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Abstract. In use case-driven approaches to requirements modeling, UML ac-
tivity diagrams are a wide-spread means for refining the functional view of use
cases. Early consistency validation of activity diagrams is therefore desirable but
difficult due to the semi-formal nature of activity diagrams. In this paper, we
specify well-structured activity diagrams and define activities more precisely by
pre- and post- conditions. They can be modeled by interrelated pairs of object di-
agrams based on a domain class diagram. This activity refinement is based on the
theory of graph transformation and paves the ground for a consistency analysis of
the required system behavior. A formal semantics for activity diagrams refined by
pre- and post-conditions allows us to establish sufficient criteria for consistency.
The semi-automatic checking of these criteria is supported by a tool for graph
transformation.

1 Introduction

Requirements engineering is the process of gathering, structuring, analyzing, and val-
idating requirements of a software system. Requirements analysis and validation is
needed to come up with a consistent requirements specification which provides the
basis for all relevant development decisions. The detection of requirement errors late in
the development process causes expensive iterations through all phases.

In object-oriented software development, the UML [1] has become the standard
notation for software models at different stages of the life cycle and at different lev-
els of abstraction, including the requirements specification. The result of the require-
ments analysis consists of a domain class diagram and a use case specification. The
main scenario(s) of a use case are often specified with activity diagrams. The dynamic
aspect—when something can be done—is captured by activity diagrams. The func-
tional aspect—how it can be done—is described by pre- and post-conditions of activ-
ities which are first described in natural language. In particular, the functional aspect
has not been formally integrated with the static domain model. The intended connec-
tions between domain classes and activity diagrams can mainly be indicated by giving
meaningful names to activities.

? Many thanks to Hartmut Ehrig for several useful remarks.



An early consistency check of activity diagrams taking into account pre- and post-
conditions is difficult due to the informal nature of activity specifications. By consis-
tency we mean that all flow paths of an activity diagram can be performed. In this situa-
tion, a more precise specification of each activity can pave the ground for a consistency
analysis. We propose to refine activity diagrams by describing pre- and post-conditions
of each activity by a pair of interrelated object diagrams as introduced in [2]. These
object diagrams link formally the pre- and post-conditions with the domain model. The
aim of the consistency analysis is to validate that control flow is consistent with pre-
and post-conditions.

Graph transformation systems can be used to formalize this problem and to provide
tool support for the analysis. A pair of pre- and post-conditions can be formalized as
a graph transformation rule. The idea was first presented in [2] to analyze inconsisten-
cies between activities during use case integration, however not taking into account the
control flow. The idea was extended in [3, 4] for analyzing inconsistencies during com-
position of an aspect-oriented extension of activity diagrams. The approach classified
sources of inconsistencies taking into account the control flow. [5] provided sufficient
applicability criteria for graph transformation rule sequences as formal foundation. This
idea was employed in [6] to validate control flow structures for adaptable service-based
applications. The structures are described by live sequence charts [7].

Based on our previous work cited above, this paper presents sufficient criteria for
consistency analysis of activity diagrams. In order to apply the existing applicability
criteria for graph transformation rule sequences from [5], we provide a semantics for
activity diagrams refined with pre- and post-conditions. We also improve the existing
applicability criteria and introduce new reduction mechanisms for the analysis phase.
The automated checking of rule sequence applicability has been integrated into the
graph transformation tool AGG [8]. We demonstrate the feasibility of our approach with
an example. Note that this paper presents more technical details as presented already in
[9] and also a section on tool support is added.

The paper is organized as follows: Section 2 illustrates the use-case driven approach
to requirements modeling and introduces the running example. In Section 3, we recall
the concept of graph transformation, explain conflicts and dependencies of graph trans-
formations, and present sufficient criteria for the applicability of graph transformation
rule sequences together with two new reduction mechanisms for the applicability anal-
ysis of rule sequences. In Section 4 we present a graph transformation based semantics
of refined activity diagrams, define consistency, introduce an efficient way to analyze
for consistency, and present tool support. We analyze our running example in Section 5.
Related work is discussed in Section 6. Section 7 contains our conclusion and outlook.
In Section 8 the proofs of some results are listed.

2 Use Case-Driven Requirements Modeling

An use case diagram specifies a number of main scenarios by use cases, actors, and
dependencies between them. UML activity diagrams can be used to model the behavior
of each use case. In our approach we formalize activities by pre- and post-conditions



based on a domain class diagram. In the following, we introduce this approach with a
small case study of an online pizza service.

2.1 Use Cases and Domain Model

The center of our requirements analysis is an online service for a pizzeria offering
pizzas and beverages. The pizzeria staff enters master data, e.g. different kinds of pizzas,
toppings and beverages. Customers have to register before they are allowed to order
food and beverages. As long as the order is not closed, further order items may be
attached. Correspondingly, the system offers the use cases “create master data” and
“take order” (cf. Fig. 1). The complex use case “take order” includes use case “add
pizza to order”. Further use cases are conceivable but not considered in the following
due to space constraints such as requesting a voucher (“request voucher”) or contacting
the pizzeria staff (“write message”).

Fig. 1. Pizzeria example: Use cases (left), Domain model (right)

The corresponding domain model class diagram is shown in Fig. 1. It illustrates
an Order placeable by a Customer. An order is constituted by a number of items (Or-
derItem), whereas each item may be associated with a kind of pizza (PizzaKind) and if
desired multiple kinds of additional toppings (ToppingKind), or the item is associated
with a BeverageKind. The structure of the domain model allows different pizza and/or
beverages to be associated to the same order item, which is semantically undesired.
To solve this constraint, an OCL expression could be formulated. In the following our
refinements of the corresponding use cases prevent the occurrence of such links though.

2.2 Activities Refined by Pre- and Post-Conditions

Fig. 2 shows the activity diagrams refining corresponding use cases as shown in Fig. 1.
Use case “create master data” is refined in Fig. 2(a). It allows to create pizza, topping
and beverage kinds. Fig. 2(c) shows the activity diagram refining use case “take order”.
It conditionally creates a customer followed by order creation. A Pizza or beverage can
be added to the order in a loop. If all desired order items are added, the order is closed.



The icon in the bottom right corner of activity “Add pizza to order” indicates a reference
to the activity diagram shown in Fig. 2(b). It refines the use case “add pizza to order”,
whereas the corresponding include relation between the use-cases was already depicted
in the use-case diagram (cf. Fig. 1).

Fig. 2. Activity diagrams: Create master data(a), Add pizza to order(b), Take order(c)

Based on the domain model, the pre- and post-conditions of each activity can be
specified using interrelated object diagrams extended by negative application condi-
tions. The interrelation is expressed by numbers. Equal numbers refer to same instances.
Object creation is specified by introducing a new element in a post-condition. Object
deletion is specified by presenting it in the pre-condition only. A pair of pre- and post-
conditions can be parameterized. Negative application conditions (NAC), depicted in
red dashed (out)line, are used in pre-conditions to specify objects which must not exist.

Fig. 3 shows the pre- and post-condition pair of activity “Add pizza kind” of activity
diagram “Create master data”. A new PizzaKind object is created if a corresponding
PizzaKind object does not exist. Input parameters n and p provide values for the name
and price attributes. Conditions for activities “Add topping kind” and “Add beverage
kind” are composed analogously.

Fig. 4 shows the pre- and post-conditions of the activities of activity diagram “Take
order” where activity “Add pizza to order” has been replaced by its refinement. Note
that the pre- and post-conditions of activity ”Order pizza” and ”Order beverage” ensure



Fig. 3. Pre- and post-conditions for activity “Add pizza kind” of diagram “Create master data”

that each ordered pizza and/or beverage is associated to a different OrderItem. The pre-
and post-conditions can be described as follows:

(1) A Customer is created with name and address set by input parameters n and adr, if
an equally named customer does not exist already.

(2) An Order is created and linked to a Customer identified by parameter n, but only if
no open order is already associated i.e. attribute closed is false.

(3) A new OrderItem is created and linked to an existing PizzaKind object. The pizza
name is given as parameter.

(4) An existing ToppingKind is linked to the OrderItem related to a PizzaKind. The
topping name is given as parameter.

(5) An existing BeverageKind is linked to an Order via a new created OrderItem.
(6) An Order is closed i.e. the attribute closed which must be false before is set to true.

3 Formalization by Graph Transformation

The UML variant presented in Sect. 2 can be precisely defined by the theory of graph
transformation [10]. While class diagrams are formalized by type graphs, activities with
pre- and post conditions are mapped to graph rules. This serves as a basis for analyzing
use case-driven requirement models precisely. Here, we summarize the main ideas.

3.1 Graphs and Graph Transformation

When formalizing object-oriented modeling, graphs occur at two levels: the type level
(defined based on class diagrams) and the instance level (given by all valid object dia-
grams). This idea is described by the concept of typed graphs, where a fixed type graph
TG serves as an abstract representation of the class diagram. Types can be structured
by an inheritance relation. Multiplicities and other annotations are expressed by addi-
tional graph constraints. Instances of the type graph are object graphs equipped with a
structure-preserving mapping to the type graph. A class diagram can thus be represented
by a type graph, plus a set of constraints over this type graph.

Graph transformation is the rule-based modification of graphs. Rules are expressed
by two graphs (L,R), where L is the left-hand side (LHS) of the rule representing the
pre-condition and R is the right-hand side (RHS) describing the post-condition, and
a mapping between objects in L and R. L ∩ R (the graph part that is not changed)
and the union L ∪ R should form a graph again, i.e., they must be compatible with
source, target and type settings, in order to apply the rule. Graph L \ (L ∩ R) defines



Fig. 4. Pre- and post-conditions for activities of activity diagram “Take order”

the part that is to be deleted, and graph R \ (L ∩ R) defines the part to be created.
Figure 4 shows pre- and post-conditions of the activities which can be interpreted as
graph rules. Numbers indicate a mapping between left- and right-hand sides. Please
note that the left-hand sides may contain two kinds of links, drawn by solid and dashed
lines. Only the solid parts belong to the left-hand side and formulate a positive pre-
condition while the dashed ones prohibit certain graph parts and represent negative
application conditions (NACs). For example, rule Create order (cf. Fig. 4(2)) describes
how an Order is created for a certain Customer and prohibits the existence of an already
associated order with attribute closed=false at the same time i.e. the rule is applicable
only, if all placed orders have been closed.

A graph transformation step G
r,m +3 H between two instance graphs G, H is

defined by first finding a match m of the left-hand side L of rule r in the current in-
stance graph G such that m is structure-preserving and type-compatible, and second by
constructing H in two passes: (1) build D := G \m(L \ (L∩R)), i.e., delete all graph
items that are to be deleted; (2) H := D∪ (R\ (L∩R)), i.e., create all graph items that
are to be created. A graph transformation (sequence) consists of zero or more graph
transformation steps. A set of graph rules, together with a type graph, is called a graph
transformation system (GTS). A GTS may show two kinds of non-determinism: (1) For
each rule several matches may exist. (2) Several rules might be applicable.



The tool environment AGG (Attributed Graph Grammar System) [8] can be used to
specify graph transformation systems and analyze their rules.

3.2 Conflicts and Dependencies

As discussed in the previous section, several rules may be applicable to a host graph.
Either the results might be the same regardless of the application order, or if one of two
rules is not independent of the second, the first one will disable the second. In this case,
the two rules are in conflict. Conversely, two rules are said to be parallel independent
if they do not disable each other. Instead, sequential independence guarantees that the
order of application in a transformation sequence does not matter.

One of the main static analysis facilities for GTSs is the check for potential conflicts
and dependencies between rules, both supported in AGG. This conflict and dependency
analysis is based on critical pair analysis (CPA) [10, 2]. A critical pair is a pair of trans-

formation steps G
r1,m1 +3 H1 , G

r2,m2 +3 H2 that are in conflict in a minimal context,
identified through matches m1 and m2. The following conflicts can occur:

delete/use: The application of r1 deletes an element used by the match of r2.
produce/forbid: The application of r1 produces an element that a NAC of r2 forbids.
change/use: The application of r1 changes an attribute value used by the match of r2.

Critical pair analysis is also used to find potential dependencies between a transfor-
mation applying r1 and another one applying r2. This case is led back to critical pairs

consisting of steps H
r−1
1 ,m′

1+3 G and H
r2,m2 +3 K . The inverse rule r−1

1 is obtained by
exchanging LHS and RHS and translating the NACs into equivalent ones from LHS to
RHS [10, 5]. The following dependencies can occur:

produce/use: The application of r1 produces an element needed by the match of r2.
delete/forbid: The application of r1 deletes an element that a NAC of r2 forbids.
change/use: The application of r1 changes an attribute value used by the match of r2.

Rule r2 purely depends on rule r1 if the left-hand side of r2 can be completely
embedded into the right-hand side of r1. This means that if rule r1 has been applied then
it delivered everything rule r2 needs to be applied as well. Note that NACs belonging
to r2 are not necessarily satisfied though and still have to be checked.

If there are neither potential dependencies between transformations via r1 and r2

nor via r2 and r1 then rules r1 and r2 are sequentially independent. This leads to the fact
that r1 and r2 can be switched if they occur next to each other in a rule sequence without
any impact on the applicability of the rule sequence. We call such rule sequences in
which sequentially independent neighbored rules are switched shift-equivalent.

3.3 Criteria for Applicability of Rule Sequences

In [5] sufficient criteria are introduced for the applicability of a rule sequence to a start
graph. They describe which conditions a given rule sequence and some start graph G0

should fulfill such that it becomes applicable to G0.



Concurrent rules For the applicability criteria we need the concept of a concurrent rule
rc which can be constructed from a sequence of single rules r1, r2, . . . rn (see Def. 6
in the appendix). Such a concurrent rule rc establishes in one transformation step the
same effect as single rules r1, r2 . . . rn would establish in consecutive transformation
steps [11, 10]. Thus, a concurrent rule summarizes in one rule which parts of the graph
should be present, preserved, deleted and produced when applying the corresponding
rule sequence to this graph. Thereby a concurrent rule fixes all interrelations between
the summarized rule applications. Moreover we have a summarized set of NACs on the
concurrent rule expressing which graph parts are forbidden when applying the corre-
sponding rule sequence.

We can for example build a concurrent rule pc with NACs from rule Create order
and Order pizza as depicted in Fig. 4. The lhs of pc would contain a Customer node
since this is needed by rule Create order and in addition a PizzaKind node needed
by rule Order pizza. The concurrent NAC would forbid the Customer to have placed
already an Order since this is forbidden by Create order. Rule Order pizza does not
forbid anything such that nothing else has to be added to the concurrent NAC. The rhs
of pc consists of the rhs of Order pizza together with a Customer object appended to
the Order node by means of a places edge. Now pc summarizes in one rule the effect
of Create order and Order pizza consecutively.

Applicability criteria Given a rule sequence s : r1r2...rn, the applicability criteria4 for
s to some graph G0 are defined as follows. Note that all criteria have to be fulfilled.

initialization: Rule r1 is applicable to graph G0.
no node deleting: Each rule in s must not delete object nodes.
no impeding predecessors: The predecessors of each rule r in s do not cause a conflict

with r.
enabling predecessor(s): For each rule r in s:

pure: There is a predecessor r′ of rule r in s and r is purely dependent on r′.
Moreover each NAC of r forbids a graph element of type t such that an element
of type t is neither present in G0 nor produced by any predecessor of r OR

nearest: There exists a concurrent rule rc of rule r and a (sequence of) predecessor
rule(s) s′ such that rc is applicable to G0, and all predecessors of rc do not
cause a conflict with rc. Moreover r is not in conflict with each rule between
s′ and r OR

not needed: Rule r itself is applicable to G0.

Note that in order to fulfill the enabling predecessor(s) criterion it is important to check
its three possibilities pure, nearest and not needed. It is recommended to follow this
order to keep the set of conditions on graph G0 minimal. Moreover note that as soon as a

4 In addition to the criteria presented in [5] the criteria in this paper contain two improvements
in the enabling predecessor(s) criterion. In particular, we exploit in this paper the typing in
the graph transformation system such that also rules with NACs are allowed to have a pure
enabling predecessor. Moreover an enabling predecessor does not necessarily have to be direct
if intermediate rules fulfill additional constraints. The correctness of both improvements is
proven in Theorem 3 in the appendix.



rule is enabled by reusing elements delivered by some predecessor rule, this dependency
should be fixed while checking the criteria for all remaining rules. This is expressed by
the compatibility condition defined in Theorem 3 in the appendix. It is up to future work
to integrate object flow in our activity diagrams in order to fix these dependencies from
the beginning. Finally note that as in [5] we assume injective matching.

Reduction of Rule Sequences A rule sequence s can be reduced before checking its
applicability, i.e. sequence s is applicable to a graph G0, if s can be reduced in one of
the following ways (1−4) to a rule sequence s′ which satisfies the applicability criteria
above:

1. Repeated element reduction (Theorem 1 in appendix) Given a rule sequence s :
r1r2...rn such that two subsequent rules in s are equal. Sequence s can be reduced
to s′ by deleting one of these equal rules, if they are not in conflict with themselves
and each subsequent rule has a pure enabling predecessor, is applicable to G0, or is
equal to a predecessor rule.

2. Loop reduction (Theorem 2 in appendix) Given a rule sequence
s : sstart(r1r2...rm)nsend with sstart and send being rule sequences and m ≥
1, n > 2. Sequence s can be reduced to s′ = sstart(r1r2...rm)2send by execut-
ing loop = (r1r2...rm) only two times, if each rule r in send has a pure enabling
predecessor, is applicable to graph G0, or is equal to some rule in loop or in sstart.

3. Shift-equivalent reduction [5] Rule sequences s and s′ are shift-equivalent (as de-
fined in Sect. 3.2).

4. Summary reduction [5] Rule sequence s′ can be deduced from s by summarizing
neighbored rules in s into concurrent rules.

Note that since the reduced rule sequence s′ satisfies the applicability criteria, it is in
particular applicable to G0.

4 Consistency Analysis with Refined Activity Diagrams

Activities are defined more precisely by pre- and post-conditions as explained in Sect. 2.
They can be formalized by graph transformation rules as introduced in Sect. 3. This
activity refinement enables us to analyze consistency of the required system behavior
based on the applicability criteria presented in the previous section. In this section,
at first we specify well-structured refined activity diagrams and define their semantics
and consistency based on graph transformation. Then we present reduction techniques
enabling the efficient analysis of refined activity diagrams for consistency.

4.1 Refined Activity Diagrams: Semantics and Consistency

As presented in [12, 9], we restrict our considerations to well-structured activity di-
agrams. The building blocks are sequences, fork-joins, decisions, and loops only. A
well-structured activity diagram A consists of a start activity s, an activity block B,
and an end activity e such that there is a transition between s and B and another one
between B and e. An Activity block is defined as follows:



– Empty: An empty activity block is not depicted.
– Simple: A simple activity is an activity block.
– Sequence: A sequence of two activity blocks connected by a transition form an

activity block.
– Decision: A decision activity with two outgoing transitions going to an activity

block each, and a merge activity with two incoming transitions from each of these
blocks form an activity block.

– Loop: A decision activity followed by an activity block with an outgoing transition
to the same decision activity form an activity block.

– Fork: A fork activity followed by two activity blocks followed by a join activity
form an activity block.

A refined activity diagram A is a well-structured activity diagram such that each activity
occurring in A corresponds to a graph transformation rule. Given an activity block B
of a refined activity diagram A its corresponding set of rule sequences SB is defined as
follows.

– If B is empty, SB = ∅.
– If B consists of a simple activity a, SB = {a}.
– If B is a sequence of X and Y , SB = SX seq SY = {sxsy|sx ∈ SX ∧ sy ∈ SY }
– If B is a decision block on X and Y , SB = SX or SY = SX ∪ SY

– If B is a loop block on X , SB = loop(SX) =
⋃

i∈I Si
X where S0

X = {λ} with λ

being the empty sequence, S1
X = SX , S2

X = SX seq SX and Si
X = SX seq Si−1

X

for i > 2.
– If B is a fork block on X and Y , SB = SX ||SY =

⋃
sx||sy with sx ∈ SX ∧ sy ∈

SY where sx||λ = {sx}, λ||sy = {sy}, and xs′x||ys′y = {x} seq s′x||ys′y ∪
{y} seq xs′x||s′y .

Thus we define the semantics Sem(A) of a refined activity diagram A consisting of a
start activity s, an activity block B, and an end activity e as the set of rule sequences
SB generated by the main activity block B.

We define an activity diagram A to be consistent if there exists a non-empty set of
graphs S such that each rule sequence in Sem(A) is applicable to at least one of the
graphs in S. Such a non-empty set of graphs S making an activity diagram A consistent
is without junk, if for each graph in S at least one rule sequence in Sem(A) exists
such that it is applicable to this graph. Each graph in S without junk then represents
a potential snapshot of the system to which an activity sequence in A can be applied
consistently.

Finally, note that activity diagrams considered in this paper do not contain object
flow. Integrating object flow is part of future work and promises to enable a more precise
analysis. For now we restrict to maximal object flow. This means that each activity
(resp. its corresponding rule) is expected to reuse as much as possible objects delivered
or passed through by the former activity (resp. rule).

4.2 Analysis of Reduced Semantics

Based on the semantics and consistency definition of an activity diagram A we apply
the criteria for checking the applicability of rule sequences given in Sect. 3 in order



to check for consistency. The reductions presented in Sect. 3.3 allow to cut down the
number of sequences in Sem(A).

Thus we define a reduced set of rule sequences Red(A) for a refined activity dia-
gram A as follows: Reduce the set of rule sequences in Sem(A) by applying to each
sequence loop reduction, repeated element reduction, shift-equivalent reduction or sum-
mary reduction5 (as defined in Sect. 3.3). It follows directly from Theorem 1, Theo-
rem 2 and [5] that if all sequences in Red(A) satisfy the applicability criteria, then all
sequences in Sem(A) are applicable.

4.3 Tool support

Formalizing activity diagrams by graph transformation has not only the advantage that
consistent behavior modelling can be precisely defined, but also offers tool support for
checking conflicts and dependencies of rule applications and moreover, applicability
checks. The algebraic approach to graph transformation is supported by AGG [8], a
tool environment which consists of a graph transformation engine, analysis tools and a
graphical user interface for convenient user interaction. Here, we concentrate on con-
flicts and dependency as well as applicability checks.

To check conflicts and dependencies between rules, all corresponding critical pairs
can be computed by AGG. A critical pair represents the conflict (resp. dependency) of
rules in a minimal context. The minimal conflicts (resp. dependencies) are represented
in a conflict (resp. dependency) matrix. See Figures 6 and 8 showing conflicts and de-
pendencies for all rules belonging to activity diagram Create master data (resp. Take or-
der). The entry numbers within these matrices indicate how many minimal conflicts and
dependencies, resp. have been found. More precisely, entry (rj , ri) (row, column) in the

conflict matrix in AGG describes all direct transformations G
(ri,mi)⇒ Hi which cause a

conflict with G
(rj ,mj)⇒ Hj in a minimal context. Entry (rj , ri) in the dependency matrix

in AGG describes all two-step transformation sequences G
(rj ,mj)⇒ Hj

(ri,mi)⇒ G′ such
that the second graph transformation is dependent on the first one in a minimal context.
The conflict and dependency matrices can be used to further check semi-automatically,
if a rule sequence fulfills the applicability criteria presented in Sect. 3 as explained in
detail in the next section for the example given in Sect. 2.

AGG [8] moreover features a new analysis module checking the applicability cri-
teria given in Sect. 3 for a given graph and rule sequence automatically. For a given
graph transformation system several rule sequences can be created which may be tested
then for applicability. In Fig. 5 a screenshot of this analysis module in AGG is depicted
showing that two sequences have been tested successfully for applicability. The result
of this check is shown by a table reporting how far the criteria are fulfilled (resp. not
fulfilled). See Fig. 7 and 9 in the next section showing a table for rule sequence Add
pizza kind Add topping kind Add beverage kind (resp. Create customer Create order
Order beverage Close order). E.g. if a rule has a purely enabling predecessor in the

5 Note that often it is desirable to apply more than one of the above reductions successively to
the same sequence. Such kind of stronger reductions are important for automating consistency
analysis and part of ongoing work.



Fig. 5. Checking applicability criteria in AGG.

sequence, the name of this purely enabling predecessor is depicted. That way the user
gets a chance to understand why a rule sequence is applicable.

The implementation of this new analysis module is still a prototypical one. It enables
the automatic check of rule sequences entered by the user, but it also features an XML-
based import of lists of rule sequences to be tested (resp. XML-based export of the
results for each rule sequence). This is important to allow for integration with a CASE
tool generating automatically e.g. the lists of sequences to be checked for applicability.
However tool integration with some CASE tool is still part of future work.



5 Example Analysis

Consider the pizzeria scenario in Sect. 2. First we analyze the use cases “create master
data” and “take order” separately. Then we reason about the interrelation of both. In
order to analyze the use cases the following steps are carried out: (1) Generate potential
conflicts and dependencies of activity rules. (2) Examine all rule sequences defined by
the activity diagram, and analyze their applicability according to criteria6 by at first pos-
sibly reducing them. (3) Draw conclusions regarding the activities or activity diagrams,
respectively.

5.1 Create Master Data

We consider at first use case ”create master data” and its activity diagram (cf. Fig. 2(a)).
In order to be able to reason in a compact way about activity sequences, we use the
following acronyms:AP=Add pizza kind, AT=Add topping kind, AB=Add beverage
kind. Fig. 6 depicts the conflict and dependency matrices calculated by the tool AGG.
The input data are rules corresponding to the pre- and post-conditions in Fig. 3. Note
that each of these rules is parameterized. Consider e.g. rule AP(n:String, p:float). It
holds a parameter for the pizza name and another one for its price. This rule can only be
applied if concrete values for its parameters are given. E.g. rule AP(“Margherita”, 5)
can be applied whenever a Margherita pizza has not already been added. Otherwise, a
produce-forbid conflict occurs which is shown in the conflict matrix computed by AGG.
In particular, there is a conflict between AP(n:String, p:float) and AP(n’:String, p’:float)
if the parameter values for name i.e. n and n’ are the same. This holds analogously for
the rules AT and AB. In all other cases there are neither conflicts nor dependencies.
Considering again the activity diagram in Fig. 2(a), we start checking the applicability

Fig. 6. Conflict and dependency matrix of “Create master data”

of all sequences in Sem(Create master data) according to the criteria. The first criterion
to check is initialization. Its satisfaction depends on the first rule in each sequence
only. Since each sequence in Sem(Create master data) starts with AP , AT or AB, by
checking these three cases we cover the criterion for all sequences. Each rule’s left-
hand side (LHS) is empty i.e. no requirements concerning the existence of objects in
the start graph are given. However, considering their negative application conditions

6 AGG [8] offers a new module for automatically checking the applicability criteria for given
rule sequences and a start graph. Here we explain this check step by step.



(NAC) and the reasoning above, we conclude that the start graph may be empty or at
least must not contain an object forbidden by a corresponding NAC, i.e. containing
an object with a name according to the rule’s parameter. Since all sequences contain
rules with empty left-hand sides only, criterion no node deleting is obviously satisfied
as well. As mentioned above there is one conflict between each rule with itself if their
parameter values for name are the same. Thus all sequences with at most one occurrence
of each rule satisfies the criterion no impeding predecessor. Otherwise, the parameters
for attribute name of equal rules must differ in order to fulfill the criterion. The last
criterion to check is enabling predecessor(s). Since the dependency matrix in Fig. 6
does not show any dependencies, each rule after the first rule should be applicable to the
start graph. Thus each rule fulfills the sub-item not needed of the enabling predecessor
criterion. Summarizing, the refined activity diagram “Create master data” is consistent,
if multiple occurring equal rules within a sequence do not use the same parameter values
for their attribute name and the start graphs do not already contain objects forbidden by
some rule in the sequence. If both constraints hold, the loops in the activity diagram can
be run through as long as desired. Therefore pizza, topping and beverage kinds cannot
occur twice with the same name in the menu.

Fig. 7 depicts a table computed by AGG for rule sequence Add pizza kind, Add
topping kind, Add beverage kind and an empty start graph. This table shows that all
applicability criteria are fulfilled for this rule sequence as explained step by step for all
rule sequences above.

Fig. 7. Applicability table for rule sequence AP, AT, AB and empty start graph.

5.2 Take Order

Now we consider use case “take order” and its activity diagram (cf. Fig. 2(c)). As al-
ready addressed, an include reference to another use case “add pizza to order” is used.
We deal with that situation by treating the activities of the corresponding activity dia-
gram as part of the embedding one. We use acronyms again in the sequences for better
readability: OP=Order pizza, OT=Order topping, OB=Order beverage, CC=Create
customer, CO=Create order, CL=Close order. At first we take a look at the dependency
and conflict matrices calculated by AGG (cf. Fig. 8). Irrelevant7 entries have been col-
ored gray. This is conceivable to be done automatically in the future. Considering again
the activity diagram in Fig. 2(c), we start checking the applicability of all sequences in

7 First only conflicts caused by (resp. dependencies on) some predecessor are relevant.



Fig. 8. Conflict and dependency matrix of ”Take order” with respect to the control flow

Sem(Take order) according to the criteria. We start our analysis with criterion initial-
ization. Each sequence starts with CC or CO. For sequences starting with CO(n) each
start graph should have a Customer object named according to parameter n and addi-
tionally this object must not be linked to an Order with attribute closed being false. For
sequences starting with CC(n, adr) the start graph must not contain a Customer object
named according to parameter n of rule CC. This ensures that two customers with the
same name do not exist. Criteria no node deleting and no impeding predecessor are
satisfied for all sequences, since no node is deleted by any rule and the conflict matrix
(cf. Fig. 8) does not show any conflict between corresponding rules. The last crite-
rion to check is enabling predecessor(s) where we reason about rules needing enabling
predecessor(s) if they are not already applicable to the start graph. For rule sequences
starting with CC, rule CO is the first one to be enabled. Now CO(n2) is purely en-
abled by the preceding rule CC(n1, adr1) if n1 = n2. By assuming maximal object
flow (as explained in Sect. 4.1) it is clear that the customer which is created by CC
is the one for which an order is created by CO. Moreover rule CL is purely enabled,
namely by rule CO. Thus only for OP, OT and OB in the activity diagram we still
have to check if they have enabling predecessor(s). Therefore at first we apply sum-
mary reduction (as defined in Sect. 3.3) to each OP with its corresponding successive
OT ’s. Thus, each ordering of a pizza together with its toppings can be summarized in
a concurrent rule which we call OPT . Independent of the number of toppings rules
OB and OPT are not in conflict with each other and also not with themselves. This
means that some pizza with toppings or beverage can be ordered without disabling the
ordering of other items. Thus we conclude that each OPT as well as each OB has
CO (resp. the sequence CC followed by CO for the case that a customer needs to
be created) as nearest enabling predecessor(s)8, since it delivers the Order to which
the pizza, topping, and beverage items should be added. Consequently the start graph
should contain the corresponding PizzaKind, ToppingKind and BeverageKind objects
in addition. Summarizing, Sem(Take order) contains two classes of sequences appli-

8 Note that when checking the last criterion enabling predecessor(s) we fixed the dependencies
between CC,CO and OPT (resp. OB). This means that CO creates an order for some cus-
tomer created by CC, and OPT (resp. OB) adds a pizza (resp. beverage) to the order for
the same customer (instead of for some other customer). Therefore the compatibility condition
defined in Lemma 3 in the appendix is fulfilled.



cable to two different kinds of start graphs. The first one contains sequences without
rule CC applicable to start graphs that already hold a Customer object. The other one
contains sequences starting with rule CC(n, adr) applicable to start graphs not already
holding a Customer object with name n. Moreover the PizzaKind, ToppingKind as well
as BeverageKind of ordered items should be available in the start graph.

Fig. 9 depicts a table computed by AGG for rule sequence Create customer, Create
order, Order beverage, Close order and as start graph a menu graph in which the ordered
BeverageKind is present. This table shows that all applicability criteria are fulfilled for
this rule sequence as explained step by step for all rule sequences above.

Fig. 9. Applicability table for rule sequence CC, CO, OB, CL and menu start graph.

As result we reveal the applicability of all given sequences in Sem(Create master
data) and Sem(Take order) with respect to specific sets of start graphs. This implies that
the activity diagrams are consistent with respect to corresponding system snapshots.
Finally we observe that almost every rule sequence of use case “take order” requires
objects of type PizzaKind, ToppingKind and BeverageKind which are created by use
case “create master data”. This is meaningful since the pizzeria staff has to provide
product information before a customer can order food and beverages. Only sequences
< CO,CL > and < CC,CO, CL > do not require such objects as they do not order
anything.

6 Related Work

The work presented in this paper is rooted in formal semantics and analysis of activity
diagrams, model-based engineering, and graph transformation systems.

Eshuis [13] proposes denotational semantics for a restricted class of activity dia-
grams by means of labeled transition systems. Model checking is then used to check
generic properties or model-specific properties. For reducing the state space it is as-
sumed that a system will not forever stay in a loop. Stoerrle [14] defines a denotational
semantics for control flow of UML 2.0 activity diagrams including procedure calls by
means of petri nets. The standard petri net analysis provides analysis of generic prop-
erties, e.g. reachability or deadlock freeness. In [12, 15] a graph transformation based
semantics is proposed for activity diagrams. This semantics is then analyzed by a graph
transformation based model checker. Moreover activity diagrams with such a semantics
are translated into a textual programming language having also a graph transformation



based semantics. Correctness of the transformation can then be shown based on trace
equivalence. The activities are not refined by pre- and post- conditions.

We concentrate in this paper on the analysis of compatibility of control flow with re-
finement of activities by pre- and post- conditions. Our approach is dedicated to check-
ing this compatibility which we called consistency. We provide sufficient criteria for
statically checking if each run in the activity diagram can be completed. The disadvan-
tage of our approach is that we cannot decide for every activity diagram whether it is
consistent or not. It is unique to our approach that we refine activities with pre- and
postconditions and that we use this refinement during the analysis.

Jayaraman et al. [16] use critical pair analysis to detect dependencies and conflicts
between features modelled as a graph transformation modifying UML diagrams. This
approach, however, is limited to a pairwise analysis of transformations. No control
structure such as activity diagrams are considered for the analysis.

Fujaba [17] and Moflon [18] are mature graph transformation tools usable for spec-
ifying and executing transformations similar to AGG. Fujaba uses a kind of activity
diagrams called story diagrams and integrates them with graph transformations similar
to our approach. But AGG is the only graph transformation tool which supports critical
pair analysis and the applicability checks on rule sequences as proposed in this paper.

7 Conclusion

In this paper, we present sufficient criteria for checking the consistency of activity-
based behavior models in the context of requirements engineering. The additional ef-
fort of consistency checking pays off, if an early formal analysis is required. We check
the consistency of refined activity diagrams. Activities are equipped with pre- and post-
conditions which are formulated by interrelated object diagrams typed over a com-
mon domain model. This allows us to define the behavior of refined activity diagrams
by graph transformation rule sequences. Sufficient criteria developed in the context of
graph transformation can then be applied to check for consistency. Thereby one of the
main new technical insights in this paper is that we are able to conclude applicability
by analyzing sets of rule sequences in a static way.

Although the given criteria seem to apply often, there are applicable graph transfor-
mation rule sequences which cannot be examined by this new kind of static analysis. In
that case, we can try to adapt our activity diagrams to the criteria, if sensible. Alterna-
tively, stronger reduction mechanisms (their development is part of ongoing work) as
the ones introduced in this paper should enable consistency analysis of a wider range of
activity diagrams. Otherwise, a validation technique on execution level such as model
checking should be used. For the time being, we assume that all rules do not delete
object nodes. This criterion seems to be the most restricting one, however, it can be cir-
cumvented by just detaching an object node from the main object structure if it shall be
deleted. For example, in use case “delete beverage order” an ordered beverage should
be canceled. The corresponding OrderItem would be detached from its Order. Besides
the small presented example of a pizza service, our criteria have been applied to the
modeling of services and service orchestration [6] and need further evaluation in the
future.



The graph transformation tool AGG offers a new analysis module for checking the
presented applicability criteria for given rule sequences with dedicated start graph. We
intend to extend this tool support by generating graph constraints to be fulfilled by start
graphs of applicable rule sequences. For integrating this analysis with a UML CASE
tool, it has to support the modeling of refined activities and has to provide a translation
to graph transformation rule sequences. If a description of pre- and post-conditions by
interrelated object diagrams is not offered, their definition by OCL constraints might be
supported. Translating a restricted form of OCL constraints to graph rules could also
enable an automated analysis based on AGG.

Our results are not limited to consistent behavior modeling for requirements engi-
neering only. They help in identifying unintended imprecisions and may also be applied
to the rigorous analysis of various kinds of work flow and business process models.

8 Appendix

8.1 Graph Transformation with NACs and Parallel Independence

We repeat the basic definitions for double pushout graph transformation with negative
application conditions (NACs). A graph rule holding a NAC n can be applied on a graph
G only if the forbidden structure expressed by n is not present in G.

Definition 1 (graph, graph morphism, rule). A graph G = (GE , GV , s, t) consists of
a set GE of edges, a set GV of vertices and two mappings s, t : GE → GV , assigning
to each edge e ∈ GE a source q = s(e) ∈ GV and target z = t(e) ∈ GV . A graph mor-
phism (short morphism) f : G1 → G2 between two graphs Gi = (Gi,E , Gi,V , si, ti),
(i = 1, 2) is a pair f = (fE : GE,1 → GE,2, fV : GV,1 → GV,2) of mappings, such
that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . A morphism f : G1 → G2 is injec-
tive (resp.surjective) if fV and fE are injective (resp. surjective) mappings. A graph
transformation rule p : L

l← K
r→ R consists of a rule name p and a pair of injective

morphisms l : K → L and r : K → R. The graphs L, K and R are called the left-hand
side (LHS), the interface, and the right-hand side (RHS) of p, respectively.

Definition 2 (rule and transformation with NACs, applicability of rule with NACs).

– A negative application condition or NAC(n) on p for a rule p : L
l← K

r→ R (l,r
injective) is an arbitrary morphism n : L → N . A morphism g : L → G satisfies
NAC(n) on L, written g |= NAC(n), if and only if 6 ∃ q : N → G injective such
that q ◦ n = g.

L

g

��

n // N

q
X

qqG

A set of NACs on p is denoted by NACp = {NAC(ni)|i ∈ I}. A morphism
g : L → G satisfies NACp if and only if g satisfies all single NACs on p i.e.
g |= NAC(ni) ∀i ∈ I .



– A rule (p,NACp) with NACs is a rule with a set of NACs on p.

– A direct transformation G
p,g⇒ H via a rule p : L ← K → R with NACp and a

match g : L→ G consists of the double pushout [19] (DPO)

L

g

��

K //

��

oo R

h

��
G D //oo H

where g satisfies NACp, written g |= NACp. Since pushouts along injective mor-
phisms always exist, the DPO can be constructed if the pushout complement of
K → L→ G exists. If so, we say that the match g satisfies the gluing condition of
rule p. If there exists a morphism g : L → G which satisfies the gluing condition
and g |= NACp we say that rule p is applicable on G via the match g.

Moreover we reintroduce[5, 19] the following definitions formalizing what it means for
a rule r1 to be not in conflict (resp. cause no conflict) with some other rule r2.

Definition 3 (parallel independent transformations and rules). Two direct transfor-

mations G
(r1,m1)=⇒ H1 with NACr1 and G

(r2,m2)=⇒ H2 with NACr2 are parallel inde-
pendent if

∃h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACr1)

and

∃h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACr2)

as in the following diagram:

N1 N2

R1

��

K1
//oo

��

L1

n1

OO

h12

''
m1

  @
@@

@@
@@

@ L2

n2

OO

h21

ww
m2

~~~~
~~

~~
~~

K2
oo //

��

R2

��
H1 D1

d1

//
e1
oo G D2

d2

oo
e2
// H2

The rules r1 and r2 are parallel independent if every transformation G
(r1,m1)=⇒ H1 via

r1 with NACr1 and any other transformation G
(r2,m2)=⇒ H2 via r2 with NACr2 are

parallel independent. We say also that r1 is not in conflict with r2.

Definition 4 (asymmetrically parallel independent transformations). A direct trans-

formation G
(r2,m2)=⇒ H2 with NACr2 is asymmetrically parallel independent on G

(r1,m1)=⇒



H1 with NACr1 if ∃h21 : L2 → D1 : d1 ◦ h21 = m2 such that e1 ◦ h21 |= NACr2 .

N1 N2

R1

��

K1
//oo

��

L1

n1

OO

m1
  @

@@
@@

@@
@ L2

h21

ww

n2

OO

m2
~~~~

~~
~~

~~
K2

oo //

��

R2

��
H1 D1

d1

//
e1
oo G D2

d2

oo
e2
// H2

Definition 5 (asymmetrically parallel independent rules). The rule r2 is asymmet-

rically parallel independent on r1 if every transformation G
(r2,m2)=⇒ H2 via r2 with

NACr2 is asymmetrically parallel independent on any other transformation G
(r1,m1)=⇒

H1 via r1 with NACr1 . We say also that r1 causes no conflict with r2.

8.2 Repeated Element and Loop Reduction

The following lemmata are used in order to prove correctness of the repeated element
and loop reduction. Note that we assume injective matching in all following lemmata
and theorems.

Lemma 1. Given a transformation sequence t : G0
r1⇒ G1 . . . Gn−1

rn⇒ Gn via the rule
sequence r1r2 . . . rn. Then rj with j ≤ n is applicable to Gn if rj is not node-deleting
and ri with j ≤ i ≤ n causes no conflict with rj .

Proof. Let G0
r1⇒ G1 . . . Gn−1

rn⇒ Gn be the graph transformation sequence arising by
applying rule sequence r1r2 . . . rn to G0. Consider then the following diagram:

Nj Nj

Rj

��

Kj //oo

��

Lj

nj

OO

mj ""D
DD

DD
DD

D Lj

nj

OO

hj,j

vv
mj||zz

zz
zz

zz
Kjoo //

��

Rj

��
Gj Dj

dj

//
ej

oo Gj−1 Djoo // Hj

Since rj causes no conflict with rj the morphism m′
j = ej ◦ hj,j exists satisfying

NACrj
. This makes rj applicable to Gj . Therefore we can construct the following



diagram which exists because rj is not node-deleting:

Nj+1 Nj

Rj+1

��

Kj+1 //oo

��

Lj+1

nj+1

OO

mj+1 ""D
DD

DD
DD

D
Lj

nj

OO

hj,j+1

vv m′
j~~}}

}}
}}

}
Kjoo //

��

Rj

��
Gj+1 Dj+1

dj+1

//
ej+1
oo Gj Doo // H

Since rj+1 does not cause a conflict with rj the morphism ej+1 ◦ hj,j+1 exists sat-
isfying NACrj

. This makes rj applicable to Gj+1. We can iterate this argumenta-
tion up to the conclusion that rj is applicable to Gn. Note that this argumentation
is analogous to the induction argument (i) in the proof of the applicability criteria
in [5] for sequence Gj−1

rj⇒ Gj . . . Gn−1
rn⇒ Gn and rule rj . This is because rj is

not node-deleting, rj does not have impeding predecessors in rj . . . rn and rj is ap-
plicable to Gj−1. Therefore we can conclude that the graph transformation sequence
G0

r1⇒ G1 . . . Gn−1
rn⇒ Gn

rj⇒ Gn+1 exists and thus r1r2 . . . rnrj is applicable to G0

as well.

Lemma 2. Given a transformation sequence t : G0
r1⇒ G1 . . . Gn−1

rn⇒ Gn via the
rule sequence r1r2 . . . rn. Then r is applicable to Gn whenever r is applicable to some
intermediate graph Gj with 0 ≤ j ≤ n in the transformation sequence t and each ri

with j + 1 ≤ i ≤ n causes no conflict with r and r is not node-deleting.

Proof. Let Gj with 1 ≤ j ≤ n be the intermediate graph in t to which r is applicable
via match m. Consider now the graph transformation sequence t′ : Gj ⇒∗ Gn via
rj+1 . . . rn arising by cutting off the first j steps of transformation sequence t. Consider
then the following diagram which can be constructed because r is not node-deleting:

Nj+1 N

Rj+1

��

Kj+1 //oo

��

Lj+1

nj+1

OO

mj+1 ""D
DD

DD
DD

D L

n

OO

hj+1

vv
m

��~~
~~

~~
~~

Koo //

��

R

��
Gj+1 Dj+1

dj+1

//
ej+1
oo Gj Doo // H

Since rj+1 does not cause a conflict with r the morphism ej+1 ◦ hj+1 exists satisfying
NACr. This makes r applicable to Gj+1. We can iterate this argumentation up to the
conclusion that r is applicable to Gn and in the end a graph transformation sequence
t′′ : G0 ⇒∗ Gn

r⇒ Gn+1 exists via r1r2 . . . rnr.

Theorem 1 (repeated element reduction). Given a rule sequence s : r1r2...rn such
that two rules ri and ri+1 for 1 ≤ i < n are equal and ri is not in conflict with itself.



Sequence s is applicable to G0, if sequence s′ : r′1r
′
2 . . . r′n−1 being s without ri+1

fulfills the applicability criteria for G0 such that the following holds for each r′j with
j > i:

– r′j has a pure enabling predecessor in s′

OR
– r′j is applicable to G0

OR
– r′j is equal to some r′k with k < j.

Proof. Rule ri+1 can be appended to rule sequence r1, r2 . . . ri without influencing
applicability to G0 because of Lemma 1. This is because ri+1 is equal to ri, ri+1 is
not node-deleting since s′ fulfills the applicability criteria, and rule ri does not cause
a conflict with ri+1. The latter condition holds since ri+1 equals ri and in addition ri

does not cause a conflict with itself. Therefore r1r2 . . . riri+1 is applicable to G0. Now
we can append rule ri+2 because of the following argumentation. If ri+2 = r′i+1 has
a pure enabling predecessor in s′ it has one in s as well. This is because the set of
predecessors of r′i+1 in s′ is equal to the set of predecessors of ri+2 in s. Therefore
we can apply Lemma 2, since ri+2 is applicable to the resulting graph of its enabling
predecessor, each predecessor of ri+2 does not cause a conflict since the impeding
predecessor criterion holds in s′, and ri+2 is not node-deleting because the no node-
deleting criterion holds for all rules in s′. If ri+2 = r′i+1 is applicable to G0 we can
apply analogously Lemma 2 again. In particular, the intermediate graph equals G0 now.
If ri+2 = r′i+1 is equal to some r′k with k < i + 1 we can apply Lemma 1. This is
because r′k equals some predecessor of ri+2 in s. Moreover the set of predecessors of
r′i+1 in s′ is equal to the set of predecessors of ri+2 in s, and the impeding predecessor
criterion holds for s′. We can argue analogously for all rj with n ≥ j > n + 2.

Theorem 2 (loop reduction). Given a rule sequence s : q(r1r2 . . . rm)nq′ consisting
of a rule sequence q followed by an n-ary loop (n > 2) of rule sequence r1r2 . . . rm fol-
lowed by a rule sequence q′. Sequence s is applicable to G0 if sequence
s′ : q(r1r2 . . . rm)2q′ being s with r1r2 . . . rm repeated only twice fulfills the appli-
cability criteria for G0 such that the following holds for each r in q′ belonging to s′:

– r is equal to some rule occurring in q(r1r2 . . . rm)2

OR
– r has a pure enabling predecessor in s′

OR
– r is applicable to the start graph G0.

Proof. Since s′ fulfills the applicability criteria it is applicable to G0 such that a graph
transformation sequence G0 ⇒∗ H ⇒∗ I ⇒∗ J via s′ exists with H the graph ob-
tained after applying q, I the one obtained after applying (r1r2 . . . rm)2 to H and J
the graph obtained after applying q′ to I . Since s starts as s′ with the rule sequence
q(r1r2 . . . rm)2 we can simply adopt the first part of the graph transformation sequence
G0 ⇒∗ H ⇒∗ I . Now we have to argue that the remaining rule sequence of s
(r1r2 . . . rm)n−2q′ is applicable to I . Consider G0 ⇒∗ H ⇒∗ I and the first rule



of the remaining rule sequence r1. r1 is applicable to I because of Lemma 1, since r1

is not node-deleting and all rules occurring in (r1r2 . . . rm)2 do not cause a conflict
with r1. This is because q(r1r2 . . . rm)2 fulfills the applicability criteria, in particular,
the impeding predecessor criterion. Thus because of the twofold loop all rules rj with
1 ≤ j ≤ m do not cause a conflict with r1. Therefore the transformation sequence
G0 ⇒∗ H ⇒∗ I

r1⇒ G1 exists. We can repeat the same argumentation for all remaining
rules rj with 1 ≤ j ≤ m occurring in (r1r2 . . . rm)n−2 and obtain the graph trans-
formation sequence G0 ⇒∗ H ⇒∗ I ⇒∗ K via q(r1r2 . . . rm)n. Now we still have
to argue that q′ is applicable to K. We argue as follows. Let q′1 be the first rule in q′.
If it is equal to some rule in q(r1r2 . . . rm)2 we can conclude by Lemma 1 that q′1 is
applicable to K. This is because q′1 is equal to some rule in q(r1r2 . . . rm)2 and thus
in q(r1r2 . . . rm)n. Moreover all rules occurring in q(r1r2 . . . rm)n do not cause a con-
flict with q′1 since s′ : q(r1r2 . . . rm)2q′ fulfills the impeding predecessor criterion. If
q′1 has a pure enabling predecessor in q(r1r2 . . . rm)2 it has one in q(r1r2 . . . rm)n as
well. Therefore q′1 is applicable to the resulting graph of its pure enabling predecessor
in the transformation sequence via q(r1r2 . . . rm)n. Since moreover there are no node-
deleting rules and no impeding predecessors for q′1 it is applicable to K because of
Lemma 2. If q′1 is applicable to G0 it will be applicable to K as well again because of
Lemma 2. In this case the intermediate graph is in particular equal to G0. We can argue
analogously for all remaining rules in q′ and conclude that rule sequence s is applicable
to G0.

8.3 Improving the Enabling Predecessor Criterion

At first we reintroduce [10] the definition of a concurrent rule rc of a sequence of rules
r0, . . . , rn. We only repeat the definition of a concurrent rule without NACs. For the
construction of concurrent NACs we refer to [11].

Definition 6 (concurrent rule, lhs-match). Given a sequence of rules r0, . . . , rn.

– The concurrent rule (resp. lhs-match) of r0 is r0 (resp. id : L0 → L0).
– Consider r′c : L′

c ← K ′
c → R′

c a concurrent rule of r0, . . . , rn−1. Let (e′c : R′
c →

E, en : Ln → E) be a pair of jointly surjective morphisms as shown in Fig. 10
such that (1) is a pullback and all other squares are pushouts. A concurrent rule
rc = r′c ∗E rn of r0, . . . , rn is defined by rc = Lc

l◦kc← Kc
r◦kn→ Rc. The lhs-match

of rc = r′c ∗E rn is defined by lc : L′
c → Lc.

Remark 1. Note that in general more than one concurrent rule for a sequence of rules
exists due to the freedom to choose (e′c, en).

The following definition of compatible concurrent matches ensures that when match-
ing a concurrent rule to some graph G0 the same match is continued to use when ex-
tending this concurrent rule.
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Fig. 10. Definition of concurrent rule

Definition 7 (compatible concurrent matches).
Given a concurrent rule
rc = r′c ∗E rn of a sequence
of rules r0, . . . , rn as defined in
Def. 6 and matches mc : Lc → G0

and m′
c : L′

c → G0 from the lhs of
rc (resp. r′c) into G0. Let lc be the
lhs-match of rc. Then mc and m′

c

are compatible if mc ◦ lc = m′
c as

shown on the right.

L′
c

lc

��
m′

c
=

��

Lc

mc

��
G0

We introduce the definition of purely dependent rules needed for defining the en-
abling predecessor criterion.

Definition 8 (purely dependent rules). A rule r2 : L2 ← K2 → R2 is purely depen-
dent on r1 : L1 ← K1 → R1 if there exists an injective morphism l21 : L2 → R1.

Note that compared to the definition of purely dependent rules in [5] here r2 is allowed
to have NACs.

Theorem 3 (improved form of enabling predecessors). Thm.3.2 (correctness of ap-
plicability criteria) in [5] still holds, if criterion enabling predecessor in Def.3.1 in [5]
is replaced by the following improved enabling predecessor(s) criterion:
For each rule r in s:

pure There is a predecessor r′ of rule r in s and r is purely dependent on r′.
Moreover each NAC of r forbids a graph element of type t such that an element
of type t is neither present in G0 nor produced by any predecessor of r. We say that
r is purely enabled by r′. OR

nearest there exists a concurrent rule rc of rule r and a (sequence of) predecessor
rule(s) s′ such that rc is applicable via mrc

to G0, and all predecessors of rc do not
cause a conflict with rc. Moreover r is not in conflict with each rule between s′ and r.
We say that r is nearest enabled by s′ via rc and mrc . OR

not needed r itself is applicable to G0 via some match mr : L→ G0. We say that r is
self enabled via mr.



In addition the following compatibility condition should hold in order to fix dependen-
cies between rules while checking the nearest enabling predecessors criterion: If rule
r is nearest enabled by a single rule r′, then r′ was self enabled via some mr. In ad-
dition rc = r′ ∗E r and mr′ and mrc are compatible as in Def. 7. If rule r is nearest
enabled by a sequence of rules s′ : r′1r

′
2 . . . r′j with j > 1, then r′j was directly enabled

by r′1r
′
2 . . . r′j−1 via the concurrent rule r′c of s′ and mr′c . In addition rc = r′c ∗E r and

mr′c and mrc
are compatible as in Def. 7.

Remark 2. Please note that the differences of the improved enabling predecessor cri-
terion in this paper with the enabling predecessor criterion in [5] are underlined and
also that the compatibility condition is new. Note moreover that if r fulfills the nearest
enabling predecessor criterion without any intermediate rule between s′ and r, then we
say that r is directly enabled.

Proof. pure Suppose that the sequence of all predecessors of r in s is applicable to G0.
Because of the correctness proof in [5] it can be proven that then also the sequence
of all predecessors of r in s followed by r itself is applicable to G0, provided that r
does not hold any NACs. We denote the last direct transformation, when applying
this sequence to G0, by G

r,m⇒ H with m : L → G being the match morphism .
In our improved pure enabling predecessor criterion now though rule r holds some
NAC. Therefore we show that this NAC is in any case satisfied under the extra
assumption that each NAC of r forbids a graph element e of type t such that an
element of type t is neither present in G0 nor produced by any predecessor of r.
Suppose that this NAC on r is not satisfied. Then there exists some NAC(n) :
L→ N and some morphism q : N → G such that q ◦ n = m. Therefore q should
map the element e of type t to some element e′ of type t belonging to graph G. This
is a contradiction since the predecessor rules of r never produced any element of
type t, nor some element of type t was already present in graph G0.

nearest Note that there are two differences between the direct enabling predecessor
criterion in Def.3.1. in [5] and the nearest enabling predecessor(s) criterion above.
The first one is that more than one enabling predecessor in a row is allowed. The
second difference is that enabling predecessor(s) should not necessarily be direct,
but rules can occur in-between if these intermediate rules are parallel independent
with r.

– We prove at first that more than one enabling predecessor is allowed. Consider
in Thm.3.2 the induction step (ii) for criterion (4b) and change it as follows.
The induction hypothesis says that the transformation t : G0

r1⇒ G1 . . .
rn−1⇒

Gn−1 exists. In particular, the shorter transformation G0
r1⇒ G1 . . . Gn−j−1 ex-

ists. By assumption there exists a concurrent rule rc of rn−j , rn−j+1, . . . , rn

with j > 0 such that rc is applicable to G0. Moreover each predecessor of
rc does not cause any conflict with rc. Because of Lemma 2 it follows that
the transformation sequence G0

r1⇒ G1 . . . Gn−j−1
rc,mc,n−j−1⇒ Gn exists. Be-

cause of the Concurrency Theorem with NACs in [11] then also a graph trans-
formation sequence t′ : G0

r1⇒ G1 . . .
rn−1⇒ G′

n−1
rn⇒ Gn exists. We now prove

that graphs G′
i = Gi for n− j ≤ i < n because of the compatibility condition.

We have the following two cases:



j = 1 In this case the compatibility condition states that rn−1 is self enabled
and rc = rn−1 ∗ rn with compatible matches mrn−1 and mrc

. Consider in
this case the following diagram:

Ln−1

hn−1,1

||

lc

��mrn−1

����
��

��
��

��
��

��
�

R1

��

K1
//oo

��

L1

  B
BB

BB
BB

B Lc

hc,1vv
mrc||yy

yy
yy

yy
Kc

oo //

��

Rc

��
G1 D1

d1

//
e1
oo G0 Doo // H

The match of Lc into G1 is equal to e1 ◦ hc,1. The match of Ln−1 into
G1 is equal to e1 ◦ hn−1,1. We now prove that these matches are com-
patible i.e. e1 ◦ hn−1,1 = e1 ◦ hc,1 ◦ lc. This is true if we can prove
that hn−1,1 = hc,1 ◦ lc. Lemma 1 in [20] states that given direct trans-
formations H1

r1⇐ H
r2⇒ H2 and an extended match allowing for the

application of r1 (resp. r2) to H2 (resp. H1) then this match is unique.

Therefore it holds that hn−1,1 is a unique mor-
phism such that d1◦hn−1,1 = mrn−1 . Now we can
prove that also d1 ◦ hc,1 ◦ lc = mrn−1 . This is be-
cause mrn−1 = mrc

◦ lc (compatibility condition)
and mrc = d1 ◦ hc,1. Continuing this argumen-
tation iteratively, it follows that mc,n−2 : Lc →
Gn−2 is compatible with mn−1 : Ln−1 → Gn−2

as depicted in the diagram on the right.

Ln−1

lc

��
mn−1 =

��

Lc

mc,n−2

��
Gn−2

Thereafter it follows that Gn−2
rc,mc,n−2⇒ Gn can be decomposed into

Gn−2
rn−1,mn−1⇒ Gn−1

rn,mn⇒ Gn.
j > 1 In this case the compatibility condition states that rn−1 is directly en-

abled by rn−j , rn−j+1, . . . rn−2 via (r′c,m
′
c). Consider in this case the

following diagram:

L′
c

h′c,1

||

lc

��mr′c

����
��
��
��
��
��
��
�

R1

��

K1
//oo

��

L1

  B
BB

BB
BB

B Lc

hc,1ww
mrc~~||

||
||

||
Kc

oo //

��

Rc

��
G1 D1

d1

//
e1
oo G0 Doo // H

We now argument analogously to the case j = 1 for the matches mr′c (in-
stead of mrn−1) and mrc

. We can then deduce that m′
c,n−j−1 the match

of r′c into Gn−j−1 is compatible with mc,n−j−1 the match of rc into



Gn−j−1. Therefore the concurrent transformation Gn−j−1
rc,mc,n−j−1⇒ Gn

can be decomposed into Gn−j−1

r′c,m′
c,n−j−1⇒ Gn−1

rn⇒ Gn. Because rn−1

on its part was enabled via (r′c,mr′c) we know that Gn−j−1

r′c,m′
c,n−j−1⇒

Gn−1 can be decomposed into the original transformation subsequence
Gn−j−1

rn−j⇒ Gn−j . . . Gn−2
rn−1⇒ Gn−1.

– We now prove that enabling predecessor(s) need not necessarily be direct as
described above. Given some intermediate rules p1, p2, . . . pm with m ≥ 1
between rn−1 and rn such that each of them is parallel independent with
rn. Again we prove this improved criterion by induction. Suppose that t :
G0

r1⇒ G1 . . .
rn−1⇒ Gn−1

p1⇒ P1
p2⇒ P2 . . .

pm⇒ Pm already exists. We know
by assumption that a concurrent rule rc of rn−j , rn−j+1, . . . , rn with j > 0
exists which is applicable to G0 such that each predecessor of rc does not
cause any conflict with rc. Analogously to the previous item we can then
conclude that t : G0

r1⇒ G1 . . .
rn−1⇒ Gn−1

rn⇒ Gn exists. Now consider
P1

p1⇐ Gn−1
rn⇒ Gn. Since p1 and rn are parallel independent, due to the

Local Church-Rosser Theorem with NACs [11] there exists also the following
pair of direct transformations P1

rn⇒ P ′
1 and Gn

p1⇒ P ′
1. Therefore transfor-

mation sequence Gn−1
p1⇒ P1

rn⇒ P ′
1 exists. Now consider P2

p2⇐ P1
rn⇒ P ′

1.
Analogously we can conclude that therefore Gn−1

p1⇒ P1
p2⇒ P2

rn⇒ P ′
2 ex-

ists. Continuing analogously this argumentation we can prove that t : G0
r1⇒

G1 . . .
rn−1⇒ Gn−1

p1⇒ P1
p2⇒ P2 . . .

pm⇒ Pm
rn⇒ P ′

m exists.
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