
Generating Sierpinski Triangles by the Tiger
EMF Transformation Framework

Gabriele Taentzer1 and Enrico Biermann2

1 Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany
enrico@cs.tu-berlin.de

1 Introduction

This paper describes how Sierpinski triangles can be generated on basis of the
Tiger EMF Transformation Framework (EMT). See [3] for a definition of Sier-
pinski triangles and for a description how to construct them. In our solution,
Sierpinski triangles are considered as Eclipse Modeling Framework (EMF) mod-
els [1]. EMT is an Eclipse plug-in which adapts graph transformation concepts
to realize EMF model transformations. Thus, EMT is based the Eclipse plug-
in EMF. We define an EMF model and EMT transformation rules to generate
Sierpinski triangles, and control their generation process by a Java program. For
an installation guide and a user manual for EMT we refer to [2].

2 The Meta model

The meta model for Sierpinski triangles is given by the EMF model in Fig. 1. It
just consists of one object type which is Vertex. A speciality of EMF models is the
containment relation. All objects belonging to the model have to be contained
(transitively) in the root object.

Fig. 1. The Sierpinski meta model as EMF model

Hence, we consider Sierpinski triangles as hierarchical object structures. Each
object has two containment relations, i.e. left and right for the left and right



children. Additionally, a normal association conn is defined which is used to
represent mainly the horizontal object relations in Sierpinski triangles. Since
each object belongs to at most one container, some objects do not have left
children, but two objects linked by conn.

After having defined an EMF model for the Sierpinski case, Java code for
creating, modifying, storing, and loading model instances can be created. More-
over, a complete tree-based editor can be generated which we will use to create
the start model for the generation process. The resulting Sierpinski triangle will
be again an EMF instance model which can also be considered by this editor,
although the tree-like presentation is not really insightful.

3 The Model Transformation Rules

To generate Sierpinski triangles two EMT rules are needed. We can use the
visual rule editor of EMT to define them. The first rule depicted in Fig. 2 is
used, if root object of the corresponding sub-triangle has a left child. Otherwise,
the second one in Fig. 3 is used. Please note the negative application condition
of this rule which prohibits the root having a left child.

Fig. 2. Rule AddTriangles for generating Sierpinski triangles - if root object has a left
child

After having defined both rules, a rule project can be generated which con-
tains all Java classes needed to perform EMF model transformations. In our
case, two classes AddTrianglesRule.java and AddTriangles2Rule.java are gener-
ated (among others).

4 The Application control

The EMF model for starting the generation process looks like the left-hand side
of rule AddTriangles in Fig.2. To reach the first refinement we have to apply rule



Fig. 3. Rule AddTriangles2 for generating Sierpinski triangles - if root object has no
left child

AddTriangles just once. The result graph would look like the right-hand side of
this rule. The next refinement is already more complex. Here, the three outer
triangles are refined, the two left ones by rule AddTriangles, while the right one
is refined by rule AddTriangles2. These three applications have to be performed,
before the next refinement level is considered. Therefore, we need an application
control which acts level-wise. On each level, we perform the generation process
as follows: Since containment relations left and right define a spanning tree, we
use these relations to navigate through the model. Starting at the root vertex,
its triangle is refined first. Thereafter, the refinement process continues at its
left child, if existing, and at its right one as long as existing. The refinement
process terminates for a certain level, if the bottom objects which do not have
any children, are reached.

Consider the following code fragment for controlled refinement by EMF
model transformations. For each rule application, first a new rule instance has
to be created. Then, a partial match can be set which is done by e.g. method
setVertex0 which maps the upper vertex in the left-hand side in Figs. 2 and 3,
resp. Thereafter, the rule is executed.



void applyTriangles1(SierpinskiImpl s, Vertex root, Vertex currentVertex){

AddTrianglesRule addtr = new AddTrianglesRule(currentVertex);

addtr.setVertex0(currentVertex);

Vertex leftVertex = currentVertex.getLeft();

Vertex rightVertex = currentVertex.getRight();

addtr.execute();

if (leftVertex.getLeft() != null)

s.applyTriangles1(s,root,leftVertex);

else if (leftVertex.getConn().size() > 1)

s.applyTriangles2(s, root, leftVertex);

if (rightVertex.getRight() != null)

s.applyTriangles2(s, root, rightVertex);

}

void applyTriangles2(SierpinskiImpl s, Vertex root, Vertex currentVertex){

AddTriangles2Rule addtr2 = new AddTriangles2Rule(root);

addtr2.setVertex0(currentVertex);

Vertex leftVertex = null;

if (currentVertex.getConn().size() > 0) {

leftVertex = (Vertex)currentVertex.getConn().get(0);

Vertex rightVertex = currentVertex.getRight();

addtr2.execute();

if (leftVertex.getLeft() != null)

s.applyTriangles1(s,root,leftVertex);

if (rightVertex.getRight() != null)

if (rightVertex.getLeft() == null)

s.applyTriangles2(s,root,rightVertex);

else s.applyTriangles1(s, root, rightVertex);

}

}

public static void main(String[] args) {

// Initialization to be added

for(int i=1; i<= LEVEL; i++){

System.out.println("Level: "+i);

startTime = System.currentTimeMillis();

s.applyTriangles1(s,root,root);

elapsedTime = System.currentTimeMillis() - startTime;

System.out.println("Elapsed time: " + elapsedTime);

//file output to be added

}

5 Timing results

In the following table we provide the time usage in milliseconds for the generation
process of Sierpinski triangles. These figures have been obtained on a PC with
an Intel(R) Core(TM)2 2.33GHz processor and 2GB of main memory. Although
not explicitly counted in the program shown above, this table also shows the
number of nodes generated at each level.



Generation Time usage # nodes
level (in ms)

1 16 6
2 0 15
3 0 42
4 16 123
5 62 366
6 250 1095
7 2000 3282
8 16500 9843
9 227250 29526
10 3604984 88575

Table 1. Time usage and number of nodes

6 Conclusion

Although the generation process for Sierpinski triangles we have chosen, is rule-
based, non-determinism has been eliminated nearly completely by the external
application control. For each rule application, the match of vertex 1 is explic-
itly determined. Having matched vertex 1, the match of the left-hand side is
completely determined in most cases. This applies to both rules in Sec. 3 and
leads to a quite fast solution. Comparing this solution with other ones where the
application control is put mainly into the rules, it is much faster. No wonder,
pure rule-based solutions usually have much higher matching costs, since they
consider the whole graph as matching domain in each transformation step.

References

1. Eclipse Modeling Framework. http://www.eclipse.org/emf, 2007.
2. Tiger EMF Model Transformation Framework. http://cs.tu-berlin.de/emftrans,

2007.
3. R. Geïs, C. Mallon, and M. Kroll. Sierpinski Triangle for the AGTIVE 2007 Tool

Contest. http://www.informatik.uni-marburg.de/∼ swt/agtive-contest/, 2007.


