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Abstract. We introduce ranked open nets, a reactive extension of Petri
nets which generalises a basic open net model introduced in a previ-
ous work by allowing for a refined notion of interface. The interface to-
wards the external environment of a ranked open net is given by a subset
of places designated as open and used for composition. Additionally, a
bound on the number of connections which are allowed on an open place
can be specified. We show that the non-deterministic process semantics
is compositional with respect to the composition operation over ranked
open nets, a result which did not hold for basic open nets.

1 Introduction

Petri nets are a well-known model of concurrent and distributed systems, widely
used both in theoretical and applicative areas (14). While the basic model is
mainly aimed at representing closed, completely specified systems evolving au-
tonomously through the firing of transitions, in recent years there has been an
increasing attention to the development of reactive Petri net models, directly
supporting certain features needed for modeling open systems, which can inter-
act with the surrounding environment (3, 9, 11, 12, 13, 15).

In particular, open Petri nets, as introduced in (1), are a mild extension
of basic nets with the possibility of interacting with the environment and of
composing a larger net out of smaller open components. An open net is an
ordinary net with a distinguished set of places, designated as open, through
which the net can interact with the environment. As a consequence of such
interaction, tokens can be freely generated and removed in open places. Open
nets are endowed with a composition operation, characterised as a pushout in
the corresponding category, suitable to model both interaction through open
places and synchronisation of transitions.

It is very convenient if compositionality at the system level is reflected at the
semantic level, i.e., if the behaviour of a system can be suitably expressed on the
� Supported by the MIUR Project ART, the DFG project Behaviour-GT and

CRUI/DAAD Vigoni.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 257–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



258 P. Baldan et al.

basis of the behaviour of its components. This allows for modular analysis of the
systems and it helps in defining system reconfigurations (replacing a component
by another) which keep the observable behaviour unchanged (2, 4).

In particular, as non-sequential processes of a Petri net can be fruitfully used
as a representation of possible scenarios in the execution of a system (see, e.g.,
the work on workflows and the encodings of web-service description languages
like OWL or BPEL as Petri nets (4, 16, 17, 18)), it can be interesting to relate
the processes of a Petri net with those of its components. Specifically, one should
understand under which conditions processes of the subcomponent nets can be
combined into a consistent process of their composition and vice versa, how
processes of the full system can be decomposed into processes of the components.

Results in this direction have been provided for open nets in (1), by showing
compositionality for a semantics based on deterministic processes à la Goltz-
Reisig. Unfortunately, as noticed in the same paper, the result does not extend
to non-deterministic processes. To get a rough intuition of what fails, consider
the open nets in the Fig. 3(b) (ignoring, for the moment, the labels 2 and ω
attached to dangling arcs). The representation of the nets is standard; only open
places have ingoing and/or outgoing dangling arcs, meaning that transitions of
the environment could be attached and thus put and/or remove tokens in these
places. The nets Zi are simple enough to be considered processes themselves. For
instance, Z1 represents a process in which a token can be consumed either by t1
or by the environment. When joining Z1 and Z2 along the net Z0, in the result
Z3 place s is still open, the intuition being that each open place allows for an
unbounded number of connections, hence adding one connection does not affect
its openness. There is no way of specifying that, as a result of the composition,
the open port of each of the two components is occupied by the other component,
thus producing a net where place s is closed. This is problematic since a net
identical to Z3, but where place s is closed, is a valid process of Z3 (specifying
a computation having no interactions with the environment). However there is
no way to obtain it as the composition of two processes of Z1 and Z2.

In order to overcome this problem, we introduce ranked open nets, a refined
model of open nets where besides specifying the open places, which can be used
for composition with other nets, we also specify the maximum number of allowed
(input and output) connections. This provides a more expressive model, properly
subsuming basic open nets (which can be seen as special ranked open nets, where
open places always allow for an unbounded number of connections).

A mechanism for composing ranked open nets is defined which generalises
the one for basic open nets. In this case the composition operation cannot be
characterised as a colimit. Instead, it can be seen as an abstraction of a pushout
in a more concrete category where ports are made explicit.

The composition operation is extended to non-deterministic processes and we
prove the desired compositionality result: if a net Z3 is the composition of Z1
and Z2, then any process of Z3 can be obtained as the composition of processes
of the component nets and vice versa, the composition of processes of Z1 and
Z2, which agree on the common interface, always provides a process of Z3.



Open Petri Nets: Non-deterministic Processes and Compositionality 259

The paper is organised as follows. In § 2 we introduce the categories of ranked
open nets, and an operation of composition for such nets is defined in § 3. In § 4
we introduce non-deterministic processes for ranked open nets. In § 5 we prove
the main result, i.e., compositionality for non-deterministic processes. Finally,
in § 6 we draw some conclusions and directions of future investigation.

2 Ranked Open Nets

An open net, as introduced in (1), is an ordinary P/T Petri net with a distin-
guished set of places. These places are intended to represent the interface of the
net towards the environment, which, interacting with the net, can “freely” add
or remove some tokens in the open places. Rather than simply distinguishing
between input and output places, here, for every place we specify the largest
number of allowed incoming and outgoing new connections. A place is closed if
it does not allow for any new connection.

Given a set X we will denote by X⊕ the free commutative monoid generated
by X , with identity 0, and by 2X its powerset. Furthermore given a function
h : X → Y we denote by h⊕ : X⊕ → Y ⊕ its monoidal extension, while the same
symbol h : 2X → 2Y denotes the extension of h to sets.

A P/T Petri net is a tuple N = (S, T, σ, τ) where S is the set of places,
T is the set of transitions (S ∩ T = ∅) and σ, τ : T → S⊕ assign source and
target to each transition. In this paper we will consider only finite Petri nets.
We will denote by •(·) and (·)• the monoidal extensions of the functions σ and
τ to functions from T⊕ to S⊕. Furthermore, given a place s ∈ S, the pre- and
post-set of s are defined by •s = {t ∈ T | s ∈ t•} and s• = {t ∈ T | s ∈ •t}.

Let N0 and N1 be Petri nets. A Petri net morphism f : N0 → N1 is a pair of
total functions f = 〈fT , fS〉 with fT : T0 → T1 and fS : S0 → S1, such that for
all t0 ∈ T0, •fT (t0) = fS

⊕( •t0) and fT (t0)• = fS
⊕(t0•). The category of P/T

Petri nets and Petri net morphisms will be denoted by Net.
We use N for the set of natural numbers and N

ω for the same set extended
with infinity, i.e., N ∪ {ω}. Operations and relations on N

ω are defined in the
expected way, i.e., n ≤ ω for each n ∈ N, ω − n = ω + n = ω + ω = ω for each
n ∈ N, while ω − ω is undefined. The same operators will be applied, pointwise,
to functions over natural numbers. E.g., given f, g : X → N

ω we denote by
f + g : X → N

ω the function defined by (f + g)(x) = f(x)+ g(x) for any x ∈ X .

Definition 1 (ranked open net). A (ranked) open net is a pair Z = (NZ , oZ),
where NZ = (SZ , TZ , σZ , τZ) is an ordinary P/T Petri net (called the underlying
net) and oZ = (o+

Z , o−Z ) : SZ → N
ω. We define Ox

Z = {s ∈ SZ : ox
Z(s) > 0}, for

x ∈ {+, −} and call them the sets of input and output open places of the net.

As mentioned above, the functions o+
Z and o−Z intuitively specify for each place

in SZ the maximum number of allowed new ingoing/outgoing connections, also
referred to as the ranks of s. In (1) whenever a place was open, intuitively there
was no limit to the number of new connections. Hence the open nets of (1) can
be seen as special ranked open nets, where ox

Z(s) ∈ {0, ω} for any place s.



260 P. Baldan et al.

Fig. 1. Composing ranked open nets

As an example of ranked open nets, consider net Z3 in Fig. 1, intuitively mod-
elling the booking of a ticket in a travel agency. In the graphical representation
an input (resp. output) open place s has a dangling ingoing (resp. outgoing) arc,
marked by the corresponding rank. When the rank is 1 it is omitted.

Conceptually, we can think that every place of an open net has a set of
attaching points, which can either be used by an existing transition connected
to the place, or can be free and thus usable for connecting new transitions.
Sometimes, as in the definition of concrete morphisms below (Definition 6), we
need to consider an explicit identity of such attaching points, that we call ports.
A port used by a transition is identified with the transition itself, while free
ports are identified by a progressive number. Most often, however, we will be
interested only in their number, i.e., in the degree of a place. Given n ∈ N, let [n]
denote the set {0 . . . , n − 1}. For all considered Z we assume that T ∩ N

ω = ∅.

Definition 2 (input and ouput ports and degree). Let Z be an open net.
For any place s ∈ S we define the sets of input and output ports of s as follows:

p+(s) = [o+
Z (s)] ∪ •s and p−(s) = [o−Z (s)] ∪ s•

The ports in [o+
Z (s)] and [o−Z (s)] are called open ports.

Furthermore, we define the input degree of s as deg+(s) = |p+(s)|, and,
similarly, the output degree of s as deg−(s) = |p−(s)|.

The token game of open nets. The notion of enabledness for transitions is
the usual one, but, besides the changes produced by the firing of the transitions of
the net, we consider also the interaction with the environment which is modelled
by events, denoted by +s and −s, which produce or consume a token in an open
place s. For an open net Z, the set of extended events, denoted T̄Z, is defined as

T̄Z = TZ ∪ {+s : s ∈ O+
Z } ∪ {−s : s ∈ O−

Z }.
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Pre- and post-set functions are extended by defining •+s = 0 and +s
• = s, and

symmetrically, •−s = s and −s
• = 0.

Definition 3 (firing). Let Z be an open net. A firing in Z consists of the
execution of an extended event ε ∈ T̄Z , i.e., u ⊕ •ε [ε〉 u ⊕ ε•.

A firing can be (i) the execution of a transition u ⊕ •t [t〉 u ⊕ t•, with t ∈ TZ ;
(ii) the creation of a token by the environment u [+s〉 u⊕s, with s ∈ O+

Z ; (iii) the
deletion of a token by the environment u ⊕ s [−s〉 u, with s ∈ O−

Z .

Morphisms of open nets. Morphisms of open nets will be defined as standard
net morphisms satisfying suitable conditions on the place ranks. Intuitively, a
morphism f : Z1 → Z2 “inserts” net Z1 into a larger net Z2, allowing a place s
of Z1 to be connected to “new” transitions, i.e., transitions in Z2 \ f(Z1). The
condition we impose guarantees that each new connection of s and each open
port of f(s) can be mapped to an open port of s.

For reasons discussed in § 3, we define two kinds of morphisms. In the more
abstract ones, we impose only a cardinality constraint, while in the more concrete
ones we require an explicit mapping relating, for each place s of Z1, the ports of
s to those of f(s). We next formalise the idea of “new connections” of a place.

Definition 4 (in-set and out-set of a place along a morphism). Given
open nets Z1 and Z2 and a Petri net morphism f : NZ1 → NZ2 , for each place
s1 ∈ S1 the in-set of s1 along f is defined as in(f)(s1) = { •fS(s1) − fT ( •s1)},
and similarly the out-set is out(f)(s1) = {fS(s1)• − fT (s1

•)}. This defines the
functions in(f), out(f) : S1 → 2T2 .

The functions #in(f), #out(f) : S1 → N are defined, respectively, as
#in(f)(s1) = |in(f)(s1)| and #out(f)(s1) = |out(f)(s1)|.

Definition 5 (open net morphisms). An open net morphism f : Z1 → Z2
is a Petri net morphism f : NZ1 → NZ2 such that

(i) #in(f) + o+
2 ◦ fs ≤ o+

1 and (ii) #out(f) + o−2 ◦ fs ≤ o−1 .

A morphism f is called an open net embedding if both fT and fS are injective.

Intuitively, condition (i) requires that the number of new incoming transitions
added to s ∈ S1 in the target net Z2 plus the input connections which are still
allowed for fS(s) in Z2 must be bounded by the maximum number of allowed
input connections for s. Examples of open net embeddings can be found in Fig. 1.
The mappings are those suggested by the labelling of the nets.

Definition 6 (concrete morphisms). Let Z1 and Z2 be open nets. A concrete
open net morphism f : Z1 → Z2 is a pair f = 〈f, {fs1}s1∈S1〉, where f : NZ1 →
NZ2 is a Petri net morphism and for any s1 ∈ S1, fs1 consists of a pair of
partial surjections fx

s1
: px(s1) → px(f(s1)) for x ∈ {+, −}, consistent with f ,

i.e., satisfying, for any t ∈ •s1, f+
s1

(t) = f(t) and for any t ∈ s1
•, f−

s1
(t) = f(t).

A morphism f is called an open net embedding if all components are injective.
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As anticipated, concrete morphisms explicitly relate, for each place s ∈ S1, the
ports of f(s) and of s, using the component fs. In the sequel, instead of f+

s

and f−
s , when place s is clear from the context, we will often write f+ and f−.

Moreover, when defining fx
s we will only specify its values on the open ports

[ox
Z1

(s)], which, as fx
s must be consistent with f , completely determines fx

s .
As expected, the two notions of morphism just introduced determine two cate-

gories related by an obvious forgetful functor. In fact, given a concrete morphism
f = 〈f, {fs1}s1∈S1〉 : Z1 → Z2 it is straightforward to check that the Petri net
morphism f satisfies conditions (i) and (ii) of Definition 5.

Definition 7 (open nets categories). We denote by ONetr the category of
ranked open nets and open net morphisms, and by ONetc the category having
the same objects and concrete open net morphisms as arrows.

Furthermore, we denote by U : ONetc → ONetr the forgetful functor which
is the identity on objects, and acts on an arrow f = 〈f, {fs}〉 as U(f) = f .

Sometimes, categories ONetc and ONetr will be referred to as the concrete and
the abstract category of (ranked) open nets, respectively.

The category of basic open nets introduced in (1) is (isomorphic to) the full
subcategory of ONetr including all the nets Z such that for any place s we have
ox

Z(s) ∈ {0, ω}, i.e., either s is closed or it allows for an unbounded number of
connections. In the following this subcategory will be referred to as ONet.

3 Composing Open Nets

Intuitively, two open nets Z1 and Z2 are composed by specifying a common
subnet Z0, and then by joining the two nets along Z0. Composition will be char-
acterised as a pushout in the concrete category of open nets ONetc. But since
for specification purposes the abstract category ONetr is often more appropri-
ate and easier to deal with, next we will focus on the notion of composition
induced on such category by the colimit based composition in ONetc.

Composition is possible if it respects the interface of the involved nets. This
is formalised by the notion of composability of a span of embeddings in ONetc.

Definition 8 (composable span in ONetc). A span of embeddings f1 : Z0 →
Z1 and f2 : Z0 → Z2 in ONetc is called composable if, for any s0 ∈ S0

1. for all i ∈ [o+
Z0

(s0)], if f+
1 (i) ∈ in(f1)(s0) then f+

2 (i) ∈ [o+
Z2

(f2(s0))]
2. for all i ∈ [o−Z0

(s0)], if f−
1 (i) ∈ out(f1)(s0) then f−

2 (i) ∈ [o−Z2
(f2(s0))]

plus the analogous conditions, exchanging the roles of Z1 and Z2.

Intuitively, condition (1) says that, given a place s0 and an open input port
i ∈ [o+

Z1
(s0)], if according to f1 the transition f+

1 (i) ∈ in(f1)(s0) is going to
be attached to this port, then the corresponding port in Z2 must be open, i.e.,
f+
2 (i) ∈ [o+

Z2
(f2(s0))]. The other conditions are analogous.

Given a concrete composable span Z1
f1← Z0

f2→ Z2, the composition of Z1 and
Z2 along Z0 is the open net Z3 (see Fig. 2) obtained as the pushout of f1 and
f2, which exists by the next result.
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Z0 f2f1

Z1

g1

Z2

g2Z3

Fig. 2. Composition of ranked open nets

Proposition 9 (pushout in ONetc). A span of embeddings f1 : Z0 → Z1, f2 :
Z0 → Z2 in ONetc is composable if and only if it has a pushout Z1

g1→ Z3
g2← Z2

in ONetc, whose underlying diagram is a pushout in Net.

The construction of the pushout of a composable span in ONetc turns out to
be quite complex and it is not reported for space limitations, but the intuition
is simple. Firstly, the underlying net NZ3 is obtained as the pushout of NZ1 and
NZ2 along NZ0 in Net. Next, if a place is not in Z0, then in the pushout it
maintains exactly its ports. Instead, for a place s in Z0, in the pushout the ports
of the image of s are obtained by taking the pushout of the ports of the images
of s in Z1 and Z2. Since mappings between ports can be partial, open ports can
disappear. A port is open only if it is open in both nets Z1 and Z2.

The notions of composability of spans and of composition between nets can
be transferred to the abstract category via the forgetful functor U : ONetc →
ONetr. More interestingly, these notions can be defined also directly at the ab-
stract level, by referring only to the ranks of places of the involved nets. Thanks
to this fact, in the rest of the paper we will be able to work in the abstract
category only, which provides a simpler and natural framework to be used for
specification purposes. Still, we stress here that we defined the composition of
nets in the concrete category first, because the corresponding notion in the ab-
stract category cannot be characterized by a universal property as a pushout.

Given a pair of embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2 in ONetr, we
say that they are composable if there exists a composable span of embeddings
f1 : Z0 → Z1 and f2 : Z0 → Z2 in ONetc such that U(f1) = f1 and U(f2) = f2.

Fact 10 (composable span in ONetr). A span of embeddings f1 : Z0 → Z1
and f2 : Z0 → Z2 in ONetr is composable if and only if

1. #in(f1) ≤ o+
Z2

◦ f2 and #out(f1) ≤ o−Z2
◦ f2;

2. #in(f2) ≤ o+
Z1

◦ f1 and #out(f2) ≤ o−Z1
◦ f1.

Intuitively, the first half of condition (1) requires that the number of input
connections which are added to each place s of Z0 by f1, namely #in(f1)(s), is
bounded by the number of additional input connections allowed for f2(s) in Z2,
i.e., o+

Z2
(f2(s)). The remaining conditions are similar.

Now, given a composable span of embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2
in ONetr, let 〈f1, f2〉 be any pair of composable embeddings in ONetc such
that U(f1) = f1 and U(f2) = f2. Then the composition of Z1 and Z2 along Z0
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(a) (b)

Fig. 3. Composing ranked open nets

in ONetr is defined exactly as their composition in ONetc, i.e., as the pushout
object of f1 and f2 in ONetc. It can be shown that this definition is well given,
and that it can be characterized as follows.

Fact 11 (composition in ONetr). Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be
a span of embeddings in ONetr. Compute the pushout of the corresponding
diagram in the category Net obtaining the net NZ3 and the morphisms g1 and
g2. For i ∈ {1, 2}, define res+

i (s3) = ox
Zi

(si)−#in(gi)(si) if there is some si ∈ Si

such that gi(si) = s3 and res+
i (s3) = ω, otherwise.1 The function res−i is defined

in a dual way. Then take, for x ∈ {+, −}

ox
Z3

= min{resx
1 , resx

2}

Then Z3 (with morphisms g1 and g2) is the composition along Z0 of f1 and f2.

Intuitively, for a place s3 = gi(si), the value res+
i (si) is obtained by subtracting

from the number of connections allowed for si, i.e., o+
Zi

(si), the number of con-
nections which have been added as an effect of the composition, i.e., #in(gi)(si).
In other words res+

i (si) is the residual number of allowed connections. When
joining two places, the number of allowed connections for the resulting place will
be the minimum among the residuals of the two original places.

Two simple examples of composition can be found in Fig. 3. It is worth ex-
plaining why, for example, diagram (a) is not a pushout in ONetr. In fact, since

Z1 and Z2 are isomorphic, we can close the span Z1
f1← Z0

f2→ Z2 with arrows
Z1

id→ Z1
∼=← Z2 obtaining a commutative square in ONetr, but there is no me-

diating morphism Z3 → Z1 because the counter-image of an open place cannot
be closed. For a more complex example see Fig. 1, where two nets Z1 and Z2
representing the planning of a trip and the buying of the ticket, respectively, are
composed. Note, e.g., that place itinerary in Z2 is output open with rank 3 and
input open with rank 1, as needed for adding the connections in Z1.

1 Observe that res+
i is well-defined since gi is injective.
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4 Processes of Open Nets

A process of an open net is an open net itself, satisfying suitable acyclicity and
conflict freeness requirements, together with a mapping to the original net.

The open net underlying a process is an open occurrence net, namely an
open net K such that the underlying net NK is an ordinary occurrence net,
with some additional conditions on open places. Fig. 6 shows some examples of
occurrence nets. The open places in the occurrence net are intended to represent
occurrences of tokens which are produced or consumed by the environment in the
considered computation. Hence, input open places must satisfy o+(s) = 1 and
additionally they must be minimal. In fact, an input open place with o+(s) > 1
would represent a token possibly produced by two different transitions in the
environment; similarly an input open place in the post-set of some transition
would represent a token which can be produced either internally or by some
transition in the environments. In both cases the situation would correspond to
a backward conflict and it would prevent one to interpret the place as a token
occurrence. Instead, an output open place can be in the pre-set of a transition,
as it happens for place itinerary in the open occurrence nets K1 and K2 of Fig. 6,
and it might be that o−Z (s) > 1. The idea is that the token occurrence represented
by place s can be consumed either by transition t or by two or more occurrences
of transitions in the environment.

For a Petri net N = (S, T, σ, τ) the causality relation <N ⊆ (S ∪ T )2 is the
least transitive relation such that x<N y if y ∈ x•. Moreover, the conflict relation
#N ⊆ (S ∪ T )2 is the least symmetric relation generated by the rules:

•t ∩ •t′ �= ∅ t �= t′ t, t′ ∈ T
t #N t′

x#N y y <N y′

x#N y′ (hereditarity)

These definitions lift to open nets by considering the underlying net. We will
omit the subscripts when clear from the context.

Definition 12 (open occurrence net). An open occurrence net is an open
net K such that

1. •t and t• are sets rather than proper multisets, for each transition t ∈ T ;
2. the causality relation <K is a finitary strict partial order;
3. the conflict relation #K is irreflexive;
4. there are no backward conflicts, i.e., deg+(s) ≤ 1 for each place s ∈ S.

Notice that the net NK underlying an open occurrence net is an occurrence net
according to the standard definition.

We next introduce the notion of process for open nets.

Definition 13 (open net process). A process of an open net Z is a mapping
π : K → Z where K is an open occurrence net and π : NK → NZ is a Petri net
morphism, such that πS(O+

K) ⊆ O+
Z and πS(O−

K) ⊆ O−
Z .
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Note that the mapping from the occurrence net K to the original net Z, is not
an open net morphism in general. In fact, the process mapping, differently from
open net morphisms, must be a simulation, i.e., it must preserve the behaviour.
To this aim the image of an open place in K must be an open place in Z, since
tokens can be produced (consumed) by the environment only in input (output)
open places of Z. Instead, there is no relation between the rank of open places
in the occurrence net and in the net Z since a token in an open place can be
consumed by distinct occurrences of the same transition in the environment.

We next introduce the category of processes, where objects are processes and
arrows are pairs of open net morphisms.

Definition 14 (category of processes).
We denote by Proc the category where objects
are processes and given two processes π0 : K0 →
Z0 and π1 : K1 → Z1, an arrow ψ : π0 →
π1 is a pair of open net morphisms ψ = 〈ψZ :
Z0 → Z1, ψK : K0 → K1〉 such that the diagram
on the right (indeed the underlying diagram in
Net) commutes.

K0

π0

ψK
K1

π1

Z0
ψZ

Z1

4.1 Projecting Behaviours along Embeddings

Since open net morphisms are designed to capture the idea of “insertion” of a net
into a larger one, they are expected to “reflect” the behaviour in the sense that
given f : Z0 → Z1, the behaviour of Z1 can be projected along the morphism
to the behaviour of Z0. As in (1), this intuition can be formalised for open net
embeddings by showing how a process of Z1, as defined before, can be projected
along f giving a process of Z0. Intuitively, each possible computation in Z1 can
be “projected” to Z0, by considering only the part of the computation of the
larger net which is visible in the smaller net. Ranks are defined correspondingly.

Definition 15 (projection of a process).
Let f : Z0 → Z1 be an open net embedding and let π1 : K1 →

Z1 be a process of Z1. A projection of π1 along f , is a pair
〈π0, ψ〉 where π0 : K0 → Z0 is a process of Z0 and ψ : π0 →
π1 is an arrow in Proc, constructed as follows. Consider the
pullback of π1 and f in Net, thus obtaining the net morphisms
π0 and ψK (see the diagram on the right). Then K0 is obtained
by taking NK0 as underlying net, and defining

NK1

π1
NZ1

NK0

ψK

π0
NZ0

f

o+
K0

= o+
K1

◦ ψK + #in(ψK) and o−K0
= o−K1

◦ ψK + #out(ψK)
(i.e., by opening the places as least as possible to make ψK : K0 → K1 an open
net morphism) and ψ = 〈ψK , f〉.

5 Composing Non-deterministic Processes

Consider a composition diagram in ONetr, as in Fig. 2, where f1 and f2 are
open net embeddings. One would like to establish a clear relationship among the
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Fig. 4. Transition t would be in self-conflict in the composition

behaviours of the involved nets. Roughly, we would like that the behaviour of
Z3 could be constructed “compositionally” out of the behaviours of Z1 and Z2.

In (1) we have shown that in the setting of basic open nets this can be done
only for deterministic processes. Here we show how, in the setting of ranked open
nets, the result extends to general, possibly non-deterministic processes. Given
two processes π1 of Z1 and π2 of Z2 which “agree” on Z0, one can construct
a process π3 of Z3 by amalgamating π1 and π2. Vice versa, each process π3 of
Z3 can be projected over two processes π1 and π2 of Z1 and Z2, which can be
amalgamated to produce π3 again. Hence, all and only the processes of Z3 can
be obtained by amalgamating the processes of the components Z1 and Z2.

5.1 Composition of Non-deterministic Occurrence Open Nets

A basic step towards the composition operation is the formalisation of the in-
tuitive idea of processes of different nets which “agree” on a common part.
Concretely, this amounts to identify suitable conditions which ensure that the
composition of occurrence open nets exists and produces a net in the same class.

First, given a span K1
f1← K0

f2→ K2 we introduce the notion of causality
relation induced by K1 and K2 over K0. When the two nets are composed their
causality relations get “fused”. Hence, to ensure that the resulting net is again
an occurrence net, the induced causality must be a strict partial order.

Definition 16 (induced causality). Let K1
f1← K0

f2→ K2 be a span of em-
beddings in ONetr, where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The
relation of causality <1,2 induced over K0 by K1 and K2, through f1 and f2
is the least transitive relation such that for any x0, y0, if f1(x0)<K1 f1(y0) or
f2(x0)<K2 f2(y0) then x0 <1,2 y0.

When composing non-deterministic occurrence nets, which can include mutual
exclusive branches of computation, we must also avoid that transitions becomes
non-firable due to the creation of self-conflicts. For example, Fig. 4 shows a span
where the induced causality is a strict partial order, but there would be a self-
conflict on t in the composed occurrence net. Hence t would not be firable in
any computation of the net.

To this aim, we introduce new relations, called anti-causality and anti-conflict.
Intuitively, two items x and y in K are related by anti-causality (anti-conflict)
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if, to ensure the firability of each transition in the net, x and y must remain
causally unrelated (not in conflict, resp.) when K is composed with other nets.
Then the idea is to avoid compositions which can lead to situations in which two
items are related both by a relation and by the corresponding anti-relation.

Definition 17 (anti-relations). Let K be an occurrence open net. The anti-
causality ¬<K and anti-conflict ¬#K relations over (S ∪ T )2 are defined by the
following rules (subscripts are omitted as clear from the context):

x¬# x x¬< x (anti1) x¬# y x′ <x
x′ ¬# y

(anti2)

x¬# y x# y′

y′ ¬< y
(anti3) x¬# y

y ¬# x
(anti4)

The rules have a clear interpretation. Rule (anti1) states that the each single item
must remain concurrent, while rules (anti2) and (anti3) are obtained by “revert-
ing” the rule which expresses hereditarity of conflict w.r.t. causality. Finally,
(anti4) states that ¬# is symmetric.

Given an open net morphism f1 : K0 → K1, where K0 and K1 are occurrence
nets, in the following we will use the symbols <1, #1, ¬#1 and ¬<1 to denote
the projection over K0 of the corresponding relations over K1, i.e., for any r ∈
{<, #, ¬#, ¬<} and x0, y0 in K0 we will write

x0 r1 y0 iff f1(x0) rK1 f1(y0)

Given a span of occurrence open nets K1
f1← K0

f2→ K2 we next define the conflict
relation and the anti-relations induced over the net K0 by K1 and K2, through f1
and f2. This has been already done for causality in Definition 16, where induced
causality <1,2 is defined as the transitive closure of <1 ∪ <2.

Definition 18 (induced relations). Let K1
f1← K0

f2→ K2 be a span in ONetr,
where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The conflict relation and the
anti-relations induced over K0 by K1 and K2, through f1 and f2 are as follows.

For x0, y0 in K0, let x0 ↘1 y0 be a shortcut for x0 <1 y0 and there is no z0
such that x0 <K0 z0 ≤1 y0. Observe that in this case x0 must be a place, connected
to y0 through a chain of transitions in K1, but not in K0. The notation x0 ↘2 y0
is defined in the dual way.

– induced conflict #1,2: The relation #1,2 over K0 is the least relation,
hereditary w.r.t. <1,2 such that, for any x0, y0,
1) if x0 #1 y0 or x0 #2 y0 then x0 #1,2 y0.
2) if x0 ↘1 y0 and x0 ↘2 z0 then y0 #1,2 z0.

– induced anti-relations ¬<1,2 and ¬#1,2: The relations ¬#1,2 and ¬<1,2
over K0 are defined as the least relations such that for x0, y0, for i ∈ {1, 2},
if x¬#i y then x¬#1,2 y, and similarly, if x¬<i y then x¬<1,2 y, and closed
under rules (anti1) − (anti4).
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Now we can identify the conditions which guarantee that the composition of two
occurrence open nets is still an occurrence open net.

Definition 19 (consistent span). A span K1
f1← K0

f2→ K2 of occurrence open
nets is consistent if it is composable in ONetr and for any x0, y0 in K0

1. x0 ¬<1,2 y0 ⇒ ¬(x0 <1,2 y0) and x0 ¬#1,2 y0 ⇒ ¬(x0 #1,2 y0);
2. for i, j ∈ {1, 2}, i �= j, we have that x0 ¬#i y0 implies ¬(x0 ↘j y0).

Condition (1) just requires that each anti-relation does not intersect the corre-
sponding relation. Condition (2), instead, just imposes that two anti-conflictual
places in K1 are never connected by a chain of transitions in K2 (and vice versa),
otherwise in the composition one would get a self-conflict.

We can now show that the composition in ONetr of a consistent span of
occurrence nets produces an occurrence net. We first need a preliminary result.

Lemma 20. Let K1
f1← K0

f2→ K2 be a composable span of embeddings in
ONetr, where Ki (i ∈ {0, 1, 2}) are occurrence open nets, and let K1

g1→ K3
g2←

K2 be the composition. Then for any x0, y0 in K0, if we let x3 = g1(f1(x0)) =
g2(f2(x0)) and y3 = g1(f1(y0)) = g2(f2(y0)), we have

1. x0 <1,2 y0 iff x3 <K3 y3;
2. x0 #1,2 y0 iff x3 #K3

y3;
3. x0 ¬#1,2 y0 iff x3 ¬#K3

y3;
4. x0 ¬<1,2 y0 iff x3 ¬<K3 y3.

Proposition 21. In the hypotheses of Lemma 20 above, K1
f1← K0

f2→ K2 is a
consistent span iff the composition K3 is an occurrence open net.

5.2 Amalgamating Non-deterministic Processes

For the rest of this section we refer to a fixed composition in ONetr, as in Fig. 2,
where f1 and f2 are composable open net embeddings. Two processes π1 of Z1
and π2 of Z2 can be amalgamated when they agree on the common subnet Z0.

Definition 22 (agreement of non-deterministic processes). We say that
two non-deterministic processes π1 : K1 → Z1 and π2 : K2 → Z2 agree on Z0
if there are projections 〈π0, ψ

i
K〉 along fi of πi for i ∈ {1, 2} such that the span

K1
ψ1

K← K0
ψ2

K→ K2 is consistent and, for any s0 in K0, if s3 = fi(gi(π0(s0))) is
the corresponding place in Z3, the following holds:

if #out(ψ1
K)(s0) + #out(ψ2

K)(s0) < o−K0
(s0) then s3 ∈ O−

Z3
. (1)

In this case 〈π0, ψ
1
K〉, 〈π0, ψ

2
K〉 are called agreement projections for π1 and π2.

Intuitively, the two processes agree if they have the same projection over Z0.
Additionally, as required by condition (1), if, for a place s0 in K0, the number
of external events that can consume the token in s0 exceeds the events provided
by Z1 and Z2 then the corresponding place in Z3 must be open.
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K0

π0
ψ1

K ψ2
K

K1

π1

φ1
K

Z0f1 f2 K2

π2

φ2
KZ1

g1

K3

π3

Z2

g2

Z3

Fig. 5. Amalgamation of open net processes

Definition 23 (process amalgamation). Let πi : Ki → Zi (i ∈ {0, 1, 2, 3})
be non-deterministic processes and let 〈π0, ψ

1
K〉 and 〈π0, ψ

2
K〉 be agreement pro-

jections of π1 and π2 along f1 and f2 (see Fig. 5). We say that π3 is an amalga-
mation of π1 and π2, written π3 = π1 +ψ1

K ,ψ2
K

π2, if there are projections 〈π1, φ
1〉

and 〈π2, φ
2〉 of π3 over Z1 and Z2, respectively, such that the upper square is a

composition in ONetr.

We next give a more constructive characterisation of process amalgamation,
which also proves that the result is unique up to isomorphism.

Lemma 24 (amalgamation construction). Let π1 : K1 → Z1 and π2 : K2 →
Z2 be non-deterministic processes that agree on Z0, and let 〈π0, ψ

1
K〉 and 〈π0, ψ

2
K〉

be corresponding agreement projections. Then the amalgamation π1+ψ1
K ,ψ2

K
π2 is

a process π3 : K3 → Z3, where net K3 is obtained as the composition in ONetr

of ψ1
K : K0 → K1 and ψ2

K : K0 → K2 and the process mapping π3 : K3 → Z3 is
uniquely determined by the universal property of the underlying pushout diagram
in Net (see Fig. 5). Hence π1 +ψ1

K,ψ2
K

π2 is unique up to isomorphism.

As an example, in Fig. 6 a process for the net Z3 of Fig. 1 is obtained as the
amalgamation of processes of the component nets. The process for Z1 represents
a reservation activity, which can succeed after two attempts or can be finally
cancelled. In the process for Z2 two possible itineraries are visible: the first one
can only be discarded (used by the environment) while the second one can also
trigger a payment, thus resulting in a ticket. Composing the two processes one
gets a full booking process for net Z3.

We next show that each non-deterministic process of a composed net arises
as the amalgamation of non-deterministic processes of the components.

Lemma 25 (process decomposition). Let π3 : K3 → Z3 be a process of Z3
and, for i ∈ {1, 2}, let 〈πi, φ

i〉 be projections of π3 along gi. Then there are
agreement projections 〈π0, ψ

1
K〉, 〈π0, ψ

2
K〉 of π1, π2 such that π3 ∼= π1 +ψ1

K ,ψ2
K

π2.

As a consequence we finally have our main result.

Theorem 26 (compositionality for non-deterministic processes). All
and only the non-deterministic processes of Z3 can be obtained as amalgama-
tions of processes of Z1 and Z2 which agree on Z0.
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Fig. 6. An example of process amalgamation

6 Conclusions and Future Work

We have introduced a compositional semantics based on non-deterministic pro-
cesses for ranked open nets, an extension of the basic open net model of (1)
where it is possible to specify, for open places, the maximum number of allowed
connections. The composition operation is characterised as a pushout in a cat-
egory of ranked open nets with concrete morphisms. The notion of agreement
between processes of different sub-components, which is a requirement for pro-
cess composition, builds upon a theory of anti-relations (i.e., anti-causality and
anti-conflict) which could have an interest for Petri nets in general.

We believe that a theory of non-deterministic processes for open nets can
represent a starting point for a modular verification of open nets based on finite
prefixes of the unfolding (10). There are obvious difficulties, e.g., the fact that
open nets are always infinite state (whenever they have at least one input open
place). However the “regularity” of the state space suggests the possibility of
undertaking a symbolic approach, for which analogous work for standard Petri
nets, like (6), could provide an inspiration.

We foresee also potential outcomes in the setting of graph transformation
systems. In fact graph transformation systems can be seen as generalisation of
Petri nets, and it has been often productive to focus first in the latter simpler
setting. The notion of openness (7, 8) as well as the notion of processes (5) have
already been studied in the setting of graph transformation, however until now
there have been no attempts to combine them. The present work can be a first
step in this direction.
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