graph gram-
mars are used for the reconfiguration of nets as well, but
this approach lacks the ”nets as tokens”-paradigm.

Future Work

We plan to develop a tool for our approach. For the ap-
plication of net transformation rules, this tool will provide
an export to AGG [1], a graph transformation engine as well
as a tool for the analysis of graph transformation properties
like termination and rule independence. Furthermore, the
token net properties could be analyzed using the Petri Net

Kernel [24], a tool infrastructure for Petri nets of different
net classes.

On the theoretical side, there are other relevant results
in the context of adhesive HLR systems which could be in-
teresting to apply within reconfigurable P/T systems. One
of them is the Embedding and Extension Theorem, which
deals with the embedding of a transformation into a larger
context. Another one is the Local Confluence Theorem,
also called Critical Pair Lemma, which gives a criterion
when two direct transformations are locally confluent. As
future work, it would be important to verify the additional
properties necessary for these results.

For the modeling of complex systems, often not only
low-level but also high-level Petri nets are used, that com-
bine Petri nets with some data specification [30]. In [35], it
is shown that different kinds of algebraic high-level (AHL)
nets form weak adhesive HLR categories. It would be in-
teresting to show that the corresponding AHL systems, i.e.
AHL nets with markings, are also weak adhesive HLR cate-
gories. This could be verified for each kind of AHL system
directly, but a more elegant solution would be to find a cat-
egorical construction integrating the marking.
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