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Abstract. Reconfigurable place/transition systems are Petri nets with
initial markings and a set of rules which allow the modification of the net
during runtime in order to adapt the net to new requirements of the envi-
ronment. In this paper we use transformation rules for place/transition
systems in the sense of the double pushout approach for graph trans-
formation. The main problem in this context is to analyze under which
conditions net transformations and token firing can be executed in arbi-
trary order. This problem is solved in the main theorems of this paper.
Reconfigurable place/transition systems are applied in a mobile network
scenario.
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1 Introduction

In [24], the concept of reconfigurable place/transition (P/T) systems has been
introduced that is most important to model changes of the net structure while
the system is kept running. In detail, a reconfigurable P/T-system consists of
a P/T-system and a set of rules, so that not only the follower marking can be
computed but also the structure can be changed by rule application to obtain a
new P/T-system that is more appropriate with respect to some requirements of
the environment. Moreover these activities can be interleaved.

For rule-based transformations of P/T-systems we use the framework of net
transformations [18, 19] that is inspired by graph transformation systems [35].
The basic idea behind net transformation is the stepwise development of P/T-
systems by given rules. Think of these rules as replacement systems where the
left-hand side is replaced by the right-hand side preserving a context. Petri nets
that can be changed, have become a significant topic in the recent years, as the
adaption of a system to a changing environment gets more and more important.
Application areas cover e.g. computer supported cooperative work, multi agent
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systems, dynamic process mining or mobile networks. Moreover, this approach
increases the expressiveness of Petri nets and allows a formal description of
dynamic changes.

In this paper we continue our work by analyzing under which conditions a fir-
ing step is independent of a rule-based transformation step. While independence
conditions for two firing steps of P/T-systems are well-known, this problem is
closely related to local Church-Rosser properties for graph resp. net transfor-
mations (see [18, 19, 35]) that are valid in the case of parallel and sequential
independence of rule-based transformations. In [18] conditions for two transfor-
mation steps are given in the framework of high-level replacement systems with
applications to net transformations, so that these transformation steps applied
to the same P/T-system can be executed in arbitrary order, leading to the same
result. But up to now it is open under which conditions a net transformation
step and a firing step are independent of each other. In more detail, we assume
that a given P/T-system represents a certain system state. The next evolution
step can be obtained not only by token firing, but also by the application of one
of the rules available. Hence, the question arises, whether each of these evolution
steps can be postponed after the realization of the other, yielding the same re-
sult. Analogously, we ask ourselves if they can be performed in a different order
without changing the result.

In Section 2 we present an interesting application of our concept in the area of
mobile ad-hoc networks. While Section 3 reviews the notions of reconfigurable
nets and net transformations, in Section 4 our main theorems concerning the
parallel and sequential independence of net transformation and token firing are
achieved. In Section 5 we show how these concepts and results can be put into
the more general framework of algebraic higher-order nets. Finally, we outline
related work and some interesting aspects of future work in Section 6.

2 Mobile Network Scenario

In this section we will illustrate the main idea of reconfigurable P/T-systems in
the area of a mobile scenario. This work is part of a collaboration with some
research projects where the main focus is on an adaptive workflow management
system for mobile ad-hoc networks, specifically targeted to emergency scenarios1.
So, as a running example we use a scenario in archaeological disaster/recovery:
after an earthquake, a team (led by a team leader) is equipped with mobile
devices (laptops and PDAs) and sent to the affected area to evaluate the state
of archaeological sites and the state of precarious buildings. The goal is to draw a
situation map in order to schedule restructuring jobs. The team is considered as
an overall mobile ad-hoc network in which the team leader’s device coordinates
the other team member devices by providing suitable information (e.g. maps,
sensible objects, etc.) and assigning activities. A typical cooperative process to
be enacted by a team is shown in Fig. 1 as P/T-system (PN1,M1), where we
1 MOBIDIS - http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS, MAIS -
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assume a team consisting of a team leader as picture store device and two team
members as camera device and bridge device, respectively.
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Fig. 1. Firing steps Select Building and Go to Destination

To start the activities of the camera device the follower marking of the P/T-
system (PN1,M1) is computed by firing transition Select Building and we obtain
the new P/T-system (PN1,M

′
1) depicted in the middle of Fig. 1. In a next step

the task Go to Destination can be executed (see right-hand side of Fig. 1).
To predict a situation of disconnection a movement activity of the bridge

device has to be introduced in our system. In more detail, the workflow has
to be extended by a task to follow the camera device. For this reason we pro-
vide the rule prodfollow depicted in the upper row in Fig. 2. In general, a rule

prod = ((L,ML) l← (K, MK) r→ (R,MR)) is given by three P/T-systems called
left-hand side, interface, and right-hand side, respectively, and a span of two (spe-
cific) P/T-morphisms l and r. For the application of the rule prodfollow to the
P/T-system (PN1,M1) (see Fig. 1) we additionally need a match morphism m
that identifies the relevant parts and has to respect the so-called gluing condition

(see Section 3). Then the transformation step (PN1,M1)
prodfollow=⇒ (PN2,M2)

as shown in Fig. 2 is given as follows: first, the transitions Go to Destina-
tion and Send Photos are deleted and we obtain the intermediate P/T-system
(PN0,M0); then the transitions Go to Destination, Send Photos and Follow
Camera Device together with their (new) environments are added. Note that a
positive check of the gluing condition makes sure that the intermediate P/T-
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system is well-defined. Analogously, the application of the rule prodfollow to the
P/T-system (PN1,M

′
1) in the middle of Fig. 1 leads to the transformation step

(PN1,M
′
1)

prodfollow=⇒ (PN2,M
′
2) in Fig. 3.

Note that in general token game and rule applications cannot be interleaved,
e.g. if the transformation rule deletes the transition or a part of the marking
used for the token firing. Thus we are looking for conditions such that firing
steps and transformation steps can be performed in any order leading to the
same P/T-system. In Section 4 we define in more detail conditions to ensure the
independence of these activities.

Summarizing, our reconfigurable P/T-system ((PN1,M1), {prodfollow}) con-
sists of the P/T-system (PN1,M1) and the set of rules {prodfollow} with one
rule only. We can consider further rules, e.g. those given in [10, 32], leading to
a more complex reconfigurable P/T-system. But in this paper we use the sim-
ple reconfigurable P/T-system as an example to help the reader understand the
main concepts.

3 Reconfigurable P/T-Systems

In this section we formalize reconfigurable P/T-systems. As net formalism we
use P/T-systems following the notation of “Petri nets are Monoids” in [29]. In
this notation a P/T-net is given by PN = (P, T, pre, post) with pre- and post
domain functions pre, post : T → P⊕ and a P/T-system is given by (PN,M)
with marking M ∈ P⊕, where P⊕ is the free commutative monoid over the set
P of places with binary operation ⊕, e.g. the monoid notation M = 2p1 ⊕ 3p2

means that we have two tokens on place p1 and three tokens on p2. Note that
M can also be considered as function M : P → N where only for a finite set
P ′ ⊆ P we have M(p) ≥ 1 with p ∈ P ′. We can switch between these notations
by defining

∑
p∈P M(p) · p = M ∈ P⊕. Moreover, for M1,M2 ∈ P⊕ we have

M1 ≤M2 if M1(p) ≤M2(p) for all p ∈ P . A transition t ∈ T is M -enabled for a
marking M ∈ P⊕ if we have pre(t) ≤ M , and in this case the follower marking
M ′ is given by M ′ = M 	 pre(t)⊕ post(t) and (PN,M) t−→ (PN,M ′) is called
firing step. Note that 	 the inverse of ⊕ is only defined in M1 	M2 if we have
M2 ≤M1.

In order to define rules and transformations of P/T-systems we introduce
P/T-morphisms which preserve firing steps by Condition (1) below. Addition-
ally they require that the initial marking at corresponding places is increasing
(Condition (2)) or equal (Condition (3)).

Definition 1 (P/T-Morphisms).
Given P/T-systems PNi = (PNi,Mi) with PNi = (Pi, Ti, prei, posti) for i =
1, 2, a P/T-morphism f : (PN1,M1)→ (PN2,M2) is given by f = (fP , fT ) with
functions fP : P1 → P2 and fT : T1 → T2 satisfying

(1) f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT and
(2) M1(p) ≤M2(fP (p)) for all p ∈ P1.

4



Follow Camera

Go to Destination

Send Photos

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Zoom on
damaged part

Capture Scene

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device

Device
Follow Camera

(P N1, M1) (P N0, M0) (P N2, M2)

(R, MR)(K, MK )(L, ML)

l

nm

r

Fig. 2. Transformation step (PN1,M1)
prodfollow=⇒ (PN2,M2)
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Note that the extension f⊕P : P⊕
1 → P⊕

2 of fP : P1 → P2 is defined by
f⊕P (

∑n
i=1 ki ·pi) =

∑n
i=1 ki ·fP (pi). (1) means that f is compatible with pre- and

post domain, and (2) that the initial marking of PN1 at place p is smaller or
equal to that of PN2 at fP (p).

Moreover the P/T-morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

The category defined by P/T-systems and P/T-morphisms is denoted by PTSys
where the composition of P/T-morphisms is defined componentwise for places
and transitions.

Remark 1. For our morphisms we do not always have f⊕P (M1) ≤M2. E.g. M1 =
p1 ⊕ p2,M2 = p and fP (p1) = fP (p2) = p implies f⊕P (M1) = 2p > p = M2, but
M1(p1) = M1(p2) = 1 = M2(p).

As discussed in our paper [24] we are able to define the gluing of P/T-
systems via P/T-morphisms by pushouts in the category PTSys. Especially we
are interested in pushouts of the form

(K, MK) l //

c

��
(1)

(L,ML)

m

��
(PN0,M0) // (PN1,M1)
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where l is a strict and c is a general morphism. So, we can apply rules. Vice
versa, given the left-hand side of a rule (K, MK) l−→ (L, ML) (see Def. 3) and a
match m: (L,ML)→ (PN1,M1) we have to construct a P/T-system (PN0,M0)
such that (1) becomes a pushout. This construction requires the following gluing
condition which has to be satisfied in order to apply a rule at a given match.

Definition 2 (Gluing Condition for P/T-Systems).

Let (L,ML) m→ (PN1,M1) be a P/T-morphism and (K, MK) l→ (L,ML) a strict
morphism , then the gluing points GP , dangling points DP and the identification
points IP of L are defined by

GP = l(PK ∪ TK)
DP = {p ∈ PL|∃t ∈ (T1 \mT (TL)) : mP (p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′ ∧mP (p) = mP (p′)}

∪{t ∈ TL|∃t′ ∈ TL : t 6= t′ ∧mT (t) = mT (t′)}

A P/T-morphism (L,ML) m→ (PN1,M1) and a strict morphism (K, MK) l→
(L,ML) satisfy the gluing condition, if all dangling and identification points are
gluing points, i.e DP ∪ IP ⊆ GP , and m is strict on places to be deleted, i.e.

∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Example 1. In Section 2 examples of P/T-morphisms are given in Fig. 2 by
(K, MK) l→ (L, ML) and (L,ML) m→ (PN1,M1). For the dangling points we
have DP = PL while the set of identification points IP is empty. So, these P/T-
morphisms satisfy the gluing condition because the gluing points GP are also
equal to the set of places PL and all places are preserved.

Next we present rule-based transformations of P/T-systems following the
double-pushout (DPO) approach of graph transformations in the sense of [18,35].

Definition 3 (P/T-System Rule).

A rule prod = ((L,ML) l← (K, MK) r→ (R,MR)) of P/T-systems consists of
P/T-systems (L,ML), (K, MK), and (R,MR), called left-hand side (LHS), in-
terface, and right-hand side (RHS) of prod respectively, and two strict P/T-
morphisms (K, MK) l→ (L,ML) and (K, MK) r→ (R,MR).

Note that we have not yet considered the firing of the rule nets (L, ML),
(K, MK) and (R,MR) as up to now no relevant use could be found. Nevertheless,
from a theoretical point of view simultaneous firing of the nets (L,ML), (K, MK)
and (R,MR) is easy as the morphisms are marking strict. The firing of only one
of these nets would require interesting extensions of the gluing condition.

Definition 4 (Applicability of Rules).

A rule prod = ((L,ML) l← (K, MK) r→ (R,MR)) is called applicable at the
match (L,ML) m→ (PN1,M1) if the gluing condition is satisfied for l and m. In
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this case we obtain a P/T-system (PN0,M0) leading to a net transformation

step (PN1,M1)
prod,m
=⇒ (PN2,M2) consisting of the following pushout diagrams

(1) and (2). The P/T-morphism n : (R,MR)→ (PN2,M2) is called comatch of
the transformation step.

(L, ML)

m

��
(1)

(K, MK)loo r //

c

��
(2)

(R,MR)

n

��
(PN1,M1) (PN0,M0)

l∗
oo

r∗
// (PN2,M2)

Now we are able to define reconfigurable P/T-systems, which allow modifying
the net structure using rules and net transformations of P/T-systems.

Definition 5 (Reconfigurable P/T-Systems).
Given a P/T-system (PN,M) and a set of rules RULES, a reconfigurable P/T-
system is defined by ((PN,M), RULES).

Examples of rule applications and of a reconfigurable P/T-system can be
found in Section 2.

4 Independence of Net Transformations and Token Firing

In this section we analyze under which conditions net transformations and to-
ken firing of a reconfigurable P/T-system as introduced in Section 3 can be
executed in arbitrary order. These conditions are called (co-)parallel and se-
quential independence. Note that independence conditions for two firing steps
of P/T-systems are well-known and independence of two transformation steps is
analyzed already for high-level replacement systems with applications to Petri
net transformations in [18].

We start with the situation where a transformation step and a firing step are
applied to the same P/T-system. This leads to the notion of parallel indepen-
dence.

Definition 6 (Parallel Independence).

A transformation step (PN1,M1)
prod,m
=⇒ (PN2,M2) of P/T-systems and a firing

step (PN1,M1)
t1−→ (PN1,M

′
1) for t1 ∈ T1 are called parallel independent if

(1) t1 is not deleted by the transformation step and
(2) ML(p) ≤M ′

1(m(p)) for all p ∈ PL with (L,ML) = LHS(prod).

Parallel independence allows the execution of the transformation step and
the firing step in arbitrary order leading to the same P/T-system.

Theorem 1 (Parallel Independence). Given parallel independent steps

(PN1,M1)
prod,m
=⇒ (PN2,M2) and (PN1,M1)

t1−→ (PN1,M
′
1) with t1 ∈ T1 then

there is a corresponding t2 ∈ T2 with firing step (PN2,M2)
t2−→ (PN2,M

′
2) and

a transformation step (PN1,M
′
1)

prod,m′

=⇒ (PN2,M
′
2) with the same marking M ′

2.

8



(PN1,M1)
prod,m

s{ pppppppppp

pppppppppp
t1

''NNNNNNNNNNN

(PN2,M2)

t2 ''NNNNNNNNNNN
(PN1,M

′
1)

prod,m′
s{ pppppppppp

pppppppppp

(PN2,M
′
2)

Remark 2. Cond. (1) in Def. 6 is needed to fire t2 in (PN2,M2), and Cond. (2) in
Def. 6 is needed to have a valid match m′ in (PN1,M

′
1). Note that m′(x) = m(x)

for all x ∈ PL ∪ TL.

Proof. Parallel independence implies that t1 ∈ T1 is preserved by the transfor-
mation step (PN1,M1)

prod,m
=⇒ (PN2,M2). Hence there is a unique t0 ∈ T0 with

l∗(t0) = t1. Let t2 = r∗(t0) ∈ T2 in the following pushouts (1) and (2), where l∗

and r∗ are strict.

(L, ML)

m

��
(1)

(K, MK)loo r //

��
(2)

(R,MR)

n

��
(PN1,M1) (PN0,M0)

l∗
oo

r∗
// (PN2,M2)

Now t1 being enabled under M1 in PN1 implies pre1(t1) ≤ M1. Moreover,
l∗ and r∗ strict implies pre0(t0) ≤ M0 and pre2(t2) ≤ M2. Hence t2 is enabled
under M2 in PN2 and we define M ′

2 = M2 	 pre2(t2)⊕ post2(t2).
Now we consider the second transformation step, with m′ defined by m′(x) =

m(x) for x ∈ PL ∪ TL.

(L,ML)

m′

��
(1′)

(K, MK)loo r //

��
(2′)

(R,MR)

��
n′

��
(PN1,M

′
1) (PN0,M

′
0)

l∗′
oo

r∗′
// (PN2,M

′′
2 )

m′ is a P/T-morphism if for all p ∈ PL we have

(a) ML(p) ≤M ′
1(m

′(p)),

and the match m′ is applicable at M ′
1, if

(b) IP ∪DP ⊆ GP and for all p ∈ PL \ l(PK) we have ML(p) = M ′
1(m(p)) (see

gluing condition in Def. 2).

Cond. (a) is given by Cond. (2) in Def. 6, because we assume that (PN1,M1)
prod,m
=⇒ (PN2,M2) and (PN1,M1)

t1−→ (PN1,M
′
1) with t1 ∈ T1 are parallel inde-

pendent. Moreover, the match m being applicable at M1 implies IP ∪DP ⊆ GP
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and for all p ∈ PL \ l(PK) we have ML(p) = M1(m(p)) = M ′
1(m(p)) by Lemma

1 below using the fact that there is a firing step (PN1,M1)
t1−→ (PN1,M

′
1).

The application of prod along m′ leads to the P/T-system (PN2,M
′′
2 ), where

l∗′(x) = l∗(x), r∗′(x) = r∗(x) for all x ∈ P0 ∪ T0, and n∗′(x) = n∗(x) for all
x ∈ PR ∪ TR.

Finally, it remains to show that M ′
2 = M ′′

2 . By construction of the trans-

formation steps (PN1,M1)
prod,m
=⇒ (PN2,M2) and (PN1,M

′
1)

prod,m′

=⇒ (PN2,M
′′
2 )

we have

(1) for all p0 ∈ P0: M2(r∗(p0)) = M0(p0) = M1(l∗(p0)),
(2) for all p ∈ PR \ r(PK): M2(n(p)) = MR(p),
(3) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
0(p0) = M ′

1(l
∗(p0)) and

(4) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = MR(p).

By construction of the firing steps (PN1,M1)
t1−→ (PN1,M

′
1) and (PN2,M2)

t2−→ (PN2,M
′
2) we have

(5) for all p1 ∈ P1: M ′
1(p1) = M1(p1)	 pre1(t1)(p1)⊕ post1(t1)(p1) and

(6) for all p2 ∈ P2: M ′
2(p2) = M2(p2)	 pre2(t2)(p2)⊕ post2(t2)(p2).

Moreover, l∗ and r∗ strict implies the injectivity of l∗ and r∗ and we have

(7) for all p0 ∈ P0: pre0(t0)(p0) = pre1(t1)(l∗(p0)) = pre2(t2)(r∗(p0)) and
post0(t0)(p0) = post1(t1)(l∗(p0)) = post2(t2)(r∗(p0)).

To show that this implies

(8) M ′
2 = M ′′

2 ,

it is sufficient to show

(8a) for all p ∈ PR \ r(PK): M ′′
2 (n′(p)) = M ′

2(n(p)) and
(8b) for all p0 ∈ P0: M ′′

2 (r∗(p0)) = M ′
2(r

∗(p0)).

First we show that condition (8a) is satisfied. For all p ∈ PR \ r(PK) we have

M ′′
2 (n′(p))

(4)
= MR(p)

(2)
= M2(n(p))

(6)
= M ′

2(n(p))

because n(p) is neither in the pre domain nor in the post domain of t2, which
are in r∗(P0) because t2 is not created by the rule (see Lemma 1, applied to the
inverse rule prod−1).

Next we show that condition (8b) is satisfied. For all p0 ∈ P0 we have

M ′′
2 (r∗(p0))

(3)
= M ′

0(p0)
(3)
= M ′

1(l
∗(p0))

(5)
= M1(l∗(p0))	 pre1(t1)(l∗(p0))⊕ post1(t1)(l∗(p0))

(1) and (7)
= M2(r∗(p0))	 pre2(t2)(r∗(p0))⊕ post2(t2)(r∗(p0))
(6)
= M ′

2(r
∗(p0))
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It remains to show Lemma 1 which is used in the proof of Theorem 1.

Lemma 1. For all p ∈ PL \ l(PK) we have m(p) 6∈ dom(t1), where dom(t1) is
union of pre- and post domain of t1, and t1 is not deleted.

Proof. Assume m(p) ∈ dom(t1).

Case 1 (t1 = m(t) for t ∈ TL): t1 not being deleted implies t ∈ l(TK). Hence
there exists p′ ∈ dom(t) ⊆ l(PK), such that m(p′) = m(p); but this is a
contradiction to p ∈ PL \ l(PK) and the fact that m cannot identify elements
of l(PK) and PL \ l(PK).

Case 2 (t1 6∈ m(TL)): m(p) ∈ dom(t1) implies by the gluing condition in Def.
2, that p ∈ l(PK), but this is a contradiction to p ∈ PL \ l(PK).

Example 2. The firing step (PN1,M1)
Select Building−→ (PN1,M

′
1) (see Fig. 1) and

the transformation step (PN1,M1)
prodfollow=⇒ (PN2,M2) (see Fig. 2) are par-

allel independent because the transition Select Building is not deleted by the
transformation step and the marking ML is empty. Thus, the firing step can be
postponed after the transformation step or, vice versa, the rule prodfollow can
be applied after token firing yielding the same result (PN2,M

′
2) in Fig. 4.

In contrast the firing step (PN1,M
′
1)

Go to Destination−→ (PN1,M
′′
1 ) (see Fig.

1) and the transformation step (PN1,M
′
1)

prodfollow=⇒ (PN2,M
′
2) (see Fig. 3) are

not parallel independent because the transition Go to Destination is deleted by
the transformation step (it is not included in the interface K). In fact, the new
transition Go to Destination in (PN2,M

′
2) could be fired leading to (PN2,M

′′
2 )

and vice versa we could fire Go to Destination in (PN1,M
′
1) and then apply

prodfollow leading to (PN2,M
′′′
2 ), but we would have M ′′

2 6= M ′′′
2 .

In the first diagram in Theorem 1 we have required that the upper pair of
steps is parallel independent leading to the lower pair of steps. Now we consider
the situations that the left, right or lower pair of steps are given - with a suitable
notion of independence - such that the right, left and upper part of steps can be
constructed, respectively.

Definition 7 (Sequential and Coparallel Independence). In the following
diagram with LHS(prod) = (L,ML), RHS(prod) = (R,MR), m and m′ are
matches and n and n′ are comatches of the transformation steps with m(x) =
m′(x) for x ∈ PL ∪ TL and n(x) = n′(x) for x ∈ PR ∪ TR, we say that

(PN1,M1)
(prod,m,n)

s{ pppppppppp

pppppppppp
t1

''NNNNNNNNNNN

(PN2,M2)

t2 ''NNNNNNNNNNN
(PN1,M

′
1)

(prod,m′,n′)s{ pppppppppp

pppppppppp

(PN2,M
′
2)

11



Follow Camera

Select Building

Matching

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device

(P N2, M′
2)

Fig. 4. P/T-system (PN2,M
′
2)

1. the left pair of steps, short ((prod, m, n), t2), is sequentially independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤M ′

2(n(p)) for all p ∈ PR

2. the right pair of steps, short (t1, prod(m′, n′)), is sequentially independent if
(a) t1 is not deleted by the transformation step
(b) ML(p) ≤M1(m′(p)) for all p ∈ PL

3. the lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent if
(a) t2 is not created by the transformation step
(b) MR(p) ≤M2(n′(p)) for all p ∈ PR

Example 3. The pair of steps (Select Building, (prodfollow,m′, n′)) depicted in
Fig. 5 is sequentially independent because the transition Select Building is not
deleted by the transformation step and the marking ML is empty. Analogously,
the pair of steps ((prodfollow,m, n), Select Building) depicted in Fig. 6 is sequen-
tially independent because the transition Select Building is not created by the
transformation step and the marking MR is empty. For the same reason the pair
(Select Building,(prodfollow,m′, n′)) is coparallel independent.

Remark 3. Note that for prod = ((L,ML) l← (K, MK) r→ (R,MR)) we have
prod−1 = ((R,MR) r← (K, MK) l→ (L,ML)) and each direct transformation

(PN1,M1)
prod
=⇒ (PN2,M2) with match m, comatch n and pushout diagrams (1)

and (2) as given in Def. 4 leads to a direct transformation (PN2,M2)
prod−1

=⇒
(PN1,M1) with match n and comatch m by interchanging pushout diagrams
(1) and (2).
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Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Matching

prodfollow

(P N1, M′
1) (P N2, M′

2)(P N1, M1)

Building
Select

Fig. 5. Pair of steps (Select Building, (prodfollow,m′, n′))

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Select Building

Matching Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

Go to Destination

Matching

Zoom on
damaged part

Capture Scene

Send Photos

Device
Follow Camera

Select Building

prodfollow Building
Select

(P N1, M1) (P N2, M′
2)(P N2, M2)

Fig. 6. Pair of steps ((prodfollow,m, n), Select Building)
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Given a firing step (PN1,M1)
t1−→ (PN1,M

′
1) with M ′

1 = M1 	 pre1(t1) ⊕

post1(t1) we can formally define an inverse firing step (PN1,M
′
1)

t−1
1−→ (PN1,M1)

with M1 = M ′
1 	 post1(t1) ⊕ pre1(t1) if post1(t1) ≤ M ′

1, such that firing and
inverse firing are inverse to each other.

Formally all the notions of independence in Def. 7 can be traced back to
parallel independence using inverse transformation steps based on (prod−1, n,m)
and (prod−1, n′,m′) and inverse firing steps t−1

1 and t−1
2 in the following diagram.

(PN1,M1)
(prod,m,n)

s{ pppppppppp

pppppppppp
t1

''NNNNNNNNNNN

(PN2,M2)
(prod−1,n,m)

3;pppppppppp

pppppppppp

t2

''NNNNNNNNNNN (PN1,M
′
1)

(prod,m′,n′)

s{ pppppppppp

pppppppppp

t−1
1

ggNNNNNNNNNNN

(PN2,M
′
2)

(prod−1,n′,m′)

3;pppppppppp

ppppppppppt−1
2

ggNNNNNNNNNNN

1. ((prod, m, n), t2) is sequentially independent iff ((prod−1, n,m), t2) is parallel
independent.

2. (t1, (prod, m′, n′)) is sequentially independent iff ((prod, m′, n′), t−1
1 ) is par-

allel independent.
3. (t2, (prod, m′, n′)) is coparallel independent iff ((prod−1, n′,m′), t−1

2 ) is par-
allel independent.

Now we are able to extend Theorem 1 on parallel independence showing that
resulting steps in the first diagram of Theorem 1 are sequentially and coparallel
independent.

Theorem 2 (Parallel and Sequential Independence). In Theorem 1, where
we start with parallel independence of the upper steps in the following diagram
with match m and comatch n, we have in addition the following sequential and
coparallel independence in the following diagram:

(PN1,M1)
(prod,m,n)

s{ pppppppppp

pppppppppp
t1

''NNNNNNNNNNN

(PN2,M2)

t2 ''NNNNNNNNNNN
(PN1,M

′
1)

(prod,m′,n′)s{ pppppppppp

pppppppppp

(PN2,M
′
2)

1. The left pair of steps, short ((prod, m, n), t2), is sequentially independent.
2. The right pair of steps, short (t1, (prod, m′, n′)), is sequentially independent.
3. The lower pair of steps, short (t2, (prod, m′, n′)), is coparallel independent.

Proof. We use the proof of Theorem 1.
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1. (a) t2 is not created because it corresponds to t1 ∈ T1 which is not deleted.
(b) We have MR(p) ≤ M ′

2(n(p)) for all p ∈ PR by construction of the
pushout (2′) with M ′′

2 = M ′
2.

2. (a) t1 is not deleted by the assumption of parallel independence.
(b) ML(p) ≤M1(m(p)) for all p ∈ PL by pushout (1).

3. (a) t2 is not created as shown in the proof of 1. (a).
(b) MR(p) ≤M2(n(p)) for all p ∈ PR by pushout (2).

In Theorem 2 we have shown that parallel independence implies sequential
and coparallel independence. Now we show vice versa that sequential (coparallel)
independence implies parallel and coparallel (parallel and sequential) indepen-
dence.

Theorem 3 (Sequential and (Co-)Parallel Independence).

1. Given the left sequentially independent steps in diagram (1) then also the
right steps exist, s.t. the upper (right, lower) pair is parallel (sequentially,
coparallel) independent.

2. Given the right sequentially independent steps in diagram (1) then also the
left steps exist, s.t. the upper (left, lower) pair is parallel (sequentially, co-
parallel) independent.

3. Given the lower coparallel independent steps in diagram (1) then also the
upper steps exist, s.t. the upper (left,right) pair is parallel (sequentially, se-
quentially) independent.

(PN1,M1)
(prod,m,n)

s{ pppppppppp

pppppppppp
t1

''NNNNNNNNNNN

(1)(PN2,M2)

t2 ''NNNNNNNNNNN
(PN1,M

′
1)

(prod,m′,n′)s{ pppppppppp

pppppppppp

(PN2,M
′
2)

Proof. 1. Using Remark 3, left sequential independence in (1) corresponds to
parallel independence in (2).

(PN1,M1)
t1

''NNNNNNNNNNN

(2)(PN2,M2)

(prod−1,n,m)
3;pppppppppp

pppppppppp

t2 ''NNNNNNNNNNN
(PN1,M

′
1)

(PN2,M
′
2)

(prod−1,n′,m′)

3;pppppppppp

pppppppppp

Applying Theorem 1 and Theorem 2 to the left pair in (2) we obtain the
right pair such that the upper and lower pairs are sequentially and the right
pair coparallel independent. This implies by Remark 3 that the upper (right,
lower) pairs in (1) are parallel (sequentially, coparallel) independent.
The proofs of items 2. and 3. are analogous to the proof of 1.
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5 General Framework of Net Transformations

In [24], we have introduced the paradigm ”nets and rules as tokens” using a
high-level model with suitable data type part. This model called algebraic higher-
order (AHO) system (instead of high-level net and replacement system as in [24])
exploits some form of control not only on rule application but also on token firing.
In general an AHO-system is defined by an algebraic high-level net with system
places and rule places as for example shown in Fig. 7, where the marking is given
by a suitable P/T-system resp. rule on these places. For a detailed description of
the data type part, i.e. the AHO-System-signature and corresponding algebra
A, we refer to [24].

(PN1, M1)

n transformation

m :Mor
cod m = n
applicable(r, m) = tt

n

fire(n, t)

token game

enabled(n, t) =tt

t :Transitions

(AHO-System-SIG,A)

p1 : System

r

p2 : Rules

transform(r, m)

prodfollow

Fig. 7. Algebraic higher-order system

In the following we review the behavior of AHO-systems according to [24].
With the symbol V ar(t) we indicate the set of variables of a transition t, i.e.,
the set of all variables occurring in pre- and post domain and in the firing-
condition of t. The marking M determines the distribution of P/T-systems and
rules in an AHO-system, which are elements of a given higher-order algebra A.
Intuitively, P/T-systems and rules can be moved along AHO-system arcs and can
be modified during the firing of transitions. The follower marking is computed
by the evaluation of net inscriptions in a variable assignment v : V ar(t) → A.
The transition t is enabled in a marking M , if and only if (t, v) is consistent, that
is if the evaluation of the firing condition is fulfilled. Then the follower marking
after firing of transition t is defined by removing tokens corresponding to the net
inscription in the pre domain of t and adding tokens corresponding to the net
inscription in the post domain of t.

The transitions in the AHO-system in Fig. 7 realize on the one hand firing
steps and on the other hand transformation steps as indicated by the net in-
scriptions fire(n, t) and transform(r, m), respectively. The initial marking is
the reconfigurable P/T-system given in Section 2, i.e. the P/T-system (PN1,M1)
given in Fig. 1 is on the place p1, while the marking of the place p2 is given by
the rule prodfollow given in Fig. 2. To compute the follower marking of the P/T-
system we use the transition token game of the AHO-system. First the variable
n is assigned to the P/T-system (PN1,M1) and the variable t to the transition
Select Building. Because this transition is enabled in the P/T-system, the firing
condition is fulfilled. Finally, due to the evaluation of the term fire(n, t) we
obtain the new P/T-system (PN1,M

′
1) (see Fig. 1).
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For changing the structure of P/T-systems the transition transformation is
provided in Fig. 7. Again, we have to give an assignment v for the variables
of the transition, i.e. variables n, m and r, where v(n) = (PN1,M1), v(m)
is a suitable match morphism and v(r) = prodfollow. The firing condition cod
m = n ensures that the codomain of the match morphism is equal to (PN1,M1),
while the second condition applicable(r, m) checks the gluing condition, i.e. if
the rule prodfollow is applicable with match m. Afterwards, the transformation
step depicted in Fig. 2 is computed by the evaluation of the net inscription
transform(r, m) and the effect of firing the transition transformation is the
removal of the P/T-system (PN1,M1) from place p1 and adding the P/T-system
(PN2,M2) to it.

The pair (or sequence) of firing and transformation steps discussed in the
last sections is reflected by firing of the transitions one after the other in our
AHO-system. Thus, the results presented in this paper are most important for
the analysis of AHO-systems.

6 Conclusion

This paper continues our work on ”nets and rules as tokens” [24] by transferring
the results of local Church-Rosser, which are well known for term rewriting and
graph transformations, to the consecutive evolution of a P/T-system by token fir-
ing and rule applications. We have presented necessary and sufficient conditions
for (co-)parallel and sequential independence and we have shown that provided
that these conditions are satisfied, firing and transformation steps can be per-
formed in any order, yielding the same result. Moreover, we have correlated these
conditions, i.e. that parallel independence implies sequential independence and
vice versa, sequential (coparallel) independence implies parallel and coparallel
(parallel and sequential) independence.

Transformations of nets can be considered in various ways. Transformations
of Petri nets to another Petri net class (e.g. in [8, 11, 36]), to another modeling
technique or vice versa (e.g in [3, 6, 15, 16, 26, 34]) are well examined and have
yielded many important results. Transformation of one net into another without
changing the net class is often used for purposes of forming a hierarchy, in terms
of reductions or abstraction (e.g. in [9,13,17,21,23]) or transformations are used
to detect specific properties of nets (e.g. in [4,5,7,30]). Net transformations that
aim directly at changing the net in arbitrary ways as known from graph transfor-
mations were developed as a special case of high-level replacement systems e.g.
in [18]. The general approach can be restricted to transformations that preserve
specific properties as safety or liveness (see [31, 33]). Closely related are those
approaches that propose changing nets in specific ways in order to preserve spe-
cific semantic properties, as equivalent (I/O-) behavior (e.g in [2,12]), invariants
(e.g. in [14]) or liveness (e.g. in [20,38]). Related are also those approaches that
follow the ”nets as tokens”-paradigm, based on elementary object nets intro-
duced in [37]. Mobile object net systems [22, 27] are an algebraic formalization
of the elementary object nets that are closely related to our approach. In both
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cases the data types, respectively the colors represent the nets that are the to-
ken nets. Our approach goes beyond those approaches as we additionally have
rules as tokens, and transformations of nets as operations. In [27] concurrency
aspects between token nets have been investigated, but naturally not concerning
net transformations. In [28] rewriting of Petri nets in terms of graph grammars
are used for the reconfiguration of nets as well, but this approach lacks the ”nets
as tokens”-paradigm.

In this paper we present main results of a line of research2 concerning formal
modeling and analysis of workflows in mobile ad-hoc networks. So, there is a
large amount of most interesting and relevant open questions directly related
to the work presented here. While a firing step and a transformation step that
are parallel independent can be applied in any order, an aspect of future work
is under which conditions they can be applied in parallel leading to the notions
of parallel steps. Vice versa a parallel step should be splitted into the corre-
sponding firing and transformation steps. This problem is closely related to the
Parallelism Theorem for high-level replacement systems [18] which is the basis of
a shift construction for transformation sequences. Moreover, it is most interest-
ing to transfer further results which are already valid for high-level replacement
systems, e.g. confluence, termination and critical pairs [18]. We plan to develop
a tool for our approach using the graph transformation engine AGG [1] as a
tool for the analysis of transformation properties like independence and termi-
nation, meanwhile the token net properties could be analyzed using the Petri
Net Kernel [25], a tool infrastructure for Petri nets different net classes.
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