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Abstract

Mobile ad-hoc networks (manets) are networks of mobile devices that communicate with each other via
wireless links without relying on an underlying infrastructure. To model workflows in manets adequately
a formal techniques is given by algebraic higher-order nets. For this modeling technique we here present
a high-level net process semantics and results concerning composition and independence. Based on the
notion of processes for low-level Petri nets we analyse in this paper high-level net processes defining the
non-sequential behaviour of high-level nets. In contrast to taking low-level processes of the well known
flattening construction for high-level nets our concept of high-level net processes preserves the high-level
structure. The main results are the composition, equivalence and independence of high-level net processes
under suitable conditions. Independence means that they can be composed in any order leading to equivalent
high-level net processes which especially have the same input/output behaviour. All concepts and results
are explained with a running example of a mobile ad-hoc network in the area of an university campus.

Keywords: Algebraic models, algebraic high-level nets, behavioural semantics, high-level net processes,
mobility, analysis of nets, composition of processes, equivalence and independence of processes.

1 Introduction

From an abstract point of view mobile ad-hoc networks (manets) consist of mobile
nodes which communicate with each other independently from a stable infrastruc-
ture, while the topology of the network constantly changes depending on the current
position of the nodes and their availability. In our research project Formal Modeling
and Analysis of Flexible Processes in Mobile Ad-hoc Networks we develop the mod-
eling technique of algebraic higher-order nets. This enables the modeling of flexible
workflows in manets and supports changes of the network topology and the sub-
sequent transformation of workflows. Algebraic higher-order (AHO) nets are Petri
nets with complex tokens, especially reconfigurable place/transition (P/T) nets in
[6]. AHO-nets can be considered as a special case of algebraic high-level (AHL)
nets. The main topic of this paper is to present a high-level process semantics for

1 This work has been partly funded by the research project forMAlNET (see http://tfs.cs.tu-berlin.
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AHL-nets in general, where the example in Section 2 is given as a manet and is
modeled by an AHO-net.

For low-level Petri nets it is well known that processes are essential to capture
their non-sequential truly concurrent behaviour (see e.g. [9,14,1,7,13]). Processes for
high-level nets are often defined as processes of the low-level net which is obtained
from flatting the high-level net. In [2,5] we have defined high-level net processes for
high-level nets based on a suitable notion of high-level occurrence nets which are
defined independently of the flattening construction. The flattening of a high-level
occurrence net is in general not a low-level occurrence net due to so called assign-
ment conflicts in the high-level net. The essential idea is to generalise the concept
of occurrence nets from the low-level to the high-level case. This means that the net
structure of a high-level occurrence net has similar properties like a low-level occur-
rence net, i.e. unitarity, conflict freeness, and acyclicity. But we have to abandon
the idea that an occurrence net captures essentially one concurrent computation.
Instead, a high-level occurrence net and a high-level process are intended to capture
a set of different concurrent computations corresponding to different input param-
eters of the process. In fact, high-level processes can be considered to have a set of
initial markings for the input places of the corresponding occurrence net, whereas
there is only one implicit initial marking of the input places for low-level occurrence
nets.

In this paper we extend the notion of high-level net processes with initial mark-
ings by a set of corresponding instantiations. An instantiation is a subnet of the
flattening defining one concurrent computation of the process. The advantage is
that we fix for a given initial marking a complete firing sequence where each tran-
sition fires exactly once. The main ideas and results in this paper concern the
composition of high-level net processes. In general the composition of high-level
net processes is not a high-level net process, because the composition may contain
forward and/or backward conflicts and also the partial order might be violated.
Thus we state suitable conditions, so that the composition of high-level processes
leads to a high-level process. We introduce the concept of equivalence of high-level
net processes, where the net structures of these high-level net processes might be
different, but they have especially the same input/output behaviour. Hence their
concurrent computations are compared in the sense that they start and end up with
the same marking, but even corresponding dependent transitions may be fired in a
different order. In this context the main problem solved in this paper is to analyse
the independence of high-level net processes, i.e. under which condition high-level
processes can be composed in any order leading to equivalent processes.

The paper is organised as follows. In Section 2 we exemplarily explain the
concepts and results of this paper using a mobile ad-hoc network in the area of an
university campus. In Section 3 on the one hand we review the notions for high-level
net processes and on the other hand we introduce the new notion of high-level net
processes with instantiations. In Section 4 we present our main results concerning
the composition, equivalence and independence of high-level net processes. Due to
space limitation the definitions and theorems are given on an informal level, while
the details can be found in the Appendix and in [4]. Finally we conclude with
related work and some interesting aspects of future work in Section 5.
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Fig. 1. AHO-net ANCampus

2 Mobile Ad-Hoc Network on University Campus

In this section we introduce a simple example of a wireless network on a university
campus and illustrate thereby the concepts in the following sections. As modeling
technique we use algebraic higher-order (AHO) nets. AHO-nets are Petri nets with
complex tokens, namely place/transition (P/T) nets and rules to support changes
of the network topology. With a specific data type part (see A.1 in the Appendix)
they can be considered as a special case of algebraic high-level nets.

The example models a network, where students can exchange their messages. For
this reason two different locations are represented by the places outside and access
point in the AHO-net ANCampus in Fig. 1. The marking of the AHO-net shows
the distribution of the students at different places. Initially there are two students
outside the campus and three additional students are on the campus represented by
the tokens stud1, stud2 and net1 in Fig. 1. The mobility aspect of the students is
modeled by transitions termed enter and leave in Fig. 1, while the static structure
of the wireless network is changed by rule-based transformations using the rules
cRule and dRule. Moreover the transition communicate realises the well known
token game.

Subsequently we concentrate on the behaviour of the transitions communicate
and connect/disconnect. On the left hand side of Fig. 2 the P/T-net net1 of the
current network is depicted, where two students, represented by the places p3 and
p4, respectively, had established a communication structure to exchange message,
while student p5 is disconnected. The P/T-net net1 is the token on the place access
point in Fig. 1. To start the communication we use the transition communicate of
the AHO-net in Fig. 1. First we give an assignment v1 of the variables n and t in
the environment of this transition and assign the network net1 to the variable n and
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the transition t2 to the variable t. The firing condition checks that the student p4

is able to send a message. This is modeled by an abstract black token on the place
p4. The evaluation of the net inscription fire(n, t) realises the well-known token
game by computing the follower marking of the P/T-net and so we obtain the new
P/T-net net′1 depicted on the right hand side of Fig. 2, where the student p3 has
received the message.

Assume the student p5 wants to enter the network in order to communicate
with the other students. Formally, we apply the rule cRule in Fig. 3 that is a
token on place rules in Fig. 1. In general a rule r = (L ← K → R) is given
by three P/T-nets called left-hand side, interface, and right-hand side respectively
and the application of a rule describes the replacement of the left-hand side by the
right-hand side preserving the interface. The connection between the student p4

and p5 is established by firing the transition connect/disconnect in the AHO-net in
Fig. 1 using the following assignment of the variables n, r and m given in the net
inscriptions of this transition: v′2(n) = net′1, v′2(r) = cRule and v′2(m) = g, where
g is a P/T-net morphism which identifies the left hand side of the rule cRule in
the network net1′. In our case the match g maps p to p4 and p′ to p5. The firing
conditions of the transition connect/disconnect makes sure that on the one hand the
rule is applied to the P/T-net net′1 and on the other hand the rule is applicable with
match g to this P/T-net. Finally we evaluate the term transform(r,m) yielding the
direct transformation leading to the P/T-net net′2 on the right hand side in Fig. 4.
The effect of firing the transition connect/disconnect in the AHO-net in Fig. 1 with
assignments of variables as discussed above is the removal of the P/T-net net′1 from
place access point and adding the P/T-net net′2 to the place access point.

Vice versa student p5 can enter the network net1 by the application of the rule
cRule to the network net1 resulting in the network net2 on the left hand side of Fig.
4 and afterwards students p3 and p4 start their communication leading to net net′2
in Fig. 4. Formally this is achieved by firing the corresponding transitions in the
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Fig. 4. Net tokens after rule application

AHO-net in Fig. 1 in opposite order with suitable variable assignments v2 and v′1.
Summarising, we have explained two different firing sequences of the AHO-net

in Fig. 1. The first one starts with the token firing of net1 leading to the P/T-net
net′1 (see Fig. 2) before student p5 enters the network (see right hand side of Fig. 4).
The second one begins by introducing student p5 into the network net1 resulting in
the network net2 (see left hand side of Fig. 4) before students p3 and p4 exchange
the message (see right hand side of Fig. 4).

As for processes for low-level nets we want to consider now processes for AHL-
nets of which AHO-nets are a special case. These AHL-processes are based on
AHL-occurrence nets. In fact the two firing sequences considered above correspond
to different AHL-occurrence nets. An AHL-occurrence net is similar to a low-level
occurrence net concerning unitarity, conflict freeness, and acyclicity. However, in
contrast to a low-level occurrence net an AHL-occurrence net realises more than
one concurrent computation depending on different initial markings and variable
assignments. So we consider AHL-occurrence nets with a set of initial markings of
the input places and corresponding instantiations of places and transitions by data
and consistent variable assignments, respectively. For details see Section 3.

In our example we get the two AHL-occurrence nets K and K ′ on the left hand
sides of Fig. 5 and Fig. 6 where the initial marking of the input places is given
by the P/T-net net1 and the rule cRule. The corresponding instantiations Linit

and Linit′ on the right hand sides of Fig. 5 and Fig. 6 fix the two different firing
sequences described above. Note that the AHL-occurrence nets K and K ′ have the
same input and output places. But due to the firing of the transitions communicate
and connect/disconnect in opposite order we use the different variable evaluations
v1 and v′2 in Linit and v2 and v′1 in Linit′ . Nevertheless the two different firing
sequences end up with the same marking of the output places where the student
p5 is connected to the other students and the student p3 received the message from
student p4 as depicted in the P/T-net net′2 on the left hand side of Fig. 4. We
show in Section 4 that there are basic AHL-occurrence nets K1 and K2, such that
K and K ′ can be obtained as composition in different order of K1 and K2. This
allows considering the corresponding processes of K and K ′ with instantiations as
equivalent processes of the AHO-net ANCampus in Fig. 1.

3 Algebraic High-Level Net Processes

In this section we review algebraic high-level nets and give a definition of high-
level processes [2,5] based on high-level occurrence nets. Moreover we extend this
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Fig. 5. AHL-occurrence net K with instantiation Linit
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Fig. 6. AHL-occurrence net K′ with instantiation Linit′

definition by a suitable notation of instantiations for each initial marking.
We use the algebraic notion of place/transition nets as in [12]. A place/transition

(P/T) net N = (P, T, pre, post) is given by the set of places P , the set of transitions
T , and two mappings pre, post : T → P⊕, the pre-domain and the post-domain,
where P⊕ is the free commutative monoid over P that can also be considered
as the set of finite multisets over P . Then we use simple homomorphisms that
are generated over the set of places. These morphisms map places to places and
transitions to transitions. A P/T-net morphism f : N1 → N2 between two P/T-nets
N1 and N2 is given by f = (fP , fT ) with functions fP : P1 → P2 and fT : T1 → T2
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Fig. 7. AHL-occurrence net K1 with instantiations Linit1 and Linit′1

preserving the pre-domain as well as the post-domain of a transition. Note that
the extension f⊕P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by f⊕P (

∑n
i=1 ki · pi) =∑n

i=1 ki · fP (pi). Examples of P/T nets with markings are given in Fig. 2 and
Fig. 4.

An algebraic high-level (AHL) net [2,5] is essentially a P/T-net together with a
suitable data type part given by an an algebraic specification and a corresponding
algebra. An AHL-net morphism f : AN1 → AN2 between two AHL-nets AN1 and
AN2 is more or less analogously defined as a P/T-net morphism but in addition
the arc inscriptions and firing conditions have to be preserved (see Def. B.3 in the
Appendix). An example of an AHL-net is given in in Fig. 1, where the AHO-net
ANCampus is a special case of an AHL-net with specific data type part consisting of
P/T-nets and rules as defined in the signature HLRN-System-SIG and algebra A

according to [10] (see Def. A.1 in the Appendix).
Now we introduce high-level occurrence nets and high-level net processes ac-

cording to [2,5], called AHL-occurrence net and AHL-process respectively. The net
structure of a high-level occurrence net (see Def. B.5 in the Appendix) has sim-
ilar properties like a low-level occurrence net. An AHL-occurrence net K is an
AHL-net such that the pre- and post domain of its transitions are sets rather than
multisets and the arc-inscriptions are unary. Moreover there are no forward and
backward conflicts, the partial order given by the flow relation is irreflexive and for
each element in the partial order the set of its predecessors is finite.

In contrast to low-level occurrence nets a high-level occurrence net captures a
set of different concurrent computations due to different initial markings. In fact,
high-level occurrence nets have a set of initial markings for the input places, whereas
there is only one implicit initial marking of the input places for low-level occurrence
nets. The notion of high-level net processes generalises the one of low-level net
processes. An AHL-process of a AHL-net AN is a AHL-net morphism p : K → AN

where K is an AHL-occurrence net described above (see Def. B.6). Examples of
high-level and low-level occurrence nets are given by K and K ′ (resp. Linit and
Linit′) in Fig. 5 and Fig. 6.

Because in general there exist different meaningful markings of an AHL-occur-
rence net K, we extend this notion by a set of initial markings INIT of the input
places of K (see Def. B.7) and a set of corresponding instantiations INS for each
initial marking. An instantiation (see Def. B.11) defines one concurrent execution
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Fig. 8. AHL-occurrence net K2 with instantiations Linit2 and Linit′2

of a marked high-level occurrence net. In more detail an instantiation is a subnet of
the flattening of the AHL-occurrence net corresponding to the initial marking. The
flattening Flat(AN) of an AHL-net AN results in a corresponding low-level net N ,
where the data type part (SP,A) and the firing behaviour of the AHL-net AN is
encoded in the sets of places and transitions of N . Thus the flattening Flat(AN)
leads to an infinite P/T-net N if the algebra A is infinite (see Def. B.8). In contrast
the skeleton Skel(AN) of an AHL-net AN is a low-level net N ′ preserving the
net structure of the AHL-net but dropping the net inscriptions (see Def. B.9).
While there is a bijective correspondence between firing sequences of the AHL-net
and firing sequences of its flattening, each firing of the AHL-net implies a firing
of the skeleton, but not vice versa. In [2,5] it is shown that for a marked AHL-
occurrence net there exists a complete firing sequence if and only if there exists an
instantiation which net structure is isomorphic to the AHL-occurrence net and has
the initial marking of the AHL-occurrence net as input places.

Note that in general for a given initial marking of an AHL-occurrence net there
exists more than one instantiation. Thus different firing sequences result in different
markings of the output places of the AHL-occurrence net. For this reason we fix
exactly one instantiation for a given initial marking, i.e. one concurrent execution
of the marked AHL-occurrence net. Thus an AHL-occurrence net with instantia-
tions KI = (K, INIT, INS) is given by an AHL-occurrence net K, a set of initial
markings INIT and a set of corresponding instantiations INS (see Def. B.12). An
instantiated AHL-process of an AHL-net AN is defined by KI together with an
AHL-net morphism mp : K → AN (see Def. B.13).

As an example the AHL-occurrence net with instantiations KI1 =
(K1, INIT1, INS1) is depicted in Fig. 7 according to the discussion in Section
2. The AHL-occurrence net K1 is the AHL-net on the left hand side of Fig. 7.
There are two different initial markings, i.e the set of initial markings is defined by
INIT1 = {(net1, access point1), (net2, access point1)} and the set of the two instan-
tiations on the right hand side of Fig. 7 by INS1 = {Linit1 , Linit′1

}. The instantiated
AHL-process is the AHL-occurrence net with instantiations KI1 together with the
AHL-net morphism mp1 : K1 → ANCampus. The morphism mp1 consists of the
inclusion of the transition communicate, while the places access point1 and access
point2 are mapped to the place access point of the AHL-net ANCampus in Fig. 1.
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Further examples are given in Fig. 5 and Fig. 6, where we have the AHL-occurrence
net K with one instantiation KI = (K, {init}, {Linit}) and the AHL-occurrence net
K ′ with instantiation KI ′ with corresponding morphisms mp : K → ANCampus and
mp′ : K ′ → ANCampus.

4 Composition, Equivalence and Independence of Al-
gebraic High-Level Net Processes

In this section we define the composition of AHL-occurrence nets and AHL-processes
with instantiations and introduce the concept of equivalence and independence of
high-level net processes. The main result states that two independent high-level
net processes can be composed in any order leading to equivalent high-level net
processes which especially have the same input/output behaviour.

The composition of two AHL-occurrence nets K1 and K2 is defined by merging
some of the output places of K1 with some of the input places of K2, so that the
result of the composition is an AHL-occurrence net. In general this is not necessarily
true, because the result of gluing two high-level occurrence nets may contain forward
and/or backward conflicts and may violate the partial order.

Result 1 (Composition of AHL-Occurrence Nets (see Thm. C.2)) The
composition of two AHL-occurrence nets K1 and K2 given by merging some
of the output places of K1 with some of the input places of K2 results in an
AHL-occurrence net K.

As mentioned above instantiations define one concurrent execution of a marked
AHL-occurrence net. To generalise the composition given above to the composition
of instantiations we have to check that the data elements of the merged output places
of K1 and input places of K2 are coincident in the corresponding instantiations
(see Def. C.3). In this case the composition of some of the instantiations of KI1

with some of the instantiations of KI2 leads to suitable instantiations of the AHL-
occurrence net K that is the result of the composition of the two AHL-occurrence
nets K1 and K2.

The AHL-occurrence net with instantiations KI2 = (K2, INIT2, INS2) is given
in Fig. 8. The sequential composition of K1 (see Fig. 7) and K2 is defined by
merging the output place access point2 of K1 and the input place access point3 of K2

leading to the AHL-occurrence net K (see Fig. 5). The corresponding instantiations
Linit1 in Fig. 7 and Linit′2

in Fig. 8 can be composed analogously to the instantiation
Linit in Fig. 5. Note that Linit1 and Linit′2

are composable, because they have the
same data element net′1 in the input and output place, respectively.

Result 2 (Composition of AHL-Occurrence Nets with Instantiations (see
Thm. C.4)) The composition of two AHL-occurrence nets with instantiations
KI1 = (K1, INIT1, INS1) and KI2 = (K2, INIT2, INS2) with composable K1,K2

and INS1, INS2, respectively, is an AHL-occurrence net with instantiations
KI = (K, INIT, INS), where K is the composition of K1 and K2 and INS is the
corresponding composition of INS1 and INS2. The set of initial markings INIT

is derived by the input places of the instantiations in INS.

9
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Given the two basic AHL-occurrence nets with instantiations KI1 and KI2,
then the composition of KI1 and KI2 results in the AHL-occurrence net with in-
stantiation KI (see Fig. 5), while the opposite composition of KI2 and KI1 is the
AHL-occurrence net with instantiation KI ′ (see Fig. 6).

The following result generalizes the composition to AHL-Processes with instan-
tiations where in addition the AHL-net morphisms have to be taken into account.

Result 3 (Composition of AHL-Processes with Instantiations (see Thm.
C.6)) Let KI1 = (K1, INIT1, INS1) and KI2 = (K2, INIT2, INS2) be two
AHL-occurrence nets, such that KI = (K, INIT, INS) is the result of their
composition. Let KI1 together with the AHL-net morphism mp1 : K1 → AN and
KI2 together with the AHL-net morphism mp2 : K2 → AN be two instantiated
AHL-processes of the AHL-net AN . If the merged output places of K1 and input
places of K2 are mapped by mp1 and mp2 to the same places in AN then there is
one and only one AHL-net morphism mp : K → AN , and KI together with the
AHL-net morphism mp is an instantiated AHL-process of the AHL-net AN .

Because for low-level occurrence nets the input/output behaviour is fixed by
the net structure, two low-level occurrence nets are considered to be equivalent if
they are isormorphic. For high-level occurrence nets the input/output behaviour
additionally depends on the marking of their input places and on corresponding
variable assignments. Hence we introduce the equivalence of two AHL-processes
with instantiations, where the net structures of equivalent AHL-processes may be
different, but they have the same input/output behaviour (see Def. C.7).

In more detail the AHL-occurrence nets have (up to renaming) the same sets
of transitions and places and their instantiations are equivalent, i.e. there exist
corresponding instantiations with the same input/output behaviour. In this case
specific firing sequences of equivalent AHL-processes are comparable in the sense
that they start and end up with the same data elements as marking of their input
places and output places, respectively, but in general the corresponding transitions
may be fired in a different order.

The AHL-processes with instantiations KI = (K, {init}, {Linit}) in Fig. 5 and
KI ′ = (K, {init′}, {Linit′}) in Fig. 6 together with the AHL-net morphisms mp :
K → ANCampus and mp′ : K → ANCampus are equivalent. There is a bijection
between their transitions and places, which is not an isomorphism. The bijection
of places is defined by mapping the input places of K to the input places of K ′

(and analogously the output places) and the place access point23 of KI to the place
access point41 of K. Moreover the instantiations Linit in Fig. 5 and Linit′ in Fig. 6
are equivalent, because they have the same input and output places up to renaming.

The main result in this context are suitable conditions s.t. AHL-net processes
with instantiation can be composed in any order leading to equivalent high-level
net processes. Here we use especially the assumption that the instantiations are
consistent, i.e. there is a close relation between their input and output places (see
Def. C.8). Given the AHL-process with instantiations KI together with mp : K →
AN and KI ′ together with mp′ : K ′ → AN as results of the composition and
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opposite composition of KI1 with mp1 : K1 → AN and KI2 with mp2 : K2 → AN .
Now the question arises if KI with mp and KI ′ with mp′ are equivalent processes
(see Def. C.7).

In order to obtain equivalent processes we check that the instantiations INS1

and INS2 are consistent, i.e. they can be composed in any order leading to instan-
tiations with the same input/output behaviour (see Def. C.8). Thus equivalence of
KI and KI ′ intuitively means that the AHL-processes KI1 and KI2 with consis-
tent instantiations can be considered to be independent, because the composition
in each order leads to equivalent processes.

As an example let KI1 and KI2 be the two instantiated AHL-processes as de-
scribed above. Their sets of instantiations INS1 and INS2 are consistent, because
the composition of the instantiations Linit1 (see Fig. 7) and Linit′2

(see Fig. 8) leads
to the instantiation Linit (see Fig. 5) and the composition of the instantiations
Linit2 and Linit′1

leads to the instantiation Linit′ (see Fig. 6). This leads to the
following main result.

Main Result (Equivalence and Independence of AHL-Processes
(see Thm. C.9)) Given an AHL-net AN and AHL-occurrence nets
KI1 = (K1, INIT1, INS1) and KI2 = (K2, INIT2, INS2), which are com-
posable in both directions, with consistent instantiations and AHL-net morphisms
mp1 : K1 → AN and mp2 : K2 → AN . Then we have instantiated AHL-processes
KI = (K, INIT, INS) with mp : K → AN and KI ′ = (K ′, INIT ′, INS′) with
mp′ : K ′ → AN defined by the composition of KI1 and KI2 in both directions.
Moreover both are equivalent processes of AN , provided that mp1 and mp2 are
compatible with the compositions. Under these conditions KI1 and KI2 are called
independent w.r.t. the given composition in both directions.

Applying this main result to the AHL-net ANCampus in Fig. 1 we have: The
two basic instantiated processes defined by KI1 in Fig. 7 and KI2 in Fig. 8 are
composable with consistent instantiations and the composition in both directions
leads to equivalent instantiated processes defined by KI in Fig. 5 and KI ′ in Fig.
6. Hence the processes defined by KI1 and KI2 are independent.

5 Conclusion and Related Work

In this paper we have presented main results of a line of research concerning the
modeling and analysis of high-level net processes. Based on the notions of high-
level net processes with initial markings in [2,5] we have introduced high-level net
processes with instantiations. As main results we have presented conditions for the
composition and independence of high-level net processes and under these conditions
the composition of two high-level net processes leads again to a high-level net process
and they can be composed in any order leading to equivalent processes. In this case
the two high-level net processes are called independent.

In [8,11] the semantics of object Petri nets is defined by a suitable extension
of low-level processes. Objects Petri nets are high-level nets with P/T-systems as
tokens. A process for an object Petri net is given by a pair of processes, a high-level

11
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net process containing low-level processes of the corresponding P/T-systems. In
contrast the approach presented in this paper extends the notion of high-level net
processes for algebraic high-level nets. The token structure of an algebraic high-
level net is defined in its data type part that is not restricted to P/T-systems and
we also use rules as tokens. For this reason low-level processes of P/T-systems as
tokens are not considered.

Our main result of independence of high-level net processes is inspired by the
results of local Church-Rosser for graph resp. net transformation [15,3], where under
suitable conditions transformation steps can be performed in any order leading to
the same result. In [6] we have transferred these results, so that net transformations
and token firing can be executed in arbitrary order provided that certain conditions
are satisfied. Hence an interesting aspect of future work will be to investigate the
correspondence between these different concepts of independence in more detail to
gain further results for high-level net processes.
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A Appendix

A.1 Signature and Algebra for P/T-Systems and Rules as Tokens

Definition A.1 [HLNR-System-SIG Signature and Algebra]
Given vocabularies T0 and P0, the signature HLNR-System-SIG is given by
HLNR-System-SIG =

sorts: Transitions, P laces,Bool, System, Mor, Rules

opns: tt, ff :→ Bool

enabled : System× Transitions→ Bool

fire : System× Transitions→ System

applicable : Rules×Mor → Bool

transform : Rules×Mor → System

union : System× System→ System

student :→ System

isomorphic : System× System→ Bool

cod : Mor → System

and the HLNR-System-SIG-algebra A for P/T-systems and rules as tokens is given
by

• ATransitions = T0, APlaces = P0, ABool = {true, false},
• ASystem the set of all P/T-systems over T0 and P0, i.e.

ASystem = {PN |PN = (P, T, pre, post, M) P/T-system, P ⊆ P0, T ⊆ T0}
∪ {undef},

• AMor the set of all P/T-morphisms for ASystem, i.e.
AMor = {f |f : PN → PN ′ P/T-morphism with PN,PN ′ ∈ ASystem},

• ARules the set of all rules of P/T-systems, i.e.
ARules = {r|r = (L i1← I

i2→ R) rule of P/T-systems with
strict inclusions i1, i2},

• ttA = true, ff A = false,

• enabledA : ASystem × T0 → {true, false} for PN = (P, T, pre, post, M) with

enabledA(PN, t) =

{
true if t ∈ T, pre(t) ≤M

false else
• fireA : ASystem × T0 → ASystem for PN = (P, T, pre, post, M) with

fireA(PN, t) =


(P, T, pre, post, M 	 pre(t)⊕ post(t))

if enabledA(PN, t) = tt

undef else
• applicableA : ARules ×AMor → {true, false} with

13
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applicableA(r, m) =

{
true if r is applicable at match m

false else
• transformA : ARules ×AMor → ASystem with

transformA(r, m) =

{
H if applicableA(r, m)
undef else

where for L
m→ G and applicableA(r, m) = true we have a direct transformation

G
r=⇒ H,

• unionA : ASystem × ASystem → ASystem the disjoint union (i.e. the two P/T-
systems are combined without interaction) with

unionA(PN1, PN2) = if (PN1 = undef ∨ PN2 = undef) then undef

else ((P1 ] P2), (T1 ] T2), pre3, post3,M1 ⊕M2)

where pre3, post3 : (T1 ] T2)→ (P1 ] P2)⊕ are defined by

pre3(t) = if t ∈ T1 then pre1(t) else pre2(t)

post3(t) = if t ∈ T1 then post1(t) else post2(t)

• studentA : {?} → ASystem with studentA(?) = ({p}, ∅, ∅, ∅),
• isomorphicA : ASystem ×ASystem → {true, false} with

isomorphicA(PN1, PN2) =

{
true if PN1

∼= PN2

false else

where PN1
∼= PN2 means that there is a strict P/T-morphism f = (fP , fT ) :

PN1 → PN2 s.t. fP , fT are bijective functions,
• codA : AMor → ASystem with codA (f : PN1 → PN2) = PN2.

B Algebraic High-Level Net Processes

Definition B.1 [Place/Transition Net] A place/transition (P/T) net N =
(P, T, pre, post) consists of sets P and T of places and transitions respectively, and
pre- and post domain functions pre, post : T → P⊕ where P⊕ is the free commuta-
tive monoid over P .

A P/T-net morphism f : N1 → N2 is given by f = (fP , fT ) with functions
fP : P1 → P2 and fT : T1 → T2 satisfying

f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT

where the extension f⊕P : P⊕
1 → P⊕

2 of fP : P1 → P2 is defined by f⊕P (
∑n

i=1 ki ·pi) =∑n
i=1 ki · fP (pi). A P/T-net morphism f = (fP , fT ) is called injective if fP and fT

are injective and is called isomorphism if fP and fT are bijective.

14
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The category defined by P/T-nets and P/T-net morphisms is denoted by PT-
Net where the composition of P/T-net morphisms is defined componentwise for
places and transitions.

Because the notion of pushouts is essential for our main results we state the con-
struction of pushouts in the category PTNet of place/transition nets. Intuitively
a pushout means the gluing of two nets along an interface net. The construction
is based on the pushouts for the sets of transitions and places in the category
SET. In the category SET of sets and functions the pushout object D for given
f1 : A → B and f2 : A → C is defined by the quotient set D = B ] C/ ≡,

short D = B ◦A C, where B ] C is the disjoint union of B and C and ≡ is the
equivalence relation generated by f1(a) ≡ f2(a) for all a ∈ A. In fact, D can be
interpreted as the gluing of B and C along A: Starting with the disjoint union
B ] C we glue together the elements f1(a) ∈ B and f2(a) ∈ C for each a ∈ A.
The pushout object N3 in the category PTNet is constructed componentwise

N0

f2

��

f1 //

(PO)

N1

f ′
1

��
N2 f ′

2

// N3

for transitions and places in SET with corresponding pre- and
post domain functions. For given P/T-net morphisms f1 : N0 →
N1 and f2 : N0 → N2 the pushout of f1 and f2 is defined
by the pushout diagram (PO) in PTNet and is denoted by
N3 = N1 ◦(N0,f1,f2) N2.

Definition B.2 [Pushouts of Place/Transition Nets] Given
P/T-net morphisms f1 : N0 → N1 and f2 : N0 → N2 then the pushout diagram (1)
and the pushout object N3 in the category PTNet, written N3 = N1 ◦(N0,f1,f2) N2,
with Nx = (Px, Tx, prex, postx) for x = 0, 1, 2, 3 is constructed as follows:

• T3 = T1 ◦T0 T2 with f ′1,T and f ′2,T as pushout (2) of f1,T and f2,T in SET.
• P3 = P1 ◦P0 P2 with f ′1,P and f ′2,P as pushout (3) of f1,P and f2,P in SET

• pre3(t) =

{
[pre1(t1)] ; if f ′1,T (t1) = t

[pre2(t2)] ; if f ′2,T (t2) = t

• post3(t) =

{
[post1(t1)] ; if f ′1,T (t1) = t

[post2(t2)] ; if f ′2,T (t2) = t

N0

f2

��

f1 //

(1)

N1

f ′
1

��

T0

f2,T

��

f1,T //

(2)

T1

f ′
1,T

��

P0

f2,P

��

f1,P //

(3)

P1

f ′
1,P

��
N2 f ′

2

// N3 T2 f ′
2,T

// T3 P2 f ′
2,P

// P3

Definition B.3 [Algebraic High-Level Net] An algebraic high-level (AHL) net
AN = (SP, P, T, pre, post, cond, type, A) consists of

• an algebraic specification SP = (Σ, E;X) with signature Σ = (S, OP ), equations
E, and additional variables X;

• a set of places P and a set of transitions T ;
• pre- and post domain functions pre, post : T → (TΣ(X)⊗ P )⊕;
• firing conditions cond : T → Pfin(Eqns(Σ; X));
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• a type of places type : P → S and
• a (Σ, E)-algebra A

where the signature Σ = (S, OP ) consists of sorts S and operation symbols OP ,
TΣ(X) is the set of terms with variables over X, (TΣ(X) ⊗ P ) = {(term, p)|term
∈ TΣ(X)type(p), p ∈ P} and Eqns(Σ; X) are all equations over the signature Σ with
variables X.

An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT ) with functions
fP : P1 → P2 and fT : T1 → T2 satisfying

(1) (id⊗ fP )⊕ ◦ pre1 = pre2 ◦ fT and (id⊗ fP )⊕ ◦ post1 = post2 ◦ fT ,

(2) cond2 ◦ fT = cond1 and

(3) type2 ◦ fP = type1.

The category defined by AHL-nets and AHL-net morphisms is denoted by
AHLNet where the composition of AHL-net morphisms is defined componentwise
for places and transitions.

In the following we omit the indices of functions fP and fT if no confusion arises.
The construction of pushouts in the category AHLNet of AHL-nets with fixed

specification SP and algebra A can be analogously defined to the construction of
pushouts in PTNet described above (for details see [3]).

Definition B.4 [Firing Behaviour of AHL-Nets] A marking of an AHL-net AN is
given by M ∈ CP⊕ where CP = (A⊗ P ) = {(a, p)|a ∈ Atype(p), p ∈ P}.

The set of variables V ar(t) ⊆ X of a transition t ∈ T are the variables of the net
inscriptions in pre(t), post(t) and cond(t). Let v : V ar(t)→ A be a variable assign-
ment with term evaluation v] : TΣ(V ar(t))→ A, then (t, v) is a consistent transition
assignment iff condAN (t) is validated in A under v. The set CT of consistent transi-
tion assignments is defined by CT = {(t, v)|(t, v) consistent transition assignment}.

A transition t ∈ T is enabled in M under v iff (t, v) ∈ CT and preA(t, v) ≤ M ,
where preA : CT → CP⊕ defined by preA(t, v) =

∑n
i=1(v

](termi, pi) for pre(t) =∑n
i=1(termi, pi) and places (similar postA : CT → CP⊕). Then the follower mark-

ing is computed by M ′ = M 	 preA(t, v)⊕ postA(t, v).

Definition B.5 [AHL-Occurrence Net] An AHL-occurrence net K is an AHL -
net K = (SP, P, T, pre, post, cond, type,A) such that for all t ∈ T with pre(t) =∑n

i=1(termi, pi) and notation •t = {p1, . . . , pn} and similarly t• we have

(i) (Unarity): •t, t• are sets rather than multisets for all t ∈ T , i.e. for •t the
places p1 . . . pn are pairwise distinct. Hence | • t| = n and the arc from pi to t

has a unary arc-inscription termi.

(ii) (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′

(iii) (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′

(iv) (Partial Order): the causal relation <⊆ (P × T ) ∪ (T × P ) defined by the
transitive closure of {(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•} is
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a finitary strict partial order, i.e. the partial order is irreflexive and for each
element in the partial order the set of its predecessors is finite.

Definition B.6 [AHL-Process] An AHL-process of an AHL-net AN is an AHL-net
morphism p : K → AN where K is an AHL-occurrence net.

Definition B.7 [AHL-Occurrence Net with Initial Markings] An AHL-occurrence
net with initial markings (K, INIT ) consists of an AHL-occurrence net K and a
set INIT of initial markings init ∈ INIT of the input places IN(K), where the
input places of K are defined by IN(K) = {p ∈ P |•p = ∅} and similarly the output
places of K are defined by OUT (K) = {p ∈ P |p• = ∅}.

Definition B.8 [Flattening] Given AHL-net AN as above then the flattening of
AN is a P/T-net Flat(AN) = N = (CP,CT, preA, postA) with

• CP = A⊗ P = {(a, p)|a ∈ Atype(p), p ∈ P},
• CT = {(t, v)|t ∈ T, v : V ar(t)→ A s.t. cond(t) valid in A under v } and
• preA and postA as defined in Def. B.4.

Given an AHL-net morphism f : AN1 → AN2 by f = (fP , fT ) then Flat(f) =
(idA ⊗ fP : CP1 → CP2, fC : CT1 → CT2) is given by idA ⊗ fP (a, p) = (a, fp(p))
and fC(t, v) = (fT (t), v).

Definition B.9 [Skeleton] Given an AHL-net AN as above then the skeleton of AN

is a P/T-net Skel(AN) = (P, T, preS , postS) with preS(t) =
∑n

i=1 pi for pre(t) =∑n
i=1(termi, pi) and similar for postS : T → P⊕. Given an AHL-net morphism

f : AN1 → AN2 by f = (fP , fT ) then Skel(f) = f = (fP : P1 → P2, fT : T1 → T2).

Remark B.10 The flattening construction defined in Def. B.8 and the skeleton
construction defined in Def. B.9 are well-defined and can be turned into a functor
Flat : AHLNet → PTNet and a functor Skel : AHLNet → PTNet which
preserve pushouts, i.e. given the pushout (1) in AHLNet then there are cor-
responding pushouts (2) and (3) in PTNet. Moreover we have for each AN a
projection proj(AN) : Flat(AN)→ Skel(AN) leading to a natural transformation
proj : Flat→ Skel.

AN0
f1 //

f2

��
(1)

AN1

f ′
1

��
AN2 f ′

2

// AN3

Flat(AN0)
Flat(f1)//

Flat(f2)

��
(2)

Flat(AN1)

Flat(f ′
1)

��

Skel(AN0)
Skel(f1)//

Skel(f2)

��
(3)

Skel(AN1)

Skel(f ′
1)

��
Flat(AN2)Flat(f ′

2)
// Flat(AN3) Skel(AN2)Skel(f ′

2)
// Skel(AN3)

Definition B.11 [Instantiations of AHL-Occurrence Net] Given an AHL-
occurrence net with initial markings (K, INIT ) with init ∈ INIT . An instan-
tiation Linit of (K, init) is a low-level occurrence net Linit ⊆ Flat(K) with input
places IN(Linit) = init such that the projection proj : Linit → Skel(K) defined by
projP (a, p) = p and projT (t, v) = t is an isomorphism of low-level occurrence nets.
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Definition B.12 [AHL-Occurrence Net with Instantiations] An AHL-occurrence
net with instantiations KI = (K, INIT, INS) is an AHL-occurrence net with initial
markings (K, INIT ) and a set INS of instantiations, such that for each init ∈
INIT we have a distinguished instantiation Linit ∈ INS, i.e. INS = {Linit|init ∈
INIT}.

An AHL-occurrence net with instantiations KI defines for each init ∈ INIT

with IN(Linit) = init an output out = OUT (Linit) with projP (out) = OUT (K).
Let EXIT be the set of all markings of the output places OUT (K), then we obtain
a function inout : INIT → EXIT by inout(init) = OUT (Linit).

Definition B.13 [AHL-Process with Instantiations] An instantiated AHL-process
of an AHL-net AN is an AHL-occurrence net with instantiations KI =
(K, INIT, INS) together with an AHL-net morphism mp : K → AN .

C Composition, Equivalence and Independence of Al-
gebraic High-Level Net Processes

Definition C.1 [Composability of AHL-Occurrence Nets] Given the AHL-
occurrence nets Kx = (SP, Px, Tx, prex, postx, condx, typex, A) for x = 1, 2 and
I = (SP, PI , TI , preI , postI , condI , typeI , A) with TI = ∅ and two injective AHL-
net morphisms i1 : I → K1 and i2 : I → K2. Then (K1,K2) is composable
w.r.t. (I, i1, i2) if i1(PI) ⊆ OUT (K1) and i2(PI) ⊆ IN(K2).

Theorem C.2 (Composition of AHL-Occurrence Nets) Given the AHL- oc-
currence nets K1,K2 and I as above and two injective AHL-net morphisms
i1 : I → K1 and i2 : I → K2 such that (K1,K2) is com-
posable w.r.t. (I, i1, i2). Then the pushout digram (PO) ex-
ists in the category AHLNet and the pushout object K, with
K = K1 ◦(I,i1,i2) K2, is an AHL-occurrence net and is called
composition of (K1,K2) w.r.t. (I, i1, i2).

I
i1 //

i2
��

(PO)

K1

i′1
��

K2 i′2

// K

Proof (Sketch) For the existence and construction of pushouts in AHLNet we
refer to [3]. As mentioned in Section 3 it can be constructed componentwise similar
to pushouts in PTNet. It remains to show that the result of the composition
of (K1,K2) w.r.t. (I, i1, i2) given by K = (SP, P, T, pre, post, cond, type,A) is an
occurrence net indeed:

(i) Unarity: is obtained as the set of transitions T is obtained by disjoint union.

(ii) No forward conflicts: Since AHL-net morphisms preserve the adjacencies of
transitions (i.e. pre and post domain), in case of t1 6= t2 and p ∈ •t1 ∩ •t2
for t1, t2 ∈ T both transitions have a preimage in T1 and T2, respectively.
Moreover, p has a preimage in both P1 and P2, so one of the preimages is in
the corresponding OUT set. But this contradicts the fact that this place has
to be in the preset of the corresponding transition.

(iii) No backward conflicts: Analogously.

(iv) Partial Order: follows from the partial order of K1 and K2 and from the
composability condition.
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2

Definition C.3 [Composition of Instantiations] Given the AHL-occurrence nets
K1,K2 and I as above and two injective AHL-net morphism i1 : I → K1 and
i2 : I → K2 such that (K1,K2) is composable w.r.t. (I, i1, i2). Let KIx =
(Kx, INITx, INSx) for x = 1, 2 be two AHL-occurrence nets with instantiations and
Linit1 ∈ INS1 and Linit2 ∈ INS2. Then (Linit1 , Linit2) is composable w.r.t. (I, i1, i2)
if for all (a, p) ∈ Atype(p) ⊗ PI : (a, i1(p)) ∈ OUT (Linit1)⇒ (a, i2(p)) ∈ IN(Linit2).

From (I, i1, i2) we construct the induced instantiation interface (J, j1, j2) of
(Linit1 , Linit2) with J = (PJ , TJ , preJ , postJ) by
• PJ = {(a, p)|(a, i1(p)) ∈ OUT (Linit1)},
• TJ = ∅,
• preJ = postJ = ∅ (the empty function) and
• jx : J → Linitx for x = 1, 2 defined by

jx,P = idA ⊗ ix,P and jx,T = ∅.

J
j1 //

j2
��

(PO)

Linit1

j′
1

��
Linit2 j′

2

// Linit

The composition of (Linit1 , Linit2) w.r.t. the instantiation interface (J, j1, j2) in-
duced by (I, i1, i2) is defined by the pushout diagram (PO) in PTNet and is denoted
by Linit = Linit1 ◦(J,j1,j2) Linit2 .

Theorem C.4 (Composition of AHL-Occurrence Nets with Instantiations)
Given the AHL-occurrence nets K1,K2 and I as above and two injective AHL-net
morphism i1 : I → K1 and i2 : I → K2 such that (K1,K2) is composable
w.r.t. (I, i1, i2). Let KIx = (Kx, INITx, INSx) for x = 1, 2 be two AHL-occurrence
nets with instantiations. Then the composition of (KI1,KI2) w.r.t. (I, i1, i2) is
defined by KI = (K, INIT, INS) with

• K = K1 ◦(I,i1,i2) K2,
• INS = {Linit1 ◦(J,j1,j2) Linit2 |Linitx ∈ INSx for x = 1, 2, (Linit1 , Linit2)

is composable w.r.t. (J, j1, j2) induced by (I, i1, i2)},
• and INIT = {IN(Linit)|Linit ∈ INS}

and KI = KI1 ◦(I,i1,i2) KI2 is an AHL-occurrence net with instantiations.

Proof (Sketch) To prove that KI = (K, INIT, INS) is well-defined, first note
that K is an occurrence net due to Theorem C.2. Moreover, for each Linit ∈ INS we
need to show Linit ⊆ Flat(K) and in◦proj(K) : Linit → Skel(K) is an isomorphism
in the diagram below where we have the following pushouts: (PO1) by construction,
(PO2) since Flat preserves pushout K = K1 ◦I K2 and (PO3) since Skel preserves
pushout K = K1 ◦I K2.

proj(I), proj(K1), proj(K2) and proj(K) are projections from the flattening to
the skeleton construction (see Remark B.10) and inI , in1, in2 are inclusions where
J ⊆ Flat(I) = (A⊗ P, ∅, ∅, ∅) and in is induced by (PO1).
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Linit1 in1 //

��1
11

11
11

11
(PB)

Flat(K1) proj(K1) //

��9
99

99
99

99
Skel(K1)

��9
99

99
99

99

J inI
//

j1
77oooooooo

j2

��,
,,

,,
,,

,
(PO1)

Flat(I) proj(K1) //
Flat(i1)iii

44ii

Flat(i2)

88
88

88
8

��88

(PO2)

Skel(I)

44iiiiiiiiii

��9
99

99
99

99
(PO3)

Linit in // Flat(K) proj(K) // Skel(K)

Linit2 in2 //

66mmmmmmm
Flat(K2) proj(K2) //

44iiiiiiiii
Skel(K2)

44iiiiiiiii

Since proj(I)◦ inI can be shown to be an isomorphism (using that J is pullback
of Flat(i1) and in1) and proj(Kx)◦inx are by assumption isomorphisms for x = 1, 2,
we conclude that proj(K) ◦ in is isomorphic as well. Hence in is injective and can
be chosen to be an inclusion in : Linit → Flat(K).

2

Definition C.5 [Composability of AHL-Processes with Instantiations] Given the
AHL-occurrence nets K1,K2 and I as above and two injective AHL-net morphism
i1 : I → K1 and i2 : I → K2. Let KIx = (Kx, INITx, INSx) together with
the AHL-net morphisms mpx : Kx → AN for x = 1, 2 be two instantiated AHL-
processes of the AHL-net AN . Then (mp1,mp2) is composable w.r.t. (I, i1, i2) if

(i) (K1,K2) is composable w.r.t. (I, i1, i2) and

(ii) mp1 ◦ i1 = mp2 ◦ i2.

Theorem C.6 (Composition of AHL-Processes with Instantiations)
Given the AHL-occurrence nets K1,K2 and I as above and two injective AHL-net
morphism i1 : I → K1 and i2 : I → K2. Let KIx =
(Kx, INITx, INSx) together with the AHL-net morphisms
mpx : Kx → AN for x = 1, 2 be two instantiated AHL-
processes of the AHL-net AN such that (mp1,mp2) is
composable w.r.t. (I, i1, i2). Then the instantiated AHL-
occurrence net KI = KI1 ◦(I,i1,i2) KI2 together with the
induced AHL-net morphism mp : K → AN is an instanti-
ated AHL-process of the AHL-net AN , where K is the AHL-
occurrence net of KI.

I
i1 //

i2
��

(PO)

K1

i′1�� mp1

��

K2 i′2

//

mp2 ,,

K

mp
EEE

E

""EEE
E

AN

Proof (Sketch) Due to Def. C.5 , Thm. C.4 and the universal property of pushouts
there is the morphism mp : K → AN , that uniquely commutes mp1 = i′1 ◦mp and
mp2 = i′2 ◦mp. 2

Definition C.7 [Equivalence of AHL-Processes with Instantiations] Let KI =
(K, INIT, INS) and KI ′ = (K ′, INIT ′, INS′) together with AHL-net morphisms
mp : K → AN and mp′ : K ′ → AN two AHL-processes of an AHL-net AN . Then
these two processes are called equivalent if

(i) there are bijections eP : PK → PK′ and eT : TK → TK′ such the following
diagram commutes componentwise

K

mp ''

eT
//

eP //

=

K ′

mp′ww
AN

(ii) and the instantiations are equivalent, i.e. for each Linit ∈ INS there exists a
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Linit′ ∈ INS′ and vice versa such that

∀(a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ IN(Linit)⇔ (a, eP (p)) ∈ IN(Linit′) and

(a, p) ∈ OUT (Linit)⇔ (a, eP (p)) ∈ OUT (Linit′)

Definition C.8 [Consistency of Instantiations] Given AHL-occurrence nets K1,K2

and I as in Def. C.1 and injective AHL-net morphism i1 : I → K1, i2 : I → K2,
i3 : I → K1 and i4 : I → K2 such that (K1,K2) is composable w.r.t. (I, i1, i2) and
(K2,K1) is composable w.r.t. (I, i4, i3) with pushout (1) and (2), respectively. More-
over let KIx = (Kx, INITx, INSx) be AHL-occurrence nets with instantiations for
Kx (x = 1, 2).

Then (INS1, INS2) is called consistent if for all composable (Linit1 , Linit2) ∈
INS1× INS2 w.r.t. (J, j1, j2) induced by (I, i1, i2) with pushout (3) there are com-
posable (Linit′2

, Linit′1
) ∈ INS2 × INS1 w.r.t. (J, j4, j3) induced by (I, i4, i3) with

pushout (4) and vice versa, s.t. in both cases the instantiations satisfy the following
properties 1.-4. for gluing points GP defined below:

1. IN(Linitx) \GP (Linitx) = IN(Linit′x) \GP (Linit′x) and

2. OUT (Linitx) \GP (Linitx) = OUT (Linit′x) \GP (Linit′x) for x = 1, 2

Moreover we require for all (a, p) ∈ Atype(p) ⊗ PI :

3. (a, i3(p)) ∈ IN(Linit1)⇔ (a, i2(p)) ∈ IN(Linit′2
)

4. (a, i1(p)) ∈ OUT (Linit′1
)⇔ (a, i4(p)) ∈ OUT (Linit2)

The gluing points GP are defined by

• GP (PK1) = i1(PI) ∪ i3(PI), GP (PK2) = i2(PI) ∪ i4(PI),
• GP (Linitx) = {(a, p) ∈ Linitx |p ∈ GP (PKx)} and
• GP (Linit′x) = {(a, p) ∈ Linit′x |p ∈ GP (PKx)} for x = 1, 2.

I
i1 //

i2

��
(1)

K1

i′1
��

I
i4 //

i3

��
(2)

K2

i′4
��

J
j1 //

j2

��
(3)

Linit1

j′
1

��

J
j4 //

j3
��

(4)

Linit′2

j′
4

��
K2 i′2

// K K1 i′3

// K ′ Linit2 j′
2

// Linit Linit′1 j′
3

// Linit′

Theorem C.9 (Equivalence and Independence of AHL-Processes) Given
an AHL-net AN and AHL-occurrence nets KIx = (Kx, INITx, INSx) with
consistent instantiations as in Def. C.8 with AHL-net morphisms mpx : Kx → AN

for x = 1, 2.
Then we have instantiated AHL-processes KI = (K, INIT, INS) with mp :

K → AN and KI ′ = (K ′, INIT ′, INS′) with mp′ : K ′ → AN defined by opposite
compositions KI = KI1 ◦(I,i1,i2) KI2 and KI ′ = KI2 ◦(I,i4,i3) KI1 and both are
equivalent processes of AN , provided that

(i) K1 and K2 have no isolated places, i.e. IN(Kx) ∩OUT (Kx) = ∅ for x = 1, 2

(ii) mp1 and mp2 are compatible with i1, i2, i3 and i4, i.e. mp1 ◦ i1 = mp2 ◦ i2 =
mp1 ◦ i3 = mp2 ◦ i4 : I → AN .

Under these conditions KI1 and KI2 wrt. i1 and i2 are called independent.
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Proof (Sketch) The instantiated AHL-processes KI and KI ′ with mp : K → AN

and mp′ : K ′ → AN exist by Theorem C.6. It remains to show that they are
equivalent.
Construction of bijections. The bijection eT : TK → TK′ follows from the fact that
IT = ∅ and hence TK

∼= TK1 ] TK2 and TK′ ∼= TK2 ] TK1 . In order to obtain
the bijection eP : PK → PK′ we show that PK and PK′ can be represented by
the following disjoint unions of gluing points GP and non gluing points NGP in
pushout (1) and (2) in Def. C.8.

PK = GP1(PK) ∪GP2(PK) ∪GP3(PK) ∪NGP (PK) with

GP1(PK) = i′1 ◦ i3(PI), GP2(PK) = i′2 ◦ i4(PI) and GP3(PK) = i′1 ◦ i1(PI)

PK′ = GP1(PK′) ∪GP2(PK′) ∪GP3(PK′) ∪NGP (PK′) with

GP1(PK′) = i′4 ◦ i2(PI), GP2(PK′) = i′3 ◦ i1(PI) and GP3(PK′) = i′3 ◦ i3(PI)

This allows to define ePx : GPx(PK)→ GPx(PK′) for x = 1, 2, 3 by eP1(i
′
1 ◦ i3(p)) =

i′4 ◦ i2(p) for all p ∈ PI and similar for eP2 and eP3 . Since i′1, i3, i
′
4, and i2 are all

injective eP1 is bijective and similar also eP2 and eP3 are bijective.
Finally also eP4 : NGP (PK) → NGP (PK′) can be defined as bijection. Using

IN(Kx)∩OUT (Kx) = ∅ for x = 1, 2 it can be shown that PK (and similar PK′) is a
disjoint union of all four components leading to a bijection eP = eP1∪eP2∪eP3∪eP4 :
PK → PK′ . With these definitions it can be shown explicitly that the diagram in
Def. C.7 commutes componentwise.

Equivalence of instantiations. Given Linit = Linit1 ◦(J,j1,j2) Linit2 with pushout
(3) in Def. C.8 we have by consistency of (INS1, INS2) Linit′ = Linit′2

◦(J,j4,j3)

Linit′1
with pushout (4) s.t. properties 1.-4. in Def. C.8 are satisfied. This allows

to show by case distinction using the definition of eP above that we have for all
(a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ IN(Linit) ⇔ (a, eP (p)) ∈ IN(Linit′) and (a, p) ∈
OUT (Linit)⇔ (a, eP (p)) ∈ OUT (Linit′).

The opposite direction, where Linit′ = Linit′2
◦(J,j4,j3) Linit′1

is given with pushout
(4), follows by symmetry.

2
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