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Abstract. Reconfigurable place/transition systems are Petri nets with initial
markings and a set of rules which allow the modification of the net during runtime
in order to adapt the net to new requirements. For the transformation of Petri nets
in the double pushout approach, the categorical framework of adhesive high-level
replacement systems has been instantiated to Petri nets. In this paper, we show
that also place/transition systems form a weak adhesive high-level replacement
category. This allows us to apply the developed theory also to tranformations
within reconfigurable place/transition systems.

1 Introduction

Petri nets are an important modeling technique to describe discrete distributed systems.
Their nondeterministic firing steps are well-suited for modeling the concurrent behavior
of such systems. The formal treatment of Petri nets as monoids by Meseguer and Mon-
tanari in [1] has been an important step for a rigorous algebraic treatment and analysis
of Petri nets which is also used in this paper.

As the adaptation of a system to a changing environment gets more and more impor-
tant, Petri nets that can be transformed during runtime have become a significant topic in
recent years. Application areas cover e.g. computer supported cooperative work, multi
agent systems, dynamic process mining and mobile networks. Moreover, this approach
increases the expressiveness of Petri nets and allows for a formal description of dynamic
changes.

In [2], the concept of reconfigurable place/transition (P/T) systems was introduced
for modeling changes of the net structure while the system is kept running. In detail, a
reconfigurable P/T system consists of a P/T system and a set of rules, so that not only
the follower marking can be computed but also the net structure can be changed by rule
application. So, a new P/T system is obtained that is more appropriate with respect to
some requirements of the environment. Moreover, these activities can be interleaved. In
[3], the conflict situation of transformation and token firing has been dealt with. In this
paper, we give the formal foundation for transformations of P/T systems.

For rule-based transformations of P/T systems we use the framework of adhesive
high-level replacement (HLR) systems [4, 5] that is inspired by graph transformation
systems [6]. Adhesive HLR systems have been recently introduced as a new categor-
ical framework for graph transformation in the double pushout approach [4, 5]. They
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combine the well-known framework of HLR systems with the framework of adhesive
categories introduced by Lack and Sobociński [7]. The main concept behind adhesive
categories are the so-called van Kampen squares. These ensure that pushouts along
monomorphisms are stable under pullbacks and, vice versa, that pullbacks are stable
under combined pushouts and pullbacks. In the case of weak adhesive HLR categories,
the class of all monomorphisms is replaced by a subclass M of monomorphisms closed
under composition and decomposition, and for the van Kampen properties certain mor-
phisms have to be additionally M-morphisms.

In this paper, we present the formal foundations for transformations of nets with
markings. We show that the category of P/T systems is a weak adhesive HLR cate-
gory which allows the application of the developed theory also to tranformations within
reconfigurable P/T systems. This theory comprises many results concerning the applica-
bility of rules, the embedding and extension of transformations, parallel and sequential
dependence and independence, and concurrency of rule applications, and hence gives
precise notions for concurrent or conflicting situations in reconfigurable P/T systems.
Our work is illustrated by an example in the area of mobile emergency scenarios.

This paper is organized as follows. In Section 2, we introduce weak adhesive HLR
categories and adhesive HLR systems. The notion of reconfigurable P/T systems is
presented in Section 3. In Section 4, we show that the category PTSys used for recon-
figurable P/T systems is a weak adhesive HLR category. Finally, we give a conclusion
and outline related and future work in Section 5.

2 Adhesive HLR Categories and Systems

In this section, we give a short introduction to weak adhesive HLR categories and sum-
marize some important results for adhesive HLR systems (see [4]) which are based on
adhesive categories introduced in [7].

The intuitive idea of an adhesive or (weak) adhesive HLR category is a category with
suitable pushouts and pullbacks which are compatible with each other. More precisely,
the definition is based on so-called van Kampen squares.

The idea of a van Kampen (VK) square is that of a pushout which is stable under pull-
backs, and vice versa that pullbacks are stable under combined pushouts and pullbacks.

Definition 1 (van Kampen square). A pushout (1) is a van Kampen square if for any
commutative cube (2) with (1) in the bottom and the back faces being pullbacks it holds
that: the top face is a pushout if and only if the front faces are pullbacks.
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Not even in the category Sets of sets and functions each pushout is a van Kampen
square. Therefore, in (weak) adhesive HLR categories only those VK squares of Def.
1 are considered where m is in a class M of monomorphisms. A pushout (1) with
m ∈ M and arbitrary f is called a pushout along M.

The main difference between (weak) adhesive HLR categories as described in [4, 5]
and adhesive categories introduced in [7] is that a distinguished class M of
monomorphisms is considered instead of all monomorphisms, so that only pushouts
along M-morphisms have to be VK squares. In the weak case, only special cubes are
considered for the VK square property.

Definition 2 ((weak) adhesive HLR category). A category C with a morphism class
M is a (weak) adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms, composition (f :
A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition (g ◦ f ∈
M, g ∈ M ⇒ f ∈ M),

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are closed
under pushouts and pullbacks,

3. pushouts in C along M-morphisms are (weak) VK squares.

For a weak VK square, the VK square property holds for all commutative cubes with
m ∈ M and (f ∈ M or b, c, d ∈ M) (see Def. 1).

Remark 1. M-morphisms closed under pushouts means that given a pushout (1) in
Def. 1 with m ∈ M it follows that n ∈ M. Analogously, n ∈ M implies m ∈ M for
pullbacks.

The categories Sets of sets and functions and Graphs of graphs and graph morphisms
are adhesive HLR categories for the class M of all monomorphisms. The categories
ElemNets of elementary nets and PTNet of place/transition nets with the class
M of all corresponding monomorphisms fail to be adhesive HLR categories, but they
are weak adhesive HLR categories (see [8]). Elementary Petri nets, also called condi-
tion/event nets, have a weight restricted to one, while place/transition nets allow arbi-
trary finite arc weights. Instead of the original set theoretical notations used in [9, 10] we
have used in [4] a more algebraic version based on power set or monoid constructions
as introduced in [1].

Now we are able to generalize graph transformation systems, grammars and lan-
guages in the sense of [11, 4].

In general, an adhesive HLR system is based on rules (or productions) that describe
in an abstract way how objects in this system can be transformed. An application of a
rule is called a direct transformation and describes how an object is actually changed
by the rule. A sequence of these applications yields a transformation.

Definition 3 (rule and transformation). Given a (weak) adhesive HLR category

(C, M), a rule prod = (L l← K
r→ R) consists of three objects L, K and R called left

hand side, gluing object and right hand side, respectively, and morphisms l : K → L,
r : K → R with l, r ∈ M.
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Given a rule prod = (L l← K
r→ R) and an object G with a morphism m : L → G,

called match, a direct transformation G
prod,m
=⇒ H from G to an object H is given by the

following diagram, where (1) and (2) are pushouts. A sequence G0 =⇒ G1 =⇒ ... =⇒
Gn of direct transformations is called a transformation and is denoted as G0

∗=⇒ Gn.

L K R

G D H

l r

f g

m k n(1) (2)

An adhesive HLR system AHS = (C, M, RULES) consists of a (weak) adhesive
HLR category (C, M) and a set of rules RULES.

Remark 2. Note that given a rule prod and a match m pushout (1) is constructed as the
pushout complement, which requires a certain gluing condition to be fulfilled.

3 Reconfigurable P/T Systems

In this section, we formalize reconfigurable P/T systems as introduced in [2]. As net
formalism we use P/T systems following the notation of “Petri nets are Monoids”
in [1].

Definition 4 (P/T system). A P/T net is given by PN = (P, T, pre, post) with places
P , transitions T , and pre and post domain functions pre, post : T → P⊕.

A P/T system PS = (PN, M) is a P/T net PN with marking M ∈ P⊕.

P⊕ is the free commutative monoid over P . The binary operation ⊕ leads to the monoid
notation, e.g. M = 2p1 ⊕ 3p2 means that we have two tokens on place p1 and three
tokens on p2. Note that M can also be considered as a function M : P → N, where
only for a finite set P ′ ⊆ P we have M(p) ≥ 1 with p ∈ P ′. We can switch between
these notations by defining

∑
p∈P M(p) · p = M ∈ P⊕. Moreover, for M1, M2 ∈ P⊕

we have M1 ≤ M2 if M1(p) ≤ M2(p) for all p ∈ P . A transition t ∈ T is M -enabled
for a marking M ∈ P⊕ if we have pre(t) ≤ M , and in this case the follower marking

M ′ is given by M ′ = M � pre(t) ⊕ post(t) and (PN, M) t−→ (PN, M ′) is called
a firing step. Note that � is the inverse of ⊕, and M1 � M2 is only defined if we have
M2 ≤ M1.

In order to define rules and transformations of P/T systems we introduce P/T mor-
phisms which preserve firing steps by Condition (1) below. Additionally they require
that the initial marking at corresponding places is increasing (Condition (2)) or equal
(Condition (3)).

Definition 5 (P/T Morphism). Given P/T systems PSi = (PNi, Mi) with PNi =
(Pi, Ti, prei, posti) for i = 1, 2, a P/T morphism f : (PN1, M1) → (PN2, M2) is
given by f = (fP , fT ) with functions fP : P1 → P2 and fT : T1 → T2 satisfying
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(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT ,
(2) M1(p) ≤ M2(fP (p)) for all p ∈ P1.

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by f⊕

P (
∑n

i=1 ki ·
pi) =

∑n
i=1 ki · fP (pi). (1) means that f is compatible with pre and post domains, and

(2) that the initial marking of PN1 at place p is smaller or equal to that of PN2 at
fP (p).

Moreover, the P/T morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2(fP (p)) for all p ∈ P1.

P/T systems and P/T morphisms form the category PTSys, where the composition
of P/T morphisms is defined componentwise for places and transitions.

Remark 3. For our morphisms we do not always have f⊕
P (M1) ≤ M2. E.g., M1 =

p1 ⊕ p2, M2 = p and fP (p1) = fP (p2) = p implies f⊕
P (M1) = 2p > p = M2, but

M1(p1) = M1(p2) = 1 = M2(p).
P/T Nets and morphisms satisfying (1) form the category PTNet.

Based on the category PTSys and the morphism class Mstrict of all strict P/T mor-
phisms we are now able to define reconfigurable P/T systems. They allow the modifica-
tion of the net structure using rules and net transformations of P/T systems, which are
instantiations of the corresponding categorical concepts defined in Section 2.

Definition 6 (Reconfigurable P/T System). Given a P/T system (PN, M) and a set
RULES of rules, a reconfigurable P/T system is defined by ((PN, M), RULES).

Example 1. We will illustrate the main idea of reconfigurable P/T systems in the area
of a mobile scenario. This work is part of a collaboration with some research projects
where the main focus is on an adaptive workflow management system for mobile ad-hoc
networks, specifically targeted to emergency scenarios 1.

Our scenario takes place in an archaeological disaster/recovery mission: after an
earthquake, a team (led by a team leader) is equipped with mobile devices (laptops
and PDAs) and sent to the affected area to evaluate the state of archaeological sites and
the state of precarious buildings. The goal is to draw a situation map in order to sched-
ule restructuring jobs. The team is considered as an overall mobile ad-hoc network in
which the team leader’s device coordinates the other team members’ devices by provid-
ing suitable information (e.g. maps, sensible objects, etc.) and assigning activities. For
our example, we assume a team consisting of a team leader as picture store device and
two team members as camera device and bridge device, respectively. A typical coop-
erative process to be enacted by a team is shown in Fig. 1 as P/T system (PN1, M1),
where only the team leader and one of the team members are yet involved in activities.

The work of the team is modeled by firing steps. So to start the activities of the camera
device the follower marking of the P/T system (PN1, M1) is computed by firing the
transition Select Building, then the task Go to Destination can be executed etc.

As a reaction to changing requirements, rules can be applied to the net. A rule prod =
((L, ML) l← (K, MK) r→ (R, MR)) is given by three P/T systems and a span of two

1 IST FP6 WORKPAD: http://www.workpad-project.eu

http://www.workpad-project.eu
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Go to Destination

Make Photo

Team Member 1
(camera device)

Team Leader
(picture store device)

Select Building

Matching

(P N1, M1)

Fig. 1. Cooperative process of the team

strict P/T morphisms l and r (see Def. 3). For the application of the rule to the P/T
system (PN1, M1), we additionally need a match morphism m that identifies the left-
hand side L in PN1.

The activity of taking a picture can be refined into single steps by the rule prodphoto,
which is depicted in the top row of Fig. 2. The application of this rule to the net

(PN1, M1) leading to the transformation (PN1, M1)
prodphoto,m

=⇒ (PN2, M2) is shown
in Fig. 2.

To predict a situation of disconnection, a movement activity of the bridge device
has to be introduced in our system. In more detail, the workflow has to be extended by
a task to follow the camera device. For this reason we provide the rule prodfollow de-

picted in the upper row in Fig. 3. Then the transformation step (PN2, M2)
prodfollow,m′

=⇒
(PN3, M3) is shown in Fig. 3.

Summarizing, our reconfigurable P/T system ((PN1, M1), {prodphoto,
prodfollow}) consists of the P/T system (PN1, M1) and the set of rules {prodphoto,
prodfollow} as described above.

Conflicts in Reconfigurable P/T Systems

The traditional concurrency situation in P/T systems without capacities is that two tran-
sitions with overlapping pre domain are both enabled and together require more tokens
than available in the current marking. As the P/T system can evolve in two different ways,
the notions of conflict and concurrency become more complex. We illustrate the situ-
ation in Fig. 4, where we have a P/T system (PN0, M0) and two transitions that are
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Capture Scene
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Zoom on
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Capture Scene

Send Photos

Make Photo
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Matching

Go to Destination

Select Building

Matching

Select Building

Matching

(P N1, M1) (P N, M) (P N2, M2)

(R1, MR1
)(K1 , MK1

)(L1, ML1
)

l1

m

r1

Fig. 2. Transformation step (PN1, M1)
prodphoto,m

=⇒ (PN2, M2)

both enabled leading to firing steps (PN0, M0)
t1−→ (PN0, M

′
0) and (PN0, M0)

t2−→
(PN0, M

′′
0 ), and two transformations (PN0, M0)

prod1,m1=⇒ (PN1, M1) and (PN0, M0)
prod2,m2=⇒ (PN2, M2) via the corresponding rules and matches.

The squares (1) . . . (4) can be obtained under the following conditions:

For square (1), we have the usual condition for P/T systems that t1 and t2 need to be
conflict free, so that both can fire in arbitrary order or in parallel yielding the same
marking.

For squares (2) and (3), we require parallel independence as introduced in [3]. Paral-
lel independence allows the execution of the transformation step and the firing step
in arbitrary order leading to the same P/T system. Parallel independence of a transi-
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(P N2, M2) (P N′, M′) (P N3, M3)

(R2, MR2
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)

l2

m′

r2

Fig. 3. Transformation step (PN2, M2)
prodfollow,m′

=⇒ (PN3, M3)

tion and a transformation is given – roughly stated – if the corresponding transition
is not deleted by the transformation and the follower marking is still sufficient for
the match of the transformation. A detailed formal presentation and analysis of this
case is given in [3].

For square (4), we have up to now no conditions to ensure parallel or sequential ap-
plication of both rules. In this paper, we give these conditions by using results for
adhesive HLR systems (see Section 2).

Note that in our framework it is not possible to reduce the conflicts to the case of
square (4) by implementing the firing steps by rules. This is due to the fact that the rule
morphisms have to be marking strict. Moreover, not only rules but rule schemas would
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Fig. 4. Concurrency in reconfigurable P/T systems

be needed leading to one rule for each kind of transition with n ingoing and m outgoing
arcs.

In [4], the following main results for adhesive HLR systems are shown for weak
adhesive HLR categories:

1. Local Church-Rosser Theorem,
2. Parallelism Theorem,
3. Concurrency Theorem.

The Local Church-Rosser Theorem allows one to apply two graph transformations
G =⇒ H1 via prod1 and G =⇒ H2 via prod2 in an arbitrary order leading to the
same result H , provided that they are parallel independent. In this case, both rules can
also be applied in parallel, leading to a parallel graph transformation G =⇒ H via the
parallel rule prod1 + prod2. This second main result is called the Parallelism Theorem
and requires binary coproducts together with compatibility with M (i.e. f, g ∈ M ⇒
f + g ∈ M). The Concurrency Theorem is concerned with the simultaneous execution
of causally dependent transformations, where a concurrent rule prod1 ∗ prod2 can be
constructed leading to a direct transformation G =⇒ H via prod1 ∗ prod2 (see Ex. 2
in Section 4).

4 P/T Systems as Weak Adhesive HLR Category

In this section, we show that the category PTSys used for reconfigurable P/T sys-
tems together with the class Mstrict of strict P/T morphisms is a weak adhesive HLR
category. Therefore, we have to verify the properties of Def. 2.

First we shall show that pushouts along Mstrict-morphisms exist and preserve
Mstrict-morphisms.

Theorem 1. Pushouts in PTSys along Mstrict exist and preserve Mstrict-
morphisms, i.e. given P/T morphisms f and m with m strict, then the pushout (PO)
exists and n is also a strict P/T morphism.
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PS0 PS1

PS2 PS3

m

n

f g(PO)

Construction. Given P/T systems PSi = (PNi, Mi) for i = 0, 1, 2 and f, m ∈
PTSys with m ∈ Mstrict we construct PN3 as pushout in PTNet, i.e. componen-
twise in Sets on places and transitions. The marking M3 leading to the P/T system
PS3 = (PN3, M3) is defined by

(1) ∀p1 ∈ P1\m(P0): M3(g(p1)) = M1(p1)
(2) ∀p2 ∈ P2\f(P0): M3(n(p2)) = M2(p2)
(3) ∀p0 ∈ P0: M3(n ◦ f(p0)) = M2(f(p0))

Remark 4. Actually, we have M3 = g⊕(M1 � m⊕(M0)) ⊕ n⊕(M2). (2) and (3) can
be integrated, i.e. it is sufficient to define ∀p2 ∈ P2: M3(n(p2)) = M2(p2).

Proof. Since PN3 is a pushout in PTNet with g, n jointly surjective we construct a
marking for all places p3 ∈ P3. (1) and (2) are well-defined because g and n are injective
on P1\m(P0) and P2\f(P0), respectively. (3) is well-defined because for n(f(p0)) =
n(f(p′0)), n being injective implies f(p0) = f(p′0) and hence M2(f(p0)) =
M2(f(p′0)).

First we shall show that g, n are P/T morphisms and n is strict.

1. ∀p1 ∈ P1 we have:

1. p1 ∈ P1\m(P0) and M1(p1)
(1)
= M3(g(p1)) or

2. ∃p0 ∈ P0 with p1 = m(p0) and M1(p1) = M1(m(p0))
m strict=

M0(p0)
f∈PTSys

≤ M2(f(p0))
(3)
= M3(n(f(p0))) = M3(g(m(p0))) = M3(g(p1)).

This means g ∈ PTSys.

2. ∀p2 ∈ P2 we have:

1. p2 ∈ P2\f(P0) and M2(p2)
(2)
= M3(n(p2)) or

2. ∃p0 ∈ P0 with p2 = f(p0) and M2(p2) = M2(f(p0))
(3)
= M3(n(f(p0))) =

M3(n(p2)).
This means n ∈ PTSys and n is strict.

It remains to show the universal property of the pushout.
Given morphisms h, k ∈ PTSys with h ◦ f = k ◦ m, we have a unique induced

morphism x in PTNet with x◦n = h and x◦g = k. We shall show that x ∈ PTSys,
i.e. M3(p3) ≤ M4(x(p3)) for all p3 ∈ P3.
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PS0 PS1

PS2 PS3

PS4

m

n

f g

h
x

k

(PO)

1. For p3 = g(p1) with p1 ∈ P1\m(P0) we have M3(p3) = M3(g(p1))
(1)
=

M1(p1)
k∈PTSys

≤ M4(k(p1)) = M4(x(g(p1))) = M4(x(p3)).

2. For p3 = n(p2) with p2 ∈ P2 we have M3(p3) = M3(n(p2))
(2) or (3)

=

M2(p2)
h∈PTSys

≤ M4(h(p2)) = M4(x(n(p2))) = M4(x(p3)). �

As next property, we shall show that pullbacks along Mstrict-morphisms exist and
preserve Mstrict-morphisms.

Theorem 2. Pullbacks in PTSys along Mstrict exist and preserve Mstrict-
morphisms, i.e. given P/T morphisms g and n with n strict, then the pullback (PB)
exists and m is also a strict P/T morphism.

PS0 PS1

PS2 PS3

m

n

f g(PB)

Construction. Given P/T systems PSi = (PNi, Mi) for i = 1, 2, 3 and g, n ∈
PTSys with n ∈ Mstrict we construct PN0 as pullback in PTNet, i.e. compo-
nentwise in Sets on places and transitions. The marking M0 leading to the P/T system
PS0 = (PN0, M0) is defined by

(∗) ∀p0 ∈ P0 : M0(p0) = M1(m(p0)).

Proof. Obviously, M0 is a well-defined marking. We have to show that f, m are P/T
morphisms and m is strict.

1. ∀p0 ∈ P0 we have: M0(p0)
(∗)
= M1(m(p0))

g∈PTSys
≤ M3(g(m(p0))) =

M3(n(f(p0)))
n strict= M2(f(p0)). This means f ∈ PTSys.

2. ∀p0 ∈ P0 we have: M0(p0)
(∗)
= M1(m(p0)), this means m ∈ PTSys and m is

strict.

It remains to show the universal property of the pullback.
Given morphisms h, k ∈ PTSys with n ◦ h = g ◦ k, we have a unique induced

morphism x in PTNet with f ◦x = h and m◦x = k. We shall show that x ∈ PTSys,
i.e. M4(p4) ≤ M0(x(p4)) for all p4 ∈ P4.
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PS0 PS1

PS2 PS3

PS4

m

n

f g

h

x
k

(PB)

For p4 ∈ P4 we have M4(p4)
k∈PTSys

≤ M1(k(p4)) = M1(m(x(p4)))
m strict=

M0(x(p4)). �
It remains to show the weak VK property for P/T systems. We know that
(PTNet, M) is a weak adhesive HLR category for the class M of injective mor-
phisms [4, 8], hence pushouts in PTNet along injective morphisms are van Kampen
squares. But we have to give an explicit proof for the markings in PTSys, because
diagrams in PTSys as in Thm. 1 with m, n ∈ Mstrict, which are componentwise
pushouts in the P - and T -component, are not necessarily pushouts in PTSys, since
we may have M3(g(p1)) > M1(p1) for some p1 ∈ P1\m(P0).

Theorem 3. Pushouts in PTSys along Mstrict-morphisms are weak van Kampen
squares.

Proof. Given the following commutative cube (C) with m ∈ Mstrict and (f ∈ Mstrict

or b, c, d ∈ Mstrict), where the bottom face is a pushout and the back faces are pull-
backs, we have to show that the top face is a pushout if and only if the front faces are
pullbacks.

PS′
0

PS′
1

PS0

PS1

PS′
2

PS′
3

PS2

PS3

m′

a

f ′

g′

b

m
f

n′

c

d

n
g(C)

”⇒” If the top face is a pushout then the front faces are pullbacks in PTNet, since
all squares are pushouts or pullbacks in PTNet, respectively, where the weak VK
property holds. For pullbacks as in Thm. 2 with m, n ∈ Mstrict, the marking M0
of PN0 is completely determined by the fact that m ∈ Mstrict. Hence a diagram in
PTSys with m, n ∈ Mstrict is a pullback in PTSys if and only if it is a pullback in
PTNet if and only if it is a componentwise pullback in Sets. This means, the front
faces are also pullbacks in PTSys.

”⇐” If the front faces are pullbacks we know that the top face is a pushout in
PTNet. To show that it is also a pushout in PTSys we have to verify the conditions
(1)-(3) from the construction in Thm. 1.
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(1) For p′1 ∈ P ′
1\m′(P ′

0) we have to show that M ′
3(g

′(p′1)) = M ′
1(p

′
1).

If f is strict then also g and g′ are strict, since the bottom face is a pushout and
the right front face is a pullback, and Mstrict is preserved by both pushouts and
pullbacks. This means that M ′

1(p
′
1) = M ′

3(g
′(p′1)).

Otherwise b and d are strict. Since the right back face is a pullback we have b(p′1) ∈
P1\m(P0). With the bottom face being a pushout we have

(a) M3(g(b(p′1)))
(1)
= M1(b(p′1)).

It follows that M ′
3(g

′(p′1))
d strict= M3(d(g′(p′1))) = M3(g(b(p′1)))

(a)
=

M1(b(p′1))
b strict= M ′

1(p
′
1).

(2) and (3) For p′2 ∈ P ′
2 we have to show that M ′

3(n
′(p′2)) = M ′

2(p
′
2).

With m being strict also n and n′ are strict, since the bottom face is a pushout and
the left front face is a pullback, and Mstrict is preserved by both pushouts and
pullbacks. This means that M ′

2(p
′
2) = M ′

3(n
′(p′2)).

�

We are now ready to show that the category of P/T systems with the class Mstrict of
strict P/T morphisms is a weak adhesive HLR category.

Theorem 4. The category (PTSys, Mstrict) is a weak adhesive HLR category.

Proof. By Thm. 1 and Thm. 2, we have pushouts and pullbacks along Mstrict-mor-
phisms in PTSys, and Mstrict is closed under pushouts and pullbacks. Moreover,
Mstrict is closed under composition and decomposition, because for strict morphisms
f : PS1 → PS2, g : PS2 → PS3 we have M1(p) = M2(f(p)) = M3(g ◦ f(p))
and M1(p) = M3(g ◦ f(p)) implies M1(p) = M2(f(p)) = M3(g ◦ f(p)). By
Thm. 3, pushouts along strict P/T morphisms are weak van Kampen squares, hence
(PTSys, Mstrict) is a weak adhesive HLR category. �

Since (PTSys, Mstrict) is a weak adhesive HLR category, we can apply the results
for adhesive HLR systems given in [4] to reconfigurable P/T systems. Especially, the
Local Church-Rosser, Parallelism and Concurrency Theorems as discussed in Section
2 are valid in PTSys, where only for the Parallelism Theorem we need as additional
property binary coproducts compatible with Mstrict, which can be easily verified.

Example 2. If we analyze the two transformations from Ex. 1 in Section 3 depicted
in Figs. 2 and 3 we find out that they are sequentially dependent, since prodphoto

creates the transition Send Photos which is used in the match of the transformation

(PN2, M2)
prodfollow,m′

=⇒ (PN3, M3). In this case, we can apply the Concurrency The-
orem and construct a concurrent rule prodconc = prodphoto ∗ prodfollow that describes
the concurrent changes of the net done by the transformations. This rule is depicted

in the top row of Fig. 5 and leads to the direct transformation (PN1, M1)
prodconc,m′′

=⇒
(PN3, M3), integrating the effects of the two single transformations into one direct one.
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Go to Destination

Make Photo

Go to Destination

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Zoom on
damaged part

Capture Scene

Go to Destination

Send Photos

Device
Follow Camera

Select Building

Matching

Select Building

Matching

Select Building

Matching

Make Photo

(P N1, M1) (P N′′, M′′) (P N3, M3)

l3

m′′

r3

(L3, ML3
) (K3, MK3

) (R3, MR3
)

Fig. 5. Direct transformation of (PN1, M1) via the concurrent rule prodconc

5 Conclusion

In this paper, we have shown that the category PTSys of P/T systems, i.e. place/tran-
sition nets with markings, is a weak adhesive HLR category for the class Mstrict of
strict P/T morphisms. This allows the application of the rich theory for adhesive HLR
systems like the Local Church-Rosser, Parallelismus and Concurrency Theorems to net
transformations within reconfigurable P/T systems.
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Related Work

Transformations of nets can be considered in various ways. Transformations of Petri
nets to a different Petri net class (e.g. in [12, 13, 14]), to another modeling formalism
or vice versa (e.g in [15, 16, 17, 18, 19, 20]) are well examined and have yielded many
important results. Transformation of one net into another without changing the net class
is often used for purposes of forming a hierarchy in terms of reductions or abstraction
(e.g. in [21, 22, 23, 24, 25]), or transformations are used to detect specific properties of
nets (e.g. in [26, 27, 28, 29]). For the relationship of Petri nets with process algebras
and applications to workflow management we refer to [30] and [31], respectively.

Net transformations that aim directly at changing the net in arbitrary ways as known
from graph transformations were developed as a special case of HLR systems e.g. in [4].
The general approach can be restricted to transformations that preserve specific prop-
erties as safety or liveness (see [14, 32, 33]). Closely related are those approaches that
propose changing nets in specific ways in order to preserve specific semantic properties,
as behaviour-preserving reconfigurations of open Petri nets (e.g. in [34]), equivalent
(I/O-) behavior (e.g in [35, 36]), invariants (e.g. in [37]) or liveness (e.g. in [38, 31]).

In [2], the concept of ”nets and rules as tokens” has been introduced that is most
important to model changes of the net structure while the system is kept running, while
[3] continues our work by transferring the results of local Church-Rosser, which are
well known for term rewriting and graph transformations, to the consecutive evolution
of a P/T system by token firing and rule applications. The concept of ”nets and rules
as tokens” has been used in [39] for a layered architecture for modeling workflows in
mobile ad-hoc networks, so that changes given by net transformation are taken into
account and the way consistency is maintained is realized by the way rules are applied.

In [40], rewriting of Petri nets in terms of graph grammars are used for the reconfig-
uration of nets as well, but this approach lacks the ”nets as tokens”-paradigm.

Future Work

Ongoing work concerns a prototype system for the editing and simulation of such dis-
tributed workflows. For the application of net transformation rules, this tool will provide
an export to AGG [41], a graph transformation engine as well as a tool for the analy-
sis of graph transformation properties like termination and rule independence. Further-
more, the token net properties could be analyzed using the Petri Net Kernel [42], a tool
infrastructure for Petri nets of different net classes.

On the theoretical side, there are other relevant results in the context of adhesive HLR
systems which could be interesting to apply within reconfigurable P/T systems. One of
them is the Embedding and Extension Theorem, which deals with the embedding of a
transformation into a larger context. Another one is the Local Confluence Theorem, also
called Critical Pair Lemma, which gives a criterion when two direct transformations are
locally confluent. Moreover, it would be interesting to integrate these aspects with those
of property preserving transformations, like lifeness and safety, studied in [14, 32, 33].
As future work, it would be important to verify the additional properties necessary for
these results.

Another extension will be to consider rules with negative application conditions,
which restrict the applicability of a rule by defining structures that are not allowed to
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exist. In [43], a theory of adhesive HLR systems with negative application conditions is
developed, which should be applied and extended to reconfigurable P/T systems.

For the modeling of complex systems, often not only low-level but also high-level
Petri nets are used, that combine Petri nets with some data specification [44]. In [8, 45],
it is shown that different kinds of algebraic high-level (AHL) nets and systems form
weak adhesive HLR categories. More theory for reconfigurable Petri systems based on
high-level nets is needed, since the integration of data and data dependencies leads to
more appropriate models for many practical problems.
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[7] Lack, S., Sobociński, P.: Adhesive and Quasiadhesive Categories. Theoretical Informatics
and Applications 39(3), 511–546 (2005)

[8] Prange, U.: Algebraic High-Level Nets as Weak Adhesive HLR Categories. Electronic
Communications of the EASST 2, 1–13 (2007)

[9] Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science, vol. 4.
Springer, Berlin (1985)

[10] Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems. Theoretical
Computer Science 96(1), 3–33 (1992)

[11] Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey). In: Ng,
E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69.
Springer, Heidelberg (1979)

[12] Billington, J.: Extensions to Coloured Petri Nets. In: Proceedings of PNPM 1989, pp. 61–
70. IEEE, Los Alamitos (1989)

[13] Campos, J., Sánchez, B., Silva, M.: Throughput Lower Bounds for Markovian Petri Nets:
Transformation Techniques. In: Proceedings of PNPM 1991, pp. 322–331. IEEE, Los
Alamitos (1991)

[14] Urbášek, M.: Categorical Net Transformations for Petri Net Technology. PhD thesis, TU
Berlin (2003)

[15] Belli, F., Dreyer, J.: Systems Modelling and Simulation by Means of Predicate/Transition
Nets and Logic Programming. In: Proceedings of IEA/AIE 1994, pp. 465–474 (1994)



112 U. Prange et al.

[16] Bessey, T., Becker, M.: Comparison of the Modeling Power of Fluid Stochastic Petri Nets
(FSPN) and Hybrid Petri Nets (HPN). In: Proceedings of SMC 2002, vol. 2, pp. 354–358.
IEEE, Los Alamitos (2002)

[17] de Lara, J., Vangheluwe, H.: Computer Aided Multi-Paradigm Modelling to Process Petri-
Nets and Statecharts. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 239–253. Springer, Heidelberg (2002)

[18] Kluge, O.: Modelling a Railway Crossing with Message Sequence Charts and Petri Nets.
In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for
Communication-Based Systems. LNCS, vol. 2472, pp. 197–218. Springer, Heidelberg
(2003)

[19] Parisi-Presicce, F.: A Formal Framework for Petri Net Class Transformations. In: Ehrig,
H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-
Based Systems. LNCS, vol. 2472, pp. 409–430. Springer, Heidelberg (2003)

[20] Corts, L., Eles, P., Peng, Z.: Modeling and Formal Verification of Embedded Systems Based
on a Petri Net Representation. Journal of Systems Architecture 49(12-15), 571–598 (2003)

[21] Haddad, S.: A Reduction Theory for Coloured Nets. In: Rozenberg, G. (ed.) APN 1989.
LNCS, vol. 424, pp. 209–235. Springer, Heidelberg (1990)

[22] Desel, J.: On Abstraction of Nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp.
78–92. Springer, Heidelberg (1991)

[23] Esparza, J., Silva, M.: On the Analysis and Synthesis of Free Choice Systems. In: Rozen-
berg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 243–286. Springer, Heidelberg (1991)

[24] Chehaibar, G.: Replacement of Open Interface Subnets and Stable State Transformation
Equivalence. In: Rozenberg, G. (ed.) APN 1993. LNCS, vol. 674, pp. 1–25. Springer, Hei-
delberg (1993)

[25] Bonhomme, P., Aygalinc, P., Berthelot, G., Calvez, S.: Hierarchical Control of Time Petri
Nets by Means of Transformations. In: Proceedings of SMC 2002, vol. 4, pp. 6–11. IEEE
Computer Society Press, Los Alamitos (2002)

[26] Berthelot, G.: Checking Properties of Nets Using Transformation. In: Rozenberg, G. (ed.)
APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

[27] Berthelot, G.: Transformations and Decompositions of Nets. In: Brauer, W., Reisig, W.,
Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987)

[28] Best, E., Thielke, T.: Orthogonal Transformations for Coloured Petri Nets. In: Azéma,
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