
Softw Syst Model (2007) 6:269–285
DOI 10.1007/s10270-006-0044-6

SPECIAL SECTION PAPER

Analysing refactoring dependencies using graph transformation

Tom Mens · Gabriele Taentzer · Olga Runge

Received: 22 February 2005 / Revised: 9 December 2005 / Accepted: 14 September 2006 / Published online: 23 January 2007
© Springer-Verlag 2007

Abstract Refactoring is a widely accepted technique
to improve the structure of object-oriented software.
Nevertheless, existing tool support remains restricted
to automatically applying refactoring transformations.
Deciding what to refactor and which refactoring to apply
still remains a difficult manual process, due to the many
dependencies and interrelationships between relevant
refactorings. In this paper, we represent refactorings as
graph transformations, and we propose the technique
of critical pair analysis to detect the implicit dependen-
cies between refactorings. The results of this analysis
can help the developer to make an informed decision of
which refactoring is most suitable in a given context and
why. We report on several experiments we carried out
in the AGG graph transformation tool to support our
claims.

Keywords Refactoring · Graph transformation ·
Critical pair analysis · Dependency analysis ·AGG

Communicated by Dr. Francesco Parisi-Presicce.

T. Mens (B)
Software Engineering Lab,
Université de Mons-Hainaut,
7000 Mons, Belgium
e-mail: tom.mens@umh.ac.be

G. Taentzer
Faculty of Mathematics and Computer Science,
Philipps- Universität Marburg,
Hans-Meerwein- Str. D-35032, Marburg, Germany
e-mail: gabi@cs.tu-berlin.de

O. Runge
Technische Universität Berlin, 10587 Berlin, Germany
e-mail: olga@cs.tu-berlin.de

1 Introduction

Refactoring is a commonly accepted technique to
improve the structure of object-oriented software
[1,2]. For all common object-oriented languages and
programming environments integrated support for
applying refactorings is readily available. Even at the
level of design models, support for model refactoring is
starting to emerge [3–7].

Nevertheless, there are still a number of problems if
we want to apply refactorings as automatically as possi-
ble. To illustrate these problems, consider the following
scenario.

Assume that we have a tool that allows us to detect
opportunities for refactoring [8]. Such a tool will detect
badly structured code based on code smells [1,9], met-
rics [10,11] or other techniques. It will use this informa-
tion to propose a set of refactorings that can be used
to improve the software structure. The developer then
has to choose interactively which refactorings he would
like to apply, and use a refactoring tool to apply these
refactorings.

A problem with the above scenario is that the set of
refactorings that will be proposed to the developer may
be quite large, so that it is difficult to determine which re-
factorings in this set will be most beneficial. The problem
becomes even worse since there may be implicit depen-
dencies between the proposed refactorings. Applying
any one of the suggested refactorings may prohibit the
application of other refactorings that have been selected
by the developer.

Therefore, the goal of this paper is to explore auto-
mated techniques to determine what are the implicit
dependencies between a list of refactorings. In this way,
we can help the developer to decide in which order

270 T. Mens et al.

the refactorings need to be applied (due to sequential
dependencies between them), and which refactorings
are more appropriate. In this article, a refactoring is con-
sidered to be more appropriate if it gives rise to fewer
potential conflicts.1

The above analysis will allow the developer to get pre-
cise answers to the following concrete questions when
selecting a concrete refactoring in a list of proposed re-
factorings:

• What are the alternatives of a selected refactoring
(i.e., other mutually exclusive refactorings that add-
ress the same design smell)?

• Which other refactorings need to be applied first in
order to make the selected refactoring applicable?

• Which other refactorings are still applicable after
applying the selected refactoring?

Being able to answer these questions will allow the
developer to perform “what if” scenarios and will allow
him to get a better insight into the effect of applying a
refactoring.

In order to achieve the above goal, we first of all
need a precise formal specification of refactorings. We
rely on graph transformation theory for this purpose.
Next we need to be able to analyse mutual exclusion
and sequential dependencies between refactorings. To
this aim, we make use of critical pair analysis [12–14]
of graph transformations. For our experiments, we used
AGG,2 a general purpose graph transformation tool that
supports critical pair analysis on typed attributed graph
transformations.

2 Motivating example

As a running example throughout this article, we use
a simplified version of a Local Area Network simula-
tion (LAN) that has been adopted at various univer-
sities to teach object-oriented design and refactoring
techniques [15]. The class hierarchy for this LAN is
shown in Fig. 1. We used the standard notation of UML
class diagrams, enhanced with information to express
message sends (e.g. calls this.send(p)), variable
accesses (e.g. accesses Packet.sender) and vari-
able updates (e.g. updates Packet.sender).

1 Alternatively, appropriateness could be expressed as a func-
tion of software quality. Different refactorings improve different
quality aspects, and can be considered to be more appropriate if
they address the particular quality aspect the software developer
intends to improve.
2 The most recent version of AGG can be downloaded from
http://www.tfs.cs.tu-berlin.de/agg.

Observe the need for dynamic method lookup in calls
this.send(p) for the subclasses Workstation,
PrintServer and FileServer. The message send is
found in their common superclass Node via the method
lookup mechanism. Also observe the need for dynamic
(i.e., late) binding in the method send of class Node
which calls this.accept(p). send is a so-called tem-
plate method3 that relies on the method accept whose
implementation is not specified byNode, but deferred to
its subclasses. During program execution, the implemen-
tation of one of the accept methods in the subclasses
will be used depending on the dynamic context in which
the message was sent.

A software developer may want to improve the struc-
ture of the design in Fig. 1 by applying a variety of differ-
ent refactorings. Below we present and motivate some
of these:

T1 Rename Method print in class PrintServer to
new name process. This refactoring should be
performed in combination with the following one.

T2 Rename Methodsave in classFileServer to new
name process. This new name is deliberately the
same as in T1, since it prepares for the application
of refactoring T4 explained below.

T3 Create Superclass Server for PrintServer and
FileServer. The purpose of this refactoring is
to show that the classes PrintServer and File-
Server are similar in nature. They can both
accept a packet sent by another node in the net-
work and process it in a specific way.

T4 Pull Up Method accept from classes Print
Server and FileServer to the superclass
Server that was created by T3. This refactoring
is only possible thanks to the renamings performed
by T1 and T2, which had as a deliberate side effect
that the implementation of accept in both sub-
classes PrintServer and FileServer became
identical, a prerequisite for being able to pull up
the method.

T5 Move Method accept from class PrintServer
to class Packet. This refactoring is motivated by
the fact that accept directly accesses the variable
receiver in class Packet. Moving the method
accept to Packet facilitates the implementation
of active packets, which are packets that are respon-
sible themselves for deciding to which destination
they should be sent and what they should perform
at this destination. Typical examples are broad-
cast packets that send information to a given set

3 Template Method is a well-known object-oriented design pat-
tern. For more details on this matter, we refer to [16].

Refactoring dependency analysis 271

Fig. 1 Motivating example:
simplified class diagram of a
LAN simulation. Node is an
abstract superclass that
cannot be instantiated

Node Packet

Node receiver
Node sender

nextNode
send(Packet p) {
calls this.accept(p) ;
accesses nextNode }

FileServer

save()
accept(Packet p) {
calls this.send(p) ;
calls this.save() ;
accesses Packet.receiver }

PrintServer

print()
accept(Packet p) {
calls this.send(p) ;
calls this.print();
accesses Packet.receiver }

Workstation

originate() {
updates Packet.sender }

accept(Packet p) {
calls this.send(p) ;
accesses Packet.sender }

of nodes in the LAN, and collecting packets that
collect information from a given set of nodes in the
LAN.

T6 Move Method accept from class FileServer to
class Packet. The motivation for this refactoring
is the same as for the previous one.

T7 Encapsulate Variable receiver in class Packet.
This refactoring is useful for increasing modularity,
by avoiding direct accesses of the local state of a
packet. Thanks to such encapsulation, it becomes
possible to change the internal representation of
the packet independent of its external clients.

T8 Add Parameterpof typePacket to methodprint
in class PrintServer. In order to print the
information stored in a packet, it is necessary to
pass this packet as a parameter.

T9 Add Parameter p of type Packet to method save
in classFileServer. The motivation for this refac-
toring is the same as for T8.

Even though the LAN simulation is a very simple
example, the list of refactorings proposed above is
already quite large. In addition, there may be many
implicit or explicit interactions between these refact-
orings:

• Some of the proposed solutions (e.g., T4 and T5) are
mutually exclusive, because they are incompatible
with one another. Obviously, one cannot pull up a
method to a superclass, and at the same time move
this method to another unrelated class. This scenario
is depicted in Fig. 2.

• Some of the refactorings are sequentially dependent,
in the sense that they rely on other refactorings that
have to be applied before. This is for example the
case for T4, which relies on all previous refactorings
T1, T2 and T3.

• It is also possible to have pairs of refactorings where
each refactoring in the pair can be applied in iso-
lation, but when combined together they can only
applied in a certain order. This is for example the

Table 1 Refactoring dependency table. × denotes mutual exclu-
sion between two refactorings, ← denotes a sequential depen-
dency, and� denotes an asymmetric conflict

T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 × ← �
T2 × ← �
T3 × ←
T4 → → → × × ×
T5 × × ×
T6 × × ×
T7 ×
T8 � ×
T9 � ×

case with T1 and T8 (and similarly, with T2 and T9).
They can both be applied separately to Figure 1, but
we can only apply them together in a specific order.
Indeed, if we first add a parameter to the method
print and afterwards decide to rename the method
print, there is no problem. If we try it in the oppo-
site order, we will not be able to add a parameter to
the methodprint as this method has been renamed.

It should be clear from this motivating example that
automated support is needed to detect, for a given list
of refactorings, which of these refactorings are mutually
exclusive (and why), and which refactorings are sequen-
tially dependent from each other. For example, it would
be nice if we could automatically compute the Table 1
summarising all dependencies concerning the situation
illustrated above (and more).

This table provides a lot of useful information to the
software developer. For example, one can see at a glance
that T4 has a lot of sequential dependencies; T4, T5 and
T6 are in conflict to one another; and T7 is the only
refactoring in the list that does not interfere with any
of the other refactorings. The information in the table
also allows us to suggest an optimal way to apply the
refactorings. For example, it is possible to apply the re-
factorings in the following order without giving rise to
conflicts: T8, T1, T9, T2, T3, T4, T7. Notice that T5 and T6

272 T. Mens et al.

Fig. 2 Example of a mutual exclusion relationship between re-
factorings Pull Up Method and Move Method. Server is an
abstract superclass of PrintServer and FileServer that can-
not be instantiated. Its sole purpose is to capture the commonal-

ities between its subclasses. After applying the Pull Up Method
refactoring, the method accept becomes a template method in
Server since it relies on another method processwhose imple-
mentation is dynamically deferred to the subclasses

do not appear in this sequence as they are in mutual
exclusion with T4.

3 Suggested solution

In order to automatically compute the information dis-
played in Table 1, we will specify a representative selec-
tion of refactorings by graph transformation rules. Con-
crete contexts (e.g., a program or a design model) will
be represented by abstract syntax graphs. Basing refac-
toring specification on graph transformation in this way,
we can use the techniques of critical pair analysis [12–14]
and sequential dependency analysis. The first technique
can be used to identify mutual exclusions and asymmet-
ric conflicts as identified in Table 1, whereas the second
technique can be used to detect sequential dependencies
between refactorings.

An advantage of these analysis techniques is that they
can be performed at an abstract level first, relying only
on the abstract refactoring specifications, without taking
into account the concrete context in which they will be
applied. Once a concrete program is provided that needs
to be refactored, the abstract analysis can be applied
straightforwardly in this concrete refactoring context.
The benefit of this approach is that the abstract analysis,
which is the most time-consuming operation, needs to
be performed only once, when the refactoring specifica-
tions are provided.

3.1 Conflict analysis of refactoring specifications

Critical pair analysis was first introduced for term rewrit-
ing, and later generalised to graph rewriting [17,18]. The
idea of critical pair analysis is quite simple. We explain
it here in the context of refactoring. Given a prede-
fined set of generic refactoring specifications (such as
Pull Up Method, Encapsulate Variable, Move Method,
Create Superclass, and so on), all pairs of such specifica-
tions are analysed for potential conflicts. A critical pair
is detected when it is possible to find a minimal critical
context to which both refactorings in the pair can be
applied in a conflicting (i.e., mutually exclusive) way.

A critical pair analysis algorithm has been imple-
mented in the AGG tool.4 Applying it to a selection
of 11 representative refactorings, we get the results dis-
played in Fig. 3. For each conflicting pair of refactorings,
a strictly positive number is shown in this figure, corre-
sponding to the actual number of critical situations that
can be computed between a given pair of refactorings.
This number can be higher than one if the two con-
sidered refactorings conflict in different ways. By click-
ing on a number in the conflict table, all corresponding
detailed conflict situations will be displayed to the user.
We will explain this critical pair analysis in more detail
in Sect. 6.

4 AGG is the only available graph transformation tool that
supports critical pair analysis.

Refactoring dependency analysis 273

Fig. 3 Critical pair analysis
of the refactoring
specifications

While the critical pair analysis shown in Fig. 3 is very
useful to show conflicts in principal, it is too conserva-
tive in practice, in the sense that it computes all potential
conflicts. In the context of a concrete scenario (such as
the one in Fig. 1, for example), only a small fraction of
these conflicts will actually occur. Therefore, the obvi-
ous and straightforward solution is to consider the crit-
ical pair analysis as some kind of preprocessing stage
which needs to be carried out only once. Whenever we
provide a concrete context, we only need to filter the
set of computed critical pairs to find out which of the
potential conflicts are actual conflicts that match in this
concrete context. After this filtering phase, we expect to
get as results all the mutual exclusions and asymmetric
conflicts that are shown in Table 1.

3.2 Conflict analysis of refactoring applications

In a second phase, we can consider concrete conflicts
and sequential dependencies as they occur when analy-
sing the refactoring possibilities for a concrete context
(i.e., the syntax graph of a concrete program or design
model).

Applicability analysis: First of all, we can determine
which refactorings are applicable in a concrete context.
For example, in the context of Fig. 1, refactoring T4 is
not immediately applicable (because the method bodies
of accept are not identical, and because the superclass
Server is missing). But after applying refactorings T1,
T2 and T3, T4 does become applicable. On the other
hand, after T4, refactorings T5 and T6 are not applicable
anymore.

We see that there are different reasons for refact-
orings not being applicable. Either they sequentially
depend on other ones that have to be applied first, or
they mutually exclude each other. Moreover, certain re-

factorings are never applicable in a given context. For
example, refactoring Pull Up Variable is not applica-
ble in the context of Fig. 1, as none of the subclasses
in the example contain variables that can be pulled up.
Because we specified refactoring applications by graph
transformations, AGG can perform this applicability
analysis automatically, and it reports for each context
graph the set of refactoring rules that are applicable.
After this analysis, the user can even browse through all
possible matches of each applicable rule in the concrete
context graph.

Parallel conflict analysis: As we discussed above, critical
pairs of refactoring specifications describe potential con-
flicts. Given a concrete context, we can further analyse
which of these potential conflicts actually occur in this
context. To this extent, we first check which refactorings
are applicable and then look up the potential conflicts
of applicable refactorings to find out which of these real
conflicts occur in the given context. For example, the
results of the critical pair analysis in Fig. 3 show how re-
factorings Move Method and Pull Up Method give rise
to different conflicts. One of these potential conflicts is
an actual conflict in the context of Fig. 1, since we found
in Table 1 that refactoring T4 (Pull Up Method accept)
is mutually exclusive with refactorings T5 and T6 (Move
Method accept). Parallel dependency analysis is also
supported by AGG. See Sect. 7 for more details.

Sequential dependency analysis: Based on the applica-
bility analysis of refactorings we can also analyse which
refactorings are sequentially dependent of each other.
For example, considering our motivating example we
find that refactoring T4 is not applicable in the begin-
ning but it becomes applicable after applying refactor-
ings T1, T2 and T3. After having applied a refactoring in

274 T. Mens et al.

Fig. 4 Type graph
representing the
object-oriented meta model

a concrete context, the applicability check can be trig-
gered manually to find out whether new refactorings
become applicable, or existing refactorings stop being
applicable.

In the version of AGG that we used for our experi-
ments, sequential dependency analysis was not yet sup-
ported. As of version 1.3 of AGG, however, sequential
dependency analysis is supported, which means that also
this part of the refactoring analysis can be automated.

4 Graph representation of object-oriented models

To be able to use the technique of critical pair analysis,
we need to specify object-oriented refactorings as graph
transformations. Before we can do this, however, we
need to agree on how object-oriented models (or pro-
grams) can be specified as graphs. More specifically, we
will use directed, attributed graphs. Additionally, these
graphs must be typed to be able to determine whether or
not a graph is well-formed. To this extent, we also need
to specify a type graph that corresponds to the meta
model to which all concrete graphs need to conform.

The notion of a type graph has been formally intro-
duced in [19]. The (attributed) type graph for our object-
oriented meta model is shown in Fig. 4. It expresses the
basic object-oriented concepts (such as classes, methods
and variables), their attributes (such as name and vis-
ibility), and their relationships (such as generalization,
containment, typing, variable accesses, variable updates
and message sends) with associated multiplicities. Note
that gen-edges represent the usual generalisation rela-
tionship, whereas tgen-edges represent their transitive
counterpart. Dynamic binding of message sends can be
modelled with this type graph by a node of type Mes-
sagewith one sender (a node of type Method linked to
the Message via an edge of type sentBy) and multiple
potential receivers (all nodes of type Method linked to
the Message via an edge of type sentTo).

To keep the paper (and especially the pictures) read-
able, we have deliberately restricted ourselves to a sim-

plified meta model. For example, we did not model inter-
faces, abstract classes, abstract methods and the like.
Even associations (such as nextNode in Fig. 1) are not
represented explicitly, but modelled as variables instead.

Figure 5 represents the LAN example of Fig. 1 as a
graph conforming to the type graph of Fig. 4. Observe
how the mechanism of late binding is represented stati-
cally: methodsend contained in classNode sends a mes-
sageacceptwith three potential receivers, the methods
accept defined in subclasses Workstation, Print-
Server and FileServer, respectively.

Note that not all possible well-formedness constraints
can be expressed in the type graph. In AGG, this prob-
lem can be resolved by adding additional global graph
constraints. For example, we expressed the following
constraints in this way:

• no two classes should have the same name
• no two methods contained in the same class should

have the same name
• no two variables contained in the same class should

have the same name
• If there are multiple methods with the same name in

the same class hierarchy, any message sent to one of
these methods should also be sent to all other meth-
ods with the same name in the hierarchy (since it is
impossible to determine the actual receiver method
statically due to the mechanism of dynamic method
binding).

The concrete graph constraints can be looked up on
the AGG home page.

5 Specification of object-oriented refactorings

Since programs (or design models) are specified as type
graphs, refactorings can be expressed as typed graph
transformations. A graph transformation t : G �⇒p(m)

H is defined as a pair consisting of a graph production
rule p : L → R and a match m : L → G. The rule p

Refactoring dependency analysis 275

Fig. 5 Concrete graph representing the LAN example. In this
figure, we omitted all tgen-edges because they coincide with gen-
edges. In general, tgen-edges can be derived from the gen-edges

by repeatedly applying two straightforward graph transformations
specifically implemented for this purpose

specifies how its left-hand side (LHS) L has to be trans-
formed into its right-hand side (RHS) R. The match m
specifies an occurrence of this LHS in the graph that
needs to be transformed. Note that there may be more
than one possible match. As shown in [14], one can eas-
ily extend this definition to come to a notion of typed
graph transformations that respects the type constraints
imposed by the type graph (without multiplicities).

As a concrete example, the transformation Encapsu-
late Variable in Fig. 6 can be applied to a class containing
a variable of a particular type. It changes the visibility
of a variable in a class from public to private. It also
introduces a new setter method and getter method for
this variable in the class. The return type of the get-
ter method, as well as the parameter type of the setter
method, must be the same as the type of the encapsu-
lated variable. The rest of the class structure is preserved.
This is visualised by assigning numbers 1 to 5 to nodes
and edges in the LHS and RHS. Nodes and edges that
have the same number in the LHS and RHS are pre-
served by the transformation. All nodes and edges in
the RHS that do not have a number assigned (such as
the setter and getter method) are newly introduced.

Because the graphs that we use are attributed, the
values of node and edge attributes in the graph may be
modified by the transformation. This is for example the
case in Fig. 6 with the attribute visibility of vari-
able node 1, whose value is modified from public to
private.

Another crucial feature of AGG is the ability to spec-
ify negative application conditions (NACs) [20] that cap-
ture the negative preconditions of a transformation. In
the refactoring community, preconditions are frequently
used to specify the applicability constraints of a refac-
toring [21–24].

In a graph transformation setting, NACs can be con-
sidered as a kind of forbidden subgraphs. For example,
the transformation rule Encapsulate Variable contains
the following NACs (only one of them is shown in Fig. 6):

• NAC No Setter expresses that the class containing
the variable to be refactored must not contain a set-
ter method for this variable, since this method will
be added by the transformation. To express this, we
need to specify an attribute condition relating the
name s of the method in the NAC to the corre-

276 T. Mens et al.

Fig. 6 Graph transformation for the Encapsulate Variable refac-
toring. The upper middle pane represents the LHS, the upper right
pane represents the RHS, and the upper left pane represents one

of the NACs. The bottom panes are used to specify constraints
between variables used in the NAC and LHS

sponding setter method name v in the RHS using
the condition s.equals("set"+v).

• NAC No Getter forbids the existence of a getter
method in the class where the variable is to be encap-
sulated. An attribute condition relates the name s
of the method in the NAC to the corresponding get-
ter method name g in the RHS using the condition
g.equals("get"+v).

• NACs No Getter In Ancestors and No Setter in Ances-
tors are the same as No Getter and No Setter, but for
all the ancestor classes of the class containing the
variable to be encapsulated.

• NACs No Getter In Descendants and No Setter in
Descendants are the same as No Getter and No Set-
ter, but for all the descendant classes of the class
containing the variable to be encapsulated.

Besides the Encapsulate Variable refactoring expla-
ined above, we implemented many other refactorings
from Martin Fowler’s refactoring catalog [1] as typed
attributed graph transformations with NACs. The
complete list is given below. The most interesting
refactorings are presented in the following figures, leav-
ing out most of the NACs.

• Move Method moves a public method from a class to
another class, not necessarily belonging to the same
inheritance hierarchy. The graph transformation rule
is shown in Fig. 7. Note that this rule is an over-
simplification as it does not capture the difference
between dynamic message sends and static message
sends. To be complete, moving a method to another
class that does not have a common ancestor with

the source class should also entail the replacement
of all dynamic messages to and from this method
by static messages. In the current implementation of
this refactoring, we opted for a more conservative
definition where moving a method is prohibited if
there are still dynamic message sends to or from this
method.

• Move Variable moves a public variable from a class to
another class, not necessarily belonging to the same
inheritance hierarchy. The graph transformation rule
is very similar to the one for Move Method.

• Pull Up Method moves a public or protected method
from a class to a superclass that resides one level up
the inheritance hierarchy. The graph transformation
rule is shown in Fig. 8. An attribute condition is used
to prevent private methods from being pulled up.

• Pull Up Variable moves a public or protected vari-
able from a class to a superclass that resides one level
up the inheritance hierarchy. The graph transforma-
tion rule is similar to the one for Pull Up Variable.

• Create Superclass creates an intermediate abstract
superclass for a given class. The graph transforma-
tion rule is shown in Fig. 9.

• Rename Method changes the name of a method in a
class to a new one which is unique within this class.
The graph transformation rule is shown in Fig. 10.

• Rename Variable changes the name of a variable in
a class to a new one which is unique within this class.
The graph transformation rule is similar to the one
for Rename Method.

• Rename Class changes the name of a class to a new
unique name. The graph transformation rule is sim-
ilar to the one for Rename Method.

Refactoring dependency analysis 277

Fig. 7 Graph transformation rule for Move Method. Only one of its NACs is shown in the left pane

Fig. 8 Graph transformation rule for Pull Up Method. The attribute condition !vis.equals("private") specifies that only public
or protected methods can be pulled up

Fig. 9 Graph transformation rule for Create Superclass. Note that this transformation retains all existing transitive generalization edges,
and introduces some extra ones

Fig. 10 Graph transformation rule for Rename Method

278 T. Mens et al.

• Add Parameter adds a new parameter to a given
method.

• Remove Parameter removes an unused parameter
from a given method.

One should note that we deliberately did not imple-
ment all details of each refactoring in our graph trans-
formations, since it was not our intent to build a full-
fledged refactoring tool, but rather to perform a fea-
sibility study that would show that the most expected
conflicts between parallel refactorings can be detected
by critical pair analysis. For this purpose, we chose a
rather abstract graph representation that abstracts from
all implementation details. Moreover, we decided to
restrict Create Superclass, Pull Up Variable and Pull Up
Method to a single subclass rather than a set of subclass-
es. We also did not express all necessary preconditions
for each refactoring, as this would only make the analysis
more difficult and computation intensive. For example,
in the case of Pull Up Method, many more preconditions
are required than the ones we actually implemented:
the method should not directly access attributes from its
defining class; the method should not call other meth-
ods in its defining class that are not understood by its
superclass; the method should not perform super calls.
For a detailed treatment of all these preconditions for
this and other refactorings, we refer to [25].

Although, in theory, some of the simplifications we
made may lead to false negatives during conflict detec-
tion, in practice, it turned out that all of the conflicts
we expected to occur were actually detected. Further-
more, also unexpected conflicts were reported, such as
the conflicts between renaming and move refactorings.
Roughly considering these conflicts one could argue that
even renamed variables/methods could be moved and
should not cause conflicts. But we will see that the anal-
ysis will report a conflict, since the move refactoring
binds the variable/method name which is changed after
renaming. Thus, the analysis can sharpen the view on
interdependencies between different refactorings.

6 Conflict analysis of refactoring rules

Critical pair analysis is known from term rewriting and
can be used to check if a rewriting system can contain
conflicting computations. Critical pair analysis has been
generalized to graph rewriting in [17] and is formally
presented for typed attributed graph transformation in
[18]. Critical pairs formalize the idea of showing a con-
flicting situation in a minimal context. From the set of
all critical pairs we can extract the objects and links

which cause conflicts or dependencies. Let us now take
a closer look at the idea of critical pair analysis. We start
by providing some definitions.

Definition 1 (conflicting graph transformations) Two
graph transformations t1 : G �⇒p1(m1) H1 and t2 :
G �⇒p2(m2) H2 are in conflict if t1 cannot be performed
after t2 (i.e., rule p1 cannot be applied to H2) or vice
versa (i.e., rule p2 cannot be applied to H1).

Definition 2 (critical pair) A critical pair is a pair of con-
flicting graph transformations t1 : G �⇒p1(m1) H1 and
t2 : G �⇒p2(m2) H2 such that G is a minimal graph.
G is minimal if there is not a proper subgraph G′ of
G such that there are conflicting transformations t′1 :
G′ �⇒p1(m′1) H′1 and t′2 : G′ �⇒p2(m′2) H′2 with m′i(x) =
mi(x) for all x ∈ Lpi and i = 1, 2.

To construct minimal critical graphs we basically con-
sider all overlapping graphs of the left-hand sides of two
rules with the obvious matches. If one of the rules con-
tains NACs, extensions of the left-hand sides by parts
of the corresponding NACs have to be considered for
the construction of overlapping graphs in addition. The
reasons why graph rules can be in conflict are threefold:

1. One rule application deletes a graph object (i.e., a
node or edge) which is in the match of another rule
application.

2. One rule application generates graph objects that
give rise to a graph structure that is prohibited by a
NAC of another rule application.

3. One rule application changes attributes being in the
match of another rule application.

As an example of two graph transformation rules that
are in conflict, consider Pull Up Method of Fig. 8 and
Move Method of Fig. 7. These are in conflict, because
they give rise to a number of critical pairs. One of these
conflicts is visualised in Fig. 11. Intuitively, the conflict
arises because we move a method to a new class, while
in parallel we pull up the same method to another class.

AGG supports critical pair analysis for typed attrib-
uted graph transformations. Given a set of graph trans-
formation rules, it computes a table which shows the
number of critical pairs for each pair of rules (see, for
example, Fig. 3).

In the case of Pull Up Method versus Move Method
explained above, four critical pairs are reported. Two
of the critical graphs computed by AGG for this situa-
tion are shown in Fig. 15. They show critical overlapping
graphs of the left-hand sides of the rules in Figs. 8 and
7. Both critical graphs report similar conflict situations

Refactoring dependency analysis 279

Fig. 11 Example of a conflict
between graph
transformations Move
Method and PullUpMethod

that correspond to the conflict illustrated in Fig. 11. The
additional two conflicts not depicted are less interesting,
since they report possible conflicts that cannot occur in
our setting. This is due to the fact that AGG’s critical pair
algorithm abstracts away from concrete attribute inter-
relations. Since arbitrary Java expressions can be used
for attribute conditions and computations, it just reports
general conflicts on attribute usage, i.e., one rule appli-
cation changes an attribute that another rule application
uses. Acting in this way, it happens that some of the pos-
sible conflicts reported can never become real conflicts.
Most of this kind of potential conflicts can be filtered out
by specifying additional multiplicity constraints in the
type graph and by further graph constraints postulating
existence or non-existence of certain graph structures.
In this way, the underlying meta model can be better
adapted. More details to this topic can be found in the
user manual on the AGG web page.

We applied the critical pair analysis algorithm of AGG
to the selection of refactorings presented in Sect. 5. We
observed that, for many pairs of refactorings, duplicate
critical pairs were reported for the same conflict. There-
fore, we improved the algorithm to disregard mean-
ingless critical pairs by taking into account the upper
bounds of the multiplicity constraints in the type graph
of Fig. 4. The results of this improved algorithm are
shown in Fig. 3. All critical pairs can be considered in
detail on the AGG web page.

It is important to note here that the critical pairs that
are detected by the algorithm rely on the chosen meta
model (type graph) as well as on the specification of the
refactorings. Since we made some simplifications to both
in our feasibility study, the number of detected critical
pairs is likely to increase if we would apply it to a more
realistic refactoring suite.

Nevertheless, the obtained results correspond mainly
to what we expected. For example, we expected a cer-
tain similarity between the conflicts generated by Move

Method and Pull Up Method (resp. Move Variable and
Pull Up Variable) since they both move a method (resp.
variable) to another location. We also expected similar
conflicts for Move Variable and Move Method, as well
as for Pull Up Variable and Pull Up Method. Finally,
we expected many similarities between Rename Class,
Rename Variable and Rename Method.

For a detailed discussion of the analysis we performed
on the computed critical pairs, we refer to [26]. We will
report our most important observations here. A first
observation is that parallel applications of the same rule
at the same match are always in conflict. But this con-
flict is always solvable by performing only one of these
equal rule applications. In other words, the diagonal of
the critical pair table would always contain critical pairs
which are obvious. Because of this, we decided to filter
them out in Fig. 3 in order not to unnecessarily clutter
the results.

A second important observation is the presence of
asymmetric conflicts in some cases. Especially conflicts
of this kind were unexpected in the beginning of our
analysis, since they are less obvious. An asymmetric sit-
uation indicates that it is possible to apply two trans-
formations in a particular order, but not the other way
around. Such information is very important to us, as it
can be considered as a special kind of sequential depen-
dency that allows us to reduce the set of refactorings that
should be suggested to the software developer in a given
context. More specifically, if we know that refactoring
T1 can be applied after refactoring T2 but not the other
way around, then we will only propose T2 in the list
of suggested refactorings. The asymmetric conflicts that
can be found in the conflict table of Fig. 3 are that Add
Parameter and Remove Parameter can be applied before
Move Method, Pull Up Method or Rename Method but
not after.

As a third important observation of the critical pair
analysis, we can conclude that there is a preferred order

280 T. Mens et al.

Fig. 12 Refactorings that are applicable to the LAN graph of
Fig. 5 are shown in black, the others are shown in gray

in which to apply refactorings in order to reduce the
number of actual conflicts in a refactoring sequence. For
example, based on the asymmetry in the critical pair
table of Fig. 3 we can avoid many conflicts by applying
the following heuristics. Apply refactorings Add Param-
eter and Remove Parameter as early as possible, because
in the table there are more conflicts reported in columns
7 and 8 than in rows 7 and 8. Apply renamings (Rename
Class, Rename Method and Rename Variable) as late as
possible, because in the table there are more conflicts
reported in rows 9, 10 and 11 than in columns 9, 10
and 11.

7 Conflict analysis of refactoring applications

In AGG, it is possible to check which of the refactorings
are applicable to a concrete input graph G: A refactor-
ing is applicable if there exists at least one match of its
left-hand side (taking into account the NACs) in G. The
list of all refactorings that are applicable to the graph
in Fig. 5 is shown in Fig. 12. It is obtained by using
AGGs menu item “Check Rule Applicability”. Pull Up
Variable and Remove Parameter are reported as non-
applicable because, in the considered input graph, none
of the subclasses have variables, and because all methods
having parameters are called by others, thus prohibiting
their removal.

Considering a specific graph like the one in Fig. 5,
not all reported critical pairs are relevant in this con-
text, since not all refactorings are applicable. There-
fore, AGG supports the analysis of conflicts in concrete
instance graphs by selecting only the relevant critical
pairs and showing how the corresponding conflict graphs
are matched to the instance graph. To analyse our sam-
ple refactorings closer we take the concrete instance
graph of Fig. 5, apply refactorings T1, T2 and T3 of

Sect. 2, and get the resulting instance graph shown in
Fig. 13. Figure 14 shows all critical pairs that are rel-
evant in the context of this instance graph. Looking
closer we see that concrete conflicts are reported for
applying Move Method twice as well as for applying
Pull Up Method in combination with Move Method. In
other words, the conflicts we expected in Sect. 2 are also
derived by our formal dependency analysis.

Now we consider the actual conflicts between refact-
orings Move Method and Pull Up Method closer. There
are four possible conflict situations reported for the
instance graph in Fig. 13. Two of them lead to relevant
conflicts. The corresponding minimal conflict graphs are
shown in Fig. 15. Taking the second conflict graph (indi-
cated by (2) in the figure), we can embed it into the
instance graph of Fig. 13 in different ways. One of these
embeddings, corresponding to the conflict between T4
and T6 is highlighted in Fig. 13 in green (gray).

Besides analysing pairs of refactorings (at abstract or
concrete level), we can of course also apply the refac-
toring transformations directly in AGG. Figure 16 shows
the result of applying the sequence of refactorings T8, T1,
T9, T2, T3, T4, T7 of Sect. 2. Note that T5 and T6 have not
been applied in this sequence because they have a crit-
ical pair conflict with T4. In this case, the most obvious
resolution strategy would be to replace T5 and T6 by a
single new transformation “Move method accept from
class Server to class Packet”.

Please note that the sequential dependencies we anal-
ysed in our sample refactoring scenario in Table 1 are
not observable in our formal specification of refactor-
ings based on graph transformations. This is mainly due
to the fact that we modelled only a restricted variant
of the Pull Up Method and Pull Up Variable refactor-
ings. More specifically, in the graph transformation rules
we only specified the case where a method/variable is
pulled up from a single subclass. One would need a sim-
ilar rule for pulling up from two subclasses, from three
subclasses, and so on. In the general case, we need an
additional mechanism that allows us to specify an infi-
nite set of transformation rules. Although this seems to
be feasible from a theoretical point of view using amal-
gamated graph transformation [27], this concept is not
yet supported by AGG.

8 Related work

In [14], the formalism of critical pairs was explained and
related to the formal property of confluence of typed
attributed graph transformations. In [13], critical pair
analysis is used to detect conflicting requirements in
independently developed use case models. In [12], criti-

Refactoring dependency analysis 281

Fig. 13 The instance graph in Fig. 5 after applying refactorings T1, T2 and T3. Observe the use of tgen-edges to denote the transitive
generalization relationship: there is a tgen-edge from FileServer and PrintServer to their indirect superclass Node

Fig. 14 Critical pairs
relevant for the instance
graph in Fig. 13. Rows and
columns 3 and 8 are displayed
in gray because Pull Up
Variable and Remove
Parameter are not applicable
(see Fig. 12). All other
changes with respect to the
critical pair table of Fig. 3 are
also displayed in gray. More
specifically, in the instance
graph, no critical pair is
reported for the combinations
(4,6), (6,4), (6,11) and (11,6)

cal pair analysis has been used to increase the efficiency
of parsing visual languages by delaying conflicting rules
as far as possible. In [28], graph transformation depen-
dency analysis has been used for the purpose of detecting
and resolving inconsistencies in design models.

The problem that has been addressed in this paper is
a well-known problem in the context of version manage-
ment, and is referred to as software merging [29]. Two
other approaches that rely on graph transformation to
tackle the problem of software merging were proposed
by Westfechtel [30] and Mens [31]. Like our approach,

they attempt to detect structural merge conflicts. The
novel contribution of the current paper, however, is the
use of critical pair analysis to address this problem. Also
the application to refactoring transformations is new.

Refactoring is a very active research domain [2]. For-
mal approaches have mainly been used to prove that
refactorings preserve the behaviour of the program.
Graph transformations have also been used to express
refactorings [5,32–35]. To our knowledge, no attempt
has been made to try and detect conflicts between re-
factorings applied in parallel.

282 T. Mens et al.

Fig. 15 Conflicts of Move Method and Pull Up Method which can
occur in the graph in Fig. 13

A recent research trend is to apply refactoring tech-
niques to models as opposed to programs. Boger et al.
[4] developed a refactoring browser integrated with a
UML modelling tool. It supports refactoring of class dia-
grams, state chart diagrams, and activity diagrams. Sunyé
et al. [3] formally defined some state chart refactorings
using OCL pre- and post conditions. Van Gorp et al.
proposed a UML extension to express the pre- and post
conditions of program refactorings using OCL [5,36],
enabling an OCL empowered CASE tool to verify non-
trivial pre and post conditions, to compose sequences
of refactorings, and to use the OCL query engine to
detect bad code smells. Such an approach is desirable
as a way to refactor design models independent of the
underlying programming language. Correa and Werner
built further on these ideas, and implemented refact-
orings in OCL-script, an extension of OCL [7]. Porres
implemented model refactorings as rule-based update
transformations in SMW, a scripting language based on
Python [6]. Zhang et al. [37] developed a model trans-
formation engine that integrates a model refactoring
browser that automates and customises various refac-
toring methods for either generic models or domain-
specific models.

9 Conclusion and future work

In the context of software refactoring, and to a lesser
extent model refactoring, there are plenty of tools avail-
able that automate the process of applying refactoring
transformations. Such tool support is missing, however,
when it comes to suggesting a set of refactorings that can
be used to improve the software structure, and assisting
the developer to select the most appropriate refactor-
ing. One of the reasons for this lack of tool support
is the fact that there can be many implicit dependen-
cies between refactorings. A pair of refactorings may be
mutually exclusive, the application of a refactoring may
depend on another one, or it may prohibit the applica-
tion of another one.

The goal of this paper was to gain a deeper insight in
these refactoring dependencies, and provide formally-
founded tool support to analyse them. To achieve this,
we represented software (programs or models) as typed
attributed graphs that respect a type graph representing
the object-oriented meta model. We specified refactor-
ings as parameterised typed attributed graph transfor-
mation rules. Refactoring preconditions were specified
by means of so-called negative application conditions.

To analyse dependencies between refactorings, we
fed the above specifications into AGG, a state-of-the-art
graph transformation tool. Its most salient feature (for
the purpose of this article) is its built-in critical pair anal-
ysis algorithm. In this article we successfully explored
how critical pair analysis can help a software devel-
oper to detect and analyse conflicts and dependencies
between refactorings. It provides a first, but crucial, step
towards better automated tool support for refactoring.

Obviously, a lot of work remains to be done. For
example, some of the conflict situations that we expected
to occur were not detected because our specification of
refactorings was not sufficiently complete. In the exper-
iments we carried out, each refactoring was specified by
a single graph transformation rule. A full specification
of some refactorings would require more than one rule,
and sometimes even an infinite number of rules.5 Cur-
rently, complex refactorings which are described by a set
of rules to be applied in a controlled order are possible
in AGG, but on the basis of Java programs only. Thus
in this case, a refactoring is performed as “programmed
graph transformation”. Furthermore, we are exploring
whether and how we could use and implement graph
transformation schemes and amalgamated graph trans-
formations for this purpose [27].

While it was possible to automate the parallel depen-
dency analysis of refactorings to a large extent with
AGG, sequential dependency analysis still remains a
largely manual process. Therefore, we are currently try-
ing to include better support in AGG to automate this
process.

Another open issue is how to deal with conflicts after
they have been detected. From a formal point of view,
one can rely on the technique of confluence analysis. We
are currently exploring how to use this technique to
incorporate conflict resolution strategies for refactorings.

For the proof of concept performed in this article,
we deliberately made a number of simplifications to the
object-oriented meta model that was represented as a
type graph. To be more realistic, we need to enhance
this type graph to model other kinds of object-oriented
constructs such as local variables, super sends, interfaces,

5 The same problem has been identified in [32].

Refactoring dependency analysis 283

Fig. 16 Result of applying the sequence of refactorings T8, T1, T9, T2, T3, T4, T7 to the LAN graph of Fig. 5

and so on. This will also require changes to the refac-
toring rules, and may even imply new refactorings. Note
that a more sophisticated type graph will require the use
of type graphs with inheritance (similar to the way spe-
cialisation is used in the UML meta model). Therefore,
this feature needs to be added to AGG as well.

Last but not least, the critical pair analysis takes a
lot of time to compute. In order to make the approach
more high-performance and, as such, more scalable to
real-world situations, we are currently trying to improve
the efficiency of the critical pair algorithm. Initial results
on how to achieve this have been reported in [38].

References

1. Fowler, M.: Refactoring: Improving the Design of Existing
Code. Addison-Wesley (1999)

2. Mens, T., Tourwé, T.: A survey of software refactoring. Trans.
Softw. Eng. 30, 126–139 (2004)

3. Sunyé, G., Pollet, D., LeTraon, Y., Jézéquel, J.-M.: Refactor-
ing UML models. In: Proc. UML 2001. Lecture Notes in Com-
puter Science, vol. 2185, pp. 134–138. Springer Heidelberg
(2001)

4. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser
for UML. In: Proc. 3rd Int’l Conf. on eXtreme Programming

and Flexible Processes in Software Engineering, pp. 77–81.
Alghero, Sardinia (2002)

5. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards
automating source-consistent UML refactorings. In: Stevens,
P., Whittle, J., Booch, G. (eds.) UML 2003—The Unified
Modeling Language. Lecture Notes in Computer Science,
vol. 2863, pp. 144–158. Springer, Heidelberg (2003)

6. Porres, I.: Model refactorings as rule-based update trans-
formations. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003—The Unified Modeling Language. Lecture Notes
in Computer Science, vol. 2863, pp. 159–174, Springer,
Heidelberg (2003)

7. Correa, A., Werner, C.: Applying refactoring techniques to
UML/OCL models. In: Proc. Int’l Conf. UML 2004. Lecture
Notes in Computer Science, vol. 3273, pp. 173–187. Springer,
Heidelberg (2004)

8. Tourwé, T., Mens, T.: Identifying refactoring opportunities
using logic meta programming. In: Proc. 7th European Conf.
Software Maintenance and Re-engineering (CSMR 2003).
pp. 91–100. IEEE Computer Society Press (2003)

9. van Emden, E., Moonen, L.: Java quality assurance by detect-
ing code smells. In: Proc. 9th Working Conf. Reverse Engi-
neering. pp. 97–107 IEEE Computer Society Press (2002)

10. Marinescu, R.: Using object-oriented metrics for automatic
design flaws in large scale systems. In: Demeyer, S., Bosch,
J., (eds.) Object-Oriented Technology (ECOOP’ 98 Work-
shop Reader). Lecture Notes in Computer Science, vol. 1543,
pp. 252–253. Springer, Heidelberg (1998)

11. Simon, F., Frank Steinbrückner, Lewerentz, C.: Metrics based
refactoring. In: Proc. European Conf. Software Maintenance

284 T. Mens et al.

and Reengineering, pp. 30–38. IEEE Computer Society Press
(2001)

12. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual
languages based on critical pair analysis and contextual lay-
ered graph transformation. In: Proc. IEEE Symp. Visual Lan-
guages, pp. 59–60 (2000)

13. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of
conflicting functional requirements in a use case-driven
approach. In: Proc. Int’l Conf. Software Engineering,
pp. 105–115. ACM Press (2002)

14. Heckel, R., Jochen Malte Küster, Taentzer, G.: Conflu-
ence of typed attributed graph transformation systems. In:
Graph Transformation. Lecture Notes in Computer Science,
vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

15. Demeyer, S., Janssens, D., Mens, T.: Simulation of a LAN.
Electron. Notes Theor. Comput. Sci. 72 (2002)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Languages and
Systems. Addison-Wesley (1994)

17. Plump, D.: Hypergraph rewriting: critical pairs and unde-
cidability of confluence. In: Sleep, M., Plasmeijer, M., van
Eekelen, M.C. (eds.) Term Graph Rewriting, pp. 201–214.
Wiley (1993)

18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory
for typed attributed graph transformation. In: Parisi-Presi-
cce, F., Bottoni, P., Engels, G. (eds.) Proc. 2nd Int’l Conf.
Graph Transformation (ICGT’ 04), Rome, Italy. Lecture
Notes in Computer Science, vol. 3256, pp. 161–177. Springer,
Heidelbergh (2004)

19. Corradini, A., Montanari, U., Rossi, F.: Graph processes.
Fundamenta Informaticae 26, 241–265 (1996)

20. Habel, A., Heckel, R., Taentzer, G.: Graph grammars
with negative application conditions. Fundamenta Informat-
icae 26, 287–313 (1996)

21. Opdyke, W.F.: Refactoring: A program restructuring aid in
designing object-oriented application frameworks. PhD the-
sis, University of Illinois at Urbana-Champaign (1992)

22. Roberts, D., Brant, J., Johnson, R.E.: A refactoring tool for
Smalltalk. Theory Practice Object Systems 3, 253–263 (1997)

23. Roberts, D.B.: Practical analysis for refactoring. PhD thesis,
University of Illinois at Urbana-Champaign (1999)

24. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-
model for language-independent refactoring. In: Proc. Int’l
Symp. Principles of Software Evolution, pp. 157–169. IEEE
Computer Society Press (2000)

25. Tichelaar, S.: Modeling object-oriented software for reverse
engineering and refactoring. PhD thesis, University of Bern
(2001)

26. Mens, T., Taentzer, G., Runge, O.: Detecting structural refac-
toring conflicts using critical pair analysis. Electron. Notes
Theor. Comput. Sci. (2004)

27. Taentzer, G.: Parallel and distributed graph transformation:
formal description and application to communication-based
systems. PhD thesis, TU Berlin (1996) Shaker Verlag

28. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting
and resolving model inconsistencies using transformation
dependency analysis. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) Model Driven Engineering Languages
and Systems. Lecture Notes in Computer Science, vol. 4199,
pp. 200–214. Springer, Heidelberg (2006)

29. Mens, T.: A state-of-the-art survey on software merging.
Trans. Softw. Eng. 28, 449–462 (2002)

30. Westfechtel, B.: Structure-oriented merging of revisions of
software documents. In: Proc. Int’l Workshop on Software
Configuration Management, pp. 68–79. ACM Press (1991)

31. Mens, T.: Conditional graph rewriting as a domain-
independent formalism for software evolution. In: Proc. Int’l
Conf. Agtive 1999: Applications of Graph Transformations
with Industrial Relevance. Lecture Notes in Computer Sci-
ence, vol. 1779, pp. 127–143. Springer, Heidelberg (2000)

32. Van Eetvelde, N., Janssens, D.: Extending graph rewriting
for refactoring. In: Graph Transformations. Lecture Notes
in Computer Science, vol. 3526, pp. 399–415. Springer,
Heidelberg (2004) Proc. Second Int’l Conf. Graph Transfor-
mation (ICGT), Rome, Italy, September–October 2004

33. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying inte-
grated refactoring with distributed graph transformation.
In: Pfaltz, J., Nagl, M., Boehlen, B. (eds.) Application of Graph
Transformations with Industrial Relevance (AGTIVE’ 03).
Lecture Notes in Computer Science, vol. 3062, pp. 220–235.
Springer, Heidelberg (2004)

34. Bottoni, P., Parisi-Presicce, P., Taentzer, G.: Specifying coher-
ent refactoring of software artefacts with distributed graph
transformations. In: Bommel, P. (ed.) Transformation of
Knowledge, Information, and Data: Theory and Applications.
Idea Group Publishing (2005)

35. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formal-
izing refactorings with graph transformations. Softw. Mainte-
nance Evolut. Res. Practice 17, 247–276 (2005)

36. Schippers, H., Van Gorp, P., Janssens, D.: Leveraging UML
profiles to generate plugins from visual model transforma-
tions. Electron. Notes Theor. Comput. Sci. (2004)

37. Zhang, J., Yuehua Lin, J.G.: Generic and domain-specific
model refactoring using a model transformation engine.
In: Model-driven Software Development—Research and
Practice in Software Engineering. Springer, Heidelberg
(2005)

38. Lambers, L., Ehrig, H., Orejas, F.: Efficient detection of
conflicts in graph-based model transformation. In: Proc. Inter-
national Workshop on Graph and Model Transformation
(GraMoT’05). Electronic Notes in Theoretical Computer Sci-
ence, vol. 152, pp. 97–109. Elsevier Science (2006)

Author’s biography

Tom Mens received the
degrees of Licentiate in Math-
ematics, Advanced Master
in Computer Science, and
Ph.D. in Science at the Vrije
Universiteit Brussel. He has
been a postdoctoral fellow
of the Fund for Scientific
Research, Flanders (FWO).
He currently lectures on soft-
ware engineering and pro-
gramming languages at the
Université de Mons-Hainaut.
He has published numerous
peer-reviewed articles on the

topic of software evolution, and has been co-organiser, program
committee member and referee of many international workshops
and conferences. He is involved in various national and inter-
national projects and networks on software evolution. He is a
member of both the ACM and the IEEE Computer Society.

Refactoring dependency analysis 285

Gabriele Taentzer is a Pro-
fessor at the Faculty of Math-
ematics and Computer Sci-
ence of the Philipps- Uni-
versität, Marburg, Germany.
She achieved the habilita-
tion in Computer Science at
TU Berlin in 2003. She is
mainly concerned with the
development of graph trans-
formation concepts and their
application to visual languages
and model transformations as
well as to other areas in soft-
ware engineering. Moreover,

she is concerned with the development of graph transformation-
based tools and initiated the development of AGG about ten
years ago. Since 2002, she is a member of the steering committee
for conferences and workshops on graph transformation and has
been program committee member of many international work-
shops and conferences in the area of software engineering. She
has been involved in various projects on graph transformation
and visual languages.

Olga Runge is a soft-
ware developer at the Fac-
ulty of Electrical Engineering
and Computer Science of the
Technical University of Berlin,
Germany. As the chief devel-
oper of the AGG project, she
is mainly concerned with the
implementation of graph trans-
formation concepts. She has
been involved in several pro-
jects on graph transformation.

	Analysing refactoring dependencies using graph transformation
	Abstract
	Introduction
	Motivating example
	Suggested solution
	Conflict analysis of refactoring specifications
	Conflict analysis of refactoring applications
	Graph representation of object-oriented models
	Specification of object-oriented refactorings
	Conflict analysis of refactoring rules
	Conflict analysis of refactoring applications
	Related work
	Conclusion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

