
Sufficient Criteria for Consistent Behavior Modeling
with Refined Activity Diagrams : Long Version

Stefan Jurack1, Leen Lambers2, Katharina Mehner3, Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany,
{sjurack,taentzer}@mathematik.uni-marburg.de

2 Technische Universität Berlin, Germany, leen@cs.tu-berlin.de
3 Siemens, Corporate Technology, Germany, katharina.mehner@siemens.com

Abstract. In use case-driven approaches to requirements modeling, UML ac-
tivity diagrams are a wide-spread means for refining the functional view of use
cases. Early consistency validation of activity diagrams is therefore desirable but
difficult, due to the semi-formal nature of activity diagrams. In this paper, we
specify well-structured activity diagrams and define activities more precisely by
pre- and post- conditions. They can be modeled by interrelated pairs of object di-
agrams based on a domain class diagram. This activity refinement is based on the
theory of graph transformation and paves the ground for a consistency analysis of
the required system behavior. A formal semantics for activity diagrams refined by
pre- and post-conditions, allows us to establish sufficient criteria for consistency.
The automated checking of these criteria has been integrated into a tool for graph
transformation.

1 Introduction

Requirements engineering is the process of gathering and structuring information on
a software system. A consistent requirements document is extremely important as it
provides the basis for all relevant development decisions. The detection of requirement
errors late in the development process causes expensive iterations through all phases.

In object-oriented software development, the UML [1] has become the standard no-
tation for software models at different stages of the life cycle and at different levels of
abstraction, including the requirements specification. The result of requirements elici-
tation consists of a domain class diagram and a use case specification. The main sce-
nario(s) of a use case are often specified with activity diagrams. The dynamic aspect—
when something can be done—is captured by activity diagrams. The functional aspect—
how it can be done—is described by pre- and post-conditions of activities which are first
described in natural language. In particular, the functional aspect has not been formally
integrated with the static domain model. The intended connections between domain
classes and activity diagrams can mainly be indicated by giving meaningful names to
activities.

An early consistency check of activity diagrams taking into account pre- and post-
conditions is not possible due to the informal nature of activity specifications. By con-
sistency we mean that all flow paths of an activity diagram can be performed. In this

situation, a more precise specification of each activity can pave the ground for a con-
sistency analysis. We propose to refine activity diagrams by describing pre- and post-
conditions of each activity by a pair of interrelated object diagrams. These object dia-
grams link formally the pre- and post-conditions with the domain model. The aim of
the analysis is to validate that control flow is consistent with pre- and post-conditions.

Graph transformation systems can be used to formalize this problem and provide
tool support for the analysis. A pair of pre- and post-conditions can be formalized as
a graph transformation rule. The idea was first presented in [2] to analyze conflicts
and dependencies between activities during use case integration, however not yet tak-
ing into account the control flow structure. The idea was further developed in [3, 4]
for analyzing inconsistencies during composition of an aspect-oriented extension of ac-
tivity diagrams. The approach classified sources of inconsistencies taking into account
the control flow. [5] provides sufficient applicability criteria for graph transformation
rule sequences as formal foundation. This idea has been employed [6] in the context
of adaptable service-based applications in order to validate control flow structures de-
scribed with live sequence charts[7].

Based on our previous work, this paper presents sufficient criteria for consistency
analysis of activity diagrams. In order to apply the existing applicability criteria for
graph transformation rule sequences, we provide a semantics for activity diagrams re-
fined with pre- and post-conditions. We also improve the existing applicability criteria
and introduce new reduction mechanisms for the analysis phase.

The paper is organized as follows: Sect. 2 illustrates the use-case driven approach
to requirement modeling and introduces the running example. In Sect. 3, we recall the
concept of graph transformation, explain conflicts and dependencies of graph transfor-
mations, and present sufficient criteria for the applicability of graph transformation rule
sequences together with two new reduction mechanisms for the applicability analysis
of rule sequences. In Sect. 4 we present a graph transformation based semantics of re-
fined activity diagrams, define consistency, and introduce an efficient way to analyze
for consistency. We analyze our running example in Sect. 5. Related work is discussed
in Sect. 6. Sect. 7 contains our conclusion and outlook.

2 Use Case-Driven Requirement Modeling

An use-case diagram specifies a number of main scenarios by use-cases, actors, and
dependencies between them. UML activity diagrams can be used to model the behavior
of each use-case. In our approach we formalize activities by pre- and post-conditions
based on a domain class diagram. In the following, we introduce into this approach with
a small case study of an online pizza service.

2.1 Use-Cases

The center of our requirement analysis is an online service for a pizzeria offering pizzas
and beverages. The pizzeria staff enters master data, e.g. different kind of pizzas, top-
pings and beverages. Customers have to register before they are allowed to order food
and beverages. As long as the order is not closed, further order items may be attached.

Correspondingly, the system offers the use cases “create master data” and “take order”
(cf. Fig. 1). The complex use case ‘take order” includes use case “add pizza to order”.
Further use cases are conceivable but not considered in the following due to space con-
straints such as requesting a voucher (“request voucher”) or contacting the pizzeria staff
(“write message”)

Fig. 1. Pizzeria example: Use cases (left), Domain model (right)

2.2 Domain Model Class Diagram

The corresponding domain model class diagram is shown in Fig. 1. It illustrates an
Order placeable by a Customer. An order is constituted by a number of items (Or-
derItem), whereas each item may be associated with a kind of pizza (PizzaKind) and
if desired multiple kinds of additional toppings (ToppingKind), or the item is associ-
ated with a BeverageKind. The structure of the domain model also allows a pizza and a
beverage both to be associated to the same order item, which is semantically undesired.
To solve this constraint, an OCL expression could be formulated. In the following our
refinements prevent the occurrence of such associations anyway though. Furthermore
there are three classes with equal attributes, which may be resolved by introducing in-
heritance. Since the tool feature [8] of analyzing inheritances is not fully released yet
because of lacking theory for graph transformation with inheritance, we stick to this
simple domain model without inheritance this time.

2.3 Activities

Figure 2 shows the activity diagrams refining corresponding use cases. Use case “create
master data” is refined in the top left corner. It allows to create pizza, topping and
beverage kinds. The bottom of the figure shows the activity diagram refining use case
“take order”. It conditionally creates a customer instance followed by order creation.
Pizza or a beverage can be added to the order in a loop. If all desired order items are
added, the order is closed. The icon in the bottom right corner of activity “Add pizza
to order” indicates a reference to the activity diagram shown in the top right corner of

Figure 2. It refines the use case “add pizza to order”, whereas the corresponding include
relation between the use-cases was already depicted in the use-case diagram (cf. Fig. 1).

Fig. 2. Activity diagrams: Create master data(left), Add pizza to order(right), Take order(bottom)

2.4 Pre- and post-conditions

Based on the domain model, the pre- and post-conditions of each activity can be speci-
fied using interrelated object diagrams extended by negative application conditions. The
interrelation is expressed by numbers. Equal numbers refer to same instances. Similar
to object flow, object creation is specified by introducing a new element in a post-
condition. Object deletion is specified by by presenting it in the pre-condition only. A
pair of pre- and post-conditions can be parameterized. Negative application conditions
(NAC), depicted in red dashed (out)line specify objects which must not exist.

Fig. 3 shows the pre- and post-condition pairs of activity “Add pizza kind” of activ-
ity diagram “Create master data”. A new PizzaKind object is created if a corresponding
PizzaKind object does not exist. Input parameters are n and p providing values for the
name and price attributes. Conditions for activities “Add topping kind” and “Add bev-
erage kind” are composed analogously.

Fig. 4 shows the pre- and post-conditions of the activities of activity diagram “Take
order” where activity “Add pizza to order” has been replaced by its refinement. They
can be described as follows:

Fig. 3. Pre- and post-conditions for activity “Add pizza kind” of diagram “Create master data”

(1) A Customer is created with name and address set by input parameters n and adr, if
an equally named customer does not exist already.

(2) An Order is created and linked to a Customer identified by parameter n, but only if
no open order is already associated i.e. attribute closed is false.

(3) A new OrderItem is created and linked to an existing PizzaKind object. The pizza
name is given as parameter.

(4) An existing ToppingKind is linked to the OrderItem related to a PizzaKind. The
topping name is given as parameter.

(5) An existing BeverageKind is linked to an Order via a new created OrderItem.
(6) An open Order is closed i.e. the attribute closed which must be false before is set

to true.

Fig. 4. Pre- and post-conditions for activities of activity diagram “Take order”

3 Formalization by Graph Transformation

The UML variant presented in Sect. 2 can be precisely defined by the theory of graph
transformation [9]. While class diagrams are formalized by type graphs, activities with
pre- and post conditions are mapped to graph rules. This serves as a basis for analyzing
use case-driven requirement models precisely. Here, we summarize the main ideas.

3.1 Graphs and graph transformation

When formalizing object-oriented modeling, graphs occur at two levels: the type level
(defined based on class diagrams) and the instance level (given by all valid object dia-
grams). This idea is described by the concept of typed graphs, where a fixed type graph
TG serves as an abstract representation of the class diagram. Types can be structured
by an inheritance relation. Multiplicities and other annotations are expressed by addi-
tional graph constraints. Instances of the type graph are object graphs equipped with a
structure-preserving mapping to the type graph. A class diagram can thus be represented
by a type graph, plus a set of constraints over this type graph.

Graph transformation is the rule-based modification of graphs. Rules are expressed
by two graphs (L,R), where L is the left-hand side (LHS) of the rule representing the
pre-condition and R is the right-hand side (RHS) describing the post-condition, and
a mapping between objects in L and R. L ∩ R (the graph part that is not changed)
and the union L ∪ R should form a graph again, i.e., they must be compatible with
source, target and type settings, in order to apply the rule. Graph L \ (L ∩ R) defines
the part that is to be deleted, and graph R \ (L ∩ R) defines the part to be created.
Figure 4 shows pre- and post-conditions of the activities which can be interpreted as
graph rules. Numbers indicate a mapping between left- and right-hand sides. Please
note that the left-hand sides may contain two kinds of links, drawn by solid and dashed
lines. Only the solid parts belong to the left-hand side and formulate a positive pre-
condition while the dashed ones prohibit certain graph parts and represent negative
application conditions (NACs). For example, rule Create order (cf. Fig. 4(2)) describes
how an Order is created for a certain Customer and prohibits the existence of an already
associated order with attribute closed=false at the same time i.e. the rule is applicable
only, if all placed orders have been closed.

A graph transformation step G
r,m +3 H between two instance graphs G, H is

defined by first finding a match m of the left-hand side L of rule r in the current in-
stance graph G such that m is structure-preserving and type-compatible, and second by
constructing H in two passes: (1) build D := G \m(L \ (L∩R)), i.e., delete all graph
items that are to be deleted; (2) H := D∪ (R\ (L∩R)), i.e., create all graph items that
are to be created. A graph transformation (sequence) consists of zero or more graph
transformation steps. A set of graph rules, together with a type graph, is called a graph
transformation system (GTS). A GTS may show two kinds of non-determinism: (1) For
each rule several matches may exist. (2) Several rules might be applicable.

The tool environment AGG (Attributed Graph Grammar System) [8] can be used to
specify graph transformation systems and analyze their rules.

3.2 Conflicts and dependencies

As discussed in the previous section, several rules may be applicable to a host graph.
Either the results might be the same regardless of the application order, or if one of two
rules is not independent of the second, the first one will disable the second. In this case,
the two rules are in conflict. Conversely, two rules are said to be parallel independent
if they do not disable each other. Instead, sequential independence guarantees that the
order of application in a transformation sequence does not matter.

One of the main static analysis facilities for GTSs is the check for potential conflicts
and dependencies between rules, both supported in AGG. This conflict and dependency
analysis is based on critical pair analysis (CPA) [9, 2]. A critical pair is a pair of trans-

formation steps G
r1,m1 +3 H1 , G

r2,m2 +3 H2 that are in conflict in a minimal context,
identified through matches m1 and m2. The following conflicts occur:

delete/use : The application of r1 deletes an element used by the match of r2.
produce/forbid : The application of r1 produces an element that a NAC of r2 forbids.
change/use : The application of r1 changes an attribute value used by the match of r2.

Critical pair analysis is also used to find potential dependencies between a transfor-
mation applying r1 and another one applying r2. This case is led back to critical pairs

consisting of steps H
r−1
1 ,m′1+3 G and H

r2,m2 +3 K . The inverse rule r−1
1 is obtained by

exchanging LHS and RHS and translating the NACs into equivalent ones from LHS to
RHS [9, 5]. The following dependencies occur:

produce/use : The application of r1 produces an element needed by the match of r2.
delete/forbid : The application of r1 deletes an element that a NAC of r2 forbids.
change/use : The application of r1 changes an attribute value used by the match of r2.

Rule r2 purely depends on rule r1 if r2 its left-hand side can be completely em-
bedded in the right-hand side of r1. This means that if rule r1 has been applied then it
delivered everything rule r2 needs to be applied as well. Note that NACs belonging to
r2 are not necessarily satisfied though and still have to be checked.

If there are neither potential dependencies between transformations via r1 and r2
nor via r2 and r1 then rules r1 and r2 are sequentially independent. This leads to the fact
that r1 and r2 can be switched if they occur next to each other in a rule sequence without
any impact on the applicability of the rule sequence. We call such rule sequences in
which sequentially independent neighbored rules are switched shift-equivalent.

3.3 Criteria for Applicability of Rule Sequences

In [5] sufficient criteria are introduced for the applicability of a rule sequence to a given
start graph. In many cases though a rule sequence is given without a graph. Therefore
below we present applicability criteria4 without given start graph. They describe which

4 Note in addition that comparing to the criteria presented in [5] the criteria above contain also
a minor change in the pure enabling predecessor criterion. We exploit in this paper the typing
in the graph transformation system such that also rules with NACs are allowed to have a pure
enabling predecessor.

conditions a given rule sequence and some start graph G0 should fulfill such that it
becomes applicable to G0.

Concurrent rules For the applicability criteria we need the concept of a concurrent
rule rc which can be constructed from a sequence of single rules r1, r2, . . . rn. Such
a concurrent rule rc establishes in one transformation step the same effect as single
rules r1, r2 . . . rn would establish in consecutive transformation steps [10, 9]. Thus, a
concurrent rule summarizes in one rule which parts of the graph should be present,
preserved, deleted and produced when applying the corresponding rule sequence to this
graph. Moreover we have a summarized set of NACs on the concurrent rule expressing
which graph parts are forbidden when applying the corresponding rule sequence with
NACs to the graph.

Applicability criteria Given a rule sequence s : r1r2...rn, the applicability criteria for
s to some graph G0 are defined as follows. Note that all criteria have to be fulfilled.

initialization: Rule r1 is applicable to graph G0.
no node deleting: Each rule in s must not delete object nodes.
no impeding predecessors: The predecessors of each rule r in s do not cause a conflict

with r.
enabling predecessor(s): For each rule r in s:

pure There is a predecessor r′ of rule r in s and r is purely dependent on r′.
Moreover each NAC of r forbids a graph element of type t such that an element
of type t is neither present in G0 nor produced by any predecessor of r OR

direct there exists a concurrent rule rc of rule r and its direct predecessor rule(s)
such that rc is applicable to G0, all other predecessors do not cause a conflict
with rc, and rc does not cause a conflict with successor rules OR

not needed r itself is applicable to G0.

Note that in order to fulfill the last criterion enabling predecessor it is important to
check all three possibilities pure enabling, direct enabling predecessor and no enabling
predecessor needed in this order. Like this it is possible to impose unnecessary restric-
tions to G0.

Reduction of rule sequences A rule sequence s can be reduced before checking its
applicability (as proven in the appendix), i.e. sequence s is applicable to a graph G,
if the reduced sequence s′ satisfies the applicability criteria and the following extra
conditions are fulfilled:

1. Repeated element reduction Given a rule sequence s : r1r2...rn such that two sub-
sequent rules in s are equal. Sequence s can be reduced to s′ by deleting one of
these equal rules, if they are not in conflict with themselves and each subsequent
rule has a pure enabling predecessor, is applicable toG, or is equal to a predecessor
rule.

2. Loop reduction Given a rule sequence s : sstart(r1r1r2...rm)nsend with sstart and
send being rule sequences and n > 2. It is enough to execute loop = (r1r1r2...rm)
at most 2 times, if each rule r in send has a pure enabling predecessor, is applicable
to graph G, or is equal to some rule in loop or in sstart.

4 Consistency Analysis with Refined Activity Diagrams

Activities are defined more precisely as explained in Sect. 2 by pre- and post-conditions.
They can be formalized by a graph transformation rule as introduced in Sect. 3. This
activity refinement enables us to analyze consistency of the required system behavior
based on the applicability criteria presented in the previous section. In this section,
at first we specify well-structured refined activity diagrams and define their semantics
and consistency based on graph transformation. Then we explain how to analyze in an
efficient way refined activity diagrams for consistency.

4.1 Refined Activity Diagrams: Semantics and Consistency

We restrict our considerations on well-structured activity diagrams, i.e. those which
consist of sequences, fork-joins, and loops only.

A well-structured activity diagram A consists of a start activity s, an activity block
B, and an end activity e such that there is a transition between s and B and another one
between B and e.

An Activity block is defined as follows:

– Simple: A simple activity is an activity block.
– Sequence: A sequence of two activity blocks connected by a transition form an

activity block.
– Decision: A decision activity with two outgoing transitions going to an activity

block each, and a merge activity with two incoming transitions from each of these
blocks form an activity block.

– Loop: A decision activity followed by an activity block with an outgoing transition
to the same decision activity form an activity block.

– Fork: A fork activity followed by two activity blocks followed by a join activity
form an activity block.

A refined activity diagram A is a well-structured activity diagram such that each
activity occurring in A corresponds to a unique graph transformation rule.

Given an activity block B of a refined activity diagram A its corresponding set of
rule sequences SB is defined as follows.

– If B consists of a simple activity a, SB = {a}.
– If B is a sequence of X and Y , SB = SX seq SY = {sxsy|sx ∈ SX ∧ sy ∈ SY }
– If B is a decision block on X and Y , SB = SX or SY = SX ∪ SY

– If B is a loop block on X , SB = loop(SX) =
⋃

i∈I S
i
X where S0

X = {λ} with λ
being the empty sequence, S1

X = SX , S
2
X = SX seq SX and Si

X = SX seq Si−1
X

for i > 2.
– If B is a fork block on X and Y , SB = SX ||SY =

⋃
sx||sy with sx ∈ SX ∧ sy ∈

SY where sx||λ = {sx}, λ||sy = {sy}, and xs′x||ys′y = {x} seq s′x||ys′y ∪
{y} seq xs′x||s′y .

Thus we define the semantics Sem(A) of a refined activity diagram A consisting of
a start activity s, an activity block B, and an end activity e as the set of rule sequences
S(B) generated by the main activity block B.

We define an activity diagram A to be consistent if there exists a non-empty set of
graphs such that all rule sequences in Sem(A) are applicable to each of them. Each
of these graphs then represents a potential snapshot of the system to which the activity
diagram applies consistently.

4.2 Analysis of Reduced Semantics

Based on the semantics and consistency definition of an activity diagram given in the
former paragraph we are able to apply the criteria for checking the applicability of rule
sequences given in Sect. 3 in order to check for consistency.

Due to loops though, the sets of rule sequences can become infinite. For criteria
checking, a rule set has to be finite, since otherwise the checking procedure would not
terminate. To check the applicability criteria, it is sufficient though to repeat a loop at
most two times as mentioned in the former section. Moreover we can reduce the rule
sequences by the repeated element reduction as defined in the last section.

Thus we define a reduced set of rule sequences Red(A) for a refined activity dia-
gram A as follows:

– Reduce the set of rule sequences in Sem(A) by applying the loop reduction as
defined in the last section. We call this the loop-reduced semantics LRed(A) for
A.

– Reduce further the set of rule sequences in LRed(A) by applying the repeated
element reduction as defined in the last section as long as possible.

Note that in the appendix we have proven that by showing that all sequences inRed(A)
satisfy the applicability criteria all sequences in Sem(A) will be applicable.

5 Example Analysis

Consider the pizzeria scenario in Sect. 2. For now we analyze the use cases “create mas-
ter data” and “take order” separately. Afterwards we will reason about the interrelation
of both. In order to analyze the scenario the following steps are recommended:

1. Generate conflicts and dependencies of the activity’s rules.
2. Identify all rule sequences and reduce them as possible
3. Analyze applicability of reduced set of rule sequences according to criteria5

4. Draw conclusions regarding the activities or activity diagrams, respectively.

5 AGG [8] offers a new module for automatically checking the applicability criteria for given
rule sequences and a dedicated start graph. Here we explain manually this check step by step
for clarity reasons.

5.1 Create master data

Fig. 5 depicts the conflict and dependency matrices calculated by the tool AGG. The
input data are rules analog to the pre- and post-conditions in Fig. 3. Note that each of
these rules is parametrized. Consider e.g. rule Add pizza kind(n:String, p:float). It holds
a parameter for the pizza name and another for its price. The rule can only be applied
if concrete values for its parameters are given. In fact, a parametrized rule describes a
set of regular rules. For each possible parameter value there is a corresponding rule.
E.g. rule Add pizza kind(“Margherita”, 5) can be applied whenever there does not al-
ready exist a Margherita pizza. Otherwise, this is called conflict which is shown in the
conflict matrix computed by AGG. In particular, it shows a conflict between Add pizza
kind(n:String, p:float) and Add pizza kind(n’:String, p’:float) if the parameter value for
name i.e. n and n’ is the same. This holds analogously for the rules Add topping kind
and Add beverage kind. In all other cases there are neither conflicts nor dependencies.

Fig. 5. Conflict and dependency matrix of “Create master data”

Now we identify all activity sequences in order to determine their applicability. In
fact we operate on the rules corresponding to the activities in the sequences. For clarity
reasons we use acronyms in the sequences: AP=Add pizza kind, AT=Add topping
kind, AB=Add beverage kind. Deriving the set of sequences from the activity diagram
and applying the loop reduction as defined in Sect. 3.3, we result in 27 sequences.
Due to space constraints we only show the analysis for the following two sequences :
s1 =< AP (n1, p1), AP (n2, p2) > and s2 =< AP (n3, p3), AT (n4, p4) >.

The criteria check is straight forward. Both sequences start with rule AP , whose
left-hand side (LHS) is empty i.e. no requirements concerning the existence of objects
are given. However, considering the negative application condition (NAC) of AP and
the reasoning above, we conclude that the start graph may be empty or at least must
not contain a PizzaKind object with a name according to n1. If both constraints are
satisfied, the initialization criterion is fulfilled for the sequences. Since both sequences
contain only rules with empty left-hand sides, criteria no node deleting is obviously
satisfied as well. Without further assumptions the criterion no impeding predecessors is
satisfied for sequence s2 since its rules are not in conflict with each other as the conflict
matrix shows (cf. Fig. 5). Contrarily, sequence s1 satisfies the criterion only, if the
values n1 and n2 differ, otherwise the first rule impedes the second. The last criterion
to check is enabling predecessor(s). The second rule AT of sequence s2 is applicable
analogously to AP i.e. an equally named ToppingKind object must not exist in the start

graph. Similarly, the second rule in sequence s1 is applicable to the start graph only, if
no equally named PizzaKind object exists.

Proceeding this analysis to all rule sequences, we can summarize, that the refined
activity diagram “Create master data” is always applicable, if multiple occurring equal
rules within a sequence do not use the same parameter values for their attribute name
and the start graph does not already contain corresponding objects. If both constraints
hold, the loop in the activity diagram can be run through as long as desired. Therefore,
from a practical point of view pizza, topping and beverage kinds cannot occur twice
with the same name in the menu.

5.2 Take order

Now we consider use case “take order” and its activity diagram (cf. Fig 2). As already
addressed, an include reference to another use case “add pizza to order” is used. We deal
with that situation by treating the activities of the corresponding activity diagram as part
of the embedding one. Similar to the previous section some rules are parametrized. In
the following we show the analysis of one sequence only, due to space limitations.

At first we take a look at the dependency and conflict matrices calculated by AGG
(cf. Fig. 6). For the reader’s convenience uninteresting entries have been colored gray
respecting the control flow. This is conceivable to be done automatically in the future.

Fig. 6. Matrices with respect to the control flow

The next step is to identify all possible rule sequences. Analog to the previous
analysis we use acronyms in the sequences for better readability: OP=Order pizza,
OT=Order topping, OB=Order beverage, CC=Create customer, CO=Create order,
CL=Close order. Using the loop reduction to prevent infinite sequences we result in
over 350 sequences, which can be reduced further by about 50% applying the repeated
element reduction. If we combine this reduction technique with the so-called shift-
equivalence i.e. neighbored rules in sequences can be switched if they are sequentially
independent (cf. Sect. 3.2), about 20 sequences remain. For example, since rules OB
andOP are sequentially independent, both sequences< CO,OB,OP,OB,CL > and
< CO,OB,OB,OP,CL > can be transfered into one another and therefore only one
needs to be analyzed. Note, that both sequences are shown without parameters.

Exemplarily, we analyze the sequence
s3 =< CO(n), OP (p), OT (t), CL >. According to the applicability criteria in
Sect. 3.3 we start our analysis with criterion initialization. Sequence s3 is exclusively
applicable to graphs with a Customer object named according to parameter n of rule
CO and additionally the object must not be linked with an open order i.e. attribute’s
closed value is false .

Criteria no node deleting and no impeding predecessor are satisfied, since no node
is deleted by any rule and the conflict matrix (cf. Fig. 6) does not show any conflict be-
tween corresponding rules. The last criterion to check is enabling predecessor(s) where
we reason about rules needing enabling predecessor(s) if they are not already appli-
cable to the start graph. Rule OP requires a PizzaKind object named accordingly to
parameter p. If available in the start graph, a concurrent rule with CO can be created
which is applicable to the start graph. This concurrent rule expresses that a customer
with name n must exist for whom an order is created holding one pizza with name p.
The concurrent NAC to this rule expresses that the customer with name n must not be
already linked with an open order. Rule OT can be analyzed analogously. Since OT is
enabled by OP which is enabled by CO itself, a concurrent rule consisting of all three
rules is applicable if the start graph contains a ToppingKind object named according
to parameter t. The last rule CL is purely enabled by CO. Concluding, sequence s3
is applicable if the start graph contains a Customer object not associated with an open
order, a PizzaKind and a ToppingKind object, all named according to parameters n, p
and t.

The analysis of the remaining sequences is quite similar to the previous one and not
shown here. As result we reveal the applicability of all given sequences with respect to
specific sets of start graphs. This implies, that the activity diagrams are valid concerning
their consistency to corresponding system states.

Finally we observe, that almost every rule sequence of use case “take order” require
objects of type PizzaKind, ToppingKind and BeverageKind which are created by use
case “create master data”. This is quite meaningful since the pizzeria staff has to provide
product informations before a customer can order food and beverages. Only sequences
< CC,CO,CL > and < CO,CL > do not require such objects as they do not order
anything. However, these sequences are not that meaningful.

6 Related work

The work presented in this paper is rooted in formal semantics and analysis of activity
diagrams, model driven engineering, and graph transformation systems.

Eshuis [11] proposes denotational semantics for a restricted class of activity dia-
grams by means of labeled transition systems. Model checking is then used to check
generic properties or model specific properties. For reducing the state space it is as-
sumed that a system will not forever stay in a loop. Stoerrle [12] defines a denotational
semantics for control flow of UML 2.0 activity diagrams including procedure calls by
means of petri nets. By using standard petri net analysis, the translated activity diagrams
can be analysed for generic properties, e.g. reachability or deadlock freeness.

Our approach is dedicated to checking one property, namely consistency. The ad-
vantage of our approach is that we do not generate the whole state space like model
checking. We generate a finite number of sequences from an activity diagram by cutting
of loops in a way that is consistent with the criteria we are checking on each sequence.
The disadvantage of our approach is that we cannot decide for every activity diagram
whether it is consistent or not. It is unique to our approach that we refine activities
with pre- and postconditions and that we take into account this refinement during the
analysis.

In the area of model driven engineering, Jayaraman, Whittle et al. [13] use critical
pair analysis to detect dependencies and conflicts between features modelled as a graph
transformation modifying UML diagrams. This approach however is limited to a pair-
wise analysis of transformations. No control structure such as activity diagrams refine
the analysis.

Fujaba [14] and Moflon [15] are mature graph transformation tools usable for spec-
ifying and executing transformations similar to AGG. Fujaba uses a kind of activity
diagrams called story diagrams and integrates them with graph transformations similar
to our approach. But AGG is the only graph transformation tool which supports CPA
and the applicability checks on rule sequences as suggested in this paper.

7 Conclusion

In this paper, we present sufficient criteria for checking the consistency of activity-
based behavior models in the context of requirements engineering. The additional ef-
fort of consistency checking pays off if an early formal analysis is required. We check
the consistency of refined activity diagrams. Activities are equipped with pre- and post-
conditions which are formulated by interrelated object diagrams typed over a com-
mon domain model. This allows us to define the behavior of refined activity diagrams
by graph transformation rule sequences. Sufficient criteria developed in the context of
graph transformation can then be applied to check for consistency. Thereby one of the
main new technical insights in this paper is that we are able to conclude applicability of
an infinite set of system runs by analyzing only a finite one. Infinite sets of runs occur
due to loops in activity diagrams. We have shown that it is enough to check only a finite
set of runs, if a newly introduced reduction mechanism is respected. Further reductions
are conceivable by taking the object flow into account. However, this is future work.

Although there are applicable graph transformation rule sequences which do not
satisfy the given criteria, they seem to apply often, provided that all rules do not delete
object nodes. For the time being, this criterion which seems to be the most restricting
one, can be circumvented by just detaching object nodes from the main object structure.
Besides their application to modeling of services and service orchestration, our criteria
need further evaluation in future work.

Graph transformation tool AGG offers a new analysis module for checking the pre-
sented applicability criteria for given rule sequences with dedicated start graph. We
intend to extend this tool support by generating graph constraints to be fulfilled by start
graphs of applicable rule sequences. For integrating this analysis with a UML CASE
tool, it has to support the modeling of refined activities and has to provide a translation

to graph transformation rule sequences. If a description of pre- and post-conditions by
interrelated object diagrams is not offered, their definition by OCL constraints might be
supported. Translating a restricted form of OCL constraints to graph rules could also
enable an automated analysis based on AGG.

Our results are not limited to consistent behavior modeling for requirements engi-
neering only. They help in identifying unintended imprecisions and may also be applied
to the rigorous analysis of various kinds of work flow and business process models.

8 Appendix

Lemma 1. Given a rule sequence p1p2 . . . pn which is applicable toG0 and each of the
rules not node-deleting. The rule sequence p1p2 . . . pnpj with 1 ≤ j ≤ n is applicable
to G0 if pi with j ≤ i ≤ n causes no conflict with pj .

Proof. Let G0
p1⇒ G1 . . . Gn−1

pn⇒ Gn be the graph transformation sequence arising by
applying rule sequence p1p2 . . . pn to G0. Consider then the following diagram:

Nj Nj

Rj

��

Kj //oo

��

Lj

nj

OO

mj ""DD
DD

DD
DD

Lj

nj

OO

hj,j

vv
mj||zz

zz
zz

zz
Kjoo //

��

Rj

��
Gj Dj

dj

//
ej

oo Gj−1 Djoo // Hj

Since pj causes no conflict with pj the morphism ej ◦ hj,j exists satisfying NACpj .
This makes pj applicable to Gj . Therefore we can construct the following diagram
which exists because pj is not node-deleting:

Nj+1 Nj

Rj+1

��

Kj+1 //oo

��

Lj+1

nj+1

OO

mj ""DD
DD

DD
DD

Lj

n1

OO

hj,j+1

vv
mj~~}}

}}
}}

}
Kjoo //

��

Rj

��
Gj+1 Dj+1

dj+1

//
ej+1

oo Gj Doo // H

Since pj+1 does not cause a conflict with pj the morphism ej+1 ◦ hj,j+1 exists sat-
isfying NACpj . This makes pj applicable to Gj+1. We can iterate this argumenta-
tion up until the conclusion that pj is applicable to Gn. Note that this argumentation
is analogous to the induction argument (i) in the proof of the applicability criteria
in [5] for sequence Gj−1

pj⇒ Gj . . . Gn−1
pn⇒ Gn and rule pj . This is because pj is

not node-deleting, pj does not have impeding predecessors in pj . . . pn and pj is ap-
plicable to Gj−1. Therefore we can conclude that the graph transformation sequence

G0
p1⇒ G1 . . . Gn−1

pn⇒ Gn
pj⇒ Gn+1 exists and thus p1p2 . . . pnpj is applicable to G0

as well.

Lemma 2. Given a transformation sequence t : G0
p1⇒ G1 . . . Gn−1

pn⇒ Gn via the
rule sequence p1p2 . . . pn. Then p is applicable to Gn whenever p is applicable to some
intermediate graph Gj with 0 ≤ j ≤ n in the transformation sequence t and pi with
j ≤ i ≤ n causes no conflict with p and p is not node-deleting.

Proof. Let Gj with 1 ≤ j ≤ n be the intermediate graph in t to which p is applicable.
Consider now the graph transformation sequence t′ : Gj ⇒∗ Gn via pj+1 . . . pn arising
by cutting of the first j steps of transformation sequence t. Now we observe that we
can apply induction argument (i) of the correctness proof of the applicability criteria
in [5] to p and t′ : Gj ⇒∗ Gn. This is because p is not node-deleting, there are no
impeding predecessors in pjpj+1 . . . pn for p, and p is applicable to Gj . Therefore we
can conclude that p is applicable to Gn and in the end a graph transformation sequence
t′′ : G0 ⇒∗ Gn

p⇒ Gn+1 exists via p1p2 . . . pnp.

Theorem 1 (repeated element reduction). Given a rule sequence s : r1r2...rn such
that two rules ri and ri+1 for 1 ≤ i < n are equal and ri is not in conflict with itself.
Sequence s is applicable to G0, if sequence s′ : r′1r

′
2 . . . r

′
n−1 being s without ri+1

fulfills the applicability criteria for G0 such that the following holds for each r′j with
j > i:

– r′j has a pure enabling predecessor in s′

OR
– r′j is applicable to G0

OR
– r′j is equal to some r′k with k < j.

Proof. Rule ri+1 can be appended to rule sequence r1, r2 . . . ri without influencing
applicability to G0 because of Lemma 1. This is because ri+1 equals ri and rules
r1, r2 . . . ri do not cause a conflict with ri+1. The latter condition holds since r1, r2 . . . ri
fulfills the impeding predecessor criterion and ri+1 equals ri and in addition ri does not
cause a conflict with itself. Therefore r1r2 . . . riri+1 is applicable to G0. Now we can
append rule ri+2 because of the following argumentation. If ri+2 = r′i+1 has a pure
enabling predecessor in s′ it has one in s as well. This is because the set of predecessors
of r′i+1 in s′ is equal to the set of predecessors of ri+2 in s. Therefore we can apply
Lemma 2, since ri+2 is applicable to the resulting graph of its enabling predecessor,
each predecessor of ri+2 does not cause a conflict since the impeding predecessor cri-
terion holds in s′, and ri+2 is not node-deleting because the no node-deleting criterion
holds for all rules in s′. If ri+2 = r′i+1 is applicable to G0 we can apply analogously
Lemma 2 again. In particular, the intermediate graph equals G0 now. If ri+2 = r′i+1

is equal to some r′k with k < i + 1 we can apply Lemma 1. This is because r′k equals
some predecessor of ri+2 in s. Moreover the set of predecessors of r′i+1 in s′ is equal
to the set of predecessors of ri+2 in s, and the impeding predecessor criterion holds for
s′. We can argument analogously for all rj with n ≥ j > n+ 2.

Theorem 2 (loop reduction). Given a rule sequence s : q(r1r2 . . . rm)nq′ consisting
of a rule sequence q followed by an n-ary loop (n > 2) of rule sequence r1r2 . . . rm fol-
lowed by a rule sequence q′. Sequence s is applicable toG0 if sequence s′ : q(r1r2 . . . rm)2q′

being swith r1r2 . . . rm repeated only twice fulfills the applicability criteria forG0 such
that the following holds for each r in q′ belonging to s′:

– r is equal to some rule occurring in q(r1r2 . . . rm)2

OR
– r has a pure enabling predecessor in s′

OR
– r is applicable to the start graph G0.

Proof. Since s′ fulfills the applicability criteria it is applicable to G0 such that a graph
transformation sequence G0 ⇒∗ H ⇒∗ I ⇒∗ J via s′ exists with H the graph ob-
tained after applying q, I the one obtained after applying (r1r2 . . . rm)2 to H and J
the graph obtained after applying q′ to I . Since s starts as s′ with the rule sequence
q(r1r2 . . . rm)2 we can simply adopt the first part of the graph transformation sequence
G0 ⇒∗ H ⇒∗ I . Now we have to argument that the remaining rule sequence of s
(r1r2 . . . rm)n−2q′ is applicable to I . Consider G0 ⇒∗ H ⇒∗ I and the first rule of
the remaining rule sequence r1. r1 is applicable to I because of Lemma 1, since r1
is not node-deleting and all rules occurring in (r1r2 . . . rm)2 do not cause a conflict
with r1. This is because q(r1r2 . . . rm)2 fulfills the applicability criteria, in particular,
the impeding predecessor criterion. Thus because of the twofold loop all rules rj with
1 ≤ j ≤ m do not cause a conflict with r1. Therefore the transformation sequence
G0 ⇒∗ H ⇒∗ I

r1⇒ G1 exists. We can repeat the same argumentation for all remaining
rules rj with 1 ≤ j ≤ m occurring in (r1r2 . . . rm)n−2 and obtain the graph transfor-
mation sequence G0 ⇒∗ H ⇒∗ I ⇒∗ K via q(r1r2 . . . rm)n. Now we still have to
argument that q′ is applicable to K. We argument as follows. Consider q′1 the first rule
in q′. If it is equal to some rule in q(r1r2 . . . rm)2 we can conclude by Lemma 1 that
q′1 is applicable to K. This is because q′1 is equal to some rule in q(r1r2 . . . rm)2 and
thus in q(r1r2 . . . rm)n. Moreover all rules occurring in q(r1r2 . . . rm)n do not cause a
conflict with q′1 since s′ : q(r1r2 . . . rm)2q′ fulfills the impeding predecessor criterion.
If q′1 has a pure enabling predecessor in q(r1r2 . . . rm)2 it has one in q(r1r2 . . . rm)n

as well. Therefore q′1 is applicable to the resulting graph of its pure enabling predeces-
sor in the transformation sequence via q(r1r2 . . . rm)n. Since moreover there are no
node-deleting rules and no impeding predecessors for q′1 it is applicable to K because
of Lemma 2. If q′1 is applicable to G0 it will be applicable to K as well again because
of Lemma 2. In this case the intermediate graph is in particular equal to G0. We can
argument analogously for all remaining rules in q′ and obtain a graph transformation
sequence starting with G0 via the rule sequence s.

References

1. OMG: Uml resource page of the object management group. (http://www.uml.org/)
2. Hausmann, J., Heckel, R., Taentzer, G.: Detection of Conflicting Functional Requirements

in a Use Case-Driven Approach. In: Proc. of Int. Conference on Software Engineering 2002,
Orlando, USA (2002)

3. Mehner, K., Monga, M., Taentzer, G.: Interaction Analysis in Aspect-Oriented Models. In:
Proc. 14th IEEE International Requirements Engineering Conference, Minneapolis, Min-
nesota, USA, IEEE Computer Society (2007) 66–75

4. Mehner, K., Monga, M., Taentzer, G.: Analysis of Aspect-Oriented Model Weaving. LNCS
Transactions on Aspect-Oriented Software Development (2008) (to appear).

5. Lambers, L., Ehrig, H., Taentzer, G.: Sufficient Criteria for Applicability and Non-
Applicability of Rule Sequences. In Ermel, C., Heckel, R., de Lara, J., eds.: Proc. Interna-
tional Workshop on Graph Transformation and Visual Modeling Techniques (GTVMT’08),
Electronic Communications of the EASST (2008) to appear.

6. Lambers, L., Mariani, L., Ehrig, H., Pezzè, M.: A formal framework for developing adaptable
service-based applications. In: Proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE). (2008)

7. Harel, D., Marelly, R.: Come, Let’s Play - Scenario-Based Programming Using LSCs and
the Play-Engine. Springer (2003)

8. AGG: AGG Homepage. (http://tfs.cs.tu-berlin.de/agg)
9. Ehrig, H.and Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-

formation. Springer-Verlag (2005) in preparation.
10. Lambers, L., Ehrig, H., Orejas, F., Prange, U.: Parallelism and concurrency in adhesive high-

level replacement systems with negative application conditions. In Ehrig, H., Pfalzgraf, J.,
Prange, U., eds.: Workshop on Applied and Computational Category Theory (ACCAT’07),
Elsevier Science (2007)

11. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams (2004)
12. Stoerrle, H.: Semantics of uml 2.0 activity diagrams. In: International Conference on Visual

Languages and Human Centric Computing VLHCC, IEEE (2004)
13. Jayaraman, P., Whittle, J., Elkhodary, A., Gomaa, H.: Model composition in product lines

and feature interaction detection using critical pair analysis. In: Proceedings of the MoDELS
2007, LNCS (2006)

14. Fujaba: Fujaba homepage. (http://www.fujaba.de)
15. Moflon: Moflon homepage. (http://www.moflon.org)

