
Formal Analysis and Verification of

Self-Healing Systems�

Hartmut Ehrig1, Claudia Ermel1, Olga Runge1,
Antonio Bucchiarone2, and Patrizio Pelliccione3

1 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany
{ehrig,lieske,olga}@cs.tu-berlin.de

2 FBK-IRST, Trento, Italy
bucchiarone@fbk.eu

3 Dipartimento di Informatica Università dell’Aquila, Italy
patrizio.pelliccione@di.univaq.it

Abstract. Self-healing (SH-)systems are characterized by an automatic
discovery of system failures, and techniques how to recover from these
situations. In this paper, we show how to model SH-systems using alge-
braic graph transformation. These systems are modeled as typed graph
grammars enriched with graph constraints. This allows not only for for-
mal modeling of consistency and operational properties, but also for their
analysis and verification using the tool AGG. We present sufficient static
conditions for self-healing properties, deadlock-freeness and liveness of
SH-systems. The overall approach is applied to a traffic light system
case study, where the corresponding properties are verified.

1 Introduction

The high degree of variability that characterizes modern systems requires to
design them with runtime evolution in mind. Self-adaptive systems are a vari-
ant of fault-tolerant systems that autonomously decide how to adapt the sys-
tem at runtime to the internal reconfiguration and optimization requirements
or to environment changes and threats [1]. A classification of modeling dimen-
sions for self-adaptive systems can be found in [2], where the authors distinguish
goals (what is the system supposed to do), changes (causes for adaptation),
mechanisms (system reactions to changes) and effects (the impact of adaptation
upon the system). The initial four self-* properties of self-adaptive systems are
self-configuration, self-healing1, self-optimization, and self-protection [4]. Self-
configuration comprises components installation and configuration based on
some high-level policies. Self-healing deals with automatic discovery of system

� Some of the authors are partly supported by the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube) and
the Italian PRIN d-ASAP project.

1 Following [3] we consider self-healing and self-repair as synonymous.

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 139–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

140 H. Ehrig et al.

failures, and with techniques to recover from them. Typically, the runtime
behavior of the system is monitored to determine whether a change is needed.
Self-optimization monitors the system status and adjusts parameters to in-
crease performance when possible. Finally, self-protection aims to detect external
threats and mitigate their effects [5].

In [6], Bucchiarone et al. modeled and verified dynamic software architectures
and self-healing (SH-)systems (called self-repairing systems in [6]), by means of
hypergraphs and graph grammars. Based on this work, we show in this paper
how to formally model (SH-)systems by using algebraic graph transformations [7]
and to prove consistency and operational properties. Graph transformation has
been investigated as a fundamental concept for specification, concurrency, dis-
tribution, visual modeling, simulation and model transformation [7,8].

The main idea is to model SH-systems by typed graph grammars with three
different kinds of system rules, namely normal, environment, and repair rules.
Normal rules define the normal and ideal behavior of the system. Environment
rules model all possible predictable failures. Finally, for each failure a repair rule
is defined. This formalization enables the specification, analysis and verifica-
tion of consistency and operational properties of SH-systems. More precisely, we
present sufficient conditions for two alternative self-healing properties, deadlock-
freeness and liveness of SH-systems. The conditions can be checked statically
for the given system rules in an automatic way using the AGG2 modeling and
verification tool for typed attributed graph transformation systems.

Summarizing, the contribution of this paper is twofold: (i) we propose a way
to model and formalize SH-systems; (ii) we provide tool-supported static veri-
fication techniques for SH-system models. The theory is presented by use of a
running example, namely an automated traffic light system controlled by means
of electromagnetic spires that are buried some centimeters underneath the as-
phalt of car lanes.

The paper is organized as follows: Section 2 motivates the paper comparing
it with related work. Section 3 presents the setting of our running example.
Section 4 introduces typed attributed graph transformation as formal basis to
specify and analyze SH-systems. In Section 5 we define consistency and oper-
ational system properties. Static conditions for their verification are given in
Section 6 and are used to analyze the behavior and healing properties of the
traffic light system. We conclude the paper in Section 7 with a summary and
an outlook on future work. For full proofs of the technical theorems and more
details of our running example, the reader is referred to our technical report [9].

2 Motivation and Related Work

Focusing on modeling approaches for SH-systems, the Software Architecture ap-
proach (SA) [10], has been introduced as a high-level view of the structural
organization of systems. Since a self-healing system must be able to change at
runtime, Dynamic Software Architectures (DSAs) have shown to be very useful
2 AGG (Attributed Graph Grammars): http://tfs.cs.tu-berlin.de/agg.

Formal Analysis and Verification of of Self-Healing Systems 141

to capture SA evolution [11,12,13]. Aiming at a formal analysis of DSAs, differ-
ent approaches exist, either based on graph transformation [6,14,15,16,17,18,19]
or on temporal logics and model checking [20,21,22]. In many cases, though, the
state space of behavioral system models becomes too large or even infinite, and
in this case model checking techniques have their limitations. Note that static
analysis techniques, as applied in this paper, do not have this drawback. In addi-
tion to graph transformation techniques, also Petri nets [23] offer static analysis
techniques to verify liveness and safety properties. But in contrast to Petri nets,
graph transformation systems are well suited to model also reconfiguration of
system architectures which is one possible way to realize system recovery from
failures in self-healing (SH-)systems.

In the community of Service Oriented Computing, various approaches sup-
porting self-healing have been defined, e.g. triggering repairing strategies as a
consequence of a requirement violation [24], and optimizing QoS of service-based
applications [25,26]. Repairing strategies could be specified by means of policies
to manage the dynamism of the execution environment [27,28] or of the context
of mobile service-based applications [29].

In [30], a theoretical assume-guarantee framework is presented to efficiently
define under which conditions adaptation can be performed by still preserving
the desired invariant. In contrast to our approach, the authors of [30] aim to
deal with unexpected adaptations.

In contrast to the approaches mentioned above, we abstract from particular
languages and notations. Instead, we aim for a coherent design approach allowing
us to model important features of SH-systems at a level of abstraction suitable
to apply static verification techniques.

3 Running Example: An Automated Traffic Light System

In an automated Traffic Light System (TLS), the technology is based upon elec-
tromagnetic spires that are buried some centimeters underneath the asphalt of
car lanes. The spires register traffic data and send them to other system compo-
nents. The technology helps the infraction system by making it incontestable. In
fact, the TLS is connected to cameras which record videos of the violations and
automatically send them to the center of operations. In addition to the normal
behavior, we may have failures caused by a loss of signals between traffic light
or camera and supervisor. For each of the failures there are corresponding repair
actions, which can be applied after monitoring the failures during runtime. For
more detail concerning the functionality of the TLS, we refer to [9].

The aim of our TLS model is to ensure suitable self-healing properties by
applying repair actions. What kind of repair actions are useful and lead to con-
sistent system states without failures? What kind of safety and liveness proper-
ties can be guaranteed? We will tackle these questions in the next sections by
providing a formal modeling and analysis technique based on algebraic graph
transformation and continue our running example in Examples 1 – 6 below.

142 H. Ehrig et al.

4 Formal Modeling of Self-Healing Systems by Algebraic
Graph Transformation

In this section, we show how to model SH-systems in the formal framework of
algebraic graph transformation [7]. The main concepts of this framework which
are relevant for our approach are typed graphs, graph grammars, transformations
and constraints. Configurations of an SH-System are modeled by typed graphs.

Definition 1 (Typed Graphs). A graph G = (N, E, s, t) consists of a set of
nodes N , a set of edges E and functions s, t : E → N assigning to each edge
e ∈ E the source s(e) ∈ N and target t(e) ∈ N .

A graph morphism f : G→ G′ is given by a pair of functions f = (fN : N →
N ′, fE : E → E′) which is compatible with source and target functions.

A type graph TG is a graph where nodes and edges are considered as node and
edge types, respectively. A TG-typed, or short typed graph G = (G, t) consists
of a graph G and a graph morphism t : G→ TG, called typing morphism of G.
Morphisms f : G→ G′ of typed graphs are graph morphisms f : G→ G′ which
are compatible with the typing morphisms of G and G′, i.e. t′ ◦ f = t.

For simplicity, we abbreviate G = (G, t) by G in the following. Moreover, the
approach is also valid for attributed and typed attributed graphs where nodes and
edges can have data type attributes [7], as used in our running example.

Example 1 (Traffic Light System). The type graph TG of our traffic light system
TLS is given in Fig. 1. The initial state is the configuration graph in Fig. 2 which
is a TG-typed graph where the typing is indicated by corresponding names, and
the attributes are attached to nodes and edges. The initial state shows two traffic
lights (TL), two cameras, a supervisor, and a center of operations, but no traffic
up to now.

The dynamic behavior of SH-systems is modeled by rules and transformations
of a typed graph grammar in the sense of algebraic graph transformation [7].

Fig. 1. TLS type graph TG

Formal Analysis and Verification of of Self-Healing Systems 143

Definition 2 (Typed Graph Grammar)
A typed graph grammar GG = (TG, Ginit,Rules) consists of a type graph TG,
a TG-typed graph Ginit, called initial graph, and a set Rules of graph transfor-
mation rules. Each rule r ∈ Rules is given by a span (L ← I → R), where L, I
and R are TG-typed graphs, called left-hand side, right-hand side and interface,
respectively. Moreover, I → L, I → R are injective typed graph morphisms where
in most cases I can be considered as intersection of L and R. A rule r ∈ Rules
is applied to a TG-typed graph G by a match morphism m : L → G leading to
a direct transformation G

r,m
=⇒ H via (r, m) in two steps: at first, we delete the

match m(L) without m(I) from G to obtain a context graph D, and secondly,
we glue together D with R along I leading to a TG-typed graph H.

More formally, the direct transformation
G

r,m
=⇒ H is given by two pushout diagrams

(1) and (2) in the category GraphsTG of TG-
typed graphs, where diagram (1) (resp. (2))
corresponds to gluing G of L and D along I
(resp. to gluing H of R and D along I).

N

q
|

���
�

���
���

L

(1)m

��

nac�� I

(2)

l�� r ��

��

R

m∗

��
G D�� �� H

Note that pushout diagram (1) in step 1 only exists if the match m satisfies a
gluing condition w.r.t. rule r which makes sure that the deletion in step 1 leads to
a well-defined TG−typed graph D. Moreover, rules are allowed to have Negative
Application Conditions (NACs) given by a typed graph morphism nac : L→ N .
In this case, rule r can only be applied at match m : L→ G if there is no injec-
tive morphism q : N → G with q ◦nac = m. This means intuitively that r cannot
be applied to G if graph N occurs in G. A transformation G0

∗=⇒ Gn via Rules
in GG consists of n ≥ 0 direct transformations G0 =⇒ G1 ⇒ ...⇒ Gn via rules
r ∈ Rules. For n ≥ 1 we write G0

+=⇒ Gn.

Example 2 (Rules of TLS) . A rule r = (L ← I → R) of TLS with NAC
nac : L → N is given in Fig. 3 (interface I is not shown and consists of the
nodes and edges which are present in both L and R, as indicated by equal
numbers). For simplicity, we only show the part of the NAC graph N which
extends L. All graph morphisms are inclusions. Rule r can be applied to graph
G in Fig. 2 where the node (1:TL) in L is mapped by m to the upper node TL in

Fig. 2. TLS initial state Ginit

144 H. Ehrig et al.

Fig. 3. TLS rule ArrivalCarsOne

Ginit. This leads to a graph H where the attributes of TL are changed and the
node Cars of R is attached to TL. Altogether, we have a direct transformation
G

r,m
=⇒ H .

In order to model consistency and failure constraints of an SH-system, we use
graph constraints. A TG-typed graph constraint is given by a TG-typed graph C
which is satisfied by a TG-typed graph G, written G |= C, if there is an injective
graph morphism f : C → G. Graph constraints can be negated or combined
by logical connectors (e.g. ¬C). Now we are able to define SH-systems in the
framework of algebraic graph transformation (AGT). An SH-system is given by a
typed graph grammar where four kinds of rules are distinguished, called system,
normal, environment and repair rules. Moreover, we have two kinds of TG-typed
graph constraints, namely consistency and failure constraints.

Definition 3 (Self-healing System in AGT-Framework)
A Self-healing system (SH-system) is given by SHS = (GG, Csys), where:

– GG = (TG, Ginit, Rsys) is a typed graph grammar with type graph TG,
a TG-typed graph Ginit, called initial state, a set of TG-typed rules Rsys

with NACs, called system rules, defined by Rsys = Rnorm ∪ Renv ∪ Rrpr,
where Rnorm (called normal rules), Renv (called environment rules) and
Rrpr (called repair rules) are pairwise disjoint.

– Csys is a set of TG-typed graph constraints, called system constraints, with
Csys = Cconsist∪Cfail, where Cconsist are called consistency constraints and
Cfail failure constraints.

For an SH-system, we distinguish reachable, consistent, failure and normal
states, where reachable states split into normal and failure states.

Definition 4 (Classification of SH-System States)
Given an SH-system SHS = (GG, Csys) as defined above, we have

1. Reach(SHS) = {G | Ginit
∗=⇒ G via Rsys }, the reachable states consisting

of all states reachable via system rules,
2. Consist(SHS) = {G | G ∈ Reach(SHS) ∧ ∀C ∈ Cconsist : G � C}, the

consistent states, consisting of all reachable states satisfying the consistency
constraints,

3. Fail(SHS) = {G | G ∈ Reach(SHS) ∧ ∃C ∈ Cfail : G � C}, the failure
states, consisting of all reachable states satisfying some failure constraint,

Formal Analysis and Verification of of Self-Healing Systems 145

4. Norm(SHS) = {G | G ∈ Reach(SHS) ∧ ∀C ∈ Cfail : G � C}, the normal
states, consisting of all reachable states not satisfying any failure constraint.

Example 3 (Traffic Light System as SH-system). We define the Traffic Light SH-
system TLS = (GG, Csys) by the type graph TG in Fig. 1, the initial state Ginit

in Fig. 2, and the following sets of rules and constraints:

– Rnorm = {ArrivalCarsOne, ArrivalCarsTwo , RemoveCarsOne, Remove-
CarsTwo, InfractionOn, InfractionOff },

– Renv = {FailureTL,FailureCam},
– Rrpr = {RepairTL,RepairCam},
– Cconsist = {¬allGreen, ¬allRed},
– Cfail = {TLSupFailure,CamSupFailure}.
The normal rule ArrivalCarsOne is depicted in Fig. 3 and models that one

or more cars arrive at a traffic light (1:TL) while all of the crossing’s lights are
red. The NAC in Fig. 3 means that in this situation, no cars arrive at the other
direction’s traffic light (3:TL). Applying this rule, the traffic light in the direc-
tion of the arriving cars (1:TL) switches to green. Rule ArrivalCarsTwo (see
Fig. 4) models the arrival of one or more cars at a red traffic light (2:TL) where
no cars have been before, while at the same time the traffic light for the other
direction (3:TL) shows green and there are already cars going in this direction.
This rule causes a change of the traffic light colors in both directions. Rules
RemoveCarsOne and RemoveCarsTwo are the inverse rules (with L and R ex-
changed) of the arrival rules in Fig. 3 and 4, and model the reduction of traffic
at a traffic light. Rule InfractionOn is shown in Fig. 5 and models the situa-
tion that a car is passing the crossroad at a red light: the signal infraction of
both the supervisor and the center of operations is set to true and the corre-
sponding camera is starting to operate. The rule ensures that the corresponding
camera is connected, using the edge attribute signal = true for edge 13:CamSup.
Rule InfractionOff (not depicted) models the inverse action, i.e. the infraction
attribute is set back to false, and the camera stops running.

The environment rules are shown in Fig. 6. They model the signal disconnec-
tion of a traffic light and a camera, respectively. The repair rules (not depicted)
are defined as inverse rules of the environment rules and set the signal attributes
back to true.

Fig. 4. TLS rule ArrivalCarsTwo

146 H. Ehrig et al.

Fig. 5. Normal rule InfractionOn of TLS

Fig. 6. Environment rules FailureTL and FailureCam of TLS

Fig. 7. Consistency constraint graphs of TLS

The consistency constraints model the desired properties that we always want
to have crossroads with at least one direction showing red lights (¬ allGreen) and
avoiding all traffic lights red when there is traffic (¬ allRed). The corresponding
constraint graphs (without negation) are shown in Fig. 7. The failure constraints
TLSupFailure and CamSupFailure express that either a traffic light or a camera
is disconnected (the constraint graphs correspond to the right-hand sides of the
environment rules in Fig. 6).

5 Consistency and Operational Properties of SH-Systems

In this section, we define desirable consistency and operational properties of
SH-Systems. We distinguish system consistency, where all reachable states are
consistent, and normal state consistency, where the initial state Ginit and all
states reachable by normal rules are normal states. Environment rules, however,

Formal Analysis and Verification of of Self-Healing Systems 147

may lead to failure states, which should be repaired by repair rules. We start
with consistency properties:

Definition 5 (Consistency Properties) . An SH-System SHS is called

1. system consistent, if all reachable states are consistent, i.e.
Reach(SHS) = Consist(SHS);

2. normal state consistent, if the initial state is normal and all normal rules
preserve normal states, i.e.
Ginit ∈ Norm(SHS) and ∀G0

p
=⇒ G1 via p ∈ Rnorm

[G0 ∈ Norm(SHS)⇒ G1 ∈ Norm(SHS)]

Example 4 (Consistency Properties of TLS) The SH-System TLS is system con-
sistent, because for all C ∈ Cconsist Ginit |= C and for all G0

p
=⇒ G1 via p ∈ Rsys

and G0 ∈ Consist(SHS) we also have G1 ∈ Consist(SHS). Similarly, TLS is
normal state consistent, because Ginit ∈ Norm(SHS) and for all G0

p
=⇒ G1

via p ∈ Rnorm for all C ∈ Cfail [G0 �|= C ⇒ G1 �|= C]. In both cases this can
be concluded by inspection of the corresponding rules, constraints and reachable
states. Moreover, there are also general conditions, which ensure the preservation
of graph constraints by rules, but this discussion is out of scope for this paper.

Now we consider the operational properties: one of the main ideas of SH-Systems
is that they are monitored in regular time intervals by checking, whether the
current system state is a failure state. In this case one or more failures have
occurred in the last time interval, which are caused by failure rules, provided
that we have normal state consistency. With our self-healing property below we
require that each failure state can be repaired leading again to a normal state.
Moreover, strongly self-healing means that the normal state after repairing is
the same as if no failure and repairing would have been occurred.

Definition 6 (Self-healing Properties). An SH-System SHS is called

1. self-healing, if each failure state can be repaired, i.e.
∀Ginit ⇒∗ G via (Rnorm ∪Renv) with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS)

2. strongly self-healing, if each failure state can be repaired strongly, i.e.
∀Ginit ⇒∗ G via (p1 . . . pn) ∈ (Rnorm ∪Renv)∗ with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS) and
∃ Ginit ⇒∗ G′ via (q1 . . . qm) ∈ R∗

norm,
where (q1 . . . qm) is subsequence of all normal rules in (p1 . . . pn).

Remark 1 . By definition, each strongly self-healing SHS is also self-healing, but
not vice versa. The additional requirement for strongly self-healing means, that
the system state G′ obtained after repairing is not only normal, but can also be
generated by all normal rules in the given mixed sequence (p1 . . . pn) of normal
and environment rules, as if no environment rule would have been applied. We
will see that our SH-System TLS is strongly self-healing, but a modification
of TLS, which counts failures, even if they are repaired later, would only be
self-healing, but not strongly self-healing.

148 H. Ehrig et al.

Another important property of SH-Systems is deadlock-freeness, meaning that
no reachable state is a deadlock. A stronger liveness property is strong cyclicity,
meaning that each pair of reachable states can be reached from each other.
Note that this is stronger than cyclicity meaning that there are cycles in the
reachability graph. Strong cyclicity, however, implies that each reachable state
can be reached arbitrarily often. This is true for the TLS system, but may be false
for other reasonable SH-Systems, which may be only deadlock-free. Moreover,
we consider “normal deadlock-freeness” and “normal strong cyclicity”, where we
only consider normal behavior defined by normal rules.

Definition 7 (Deadlock-Freeness and Strong Cyclicity Properties). An
SH-System SHS is called

1. deadlock-free, if no reachable state is a deadlock, i.e.
∀G0 ∈ Reach(SHS) ∃ G0

p
=⇒ G1 via p ∈ Rsys

2. normal deadlock-free, if no state reachable via normal rules is a (normal)
deadlock, i.e. ∀Ginit ⇒∗ G0 via Rnorm ∃ G0

p
=⇒ G1 via p ∈ Rnorm

3. strongly cyclic, if each pair of reachable states can be reached from each other,
i.e. ∀G0, G1 ∈ Reach(SHS) ∃ G0 ⇒∗ G1 via Rsys

4. normally cyclic, if each pair of states reachable by normal rules can be reached
from each other by normal rules, i.e.
∀Ginit ⇒∗ G0 via Rnorm and Ginit ⇒∗ G1 via Rnorm we have ∃ G0 ⇒∗ G1

via Rnorm

Remark 2 . If we have at least two different reachable states (rsp. reachable by
normal rules), then “strongly cyclic” (rsp. “normally cyclic”) implies “deadlock-
free” (rsp. “normal deadlock-free”). In general properties 1 and 2 as well as 3
and 4 are independent from each other. But in Thm. 3 we will give sufficient
conditions s.t. “normal deadlock-free” implies “deadlock-free” (rsp. “normally
cyclic” implies “strongly cyclic” in Thm. 4).

6 Analysis and Verification of Operational Properties

In this section, we analyze the operational properties introduced in section 5
and give static sufficient conditions for their verification. The full proofs of our
theorems are given in [9].

First, we define direct and normal healing properties, which imply the strong
self-healing property under suitable conditions in Thm. 1. In a second step we
give static conditions for the direct and normal healing properties in Thm. 2,
which by Thm. 1 are also sufficient conditions for our self-healing properties. Of
course, we have to require that for each environment rule, which may cause a
failure there are one or more repair rules leading again to a state without this
failure, if they are applied immediately after its occurrence. But in general, we
cannot apply the repair rules directly after the failure, because other normal and
environment rules may have been applied already, before the failure is monitored.
For this reason we require in Thm. 1 that each pair (p, q) of environment rules p

Formal Analysis and Verification of of Self-Healing Systems 149

and normal rules q is sequentially independent. By the Local Church-Rosser the-
orem for algebraic graph transformation [7](Thm 5.12) sequential independence
of (p, q) allows one to switch the corresponding direct derivations in order to
prove Thm. 1. For the case with nested application conditions including NACs
we refer to [31]. Moreover, the AGG tool can calculate all pairs of sequential
independent rules with NACs before runtime.

Definition 8 (Direct and Normal Healing Properties). An SH-System
SHS has the

1. direct healing property, if the effect of each environment rule can be repaired

directly, i.e. ∀G0
p

=⇒ G1 via p ∈ Renv ∃ G1
p′

=⇒ G0 via p′ ∈ Rrpr

2. normal healing property, if the effect of each environment rule can be repaired
up to normal transformations, i.e. ∀G0

p
=⇒ G1 via p ∈ Renv ∃ G1 ⇒+ G2

via Rrpr s.t. ∃ G0 ⇒∗ G2 via Rnorm

Remark 3 . The direct healing property allows one to repair each failure caused
by an environment rule directly by reestablishing the old state G0. This is not
required for the normal healing property, but it is required only that the repaired
state G2 is related to the old state G0 by a normal transformation. Of course,
the direct healing property implies the normal one using G2 = G0.

Theorem 1 (Analysis of Self-healing Properties). An SH-System SHS is

I. strongly self-healing, if we have properties 1, 2, and 3 below
II. self-healing, if we have properties 1, 2 and 4 below

1. SHS is normal state consistent
2. each pair (p, q) ∈ Renv × Rnorm is sequentially independent
3. SHS has the direct healing property
4. SHS has the normal healing property

In the following Thm. 2 we give static conditions for direct and normal healing
properties. In part 1 of Thm. 2 we require that for each environment rule p the
inverse rule p−1 is isomorphic to a repair rule p′. Two rules are isomorphic
if they are componentwise isomorphic. For p = (L ← I → R) with negative
application condition nac : L → N it is possible (see [7] Remark 7.21) to
construct p−1 = (R ← I → L) with equivalent nac′ : R → N ′. In part 2
of Thm. 2 we require as weaker condition that each environment rule p has a
corresponding repair rule p′, which is not necessarily inverse to p. It is sufficient
to require that we can construct a concurrent rule p ∗R p′ which is isomorphic to
a normal rule p′′. For the construction and corresponding properties of inverse
and concurrent rules, which are needed in the proof of Thm. 2 we refer to [7].

Theorem 2 (Static Conditions for Direct/Normal Healing Properties)

1. An SH-System SHS has the direct healing property, if for each environment
rule there is an inverse repair rule, i.e. ∀p ∈ Renv ∃ p′ ∈ Rrpr with p′ ∼= p−1

150 H. Ehrig et al.

Fig. 8. Dependency Matrix of TLS in AGG

2. An SH-System SHS has the normal healing property if for each environment
rule there is a corresponding repair rule in the following sense:
∀p = (L← K → R) ∈ Renv we have
a) repair rule p′ = (L′ ←l′ K ′ →r′

R′) with l′ bijective on nodes, and
b) an edge-injective morphism e : L′ → R leading to concurrent rule

p ∗R p′, and
c) normal rule p′′ ∈ Rnorm with p ∗R p′ ∼= p′′

Remark 4 . By combining Thm. 1 and Thm. 2 we obtain static conditions ensur-
ing that an SH-System SHS is strongly self-healing and self-healing, respectively.

Example 5 (Direct Healing Property of TLS). TLS has direct healing property
because “RepairTL” rsp. “RepairCam” are inverse to “FailureTL” resp. “Failure-
Cam” and each pair (p, q) ∈ Renv×Rnorm is sequentially independent according
to the dependency matrix of TLS in Fig. 8.

In the following Thm. 3 and Thm. 4 we give sufficient conditions for deadlock-
freeness and strong cyclicity which are important liveness properties. Here we
mainly use a stepwise approach. We assume to have both properties for nor-
mal rules and give additional static conditions to conclude the property for all
system rules. The additional conditions are sequentially and parallel indepen-
dence and a direct correspondence between environment and repair rules, which
should be inverse to each other. Similar to sequential independence, also parallel
independence of rules (p, q) can be calculated by the AGG tool before runtime.

Theorem 3 (Deadlock-Freeness). An SH-System SHS is deadlock-free, if

1. SHS is normally deadlock-free, and

Formal Analysis and Verification of of Self-Healing Systems 151

2. Each pair (p, q) ∈ (Renv ∪Rrpr) × Rnorm is sequentially and parallel inde-
pendent.

Theorem 4 (Strong Cyclicity). An SH-System SHS is strongly cyclic, given
I. properties 1 and 2, or
II. properties 1, 3 and 4 below.

1. For each environment rule there is an inverse repair rule and vice versa.
2. For each normal rule there is an inverse normal rule.
3. SHS is normally cyclic.
4. Each pair (p, q) ∈ (Renv ∪Rrpr) × Rnorm is sequentially independent.

Remark 5 . In part I of Thm. 4, we avoid the stepwise approach and any kind
of sequential and parallel independence by the assumption that also all normal
rules have inverses, which is satisfied for our TLS.

Example 6 (Strong Cyclicity and Deadlock-Freeness of TLS)
We use part I of Thm. 4 to show strong cyclicity. Property 1 is satisfied because
“FailureTL” and “RepairTL” as well as “FailureCam” and “RepairCam” are
inverse to each other. Property 2 is satisfied because “ArrivalCarsOne(Two)”
and “RemoveCarsOne(Two)” as well as “InfractionOn” and “InfractionOff” are
inverse to each other. Moreover, deadlock-freeness of TLS follows from strong
cyclicity by remark 2. Note that we cannot use part II of Thm. 4 for our ex-
ample TLS, because e.g. (“RepairTL”, “ArrivalCarsOne”) is not sequentially
independent.

7 Conclusion

In this paper, we have modeled and analyzed self-healing systems using algebraic
graph transformation and graph constraints. We have distinguished between con-
sistency properties, including system consistency and normal state consistency,

Fig. 9. Operational properties of self-healing systems

152 H. Ehrig et al.

and operational properties, including self-healing, strongly self-healing, deadlock-
freeness, and strong cyclicity. The main results concerning operational properties
are summarized in Fig. 9, where most of the static conditions in Thms. 1- 4 can
be automatically checked by the AGG tool.

All properties are verified for our traffic light system. Note that in this paper,
the consistency properties are checked by inspection of corresponding rules, while
the operational properties are verified using our main results. Work is in progress
to evaluate the usability of our approach by applying it to larger case studies. As
future work, we will provide analysis and verification of consistency properties
using the theory of graph constraints and nested application conditions in [31].
Moreover, we will investigate how far the techniques in this paper for SH-systems
can be used and extended for more general self-adaptive systems.

References

1. Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
H., Pezzè, M., Shaw, M.: Engineering self-adaptive systems through feedback loops.
In: Software Engineering for Self-Adaptive Systems, pp. 48–70 (2009)

2. Andersson, J., Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-
adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inver-
ardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS,
vol. 5525, pp. 27–47. Springer, Heidelberg (2009)

3. Rodosek, G.D., Geihs, K., Schmeck, H., Burkhard, S.: Self-healing systems: Foun-
dations and challenges. In: Self-Healing and Self-Adaptive Systems, Germany.
Dagstuhl Seminar Proceedings, vol. 09201 (2009)

4. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

5. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Segal, A., Kephart, J.O.:
Autonomic computing: Architectural approach and prototype. Integr. Comput.-
Aided Eng. 13(2), 173–188 (2006)

6. Bucchiarone, A., Pelliccione, P., Vattani, C., Runge, O.: Self-repairing systems
modeling and verification using AGG. In: WICSA 2009 (2009)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, Heidel-
berg (2006)

8. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications, Languages and
Tools, vol. 2. World Scientific, Singapore (1999)

9. Ehrig, H., Ermel, C., Runge, O., Bucchiarone, A., Pelliccione, P.: Formal analysis
and verication of self-healing systems: Long version. Technical report, TU Berlin
(2010),
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2010

10. Perry, D., Wolf, A.: Foundations for the Study of Software Architecture. SIGSOFT
Softw. Eng. Notes 17(4), 40–52 (1992)

11. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FOSE,
pp. 259–268 (2007)

12. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2010

Formal Analysis and Verification of of Self-Healing Systems 153

13. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:
WOSS 2002, pp. 27–32. ACM, New York (2002)

14. Becker, B., Giese, H.: Modeling of correct self-adaptive systems: A graph transfor-
mation system based approach. In: Soft Computing as Transdisciplinary Science
and Technology (CSTST 2008), pp. 508–516. ACM Press, New York (2008)

15. Bucchiarone, A.: Dynamic software architectures for global computing systems.
PhD thesis, IMT Institute for Advanced Studies, Lucca, Italy (2008)

16. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifi-
cation for systems with dynamic structural adaptation. In: Int. Conf. on Software
Engineering (ICSE). ACM Press, New York (2006)

17. Baresi, L., Heckel, R., Thone, S., Varro, D.: Style-based refinement of dynamic
software architectures. In: WICSA 2004. IEEE Computer Society, Los Alamitos
(2004)

18. Hirsch, D., Inverardi, P., Montanari, U.: Modeling software architectures and styles
with graph grammars and constraint solving. In: WICSA, pp. 127–144 (1999)

19. Métayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Software Eng. 24(7), 521–533 (1998)

20. Kastenberg, H., Rensink, A.: Model checking dynamic states in groove. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg (2006)

21. Aguirre, N., Maibaum, T.S.E.: Hierarchical temporal specifications of dynamically
reconfigurable component based systems. ENTCS 108, 69–81 (2004)

22. Rensink, A., Schmidt, A., Varr’o, D.: Model checking graph transformations: A
comparison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozen-
berg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg
(2004)

23. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer, Heidelberg (1985)

24. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for
service centric systems. In: IEEE SCC, pp. 251–259 (2005)

25. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO, pp. 1069–1075 (2005)

26. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW, pp. 411–421 (2003)

27. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo
and the JBoss rule engine. In: ESSPE 2007, pp. 11–20. ACM, New York (2007)

28. Colombo, M., Nitto, E.D., Mauri, M.: Scene: A service composition execution en-
vironment supporting dynamic changes disciplined through rules. In: ICSOC, pp.
191–202 (2006)

29. Rukzio, E., Siorpaes, S., Falke, O., Hussmann, H.: Policy based adaptive services
for mobile commerce. In: WMCS 2005. IEEE Computer Society, Los Alamitos
(2005)

30. Inverardi, P., Pelliccione, P., Tivoli, M.: Towards an assume-guarantee theory for
adaptable systems. In: SEAMS, pp. 106–115. IEEE Computer Society, Los Alami-
tos (2009)

31. Ehrig, H., Habel, A., Lambers, L.: Parallelism and Concurrency Theorems for Rules
with Nested Application Conditions. In: EC-EASST (to appear, 2010)

	Formal Analysis and Verification of Self-Healing Systems
	Introduction
	Motivation and Related Work
	Running Example: An Automated Traffic Light System
	Formal Modeling of Self-Healing Systems by Algebraic Graph Transformation
	Consistency and Operational Properties of SH-Systems
	Analysis and Verification of Operational Properties
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

