
Behavior Preservation in Model Refactoring
using DPO Transformations with Borrowed

Contexts?

Guilherme Rangel1, Leen Lambers1, Barbara König2, Hartmut Ehrig1, and
Paolo Baldan3

1 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany
{rangel,leen,ehrig}@cs.tu-berlin.de

2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

barbara koenig@uni-due.de
3 Dipartimento di Matematica Pura e Applicata,

Università di Padova, Italy
baldan@math.unipd.it

Abstract. Behavior preservation, namely the fact that the behavior
of a model is not altered by the transformations, is a crucial property
in refactoring. The most common approaches to behavior preservation
rely basically on checking given models and their refactored versions. In
this paper we introduce a more general technique for checking behavior
preservation of refactorings defined by graph transformation rules. We
use double pushout (DPO) rewriting with borrowed contexts, and, ex-
ploiting the fact that observational equivalence is a congruence, we show
how to check refactoring rules for behavior preservation. When rules
are behavior-preserving, their application will never change behavior,
i.e., every model and its refactored version will have the same behavior.
However, often there are refactoring rules describing intermediate steps
of the transformation, which are not behavior-preserving, although the
full refactoring does preserve the behavior. For these cases we present
a procedure to combine refactoring rules to behavior-preserving concur-
rent productions in order to ensure behavior preservation. An example
of refactoring for finite automata is given to illustrate the theory.

1 Introduction

Model transformation [2] is concerned with the automatic generation of models
from other models according to a transformation procedure which describes how
a model in the source language can be “translated” into a model in the target
language. Model refactoring is a special case of model transformation where the
? This technical report is the full version of [1]. Research partially supported by

DAAD (German Academic Exchange Service), DFG project Behavior-GT and MIUR
project ART.



source and target are instances of the same metamodel. Software refactoring
is a modern software development activity, aimed at improving system quality
with internal modifications of source code which do not change the observable
behavior. In object-oriented programming usually the observable behavior of an
object is given by a list of public (visible) properties and methods, while its
internal behavior is given by its internal (non-visible) properties and methods.

Graph transformation systems (GTSs) are well-suited to model refactoring
and, more generally, model transformation (see [3] for the correspondence be-
tween refactoring and GTSs). Model refactorings based on GTSs can be found
in [4–7]. The left part of Fig. 1 describes schematically model refactoring via
graph transformations. For a graph-based metamodel M , describing, e.g., deter-
ministic finite automata or statecharts, the set RefactoringM of graph produc-
tions describes how to transform models which are instances of the metamodel
M . A start graph GM , which is an instance of the metamodel M , is transformed
according to the productions in RefactoringM (using ordinary DPO transforma-
tions), thus producing a graph HM which is the refactored version of GM .

Fig. 1. Model refactoring via graph transformations and behavior preservation.

A crucial question that must be asked always is whether a given refactoring
is behavior-preserving, which means that source and target models have the
same observable behavior. In practice, proving behavior-preservation is not an
easy task and therefore one normally relies on test suite executions and informal
arguments in order to improve confidence that the behavior is preserved. On the
other hand, formal approaches [8–11] have been also employed. A common issue
is that behavior preservation is checked only for a certain number of models and
their refactored versions. It is difficult though to foresee which refactoring steps
are behavior-preserving for all possible instances of the metamodel. Additionally,
these approaches are usually tailored to specific metamodels and the transfer to
other metamodels would require reconsidering several details. A more general
technique is proposed in [12] for analyzing the behavior of a graph production
in terms of CSP processes and trace semantics which guarantees that the traces
of a model are a subset of the traces of its refactored version.

In [4] we employed the general framework of borrowed contexts [13] to show
that models are bisimilar to their refactored counterparts, which implies behav-
ior preservation. The general idea is illustrated in the right-hand side of Fig. 1.



We define a set OpSemM of graph productions describing the operational se-
mantics of the metamodel M and use the borrowed context technique to check
whether the models GM and HM have the same behavior w.r.t. OpSemM . In [4]
we also tailored Hirschkoff’s up-to bisimulation checking algorithm [14] to the
borrowed context setting and thus equivalence checking can in principle be car-
ried out automatically. The main advantage of this approach is that for every
metamodel whose operational semantics can be specified in terms of finite graph
transformation productions, the bisimulation checking algorithm can be used to
show bisimilarity between models which are instances of this metamodel. How-
ever, this technique is also limited to showing behavior preservation only for a
fixed number of instances of a metamodel.

In this paper we go a step further and employ the borrowed context frame-
work in order to check refactoring productions for behavior preservation accord-
ing to the operational semantics of the metamodel. We call a rule behavior-
preserving when its left- and right-hand sides are bisimilar. Thanks to the fact
that bisimilarity is a congruence, whenever all refactoring productions preserve
behavior, so does every transformation via these rules. In this case, all model
instances of the metamodel and their refactored versions exhibit the same be-
havior. However, refactorings very often involve non-behavior-preserving rules
describing intermediate steps of the whole transformation. Given a transfor-
mation G

p1⇒ H via a non-behavior-preserving rule p1, the basic idea is then
to check for the existence of a larger transformation G ⇒∗ H ′ via a sequence
seq = p1, p2, . . . , pi of rule applications such that the concurrent production [15,
16] induced by seq is behavior-preserving. Since the concurrent production pc

performs exactly the same transformation G
pc⇒ H ′ we can infer that G and H ′

have the same behavior.
This paper is structured as follows. Section 2 briefly reviews how the DPO

approach with borrowed contexts can be used to define the operational semantics
of a metamodel. Section 3 defines the model refactorings we deal with. An exam-
ple in the setting of finite automata is given in Section 4. In Section 5 we define a
technique to check refactoring rules for behavior preservation and we discuss an
extension to handle non-behavior-preserving rules in model refactoring. Finally,
these techniques are applied to the automata example.

2 Operational Semantics via Borrowed Contexts

In this section we recall the DPO approach with borrowed contexts [13, 17] and
show how it can be used to define the operational semantics of a metamodel
M . In this paper we consider the category of labeled graphs, but the results
would also hold for the category of typed graphs or, more generally, for adhesive
categories. In standard DPO [18], productions rewrite graphs with no interaction
with any other entity than the graph itself. In the DPO approach with borrowed
contexts [17] graphs have interfaces, through which missing parts of left-hand
sides can be borrowed from the environment. This leads to open systems which
take into account interaction with the external environment.



Definition 1 (Graphs with Interfaces and Graph Contexts). A graph G
with interface J is a morphism J → G and a context consists of two morphisms
J → E ← J . The embedding of a graph with interface J → G into a context
J → E ← J is a graph with interface J → G which is obtained by constructing
G as the pushout of J → G and J → E.

J //

²²
PO

E

²²

Joo

¡¡

G // G

Observe that the embedding is defined up to isomorphism since the pushout
object is unique up to isomorphism.

Definition 2 (Metamodel M and Model). A metamodel M specifies a set
of graphs with interface of the form J → G (as in Definition 1). An element of
this set is called an instance of the metamodel M , or simply model.

For example, the metamodel DFA, introduced in Section 4, describes de-
terministic finite automata. A model is an automaton J → G, where G is the
automaton and J specifies which parts of G may interact with the environment.

Definition 3 (Set of Operational Semantics Rules). Given a metamodel
M as in Definition 2, its operational semantics is defined by a set OpSemM of
graph productions L

l← I
r→ R, where l, r are injective morphisms.

Definition 4 (Rewriting with Borrowed Contexts). Let OpSemM be as
in Definition 3. Given a model J → G and a production p : L ← I → R (p ∈
OpSemM ), we say that J → G reduces to K → H with transition label J →
F ← K if there are graphs D, G+, C and additional morphisms such that the
diagram below commutes and the squares are either pushouts (PO) or pullbacks
(PB) with injective morphisms. In this case we say that the rewriting step with
borrowed context (BC step) (J → G) J→F←K−−−−−−→ (K → H) is feasible.

D //

²²
PO

L

²² PO

Ioo //

²²
PO

R

²²

G //

PO

G+

PB

Coo // H

J

OO

// F

OO

Koo

OO >>

In the diagram above the upper left-hand square merges L and the graph G
to be rewritten according to a partial match G ← D → L. The resulting graph
G+ contains a total match of L and can be rewritten as in the standard DPO
approach, producing the two remaining squares in the upper row. The pushout
in the lower row gives us the borrowed (or minimal) context F , along with a
morphism J → F indicating how F should be pasted to G. Finally, we need an
interface for the resulting graph H, which can be obtained by “intersecting” the
borrowed context F and the graph C via a pullback. Note that the two pushout
complements that are needed in Definition 4, namely C and F , may not exist.



In this case, the rewriting step is not feasible. Furthermore, observe that for a
given partial match G ← D → L the graphs G+ and C are uniquely determined.

A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 5 (Bisimulation and Bisimilarity). Let OpSemM be as in Def-
inition 3 and let R be a symmetric relation containing pairs of models (J →
G, J → G′). The relation R is called a bisimulation if, whenever we have
(J → G)R (J → G′) and a transition (J → G) J→F←K−−−−−−→ (K → H), then
there exists a model K → H ′ and a transition (J → G′) J→F←K−−−−−−→ (K → H ′)
such that (K → H)R (K → H ′).

We write (J → G) ∼OpSemM (J → G′) (or (J → G) ∼ (J → G′) if
the operational semantics is obvious from the context) whenever there exists a
bisimulation R that relates the two instances of the metamodel M . The relation
∼OpSemM is called bisimilarity.

When defining the operational semantics using the borrowed context frame-
work, it should be kept in mind that rewriting is based on interactions with
the environment, i.e., the environment can provide some information via F to
the graph G in order to trigger the rewriting step. For instance, in our finite
automata example in Section 4 the environment provides a letter to trigger the
corresponding transition of the automaton.

An advantage of the borrowed context technique is that the derived bisim-
ilarity is a congruence, which means that whenever a graph with interface is
bisimilar to another, one can exchange them in a larger graph without effect
on the observable behavior. This is very useful for model refactoring since we
can replace a component of the model with a bisimilar one, without altering its
observable behavior.

Theorem 1 (Bisimilarity is a Congruence [13]). Bisimilarity ∼ is a con-
gruence, i.e., it is preserved by embedding into contexts as given in Definition 1.

In [17] a technique is defined to speed up bisimulation checking, which allows
us to take into account only certain labels. A label is considered superfluous and
called independent if we can add two morphisms D → J and D → I to the dia-
gram in Definition 4 such that D → I → L = D → L and D → J → G = D → G.
That is, intuitively, the graph G to be rewritten and the left-hand side L overlap
only in their interfaces. Transitions with independent labels can be ignored in
the bisimulation game, since a matching transition always exists.

3 Refactoring Transformations

Here we define refactoring transformations using DPO rules with negative ap-
plication conditions (NAC).



Definition 6 (NAC, Rule with NAC and Transformation). A negative
application condition NAC (n) on L is an injective morphism n : L → NAC.
An injective match m : L → G satisfies NAC (n) on L if and only if there is no
injective morphism q : NAC → G with q ◦ n = m.

NAC
q ##GGG
GG

L
m

²²

noo

=

G

NAC Loo

m
²²

I
PO PO

oo //

²²

R

²²

G0 C0
oo // G1

A negative application condition NAC (n) is called satisfiable if n is not an
isomorphism.

A rule L
l← I

r→ R (l, r injective) with NACs is equipped with a finite set of
negative application conditions NACL = {NAC (ni) | i ∈ I}. A direct transfor-
mation G0

p,m
=⇒ G1 via a rule p with NACs and an injective match m : L → G0

consists of the double pushout diagram above, where m satisfies all NACs of p.

Note that if NAC (n) is satisfiable then the identity match id : L → L satisfies
NAC (n). We will assume that for any rule with NACs, the corresponding nega-
tive application conditions are all satisfiable, so that the rule is applicable to at
least one match (the identity match on its left-hand side).

Definition 7 (Layered Refactoring System and Refactoring Rule). Let
metamodel M be as in Definition 2. A refactoring rule is a graph rule as in
Definition 6. A layered refactoring system RefactoringM for the metamodel M
consists of k sets RefactoringM

i (0 ≤ i ≤ k − 1) of refactoring rules. Each set
RefactoringM

i defines a transformation layer.

Definition 8 (Refactoring Transformation). Let RefactoringM be as in Def-
inition 7. A refactoring transformation t : (J → G0) ⇒∗ (J → Gn) is a sequence
(J → G0)

p1⇒ (J → G1)
p2⇒ · · · pn⇒ (J → Gn) of direct transformations (as

in Definition 6) such that pi ∈ RefactoringM and t preserves the interface J ,
i.e., for each i (0 ≤ i < n) there exists an injective morphism J → Ci with
J → Gi = J → Ci → Gi (see diagram below). Moreover, in t each layer ap-
plies its rules as long as possible before the rules of the next layer come into play.

NAC Loo

²²

Ioo //

²²
PO PO

R

²²

Gi Ci
oo // Gi+1

J

OO JJ BB
=

Note that refactoring transformations operate only on the internal structure
of Gi while keeping the original interface J unchanged.

4 Example: Deleting Unreachable States in DFA

In this section we present an example of refactoring in the setting of deter-
ministic finite automata (DFA). The metamodel DFA describes finite automata



represented as graphs with interface as J → DFA1 and J → DFA2 in Fig. 2, where
unlabeled nodes are states and directed labeled edges are transitions. An FS-loop
marks a state as final. A W-node has an edge pointing to the current state and
this edge points initially to the start state. The W-node is the interface, i.e., the
only connection to the environment.

Fig. 2. Examples of DFA as graphs with interface.

The operational semantics for DFA is given by a set OpSemDFA of rules con-
taining Jump(a), Loop(a) and Accept depicted in Fig. 3. The rules Jump(a),
Loop(a) must be defined for each symbol a ∈ Λ, where Λ is a fixed alphabet.
A DFA may change its state according to the rules in OpSemDFA. The W-node
receives a symbol (e.g. ‘b’) from the environment in form of a b-labeled edge

connecting W-nodes, e.g., the string ‘bc’ is ?>=<89:;w ?>=<89:;w
boo ?>=<89:;w

coo . An acpt-edge be-
tween W-nodes marks the end of a string. When such an edge is consumed by a
DFA, the string previously processed is accepted.

A layered refactoring system for the deletion of unreachable states of an
automaton is given in Fig. 3 on the right. To the left of each rule we depict the
NAC (if it exists). The rules are spread over three layers. Rule1 marks the initial
state as reachable with an R-loop. Rule2(a) identifies all other states that can
be reached from the start state via a-transitions. Layer 1 deletes the loops and
the edges of the unreachable states and finally the unreachable states. Layer 2
removes the R-loops.

Applying the refactoring rules above to the automaton J → DFA1 we obtain
J → DFA2, where the rightmost state was deleted. By using the bisimulation
checking algorithm of [4] we conclude that J → DFA1 and J → DFA2 are bisimilar
w.r.t. OpSemDFA. In our setting bisimilarity via the borrowed context technique
corresponds to bisimilarity on automata seen as transition systems, which in
turn implies language equivalence.

5 Behavior Preservation in Model Refactoring

Here we introduce a notion of behavior preservation for refactoring rules and,
building on this, we provide some techniques for ensuring behavior preservation
in model refactoring.

5.1 Refactoring via Behavior-Preserving Rules

For a metamodel M as in Definition 2 we define behavior preservation as follows.



Fig. 3. Operational semantics and a refactoring for DFA.

Definition 9 (Behavior-Preserving Transformation). Let OpSemM be as
in Definition 3. A refactoring transformation t : (J → G) ⇒∗ (J → H) (as in
Definition 8) is called behavior-preserving when (J → G) ∼OpSemM (J → H).

In order to check t for behavior preservation we can use Definition 4 to derive
transition labels from J → G and J → H w.r.t. the rules in OpSemM .

Observe that behavior preservation in the sense of Definition 9 is limited
to checking specific models. This process is fairly inefficient and, as behavior-
preservation is checked for each specific transformation, it can never be exhaus-
tive. A more efficient strategy consists in focussing on the behavior-preservation
property at the level of refactoring rules. The general idea is to check for every
p ∈ RefactoringM whether its left and right-hand sides, seen as graphs with inter-
faces, are bisimilar, i.e., (I → L) ∼ (I → R) w.r.t. OpSemM . Whenever this hap-
pens, since bisimilarity is a congruence, any transformation (J → G)

p⇒ (J → H)
via p preserves the behavior, i.e., J → G and J → H have the same behavior.

Definition 10 (Behavior-Preserving Refactoring Rule). Let OpSemM be
as in Definition 3. A refactoring production p : L ← I → R with NACL is
behavior-preserving whenever (I → L) ∼ (I → R) w.r.t. OpSemM .

Now we can show a simple but important result that says that a rule is
behavior-preserving if and only if every refactoring transformation generated by
this rule is behavior-preserving.



Proposition 1. Let OpSemM be as in Definition 3. Then it holds: p : L ←
I → R (with NACL) is behavior-preserving w.r.t. OpSemM if and only if any
refactoring transformation (J → G)

p⇒ (J → H) (as in Definition 8) is behavior-
preserving, i.e., (J → G) ∼OpSemM (J → H).

Proof. “⇒”: Assume a refactoring transformation (J → G)
p⇒ (J → H) as

depicted below. Since p is behavior-preserving we know that (I → L) ∼OpSemM

(I → R) (Definition 10). Observe that J → G and J → H are I → L and
I → R respectively inserted into the context I → C ← J , which implies (J →
G) ∼OpSemM (J → H) by Theorem 1 (bisimilarity is a congruence).

NAC Loo

²²
PO

I

²²

oo //

PO

R

²²

G
=

Coo // H

J

OO >>~~~~~

BB

“⇐”: Assume that any refactoring transformation via p is behavior-preserving.
By assumption, for rule p all NACs in NACL are satisfiable (see Definition 6)
and thus p is applicable to the identity match id : L → L. As a result of the
application of p to I → L, we obtain (I → L)

p⇒ (I → R). Such refactoring
is behavior-preserving, by hypothesis, and thus (I → L) ∼OpSemM (I → R).
Hence, by Definition 10, p is behavior-preserving. ut
Remark 1. The fact that the previous proposition also holds for rules with
NACs, even though Definition 10 does not take NACs into account for behavior-
preservation purposes, of course does not imply that negative application con-
ditions for refactoring rules are unnecessary in general. They are needed in or-
der to constrain the applicability of rules, especially of those rules that are not
behavior-preserving, or rather, are only behavior-preserving when applied in cer-
tain contexts. As a direction of future work, we plan to study congruence results
for restricted classes of contexts. This will help to better handle refactoring rules
with NACs.

Theorem 2 (Refactoring via Behavior-Preserving Rules). Let OpSemM

and RefactoringM be as in Definitions 3 and 7. If each rule in RefactoringM is
behavior-preserving w.r.t. OpSemM then any refactoring transformation (J →
G0) ⇒∗ (J → Gn) via these rules is behavior-preserving.

Proof. Assume that RefactoringM contains only behavior-preserving rules w.r.t.
OpSemM . Let t : (J → G0) ⇒∗ (J → Gn) be a sequence of refactoring trans-
formations as in Definition 8. So, for every i (0 ≤ i < n) we have a direct
refactoring transformation (J → Gi)

p⇒ (J → Gi+1) via a rule p : L ← I → R
with NACL in RefactoringM . Since p is behavior-preserving we have: (I →
L) ∼OpSemM (I → R). From the first part of Proposition 1 we can infer that
(J → Gi) ∼OpSemM (J → Gi+1). Furthermore, since bisimilarity ∼ is an equiv-
alence relation, by transitivity (J → G0) ∼OpSemM (J → Gn). ut



Example 1. We check the rules in RefactoringDFA
i (i = 0, 1, 2) from Section 4

for behavior preservation. We begin with RefactoringDFA
0 (Layer 0). For RULE1 :

NAC ← L ← I → R we derive the transition labels from I → L and I → R w.r.t.
OpSemDFA. On the left-hand side of Fig. 4 we schematically depict the first steps
in their respective labeled transition systems (LTS), where each partner has three
choices. Independent labels exist in both LTSs but are not illustrated below.

The derivation of label L1 for I → R is shown on the right. Since I → L and
I → R (and their successors) can properly mimic each other via a bisimulation
we can conclude that (I → L) ∼OpSemDFA (I → R). The intuitive reason for this is
that the R-loop, which is added by this rule, does not have any meaning in the
operational semantics and is hence “ignored” by OpSemDFA.

Analogously, RULE2(a) and the rule in Layer 2 are behavior-preserving as
well. Hence, we can infer that every transformation via the rules of Layer 0
and Layer 2 preserves the behavior. On the other hand, all rules in Layer 1, ex-
cept for RULE6, are not behavior-preserving. Note that RULE6 is only behavior-
preserving because of the dangling condition. Thus, when a transformation is car-
ried out via non-behavior-preserving rules of Layer 1 we cannot be sure whether
the behavior is preserved.

Fig. 4. Labeled transition systems for RULE1 and a label derivation.

5.2 Handling Non-Behavior-Preserving Rules

For refactoring transformations based on non-behavior-preserving rules the tech-
nique of Section 5.1 does not allow to establish if the behavior is preserved.

Very often there are refactoring rules representing intermediate transforma-
tions that indeed are not behavior-preserving. Still, when considered together
with neighboring rules, they could induce a concurrent production [15, 16] pc,
corresponding to a larger transformation, which preserves the behavior. For a
transformation t : (J → G) ⇒∗ (J → H ′) via a sequence seq = p1, p2, . . . , pi



the concurrent production pc : Lc ← Ic → Rc with concurrent NACLc
induced

by t performs exactly the same transformation (J → G)
pc⇒ (J → H ′) in one

step. Moreover, pc can only be applied to (J → G) if the concurrent NACLc is
satisfied. This is the case if and only if every NAC of the rules in t is satisfied.
The basic idea is now to check for a transformation (J → G)

p1⇒ (J → H) based
on a non-behavior-preserving rule p1 whether there exists such a larger trans-
formation t : (J → G) ⇒∗ (J → H ′) via a sequence seq = p1, p2, . . . , pi of rules
such that the concurrent production induced by t is behavior preserving. Then
we can infer that J → G and J → H ′ have the same behavior.

This is made formal by the notion of safe transformation and the theorem
below.

Definition 11 (Safe Transformation). Let OpSemM be as in Definition 3. A
refactoring transformation t : (J → G) ⇒∗ (J → H) (as in Definition 8) is called
safe if it induces a behavior-preserving concurrent production w.r.t. OpSemM .

Theorem 3 (Safe Transformations preserve Behavior). Let OpSemM

and RefactoringM be as in Definitions 3 and 7, and let t : (J → G) ⇒∗ (J → H)
be a refactoring transformation. If t is safe, then t is behavior-preserving, i.e.,
(J → G) ∼ (J → H).

Proof. Let t be a safe transformation. By definition it induces a concurrent
production pc : Lc ← Ic → Rc with NACLc (see [15, 16] for the details of the
construction) which is behavior-preserving, i.e., (Ic → Lc) ∼OpSemM (Ic → Rc).
Due to the Concurrency Theorem with NACs [16] the concurrent production
pc induced by t is applicable to J → G with the same result J → H. Since pc

preserves behavior it follows from Theorem 2 that (J → G) ∼OpSemM (J → H).
ut

In order to prove that a refactoring transformation t : (J → G) ⇒∗ (J → H)
is safe (and thus behavior-preserving), we can look for a split tsp : G ⇒∗ H1 ⇒∗

· · · ⇒∗ Hn ⇒∗ H (interfaces are omitted) of t where each step (⇒∗) induces a
behavior-preserving concurrent production (see Definition 12). In fact, as shown
below, if and only if such split exists we can guarantee that t preserves behavior
(Theorem 4).

Definition 12 (Safe Transformation Split). Let OpSemM be as in Defini-
tion 3 and let t : (J → G) ⇒∗ (J → H) be a refactoring transformation (as in
Definition 8). A split of t is obtained by cutting t into a sequence of subtrans-
formations tsp : (J → G) ⇒∗ (J → H1) ⇒∗ · · · ⇒∗ (J → Hn) ⇒∗ (J → H). A
transformation split tsp is safe if each step (⇒∗) is safe.

In Section 5.3 we present a simple search strategy for safe splits. More elab-
orate ones are part of future work.

Theorem 4. Let t : (J → G) ⇒∗ (J → H) be a refactoring transformation.
Then t is safe if and only if it admits a safe split.



Proof. “⇒”: The fact that t is safe implies a behavior-preserving concurrent
production pc such that (J → G)

pc⇒ (J → H). In this case the split tsp has only
the step (J → G)

pc⇒ (J → H) which is safe.
“⇐”: if t admits a safe split then there exists a split tsp : G ⇒∗ H1 ⇒∗ · · · ⇒∗

Hn ⇒∗ H (the interfaces J are omitted) with n + 1 steps such that the i-th
step (for 1 ≤ i ≤ n + 1) is safe (Definition 12). Each of these steps induces a
behavior-preserving concurrent production pi

c : Li
c ← Ii

c → Ri
c with NACLi

c
. We

know that given two behavior-preserving rules p1 and p2 as depicted below the
induced concurrent production pc is also behavior-preserving since bisimilarity
is a congruence, i.e., (I1 → L1) ∼ (I1 → R1) implies (Ic → Lc) ∼ (Ic → E)
and (I2 → L2) ∼ (I2 → R2) implies (Ic → E) ∼ (Ic → Rc) and so we have
(Ic → Lc) ∼ (Ic → Rc).

NACL1 NACL2

L1

²²

OO

PO

I1

²² PO

oo // R1

ÃÃ
@@

@@
L2

OO

zzuuuuuu
PO

I2

²² PO

oo // R2

²²

NACLc Lc
oo I ′1oo // E I ′2oo // Rc

Ic

ggPPPPPPPPPP

55jjjjjjjjjjjjjj
PB

Thus, since every pi
c is behavior-preserving we can infer that the concurrent

production induced by tsp is also behavior-preserving which implies that t is
safe. ut

Observe that, instead, the following does not hold in general: if t : (J →
G) ⇒∗ (J → H) and (J → G) ∼OpSemM (J → H) then t is safe. Consider for in-
stance RULE5(a) in Fig. 3. As remarked, it is in general not behavior-preserving,
but when, by coincidence, it removes a transition that is unreachable from the
start state, the original automaton and its refactored version are behaviorally
equivalent.

5.3 Ensuring Behavior Preservation

In this section we describe how the theory presented in this paper can be applied.
Note that our results would allow us to automatically prove behavior preserva-
tion only in special cases, while, in general, such mechanized proofs will be very
difficult. Hence here we will suggest a “mixed strategy”, which combines ele-
ments of automatic verification and the search for behavior-preserving rules, in
order to properly guide refactorings.

More specifically, a given model J → G can be refactored by applying the
rules in RefactoringM in an automatic way, where the machine chooses non-
deterministically the rules to be applied, or in a user-driven way, where for
each transformation the machine provides the user with a list of all applicable
rules together with their respective matches and ultimately the user picks one of



them. The main goal is then to tell the user whether the refactoring is behavior-
preserving.

The straightforward strategy to accomplish the goal above is to transform
J → G applying only behavior-preserving rules. This obviously guarantees that
the refactoring preserves behavior. However if a non-behavior-preserving rule p
is applied we can no longer guarantee behavior preservation. Still, by proceeding
with the refactoring, namely by performing further transformations, we can do
the following: for each new transformation added to the refactoring we compute
the induced concurrent production for the transformation which involves the
first non-behavior-preserving rule p and the subsequent ones. If this concurrent
production is behavior-preserving we can again guarantee behavior preservation
for the refactoring since the refactoring admits a safe split (see Theorem 4).

The strategy above is not complete since behaviour preservation could be
ensured by the existence of complex safe splits which the illustrated procedure
is not able to find. We already have preliminary ideas for more sophisticated
search strategies, but they are part of future work. Note however, that this
strategy can reduce the proof obligations, since we do not have to show behavior
preservation between the start and end graph of the refactoring sequence (which
may be huge), but we only have to investigate local updates of the model.

Example 2. Consider the automaton J → DFA1 of Section 4. By applying the
behavior-preserving rules of RefactoringDFA

0 (Layer 0) we obtain J → DFA0
1 de-

picted in Fig. 5 (the interface J is omitted). Since RefactoringDFA
0 contains only

behavior-preserving rules by Theorem 2 it holds that (J → DFA1) ⇒∗ (J → DFA0
1)

preserves the behavior. No more rules in RefactoringDFA
0 can be applied, i.e., the

computation of Layer 0 terminates.
Now the rules of RefactoringDFA

1 (Layer 1) come into play. Recall that all rules
in RefactoringDFA

1 are non-behavior-preserving, except for RULE6. This set con-
tains RULE4(0) and RULE4(1) which are appropriate instantiations of RULE4(a).

After the transformation (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1) we can no longer guar-
antee behavior-preservation since RULE4(0) has been applied. From now on we
follow the strategy previously described to look for a behavior-preserving con-

current production. We perform the step (J → DFA1
1)

RULE4(1)
=⇒ (J → DFA2

1), build

a concurrent production pc induced by (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1)
RULE4(1)

=⇒
(J → DFA2

1) and, by checking pc for behavior-preservation, we find out that it is
not behavior-preserving. We then continue with (J → DFA2

1)
RULE6=⇒ (J → DFA3

1),
build p′c (Fig. 6), induced by the transformation beginning at J → DFA0

1 and
check it for behavior-preservation. Now p′c is behavior-preserving and so we can
once again guarantee behavior preservation (Theorem 3).

Finally, no more rules of RefactoringDFA
1 are applicable to J → DFA3

1. The
behavior-preserving rule in RefactoringDFA

2 (Layer 2) comes into play and per-
forms a transformation (J → DFA3

1)
RULE6=⇒2 (J → DFA2), where the final automa-

ton is depicted in Section 4 (DFA2). Concluding, since we have found a safe
split for the transformation via non-behavior-preserving rules we can infer that
J → DFA1 and J → DFA2 have the same behavior.



Fig. 5. Refactoring transformation.

Fig. 6. Induced concurrent production p′c.

Intuitively, the concurrent production is behavior-preserving, since it deletes
an entire connected component that is not linked to the rest of the automaton.
Note that due to the size of the components involved it can be much simpler to
check such transformation units rather than the entire refactoring sequence.

In addition, it would be useful if the procedure above could store the in-
duced concurrent productions which are behavior-preserving into RefactoringM

for later use. By doing so the user knows which combination of rules leads to
behavior-preserving concurrent productions. Similarly, the user could also want
to know which combination of rules leads to non-behavior-preserving concur-
rent productions. Of course, in the latter case the concurrent productions are
just stored but do not engage in any refactoring transformation. It is important
to observe that we store into RefactoringM only concurrent productions which
are built with rules within the same layer (as in Example 2). For more com-
plex refactorings, such as the flattening of hierarchical statecharts (see [19]), a
behavior-preserving concurrent production pc exists only when it is built from a
transformation involving several layers. In this latter case, pc is built and checked
for behavior preservation but not stored for later use.

For the cases where a layer RefactoringM
i of RefactoringM is terminating and

confluent it is then important to guarantee that adding concurrent productions
to the refactoring layer does not affect these properties.

Theorem 5. Let RefactoringM
i be as in Definition 7 and Rpc

i be a set containing
concurrent productions pc built from p, q ∈ RefactoringM

i ∪Rpc

i . Then whenever
RefactoringM

i is confluent and terminating it holds that RefactoringM
i ∪ Rpc

i is
also terminating and confluent.

Proof. Suppose that an infinite graph transformation sequence G0 ⇒ G1 ⇒
G2 ⇒ . . . exists via rules in RefactoringM

i ∪ Rpc

i (the interfaces J are omit-
ted). Due to the analysis part of the Concurrency Theorem with NACs [16]
each direct transformation in this sequence via a concurrent rule pc ∈ Rpc

i can
be analyzed to a sequence of direct transformations with the same result via



rules in RefactoringM
i . Therefore, there would also exist an infinite graph trans-

formation sequence via rules of RefactoringM
i , but this is a contradiction since

RefactoringM
i is terminating.

Now consider the transformation sequences H1
∗⇐ G

∗⇒ H2 via rules in
RefactoringM

i ∪ Rpc

i . We can argue analogously. Due to the analysis part of
the Concurrency Theorem with NACs [16] each direct transformation in these
sequences via a concurrent rule pc ∈ Rpc

i can be analyzed to a sequence of
direct transformations with the same result via rules in RefactoringM

i . Thus, we

obtain transformation sequences H1

′∗⇐ G
∗′⇒ H2 via rules in RefactoringM

i . Since
RefactoringM

i is confluent there exist two transformation sequences H1
∗⇒ X

∗⇐
H2 via rules in RefactoringM

i . Hence, the original sequences H1
∗⇐ G

∗⇒ H2 are
also confluent. ut

For the case where layer RefactoringM
i is terminating and confluent another

interesting and useful fact holds: assume that we fix a start graph G0 and we
can show that some (terminating) transformation, beginning with G0 allows a
behavior-preserving split. Then clearly all transformations starting from G0 are
behavior-preserving since they result in the same final graph H.

6 Conclusions and Future Work

We have shown how the borrowed context technique can be used to reason about
behavior-preservation of refactoring rules and refactoring transformations. In
this way we shift the perspective from checking specific models to the investiga-
tion of the properties of the refactoring rules.

The formal techniques in related work [8–11] address behavior preservation
in model refactoring, but are in general tailored to a specific metamodel and
limited to checking the behavior of a fixed number of models. Therefore, the
transfer to different metamodels is, in general, quite difficult.

Hence, with this paper we propose to use the borrowed context technique
in order to consider any metamodel whose operational semantics can be given
by graph productions. Furthermore, the bisimulation checking algorithm [4] for
borrowed contexts provides the means for automatically checking models for
behavior preservation. This can be done not only for a specific model and its
refactored version, but also for the left-hand and right-hand sides of refactor-
ing rules. Once we have shown that a given rule is behavior-preserving, i.e., its
left- and right-hand sides are equivalent, we know that its application will al-
ways preserve the behavior, due to the congruence result. When rules are not
behavior-preserving, they still can be combined into behavior-preserving concur-
rent productions. We believe that such a method will help the user to gain a
better understanding of the refactoring rules since he or she can be told exactly
which rules may modify the behavior during a transformation. An advantage of
our technique over the one in [12] is that we work directly with graph transforma-
tions and do not need any auxiliary encoding. Furthermore, with our technique
we can guarantee that a model and its refactored version have exactly the same



observable behavior, while in [12] the refactored model “contains” the original
model but may add extra behavior.

This work opens up several possible directions for future investigations. First,
in some refactorings when non-behavior-preserving rules are applied, the search
strategies for safe splits can become very complex. Here we defined only a simple
search strategy, but it should be possible to come up with more elaborate ones.

Second, although we are working with refactoring rules with negative appli-
cation conditions, these NACs do not play a prominent role in our automatic
verification techniques, but of course they are a key to limiting the number of
concurrent productions which can be built. In [20] the borrowed context frame-
work and the congruence result has been extended to handle rules with NACs.
However, this applies only to negative application conditions in the operational
semantics. It is, nevertheless, also important to have similar results for refactor-
ing rules with NACs, which would lead to a “restricted” congruence result, where
bisimilarity would only be preserved by certain contexts (see also the discussion
in Remark 1). Since model refactorings often use graphs with attributes it is
useful to check whether the congruence results in [13, 20] also hold for adhesive
HLR categories (the category of attributed graphs is an instance thereof).

Acknowledgements: We would like to thank Gabi Taentzer and Reiko
Heckel for helpful discussions on this topic.

References

1. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation
in model refactoring using DPO transformations with borrowed contexts. In: Proc.
of ICGT ’08, Springer (2008) LNCS, to appear.

2. Mens, T., Gorp, P.V.: A taxonomy of model transformation. ENTCS 152 (2006)
125–142

3. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2) (2004) pp. 126–139

4. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach
with borrowed contexts. In: Proc. of GT-VMT ’07. Volume 6 of Electronic Com-
munications of the EASST. (2007)

5. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF
model refactoring based on graph transformation concepts. In: SeTra’06. Vol-
ume 3., Electronic Communications of EASST (2006)

6. Hoffmann, B., Janssens, D., Eetvelde, N.V.: Cloning and expanding graph trans-
formation rules for refactoring. ENTCS 152 (2006) 53–67

7. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and Systems Modeling 6(3) (September 2007) 269–285

8. van Kempen, M., Chaudron, M., Kourie, D., Boake, A.: Towards proving preser-
vation of behaviour of refactoring of UML models. In: SAICSIT ’05, South African
Institute for Computer Scientists and Information Technologists (2005) 252–259

9. Pérez, J., Crespo, Y.: Exploring a method to detect behaviour-preserving evolution
using graph transformation. In: Proceedings of the Third International ERCIM
Workshop on Software Evolution, ERCIM (2007) 114–122



10. Narayanan, A., Karsai, G.: Towards verifying model transformations. In Bruni,
R., Varró, D., eds.: Proc. of GT-VMT ’06. ENTCS, Vienna (2006) 185–194

11. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-
consistent UML refactorings. In Stevens, P., Whittle, J., Booch, G., eds.: UML
2003 - The Unified Modeling Language. Volume 2863 of Lecture Notes in Computer
Science., Springer-Verlag (2003) 144–158

12. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings by rule
extraction. In Fiadeiro, J.L., Inverardi, P., eds.: FASE’08. Volume 4961 of LNCS.,
Springer (2008) 347–361

13. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach
to graph rewriting. In: Proc. of FoSSaCS ’04. Volume 2987 of LNCS. (2004) pp.
151–166

14. Hirschkoff, D.: Bisimulation verification using the up-to techniques. International
Journal on Software Tools for Technology Transfer 3(3) (August 2001) pp. 271–285

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

16. Lambers, L.: Adhesive high-level replacement system with negative application
conditions. Technical report, TU Berlin (2007)

17. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6) (2006) pp. 1133–1163

18. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Loewe, M.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph transformation, Volume 1: Foundations, World Scientific (1997) pp. 163–
246

19. Rangel, G.: Bisimulation Verification for Graph Transformation Systems with
Borrowed Contexts. PhD thesis, TU Berlin (2008) To appear.

20. Rangel, G., König, B., Ehrig, H.: Deriving bisimulation congruences in the presence
of negative application conditions. In: Proc. of FOSSACS ’08. Volume 4962 of
LNCS., Springer (2008) 413–427


