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Abstract. The complexity of large system models in software engineer-
ing nowadays is mastered by using different views. View-based modeling
aims at creating small, partial models, each one of them describing some
aspect of the system. Existing formal techniques supporting view-based
visual modeling are based on typed attributed graphs, where views are
related by typed attributed graph morphisms. Such morphisms up to now
require a fixed type graph, as well as a fixed data signature and domain.
This is in general not adequate for view-oriented modeling where only
parts of the complete type graph and signature are known and necessary
when modeling a partial view of the system.

The aim of this paper is to extend the framework of typed attributed
graph morphisms to generalized typed attributed graph morphisms,
short GAG-morphisms, which involve changes of the type graph, data
signature, and domain. This allows the modeler to formulate type hierar-
chies and views of visual languages defined by GAG-morphisms between
type graphs, short GATG-morphisms. In this paper we study the inter-
action and integration of views, and the restriction of views along type
hierarchies. In the main result we present suitable conditions for the in-
tegration and decomposition of consistent view models. As a running
example we use a visual domain-specific modeling language to model
coarse-grained IT components and their connectors in decentralized IT
infrastructures.

1 Introduction

In recent years, the complexity of large system models in software engineering
is mastered by using different views or viewpoints. View-based modeling rather
aims at creating small, partial models, each one of them describing some aspect
of the system instead of building complex monolithic specifications. Visual tech-
niques nowadays form an important part of the overall software development
methodology. Usually, visual notations like the UML [1], Petri nets or other
kinds of graphs are used in order to specify static or dynamic system aspects.
Hence, the syntax definition of visual modeling languages is an important basis
for the implementation of tools supporting visual modeling (e.g. visual editor
generation) and for model-based system verification.
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Two main approaches to visual language (VL) definition can be distinguished:
grammar-based approaches or meta-modeling. Using graph grammars and graph
transformation [2], multidimensional representations are described by graphs.
Graph rules are used to manipulate the graph representation of a language ele-
ment. Meta-modeling (see e.g. [3]) is also graph-based, but uses constraints in-
stead of a grammar to define a visual language. The advantage of meta-modeling
is that UML users, who probably have basic UML knowledge, do not need to
learn a new external notation to be able to deal with syntax definitions. Graph
grammars are more constructive, i.e. closer to the implementation, and provide
a formal basis for visualizing, validating and verifying system properties.

For the application of graph transformation techniques to VL modeling, typed
attributed graph transformation systems and grammars [2] have proven to be an
adequate formalism. A VL is modeled by a type graph capturing the definition of
the underlying visual alphabet, i.e. the symbols and relations which are available.
Sentences or models of the VL are given by graphs typed over (i.e. conforming
to) the type graph. Such a VL type graph corresponds closely to a meta model.
In order to restrict the set of valid visual models, a syntax graph grammar may
be defined, consisting of a set of language-generating graph transformation rules,
typed over the abstract syntax part of the VL type graph.

In this paper we extend the graph transformation framework in order to allow
an adequate specification of different views and their relations. In the literature,
approaches already exist to model views as morphisms between typed attributed
graphs [4]. Up to now such morphisms require a fixed type graph, as well as
a fixed data signature and domain. This is in general not adequate for view-
oriented modeling where only parts of the complete type graph and signature
are known and necessary when modeling a partial view of the system. Hence,
in this paper we develop the notion of generalized attributed graph morphisms
(GAG-morphisms) which allows the modeler to change the type graph, data
signature and domain. GAG-morphisms are the basis for more flexible, view-
oriented modeling since views are independent of each other, now also with
respect to the data type definition.

For view-oriented modeling, mechanisms are needed to integrate different
views to a full system model. In order to integrate two or more views, their
intended correspondences have to be specified. Here, typed graphs and the un-
derlying categorical constructions support an integration concept which goes
much further than an integration merely based on the use of common names. In
this paper, we define type hierarchies and views based on GAG-morphisms, and
study the interaction and integration of views, as well as the restriction of views
along type hierarchies, the notion of view consistency, and the integration and
decomposition of models based on consistent views.

As a running example we use a visual domain-specific modeling language to
model coarse-grained IT components and their connectors in decentralized IT
infrastructures. An infrastructure model has to provide the basis to handle struc-
tural security issues, like firewall placements, of such distributed IT components.
In order to provide support to model, build, administrate, monitor and control



64 H. Ehrig et al.

such a local IT landscape, we present a formal, visual domain-specific language
family based on attributed type graph hierarchies and views. A simplified visual
language for this purpose using typed graphs without attributes was first intro-
duced in [5], serving as a basis to transform domain-specific IT infrastructure
models to a Reo coordination model [6] for further analysis.

The paper is structured as follows: Section 2 defines the category GAGraphs
of typed attributed graphs and GAG-morphisms, and introduces the sample VL
for IT infrastructures. On this basis, views are defined in Section 3, and the
view relations interaction and integration are given by categorical constructions.
Moreover, the interplay of type hierarchies of VLs and views is considered. Sec-
tion 4 studies models of visual languages and models of views (view-models) and
states as main result conditions for the consistency, integration and decompo-
sition of view-models. In Section 5, related work is presented and compared to
our approach. We conclude and discuss future work in Section 6.

2 Visual Language Definition by Typed Attributed
Graphs

We use the meta-model approach in combination with typed attributed graphs to
define visual languages. A meta-model is given by an attributed type graph ATG
together with structural constraints, and the corresponding visual language V L
is given by all attributed graphs typed over ATG which satisfy the constraints. In
the following, we introduce the necessary definitions for typed attributed graphs.

The definition of attributed graphs is based on E-graphs, which give a struc-
ture for graphs with data elements. An E-graph G = (VG, VD, EG, ENA, EEA,
(sourcej , targetj)j∈{G,NA,EA}) has two different
kinds of nodes, namely graph nodes VG and data
nodes VD, and different kinds of edges, namely
graph edges EG and, for the attribution, node at-
tribute edges ENA and edge attribute edges EEA,
with corresponding source and target functions
according to the signature on the right.

VGEG

ENAEEA

VD

sourceNA

targetNA

sourceEA

targetEA

sourceG

targetG

As presented in [2], attributed graphs are defined as E-graphs combined with
a DSIG-algebra, i.e. an algebra over a data signature DSIG. In this signature,
we distinguish a set of attribute value sorts. The corresponding carrier sets in
the DSIG-algebra can be used for attribution. In addition to attributed graph
morphisms in [2], generalized attributed graph morphisms are mappings of at-
tributed graphs with possibly different data signatures.

Definition 1 (Attributed graph and generalized attributed graph
morphism). An attributed graph AG = (G, DSIG, D) consists of

– an E-graph G = (VG, VD, EG, ENA, EEA, (sourcej , targetj)j∈{G,NA,EA}),
– a data signature DSIG = (S, SD, OP ) with attribute value sorts SD ⊆ S,

and
– a DSIG-algebra D such that

�
∪

s∈SD

Ds = VD.
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Given attributed graphs AGi = (Gi, DSIGi, Di) for i = 1, 2, a generalized
attributed graph morphism (GAG-morphism) f = (fG, fS , fD) : AG1 → AG2 is
given by

– an E-graph morphism fG : G1 → G2,
– a signature morphism fS : DSIG1 → DSIG2, and
– a generalized homomorphism fD : D1 → D2, which is a DSIG1-morphism

fD : D1 → VfS (D2) with fD = (fD,s1 : D1
s1

→ D2
fS(s1))s1∈S1

with the following compatibility property:
fS(S1

D) ⊆ S2
D and the diagram on the right

commutes for all s1 ∈ S1
D, where the vertical

(curling) arrows are inclusions.
A GAG-morphism f = (fG, fS , fD) is called

– injective, if fG, fS, fD are injective,
– signature preserving, if fS is isomorphic,
– persistent, if fD is isomorphic.

D1
s1

D2
fS(s1)

V 1
D V 2

D

fD,s1

fG,VD

=

Attributed graphs with generalized attributed graph morphisms form the cate-
gory GAGraphs.

Note that AG-morphisms in [2] correspond to signature preserving GAG-
morphisms.

For the typing, we use a distinguished attributed type graph ATG. According
to [2], attributed type graphs and typed attributed graphs are now defined using
GAG-morphisms presented above.

Definition 2 (Typed attributed graph and typed attributed graph
morphism). An attributed type graph ATG = (TG, DSIG, ZDSIG) is an at-
tributed graph where ZDSIG is the final DSIG-algebra, i.e. ZDSIG,s = {s} for

all s ∈ S, and VD =
�
∪s∈SD ZDSIG,s = SD.

Given an attributed type graph ATG, a typed attributed graph TAG =
(AG, t) (over ATG) is given by an attributed graph AG and a GAG-morphism
t : AG → ATG.

Given an attributed type graph ATG and typed attributed graphs TAGi =
(AGi, t : AGi → ATG) over ATG for i = 1, 2, a typed attributed graph mor-
phism f : TAG1 → TAG2 is given by a GAG-morphism f : AG1 → AG2 such
that t2 ◦ f = t1.

Given an attributed type graph ATG, typed attributed graphs over ATG and
typed attributed graph morphisms form the category GAGraphsATG.

As a special case of GAG-morphisms we obtain generalized attributed type graph
morphisms based on attributed type graphs.

Definition 3 (Generalized attributed type graph morphism). Given at-
tributed type graphs ATGi = (TGi, DSIGi, ZDSIGi) for i = 1, 2, a generalized
attributed type graph morphism (GATG-morphism) f = (fG, fS , fD) : ATG1 →
ATG2 is given by
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– an E-graph morphism fG : TG1 → TG2,
– a signature morphism fS : DSIG1 → DSIG2, and
– a generalized homomorphism fD : ZDSIG1 → ZDSIG2 , which is uniquely

determined by fD,s1(s1) = fS(s1) for all s1 ∈ S1.

A GATG-morphism f is also a GAG-morphism since the compatibility property
is automatically satisfied because fG,VD(s1) = fS(s1) for all s1 ∈ S1

D and fD,
fG,VD are uniquely determined by fS . Moreover, if f is a GATG-morphism then
f is persistent.

Now we are able to define visual languages. For simplicity, we consider only
visual languages over attributed type graphs, without any constraints. For the
case with constraints we refer to [7].

Definition 4 (Visual language). Given an attributed type graph ATG, the
visual language V L of ATG consists of all typed attributed graphs (AG, t :
AG → ATG) typed over ATG, i.e. V L is the object class of the category
GAGraphsATG.

Example 1 (VL for network infrastructures). Fig. 1 shows at the top the at-
tributed type graph ATGDSL which represents a meta-meta model (or schema)
for domain-specific languages for IT infrastructures. The DSL schema defines
that all its instances (domain-specific languages) consist of node types for com-
ponents, connections and interfaces. In the center of Fig. 1, the attributed
type graph ATGNetwork defines a simple modeling language for network infras-
tructures which has component types for personal computers (PC), application
servers (AS), and databases (DB). Interfaces are refined into HTTP-client and
HTTP-server ports, as well as database client and server ports. Connections may
be secure (i.e. with firewall) or insecure, which is modeled by the new boolean
attribute secure.

There is a generalized attributed type graph morphism h from ATGNetwork

to ATGDSL, indicated by equal numbering of mapped nodes. Note that in order
to be able to define the signature morphism fS and the DSIG-morphism fD

for any GAG-morphismsf : ATG1 → ATG2 between different type graphs,
we assume that each node type in ATG2 has at least one sort “*”, and one
attribute attr : ∗, where all sorts and attributes from ATG1 can be mapped to
which are not already defined in ATG2. Thus we can have new attributes, sorts
and methods at the more detailed type level ATG1 which need not be defined
already in ATG2. For our sample GAG-morphism h in Fig. 1, this is the case
for the new attribute secure : Bool of the type Connection in ATGNetwork. The
new sort Bool is mapped by the signature morphism to the sort “*”, and the
attribute secure is mapped by the DSIG-morphism to the constant attr.

At the bottom of Fig. 1, a sample computer network is depicted as graph
GNetwork which is an element of the visual Network language since GNetwork

is typed over ATGNetwork: (GNetwork, t : G → ATGNetwork) ∈ V LNetwork.
Obviously, all graphs G in V LNetwork are also in V LDSL, since every (G, t :
G → ATGNetwork) is also typed over ATGDSL by the composition of typing
morphisms: (G, h ◦ t : G → ATGDSL) ∈ V LDSL.
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Fig. 1. Example 1: Domain-Specific Languages for IT Infrastructures

3 Type Hierarchies and Views of Visual Languages

In this section, we study type hierarchies and views of visual languages based on
morphisms in GAGraphs, which allow to change not only the graph structure
but also the data signature and data type. Note that in this section we only
consider the attributed type graphs and their relations, but not yet models over
them. This is done in the next section.

A restriction of a visual language to a specific subpart of the language is called
a view.

Definition 5 (View). A view of a visual language V L over an attributed type
graph ATG is given by an injective GATG-morphism v1 : ATG1 → ATG.

For the interaction and integration of views we need the categorical constructions
of pullbacks and pushouts in GAGraphs. Proofs for the pushout and pullback
construction lemmas are given in [7]. Pullbacks are a kind of generalized inter-
section of objects over a common object.

Lemma 1 (Pullback construction in GAGraphs). Given GAG-morphisms
f : AG2 → AG3 and g : AG1 → AG3 then the pullback in GAGraphs is
constructed componentwise in the G-, S- and D-components. Moreover, pullbacks
preserve injective, signature preserving, and persistent morphisms.

Pushouts generalize the gluing of objects, i.e. a pushout emerges from the gluing
of two objects along a common subobject using the amalgamation of data types
in the sense of [15].
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Lemma 2 (Pushouts in GAGraphs over persistent morphisms). Given
persistent morphisms f ′ : AG0 → AG1 and g′ : AG0 → AG2 in GAGraphs
then the pushout (1) in GAGraphs is constructed componentwise in the G- and
S-components, with attribute value sorts S3

D = gs(S1
D) ∪ fS(S2

D), and in the D-
component by amalgamation as D3 = D1 +D0 D2. Moreover, pushouts preserve
injective, signature preserving, and persistent morphisms.

AG0 = (G0, DSIG0, D0) (G1, DSIG1, D1) = AG1

AG2 = (G2, DSIG2, D2) (G3, DSIG3, D3) = AG3

f ′=(f ′
G,f ′

S ,f ′
D)

f=(fG,fS ,fD)

g′=(g′
G,g′

S ,g′
D) g=(gG,gS ,gD)(1)

Based on the concepts of pullbacks and pushouts, we are now able to define
the interaction and integration of views. Roughly spoken, the interaction is the
intersection, and the integration is the union of views.

Definition 6 (Interaction and integration of views). Given views
(ATG1, v1) and (ATG2, v2) over ATG the interaction (ATG0, i1, i2) is given by
the following pullback (1) in GAGraphs, where (ATG0, v0) with v0 = v1 ◦ i1 =
v2◦i2 is a view over ATG and also called subview of (ATG1, v1) and (ATG2, v2).

ATG2

ATG0 ATG

ATG1
i1

i2

v1

v2
v0

(1)

ATG2

ATG0 ATG3

ATG1

ATG

i1

i2

w1

w2

v1

v2

v3(2)

The integration of views (ATG1, v1) and (ATG2, v2) with interaction
(ATG0, i1, i2) is given by the above pushout (2) in GAGraphs. Due to the
universal pushout property there is a unique injective GATG-morphism v3 :
ATG3 → ATG such that (ATG3, v3) is a view over ATG.

ATG is covered by views (ATGi, vi) with i = 1, 2 if v1 and v2 are jointly
surjective.

There is a close relationship between covering by views and view integration.

Fact 1 (Integration of views). If ATG is covered by views (ATGi, vi) for
i = 1, 2 then the integration ATG3 is equal to ATG up to isomorphism.

Proof. According to Def. 6, there is a unique morphism v3 with v3 ◦ w1 = v1
and v3 ◦ w2 = v2. This morphism is injective in the G- and S-components due
to general properties of graph and signature morphisms, and v3 is injective in
the D-component as a general property of GATG-morphisms. Surjectivity of v3
follows from joint surjectivity of v1 and v2.
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Example 2 (Interaction and integration of views on IT networks). Fig. 2 shows
two views (ATGComponents, v1) and (ATGConnections, v2) of the visual language
over ATGDSL (see Fig. 1). The type graph ATGComponents consists of a node
type for Computer linked to a node type for Port, whereas the type graph
ATGConnections contains a node type Channel which is linked to a node type
ChEnd. The view embedding v1 maps Computer to Component and Port to Inter-
face, and v2 maps Channel to Connection and ChEnd to Interface. Edges are mapped
accordingly. The interaction (ATGinteraction, i1, i2) is constructed as pullback
(1) in GAGraphs which is the intersection of v1 and v2 with suitable renam-
ing. Given the interaction, the integration of the views (ATGComponents, v1) and
ATGConnections, v2 over (ATGInteraction, i1, i2) can be constructed as pushout
(2) in GAGraphs, resulting in the type graph (ATGIntegration). According to
Fact 1, (ATGIntegration) is isomorphic to ATGDSL, since ATGDSL is covered
by (ATGComponents, v1) and (ATGConnections, v2).

Fig. 2. Example 2: Interaction and Integration of two Views on ATGDSL

In order to support stepwise language development, visual languages can
be structured hierarchically: one attributed type graph ATG may specify the
abstract concepts a set of visual languages V Li have in common, and dif-
ferent type graphs ATGi for these visual languages refine the types in ATG
by specifying multiple concrete subtypes for them. The type hierarchy rela-
tion is formalized by GATG-morphisms hi from ATGi to ATG. The morphism
h : ATGNetwork → ATGDSL depicted in Fig. 1 is such a type hierarchy mor-
phism. The next step is to define the restriction of views along type hierarchies
by pullbacks.

Definition 7 (Type hierarchy and restriction of views). A type hierarchy
of visual languages V L and V L′ given by attributed type graphs ATG and ATG′,
respectively, is a GATG-morphism h : ATG′ → ATG.
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Given a type hierarchy morphism h : ATG′ →
ATG and a view (ATG1, v1) over ATG then the
restriction (ATG′

1, v
′
1) of this view along h is de-

fined by the pullback (1) in GAGraphs.
The restriction (ATG′

1, v
′
1) is a view over ATG′

because pullbacks preserve injectivity.

ATG′
1 ATG1

ATG′ ATG

h′

h

v′
1

v1(1)

Fact 2 (Hierarchy and covering views). Given a hierarchy morphism h :
ATG′ → ATG and views (ATGi, vi) for i = 1, 2 covering ATG, then the re-
strictions (ATG′

i, v
′
i) along h are covering ATG′.

Proof. In the diagram to the right, v1
and v2 being jointly surjective implies
that also v′1 and v′2 are jointly surjective
because (1) and (2) are componentwise
pullbacks.

ATG′
1 ATG1

ATG′ ATG

ATG′
2 ATG2

h1

h
v′
1

v1

f2

v′
2

v2

(1)

(2)

Example 3 (Hierarchy and covering views). The morphism h : ATGNetwork →
ATGDSL in Fig. 1 is a type hierarchy morphism. Moreover, we have two views
(ATGComponents, v1) and (ATGConnections, v2) on ATGDSL, shown in Fig. 2,
which are covering ATGDSL. Fig. 3 shows the restrictions v′1 and v′2 of the views
along the hierarchy morphism h which are covering ATGNetwork due to Fact 2.

4 Models and View-Models of Visual Languages

In this section we study models of visual languages and of views of visual lan-
guages, called view-models, and we present our main result on the integration
and decomposition of models.

Definition 8 (Model). Given a meta-model of a visual language V L by an
attributed type graph ATG, then a model of V L is a typed attributed graph AG,
typed over ATG with a GAG-morphism t : AG → ATG.

The model (AG, t) is called signature-conform if t is signature-preserving.

Similar to the restriction of views at the type level we now define the restriction
of models at the model level.
Definition 9 (Restriction). Given a view f :
ATG1 → ATG, i.e. an injective GATG-
morphism, and an ATG-model (AG, t) then
the restriction (AG1, t1) of (AG, t) to the view
(ATG1, f) is defined by the pullback (1), written
f<(AG, t) = (AG1, t1).

AG1 AG

ATG1 ATGf

t1 t(1)

The construction f<(AG, t) is called backward typing and can be extended to
a functor f<(AG, t) : GAGraphsATG → GAGraphsATG1 , as opposed to the
extension of view models defined by forward typing f>(AG1, t1) = (AG1, f ◦ t1).



Consistent Integration of Models Based on Views of Visual Languages 71

Fig. 3. Example 3: Restriction of two Views along Hierarchy Morphism h

In order to state the main result on integration and decomposition of models,
we have to define the notions of consistency and integration for models. Roughly,
models AG1 and AG2 of type ATG1 and ATG2, respectively, are consistent if
they agree on the interaction type ATG0. In this case, there is an integrated
model AG such that the restrictions of AG to ATG1 and to ATG2 are equal to
the given models AG1 and AG2, respectively.

Definition 10 (Consistency and integration). Given views (ATGi, vi)
for i = 1, 2 of ATG with interaction (ATG0, i1, i2) defined by the pull-
back in the bottom face of the following cube, then the models (AGi, ti)
of the views (ATGi, vi) are called consistent if there is a model (AG0, t0)

of ATG0 such that the back faces
are pullbacks, i.e. i<1 (AG1, t1) =
(AG0, t0) = i<2 (AG2, t2).

A model (AG, t) of ATG is called
integration (or amalgamation) of
consistent (AG1, t1) and (AG2, t2)
via (AG0, t0) if the front faces of
the above cube are pullbacks, i.e.

AG0

AG2

ATG0

ATG2

AG1

AG

ATG1

ATG

j2

t0

j1

t2
i2

i1

t1

t

v1 v2

v<
1 (AG, t) = (AG1, t1) and v<

2 (AG, t) = (AG2, t2), and the top face commutes.
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Example 4 (Inconsistent models). Consider the view models AG1 and AG2 in
Fig. 4. These models are inconsistent since the squares (1) and (2) are pullbacks
corresponding to the back squares of the cube in Def. 10, but the resulting
pullback objects AG0 and AG′

0 are different (and non-isomorphic), so we have
i<1 (AG1, t1) = (AG0, t0) �= i<2 (AG2, t2) = (AG′

0, t
′
0). In this case, there is no

integration (AG, t) s.t. v<
1 (AG, t) = (AG1, t1) and v<

2 (AG, t) = (AG2, t2).

Fig. 4. Example 4: Inconsistent View Models

Theorem 1 (Integration and decomposition of models). Let ATG be cov-
ered by the views (ATGi, vi) for i = 1, 2.

Integration. If (AGi, ti) are consistent models of (ATGi, vi) via (AG0, t0) then
there is up to isomorphism a unique integration (AG, t) of (AGi, ti) via (AG0, t0).

Decomposition. Vice versa, each model (AG, t) of ATG can be decomposed
uniquely up to isomorphism into view-models (AGi, ti) with i = 1, 2 such that
(AG, t) is the integration of (AG1, t1) and (AG2, t2) via (AG0, t0).

Bijective Correspondence. Integration and decomposition are inverse to each
other up to isomorphism.

Proof
Integration. Since ATG is covered by (ATGi, vi) for i = 1, 2 it is also the inte-
gration of these views by Fact 1. This means that the bottom pullback is already
a pushout in GAGraphs with injective and persistent morphisms. Now assume
that (AGi, ti) with i = 1, 2 are consistent models. This means that the back
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faces of the cube in Def. 10 are pullbacks with injective and persistent j1 and j2.
This allows to construct AG in the top face as pushout in GAGraphs leading
to a unique t such that the front faces commute. According to a suitable van
Kampen property (see [7]), the front faces are pullbacks such that (AG, t) is the
integration of (AGi, ti) for i = 1, 2 via (AG0, t0). In order to show the unique-
ness let also (AG′, t′ : AG′ → ATG) be an integration of (AGi, ti) for i = 1, 2
via (AG0, t0). Then the front faces are pullbacks with (AG′, t′) and the top face
commutes. Now the van Kampen property in the opposite direction implies that
the top face is a pushout in GAGraphs. This implies that (AG, t) and (AG′, t′)
are equal up to isomorphism.

Decomposition. Vice versa, given a model (AG, t) of ATG we construct the
front and one of the back faces as pullbacks such that the remaining back face
also becomes a pullback and the top face commutes. This shows that (AG1, t1)
and (AG2, t2) are consistent w.r.t (AG0, t0), and, similar to the previous step,
(AG, t) is the integration of both via (AG0, t0). The decomposition is unique
up to isomorphism because the pullbacks in the front faces are unique up to
isomorphism.

Bijective Correspondence. Uniqueness of integration and decomposition as shown
above implies that both constructions are inverse to each other up to isomorphism.

Example 5 (Integration and decomposition of models). The graph GNetwork from
Fig. 1 is a model, typed over ATGNetwork. From the two views ATG′

Components

and ATG′
Connections given in Fig. 3 we can construct two consistent view mod-

els GComponents and GConnections in Fig. 5 according to the Decomposition in
Thm. 1 such that GNetwork is the integration of GComponents and GConnections

via Ginteraction. Vice versa, starting with consistent models GComponents and
GConnections, via Ginteraction we obtain GNetwork as the integration.

5 Related Work

Viewpoint-oriented software development is well-known in the literature [8, 9, 4],
however identifying, expressing, and reasoning about meaningful relationships be-
tween view models is hard [10]. Up to now existing formal techniques for visual
modeling of views and distributed systems by graph transformation support the
definition of non-hierarchical views which require a common fixed data signature
[2, 11]. This is in general not adequate for view-oriented modeling where only parts
of the complete type graph and signature are known and necessary when modeling
a view of the system. Moreover, hierarchical relations between views could not be
defined on the typing and data type level resulting in a lack of composition and
decomposition techniques for view integration, verification, and analysis.

In [12] domain specific languages are defined using graphical and textual views
based on the meta-modeling approach used in the AToM3 tool. In this approach
the languagedesigner starts with the common (integrated)meta-model and selects
parts of the meta-model as different diagram views. So a common abstract meta-
model is missing allowing to define hierarchical relations between the models.
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Fig. 5. Example 5: Integration and Decomposition of View Models

In [13] abstract graph views are defined, abstracting from specification details
allowing a convenient usage of modules. To fulfill this purpose, reference rela-
tions have been introduced for the definition of mapping between view elements
and abstract model elements (e.g. the database). Given this relations, there are
different semantics for modifying view objects which are not studied yet in full
detail. In comparison with the presented approach, generalized attributed graph
morphisms have a unique formal semantics on the one hand and they provide
the flexibility to define hierarchical relations on the other hand.

As a related approach xlinkit [14] provides rule-based link generation in web
content management systems. In this approach semantics are defined using first
order logic allowing automatic link generation to manage large document repos-
itories. According to its purpose, this approach is limited to XML documents
using XPath and XLink and thus requires an XML based storage format for
models.

6 Conclusion

In this paper we have studied the interaction and integration of views and the
restriction of views along type hierarchies. The main result shows under which
condition models of these views can be composed to a unique integrated model.
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The condition is called consistency of view models which means roughly that the
models agree on the interaction type of the views. Vice versa, each model can be
decomposed up to isomorphism into consistent models of given views. The paper
is based on an extended version of typed attributed graph morphisms which allow
changes of the type graph including those of data signatures and domains. In
this paper we have considered visual languages based on meta-models given by
attributed type graphs without constraints. But we claim that most of the results
in this paper can be extended to visual languages including constraints and/or
generating grammars. Together with full proofs of all technical lemmas used in
this paper, some of the extended results are given in our technical report [7].

An important consequence of our work is that we provide the ability to rapidly
compose ”small” visual languages both at the view (type graph) level and at the
view-model level, thus laying the formal basis for multi-view modeling environ-
ments. Hence, rather than a ”one modeling language does all” approach, we
favor a confederation of small, relatively orthogonal visual languages for differ-
ent system aspects. Future work is planned to investigate the interplay of views
and models with behaviour, which is related to the field of merging behavioural
models [16, 17].

The concept of type hierarchies should allow a language designer to adapt
language definitions by performing model transformations at an abstract hier-
archy level and ”inheriting” the transformation results at the more concrete
levels of the hierarchy. Work is in progress to analyze model transformations
for hierarchically structured visual languages.
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