
Petri Net Transformations

Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg,
Claudia Ermel, Ulrike Prange, Enrico Biermann, Tony Modica

Institute for Software Technology and Theoretical Computer Science
Technical University of Berlin, Germany

August 14, 2007

1 Introduction

Modelling the adaption of a system to a changing environment gets more and
more important. Application areas cover e.g. computer supported cooperative
work, multi agent systems, dynamic process mining or mobile networks. One ap-
proach to combine formal modelling of dynamic systems and controlled model
adaption are Petri net transformations. The main idea behind net transforma-
tion is the stepwise development of place/transition nets by given rules. Think
of these rules as replacement systems where the left-hand side is replaced by
the right-hand side while preserving a context. This approach increases the ex-
pressiveness of Petri nets and allows in addition to the well known token game
a formal description of structural changes.
The chapter is structured as follows: We start with a general overview of net
transformations [25, 30, 7, 10] in Section 2.
In Section 3, we illustrate the rule-based refinement of place/transition nets
in terms of a case study in the area of an emergency scenario [4]. The case
study shows how to use Petri net transformations as refinement concept and
demonstrates the compatibility of net refinement and net composition which
indicate the relevance of Petri net transformations for software engineering.
In Section 4, we present precise definitions of basic notions concerning Petri net
transformations in the case of place/transition nets. The union theorem shows
the compatibility of net transformations with the union of nets via a common
interface provided that the net transformations are preserving this interface.
Furthermore, results for high-level nets are also briefly discussed at the end
of Section 4. In the conclusion we discuss how tools for graph transformation
systems can also be used for Petri net transformations.

1



2 General Overview of Net Transformations

The main idea of net transformations is the rule-based modification of nets where
each application of a rule leads to a net transformation step. While the well-
known token game of Petri nets does not change the net structure, the concept
of Petri net transformations is a rule-based approach for dynamic changes of the
net structure of Petri nets. Since Petri nets can be considered as bipartite graphs
the concept of graph transformations can be applied to define transformations
of Petri nets. In the following we give a general overview of graph and net
transformations, for more details see [30, 8, 12, 7, 14].
The research area of graph transformation is a discipline of computer science
which dates back to the early seventies. Methods, techniques, and results from
the area of graph transformation have already been studied and applied in many
fields of computer science such as formal language theory, pattern recognition
and generation, compiler construction, software engineering, concurrent and dis-
tributed systems modelling, database design and theory, logical and functional
programming, AI, visual modelling, etc. Graph transformation has at least three
different roots, namely from Chomsky grammars on strings to graph grammars,
from term rewriting to graph rewriting, and from textual description to visual
modelling.
Computing by graph transformation is a fundamental concept for programming,
specification, concurrency, distribution, and visual modelling. A state of the art
report for applications, languages and tools for graph transformation on the
one hand and for concurrency, parallelism and distribution on the other hand is
given in volumes 2 and 3 of the Handbook of Graph Grammars and Computing
by Graph Transformation [8] and [12]. In our paper [14], we have presented a
comprehensive presentation of graph and net transformations and their rela-
tion. Petri net transformations can also be realized for algebraic high-level nets
[25], which is a high-level net concept integrating algebraic specifications with
place/transition nets.
In contrast to most applications of the graph transformation approach, where
graphs denote states of a system, and rules and transformations describe state
changes and the dynamic behavior of systems, in the area of Petri nets we use
rules and hence transformations to represent stepwise modification of nets. This
kind of transformation for Petri nets is considered to be a vertical structuring
technique, known as rule-based net transformation. Basically, a rule (or pro-
duction) p = (L,R) is a pair of graphs (or nets) called left-hand side L and
right-hand side R. Applying the rule p = (L, R) means to find a match of L in
the source graph (or net) and to replace L by R. In order to replace L by R we
need to connect R with the context leading to the target graph (respectively
the target net) of the transformation.
The well-known argument in favour of formal techniques, to have precise notions
and rigid mathematical results, clearly holds for this approach as well. Moreover,
we have already investigated net transformations in high-level Petri net classes
(see Subsection 4.6) that are even more suitable for system modelling than the
place/transition nets in our example. The impact for system development is

2



founded in what results from net transformations:

• Stepwise Development of Models: The model of a complex software sys-
tem may reach a size that is difficult to handle and may compromise the
advantages of the (formal) model severely. The one main counter meas-
ure is breaking down the model into sub-models, the other is to develop
the model top-down. In top-down development the first model is a very
abstract view of the system and step by step more modelling details and
functionality are added. In general, however, this results in a chain of
models, that are strongly related by their intuitive meaning, but not on
a formal basis. Petri net transformations fill this gap by supporting the
formal step-by-step development of a model. Rules describe the required
changes of a model and their applications yield the transformations of
the model. Moreover, the representation of changes in a visual way using
rules and transformations is very intuitive and does not require a deeper
knowledge of the theory.

• Distributed Development of Models: Decomposing a large model is an im-
portant technique for the development of complex models. To combine
the advantages of a horizontal structuring with the advantages of step-by-
step development, vertical structuring techniques for ensuring the consist-
ency of the composed model are required. Then a distributed step-by-step
development is available that allows the independent development of sub-
models. The theory of net transformation comprises horizontal structuring
techniques and ensures compatibility between these and the transforma-
tions. In Subsection 4.4 we introduce the union construction for the de-
composition, and the union theorem in Subsection 4.5 allows to develop
the subnets independently of each other. The theory allows complex com-
positions and decompositions, where the independence of the sub-models
is essential. So, the formal foundation for the distributed development of
complex models is given.

• Incremental Verification: Pure modification of Petri nets is often not suf-
ficient, since the net has some desired properties that have to be ensured
during further development. Verification of each intermediate model re-
quires a lot of effort and hence is cost intensive. But refinement can be
considered as the modification of nets preserving desired properties. Hence
the verification of properties is only required for the net where they can
be first expressed. In this way properties are introduced into the devel-
opment process and are preserved from then on. Rule-based refinement
modifies Petri nets using rules and transformations so that specific system
properties are preserved. For a brief discussion see Subsection 4.6.

• Foundation for Tool Support: A further advantage is the formal founda-
tion of rule-based refinement and/or rule-based modification for the imple-
mentation of tool support. Due to the theory of Petri net transformations
we have a precise description how rules and transformations work on Petri

3



nets. Tool support is the main precondition for the practical use. The user
should get tool support for defining and applying rules. The tool should
assist the choice as well as the execution of rules and transformations.

• Variations of the Development Process: Another application area, where
transformations are very useful, concerns variations in the development
process. Often a development is not entirely unique, but variations of the
same development process lead to variations in the desired models and
resulting systems. These variations can be expressed by different rules
yielding different transformations, that are used during the step-by-step
development.

3 Emergency Scenario Case Study

In this section we illustrate the main idea of net transformations by a case
study of a pipeline emergency scenario where an unknown source of a natural
gas leak is detected in a residential area1: A postal worker delivering mail in a
residential street smells a strong odor of gas. She immediately notifies the fire
department. A single engine company is dispatched by the fire department with
four firefighters led by one company officer. At the scene, the postal worker meets
the company officer and describes the problem. He calls the gas company and
requests additional law enforcement officers to control traffic into the area. While
three firefighters evacuate the homes in the immediate area and afterwards deny
entry to this area, the forth one reads the gas indicator and detects that the gas
is highest in front of a home located on 114 Maple Street. After electricity and
gas lines are shut off to each home the fire department people stand by with
fully charged hose lines and wait for the arrival of the gas company.
The cooperative process enacted by the firefighter company is depicted as Petri
net PN1 in Fig. 1. This Petri net is decomposed into five parts corresponding
to the team members described above, and in addition start as well as end
activities. The union describes the gluing of the subnets along the interface
given by the post domain places of transition Start (respectively pre domain
places of transition End).
In this case the interface net consists of places only, so that the union corresponds
to the usual place fusion of nets. But the general union construction allows
having arbitrary subnets as interfaces.
In the following we show how Petri net transformations can be used in the case
study before we present the basic concepts in Section 4. The three firefighters
responsible for the evacuation process need more detailed information how to
proceed. So the company officer gives the instruction that first of all the resid-
ents shall be notified of the evacuation. Afterwards the firefighters shall assist
handicapped persons and guide all of them to the extent possible. To introduce
the refinement of the Evacuate homes-transition into the Petri net PN1 we
provide the rule revacuate depicted in the upper row of Fig. 2.

1www.pipelineemergencies.com

4



Read the

Deny entry Identify the location
gas is highest

Shut off electricity
and gas lines

Call the gas company

Request to control
traffic into the area

Evacuate homes in
the immediate area

Firefighters 1−3 Firefighter 4Officer

Start

End

gas indicator

Figure 1: Petri Net PN1

We show explicitly the direct transformation with rule revacuate from Firefight-
ers 1-3 (see Fig. 1) to Firefighters 1-3′ in Fig. 2. The application of the rule
is given as follows: the match morphism m is given by the obvious inclusion
and identifies the relevant parts of the left hand side L1 of rule revacuate in
Firefighter 1-3. In the first step we delete from Firefighter 1-3 the Evacuate
homes-transition and adjacent edges, but we preserve all places of L1, because
they are also in K1 and R1, leading to the context net C in Fig. 2. In the second
step we glue together C and R1 via K1 by adding the transitions Notify resid-
ents, Assist handicapped persons and Guide persons together with their (new)
environment to the context net C leading to Firefighters 1-3′ in Fig. 2. Thus
we obtain the direct transformation Firefighters 1-3 revacuate=⇒ Firefighters
1-3′.
Since the rule revacuate and the direct transformation are preserving the interface
of the corresponding union in Fig. 1, the interfaces are still available and can
be used to construct a resulting net. The union theorem in Section 4 makes
sure that this construction leads to the same result as if we would have applied
the rule revacuate to the entire net PN1 in Fig. 1. This is a typical example for
compatibility of horizontal structuring (union) with vertical refinement (rule-
based transformation).
After the problem identification the odor of gas grows stronger and the firefighter
takes an additional reading of the gas indicator and informs the company officer

5



the extent possible

the immediate area
Evacuate homes in

L1

the immediate area
Evacuate homes in

Deny entry Deny entry

C

Notify residents
of the evacuation

Deny entry

Notify residents
of the evacuation

Firefighters 1−3

K1 R1

Assist handicapped
persons

Guide persons to
the extent possible

Firefighters 1−3’

Assist handicapped
persons

Guide persons to

Figure 2: Direct transformation Firefighters 1-3 revacuate=⇒ Firefighters 1-3′

6



of the gas indicator

Shut off electricity
and gas lines

Analyse resultsShut off electricity
and gas lines

R2L2 K2

Additional reading

Figure 3: Rule ranalyse

resources

Expand the area
of evacuation

R3K3L3

Call for additional 

Figure 4: Rule rexpand

about the result, so that the company officer is able to determine if the atmo-
sphere in the area is safe, unsafe, or dangerous. To extend our process by these
additional activities we use the rule ranalyse in Fig. 3.
Based on the additional results of the gas indicator the company officer analyses
that the atmosphere in this area is over the lower explosive limit and thereby
more dangerous than expected. He determines that the best course of action is
to call for additional resources to maintain the isolation perimeter and expand
the area of evacuation as a precaution. Here, we use rule rexpand depicted in
Fig. 4 to extend the Petri net by the additional activities.
Summarizing, after the sequential application of the rules revacuate, ranalyse and
rexpand to the Petri net PN1 in Fig. 1 we obtain the Petri net PN4 in Fig. 5.

4 Concepts of Petri Net Transformations

Following up the informal overview in Section 2 we give in this section the
precise definitions of the notions that we have already used in our example. For
notions and results beyond that we give a brief survey in Subsection 4.6 and
refer to literature.
The concept of Petri net transformations is a special case of high-level replace-
ment systems. High-level replacement systems have been introduced in [9] as a
categorical generalisation of the double-pushout approach to graph transforma-
tion, short DPO-approach. The theory of high-level replacement systems can be

7



resources

Call the gas companyNotify residents
of the evacuation

Deny entry

Expand the area
of evacuation

Identify the location
gas is highest

Shut off electricity
and gas lines

Request to control
traffic into the area

Analyse results

Assist handicapped
persons

Guide persons to

gas indicator
Read the

Additional reading
of the gas indicator

the extent possible

Call for additional 

Figure 5: Petri net PN4

8



successfully employed not only to graph transformation, but also to other areas
as Petri nets (see [9]). This leads to the concept of Petri net transformations as
an instantiation of high-level replacements systems. In the following we expli-
citly present the resulting concept of Petri net transformations for the case of
place/transition nets.

4.1 Place/Transition Nets and Net Morphisms

Let us first present a notation of place/transition net that is suitable for our
transformation approach. We assume that the nets are given in the algebraic
style as introduced in [21]. A place/transition net N = (P, T, pre, post) is given
by the set of places P , the set of transitions T , and two mappings pre, post :
T → P⊕, the pre-domain and the post-domain,

T
pre //
post

// P⊕ ,

where P⊕ is the free commutative monoid over P that can also be considered
as the set of finite multisets over P . The pre- (and post-) domain function maps
each transition into the free commutative monoid over the set of places, repres-
enting the places and the arc weight of the arcs in the pre-domain (respectively
in the post-domain). For finite P , an element w ∈ P⊕ can be presented as a
linear sum w =

∑
p∈P λp · p with λp ∈ N or as a function w : P → N. In the

infinite case we have to require that λp 6= 0 only for finitely many p ∈ P that
means the corresponding w : P → N has finite support.
In the net L3 in Fig. 4 T consists of one transition t and four places, where
p1, p2, p3 are shown above and p4 below of t. The function pre : T → P⊕ and
post : T → P⊕ are defined by pre(t) = p1⊕p2⊕p3 and post(t) = p4, respectively.
Based on the algebraic notion of Petri nets we use simple homomorphisms that
are generated over the set of places. These morphisms map places to places and
transitions to transitions.
A morphism f : N1 → N2 between two place/transition nets N1 =
(P1, T1, pre1, post1) and N2 = (P2, T2, pre2, post2) is given by f = (fP , fT ) with
mappings fP : P1 → P2 and fT : T1 → T2 so that pre2 ◦ fT = f⊕

P ◦ pre1 and
post2 ◦ fT = f⊕

P ◦ post1. These conditions ensure that the pre-domain as well
as the post-domain of a transition are preserved, so that, even if places may be
identified the number of tokens that are taken, remains the same. The morphism
f = (fP , fT ) is called injective, if fP and fT are injective. The diagram schema
for net morphisms is given in the following diagram.

T1

pre1 //
post1

//

fT

��

P⊕
1

f⊕P
��

T2

pre2 //
post2

// P⊕
2

Several examples of net morphisms can be found in Fig. 2 where the horizontal
and vertical arrows denote injective net morphisms.

9



4.2 Rules and Transformations

The formal definition of rules and transformations is based on concepts of the
following category PT. The category PT consists of place/transition nets as
objects and place/transition net morphisms as morphisms. In order to formalise
rules and transformations for nets we first state the construction of pushouts
in the category PT of place/transition nets. For any span of morphisms N1 ←
N0 → N2 the pushout can be constructed and means intuitively the gluing of
nets N1 and N2 along N0. The construction is based on the pushouts for the sets
of transitions and sets of places in the category Set. In the category Set of sets
and functions the pushout object D is given by the quotient set D = B +C/ ≡,
short D = B +A C, where B + C is the disjoint union of B and C and ≡ is the
equivalence relation generated by f(a) ≡ g(a) for all a ∈ A. In fact, D can be
interpreted as the gluing of B and C along A: Starting with the disjoint union
B + C we glue together the elements f(a) ∈ B and g(a) ∈ C for each a ∈ A.
Given the morphisms f : N0 → N1 and g : N0 → N2 then the pushout N3

in the category PT with the morphisms f ′ : N2 → N3 and g′ : N1 → N3 is
constructed (see diagram below) as follows:

• T3 = T1 +T0 T2 with f ′
T and g′T as pushout of fT and gT in Set.

• P3 = P1 +P0 P2 with f ′
P and g′P as pushout of fP and gP in Set as well.

• pre3(t) =

{
[pre1(t1)] ; if g′T (t1) = t

[pre2(t2)] ; if f ′
T (t2) = t

• post3(t) =

{
[post1(t1)] ; if g′T (t1) = t

[post2(t2)] ; if f ′
T (t2) = t

N0

g

��

f //

(=)

N1

g′

��
N2

f ′
// N3

Two examples of the pushout construction of nets are depicted in Fig. 2. We
have the embedding of K1 into L1 and C. The pushout describes the gluing of
the nets L1 and C along the two places of the interface K1. Hence we have the
pushout L1+K1 C =Firefighters 1-3 on the left hand side of Fig. 2. Similarly,
we have the pushout R1 +K1 C =Firefighters 1-3′ on the right hand side of
Fig. 2.
Since rule application always involves the construction of two pushouts, we speak
of the double-pushout (DPO) approach to graph and net transformation, where
transformation rules describe the replacement of the left-hand side net by the
right-hand side net in the presence of an interface net.

10



• A rule r = (L k1←− K
k2−→ R) consists of place/transition nets L, K and R,

called left-hand side, interface and right-hand side net respectively, and
two injective net morphisms K

k1−→ L and K
k2−→ R.

• Given a rule r = (L k1←− K
k2−→ R), a direct transformation N1

r=⇒
N2 from N1 to N2 is given by two pushout diagrams (1) and (2) in the
following diagram. The morphisms m : L→ N1 and n : R→ N2 are called
match and comatch, respectively. The net C is called pushout complement
or the context net.

L

m

��
(1)

K
k1oo k2 //

c

��
(2)

R

n

��
N1 Coo // N2

The illustration of a transformation can be found for our example in Fig. 2,
where the rule revacuate is applied to the net Firefighters 1-3 with match m.
As explained above, the first pushout denotes the gluing of the nets L1 and C
along the net K1 resulting in the net Firefighters 1-3. The second pushout
denotes the gluing of the nets R1 and C along the net K1 resulting in the net
Firefighters 1-3′.

4.3 Gluing Condition and Context Nets

Given a rule r and a match m as depicted in the diagram above, then we
construct in the first step the pushout complement C provided that a suitable
gluing condition holds. This leads to the pushout (1) in the diagram above. In
the second step we construct the pushout of c and k2 leading to N2 and the
pushout (2) in the diagram above.
Intuitively the gluing condition makes sure that we can construct a context net
C, also called pushout complement, from rule r and match m such that the
gluing C +K L of C and L along K is equal to the net N1. Formally we have to
require that dangling points and identification points are gluing points in the
following sense:

Gluing Condition for Nets: DP ∪ IP ⊆ GP , where the gluing points GP ,
dangling points DP and the identification points IP of L are defined by

• GP = k1(PK ∪ TK),

• DP = {p ∈ PL|∃t ∈ (T1 \mT (TL)) : mP (p) ∈ pre1(t)⊕ post1(t)}, and

• IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′ ∧mP (p) = mP (p′)}
∪{t ∈ TL|∃t′ ∈ TL : t 6= t′ ∧mT (t) = mT (t′)}.

Now the pushout complement C is constructed by:

• PC = (P1 \mP (PL)) ∪mP (k1P (PK))

11



• TC = (T1 \mT (TL)) ∪mT (k1T (TK))

• preC = pre1|TC
and postC = post1|TC

Note that the pushout complement C leads to the pushout (1) in the diagram
above and that it is unique up to isomorphism.
In our example in Section 3, the gluing condition is satisfied in the direct trans-
formation in Fig. 2 since the match is injective and places are not deleted by
the rule revacuate. In fact, the dangling points DP of the match in Fig. 2 are
given by one place of L1, while the gluing points GP consists of all places in
L1. The set of identification points IP is empty, because the match is injective,
hence we have DP ∪ IP ⊆ GP .

4.4 Union Construction

The union of two Petri nets sharing a common subnet, that may be empty,
is defined by the pushout construction for nets. The union of place/transition
nets N1, N2 sharing an interface net I with the net morphisms f : I → N1 and
g : I → N2 is given by the pushout diagram (1) below. Subsequently we use the

short notation N = N1 +I N2 or N1, N2
+3 I +3 N .

I

g

��

f //

(1)

N1

g′

��
N2

f ′
// N

In our example in Fig. 1 we can use the union construction several times to
describe the net PN1 as the composition of five different subnets given by
Firefighters 1-3, Officer, Firefighter 4, Start and End . The interface nets
I are given by the intersection of the of the corresponding nets.

4.5 Union Theorem

The Union Theorem states the compatibility of union and net transformations
in the following sense: A union of two nets followed of a parallel transformation
of the united nets yields the same result as two transformations of the original
two nets followed by a union of the two transformed nets.
Given a union N1 +I N2 = N and net transformations N1

r1=⇒M1 and N2
r2=⇒

M2 then we have a parallel rule r1+r2 = (L1+L2 ← K1+K2 → R1+R2), where
L1 +L2, K1 +K2 and R1 +R2 are disjoint unions of the respective nets of rules
r1 and r2, and a parallel net transformation N

r1+r2=⇒ M . Then M = M1 +I M2

is the union of M1 and M2 with the shared interface I, provided that the given
net transformations preserve the interface I. The Union Theorem is illustrated
in the following diagram and especially stated and proven in [22]:

12



N1, N2

r1,r2

��

+3 I +3

(=)

N

r1+r2

��
M1M2

+3 I +3 M

Note that the compatibility requires an independence condition stating that
nothing from the interface net I may be deleted by one of the transformations
of the subnets.
This allows intersections to apply either the rules r1 = revacuate and r2 =
ranalyse, respectively, to N1 =Firefighters 1-3 in Fig. 1 and N2 constructed
as union in four steps of the nets Officer, Firefighter 4, Start and End, or
in parallel to the union N = N1 +I N2, where I consists of two places which
are preserved by both transformations N1

r1=⇒M1 and N2
r2=⇒M2. This allows

to obtain the same net M by union M = M1 +I M2 and by transformation
N

r1+r2=⇒ M . Finally, applying rule r3 = rexpand to M leads to the net PN4 in
Fig. 5.

4.6 Further Results

We briefly introduce the main net classes which have been studied up to now
and subsequently present some main results.

• Place/transition nets in the algebraic style have already been intro-
duced in Subsection 4.1. In [11, 17, 10] we have transferred these res-
ults to place/transition systems, where a place/transition system is a
place/transition net with an initial marking.

• Coloured Petri nets [18, 19, 20] are high-level nets combining P/T nets
and ML expressions for data type definitions. They are very popular due
to the tool CPN-tolls [5].

• Algebraic high-level nets are available in quite a few different notions e.g.
[28, 25]. We use a notion that reflects the paradigm of abstract data types
into signature and algebra. An algebraic high-level net (as in [25]) is given
by N = (SPEC, P, T, pre, post, cond, A), where SPEC = (S, OP,E;X)
is an algebraic specification in the sense of [13] with additional variables
X not occurring in E, P is the set of places, T is the set of transitions,
pre, post : T → (TOP (X)× P )⊕ are the pre- and post-domain mappings,
cond : T → Pfin(EQNS(SIG,X)) are the transition guards, and A is a
SPEC algebra.

Horizontal Structuring Union and fusion are two categorical structuring
constructions for place/transition nets that merge two subnets (fusion) or two
different nets (union) into one.

13



The union has been introduced in the previous subsection. Now let us consider
the fusion: Given a net F that occurs in two copies in the net N1, represented

by two morphisms F
f //

f ′
// N1, the fusion construction leads to a net N2,

where both occurrences of F in N1 are merged. If F consists of places p1, .., pn

then each of the places occurs twice in net N1, namely as f(p1), ..., f(pn), and
f ′(p1), ..., f ′(pn). N2 is obtained from the net N1 by fusing both occurrences
f(pi) and f ′(pi) of each place pi for 1 ≤ i ≤ n.
The Union Theorem has been presented in the previous subsection. The Fusion
Theorem [23] is expressed similarly: Given a rule r and a fusion F

//
// N1

then we obtain the same result whether we derive first N1
r=⇒ N ′

1 and then
construct the fusion F

//
// N ′

1 resulting in N ′
2 or whether we construct the

fusion F
//
// N1 first, resulting in N2 and then perform the transforma-

tion step N2
r=⇒ N ′

2. Similar to the Union Theorem, a certain independence
condition is required. Both theorems state that Petri net transformations are
compatible with the corresponding structuring technique under suitable inde-
pendence conditions. In short these conditions guarantee that the interface net
I and respectively the fusion net F are preserved by all net transformations.

Interleaving and Parallelism We are able to realize model interleaving and
parallelism of net transformations. The Local Church-Rosser Theorem states a
local confluence in the sense of formal languages corresponding to interleaving.
The required condition of parallel independence means that the matches of
both rules overlap only in parts that are not deleted. Sequential independence
means that those parts created or used by the first transformation step are
not used or deleted in the second step, respectively. The Parallelism Theorem
states that sequential or parallel independent transformations can be carried out
either in arbitrary sequential order or in parallel. In the context of step-by-step
development these theorems are important as they provide conditions for the
independent development of different parts or views of the system. More details
on horizontal structuring or parallelism are given in [25] and [23].

Refinement Rule-based refinement comprises the transformation of Petri
nets using rules while preserving certain net properties. For Petri nets the de-
sired properties of the net model can be expressed e.g in terms of Petri nets
(as liveness, boundedness etc.), in terms of logic (e.g. temporal logic, logic of
actions etc.), in terms of relation to other models (e.g. bisimulation, correctness
etc.), and so on.
For place/transition nets, algebraic high-level nets and Coloured Petri nets the
most important results for rule-based refinement are presented in Table 1. For
more details see [27].

14



Notion/Results PT-nets AHL-nets CPNs

Rules, Transformations
√ √ √

Safety property preserving
transformations with

transition-gluing morphisms
√ √ √

place-preserving morphisms
√ √ √

Safety property introducing
transformations

√ √ √

Liveness preserving transformations
√

? ?

Liveness introducing transformations
√

? ?

Local Church Rosser I + II Theorem
√ √ √

Parallelism Theorem
√ √ √

Union
√ √ √

Fusion
√ √ √

Union Theorem
√ √ √

Fusion Theorem
√ √ √

Table 1: Achieved results

5 Conclusion

The main idea of Petri net transformations is to extend the classical theory of
Petri nets by a rule-based technique that allows to model the changes of the
Petri net structure.
There have been already a few approaches to describe transformations of Petri
nets formally (e.g. in [2, 3, 31, 6, 32]). The intention has been mainly on re-
duction of nets to support verification, and not on the software development
process as in our case. This use of transformations has been one of the main
focus areas of the DFG-Research group Petri Net Technology. There are some
large studies in various application areas as medical information systems [15],
train control systems [26], or as sketched in this paper in emergency scenarios.
These case studies clearly show the advantages using net transformation in sys-
tem development and the practical use of the results stated in Table 1.
Although the area of Petri net transformations is already well-established, there
are many promising directions for further research to follow, for example:

• Transfer to other net classes

15



There is a large variety of Petri net classes, and in principle the idea of
Petri net transformation is applicable to all of them. The concept of trans-
formation we have employed is an algebraic one, so the use of algebraic
approaches to Petri nets is more suggesting. Algebraic higher-order Nets
[16] have been recently developed and are one of the promising targets to
transfer the idea of transformations to. These nets extend algebraic high-
level nets as they are equipped with a higher-order signature and algebra.
This allows most interesting applications and supports structure flexibility
and system adaptability in an extensive way.

• Reconfigurable place/transitions systems
In [17], the concept of reconfigurable place/transition (P/T) systems has
been introduced that is most important to model changes of the net struc-
ture while the system is kept running. In detail, a reconfigurable P/T-
system consists of a P/T-system and a set of rules, so that not only the
follower marking can be computed but also the structure can be changed
by rule application to obtain a new P/T-system that is more appropriate
with respect to some requirements of the environment. Moreover these
activities can be interleaved. In [11] we have continued our work on by
transferring the results of local Church-Rosser which are well known for
term rewriting and graph and net transformations (see [30, 7, 10]), to the
consecutive evolution of a P/T-system by token firing and rule applica-
tions. In more detail, we assume that a given P/T-system represents a
certain system state. The next evolution step can be obtained not only
by token firing, but also by the application of one of the rules available.
Hence, we have presented conditions for (co-)parallel and sequential inde-
pendence, such that each of these evolution steps can be postponed after
the realization of the other, yielding the same result and, analogously, they
can be performed in a different order without changing the result.

• Component technology
Components present an advanced paradigm for the structuring of complex
systems and have been advocated in the recent years most strongly. Com-
ponents that use Petri nets for the specification of the interfaces and the
component body have been defined in [24]. There are three nets that rep-
resent the import, the export and the body of the component. The export
is an abstraction of the body and the import is embedded into the body.
There are two operations: the hierarchical composition and the union of
components. Unfortunately, up to now there is no transformation concept
in the sense of graph and net transformation. Based on net transforma-
tions the transformation of the import, the export and the body can be
defined straightforward.

• Tool support
The practical use of graph transformation is supported by several tools.
The algebraic approach to graph transformation is especially supported
by the graph transformation environment AGG (see [1]). A tool for net

16



transformations using the graph transformation engine AGG has been
developed recently [29] as a plug-in Eclipse to support a special class of
reconfigurable P/T- systems.

References

[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] G. Berthelot. Checking Properties of Nets using Transformations. In Ad-
vances in Petri Nets, volume 222 of LNCS, pages 19–40. Springer, 1986.

[3] G. Berthelot. Transformations and Decompositions of Nets. In Advances
in Petri Nets, volume 254 of LNCS, pages 359–576. Springer, 1987.

[4] P. Bottoni, F. De Rosa, K. Hoffmann, and M. Mecella. Applying Algebraic
Approaches for Modeling Workflows and their Transformations in Mobile
Networks. Mobile Information Systems, 2(1):51–76, 2006.

[5] CPN Tools Homepage. http://wiki.daimi.au.dk/cpntools/ home.wiki.

[6] R. David and H. Alla, editors. Petri Nets and Grafcet. Prentice Hall (UK),
1992.

[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algeb-
raic Graph Transformation. EATCS Monographs in Theoretical Computer
Science. Springer, 2006.

[8] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 2:
Applications, Languages and Tools. World Scientific, 1999.

[9] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systems. Math. Struct. in Comp.
Science, 1:361–404, 1991.

[10] H. Ehrig, K. Hoffmann, U. Prange, and J. Padberg. Formal Foundation for
the Reconfiguration of Nets. Technical Report Technical Report 2007-02,
Technical University Berlin, Fak. IV, 2007.

[11] H. Ehrig, J. Padberg K. Hoffmann, U. Prange, and C. Ermel. Inde-
pendence of Net Transformations and Token Firing in Reconfigurable
Place/Transition Systems. In Proc. Application and Theory of Petri Nets
(ATPN), 2007.

[12] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Hand-
book of Graph Grammars and Computing by Graph Transformation. Vol 3:
Concurrency, Parallelism and Distribution. World Scientific, 1999.

17



[13] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics. EATCS Monographs on Theoretical Computer
Science. Springer, 1985.

[14] H. Ehrig and J. Padberg. Graph Grammars and Petri Net Transformations.
In Lectures on Concurrency and Petri Nets, Special Issue Advanced Course
PNT, volume 3098 of LNCS, pages 496–536. Springer, 2004.

[15] C. Ermel, J. Padberg, and H. Ehrig. Requirements Engineering of a Medical
Information System Using Rule-Based Refinement of Petri Nets. In Proc.
Integrated Design and Process Technology (IDPT), volume 1, pages 186–
193. Society for Design and Process Science, 1996.

[16] K. Hoffmann. Formal Approach and Applications of Algebraic Higher Order
Nets. PhD thesis, Technical University Berlin, 2005.

[17] K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level Nets with Nets
and Rules as Tokens. In Proc. Application and Theory of Petri Nets
(ATPN), volume 3536 of LNCS, pages 268–288. Springer, 2005.

[18] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, volume 1: Basic Concepts. of EATCS Monographs in Theor-
etical Computer Science. Springer, 1992.

[19] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 2: Analysis Methods of EATCS Monographs in The-
oretical Computer Science. Springer, 1995.

[20] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 3: Practical Use of EATCS Monographs in Theoret-
ical Computer Science. Springer, 1997.

[21] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and
Computation, 88(2):105–155, 1990.

[22] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based
Refinement. PhD thesis, Technical University Berlin, 1996. Shaker Verlag.

[23] J. Padberg. Categorical Approach to Horizontal Structuring and Refine-
ment of High-Level Replacement Systems. Applied Categorical Structures,
7(4):371–403, December 1999.

[24] J. Padberg. Basic Ideas for Transformations of Specification Architectures.
In Proc. Workshop on Software Evolution through Transformations (SET
02), volume 74 of ENTCS, 2002.

[25] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic High-Level Net Transform-
ation Systems. Mathematical Structures in Computer Science, 5(2):217–
256, 1995.

18



[26] J. Padberg, P. Schiller, and H. Ehrig. New Concepts for High-Level Petri
Nets in the Application Domain of Train Control. In Proc. Symposium on
Transportation Systems, pages 153–160, 2000.

[27] J. Padberg and M. Urbášek. Rule-Based Refinement of Petri Nets: A Sur-
vey. In Proc. Petri Net Technology for Communication-Based Systems,
volume 2472 of LNCS, pages 161–196. Springer, 2003.

[28] W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer
Science, 80:1–34, 1991.

[29] RON Editor Homepage. http://tfs.cs.tu-berlin.de/roneditor/.

[30] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[31] Vanio M. Savi and Xiaolan Xie. Liveness and Boundedness Analysis for
Petri Nets with Event Graph Modules. In Proc. Application and Theory of
Petri Nets (ATPN), volume 254 of LNCS, pages 328–347. Springer, 1992.

[32] W.M.P. van der Aalst. Verification of workflow nets. In Application and
Theory of Petri Nets, volume 1248 of LNCS, pages 407–426. Springer, 1997.

19


