
Algebraic High-Level Nets and Processes
Applied to Communication Platforms

Karsten Gabriel

Bericht-Nr. 2010/14
ISSN 1436-9915

Algebraic High-Level Nets and Processes Applied to Communication

Platforms∗

Karsten Gabriel
Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany

Abstract

Petri nets are well-known to model communication structures and algebraic specifications for
modeling data types. Algebraic High-Level (AHL) nets are defined as integration of Petri nets
with algebraic data types, which allows to model the communication structure and the data flow
within one modelling framework. Transformations of AHL-nets – inspired by the theory of graph
transformations – allow in addition to modify the communication structure. Moreover, high-
level processes of AHL-nets capture the concurrent semantics of AHL-nets in an adequate way.
Altogether we obtain a powerful integrated formal specification technique to model and analyse
all kinds of communication based systems.

In this paper we give a comprehensive introduction of this framework. This includes main re-
sults concerning parallel independence of AHL-transformations and the transformation and amal-
gamation of AHL-occurrence nets and processes. Moreover, we show how this can be applied
to model and analyse modern communication and collaboration platforms like Google Wave and
Wikis. Especially we show how the Local Church-Rosser theorem for AHL-net tranformations
can be applied to ensure the consistent integration of different platform evolutions. Moreover,
the amalgamation theorem for AHL-processes shows under which conditions we can amalgamate
waves of different Google Wave platforms in a compositional way.

1 Introduction

Algebraic specifications for data types have been proposed about 35 years ago in the US [Zil74,
GTWW75, Gut75] and studied in more detail in Europe since 1980 [EKT+80, HKR80, CIP81].
The theory of concurrency, on the other hand, has its roots in Petri nets advocated in the PhD
thesis of Petri [Pet62] already in 1962, but a break through from an algebraic point of view was the
development of CCS by Milner [Mil80] and the concept of Petri nets as monoids by Meseguer and
Montanari [MM90]. The stream processing functions developed by Broy [Bro85] can be seen as one
of the first specification techniques for concurrent and distrubuted systems combining algebraic data
type and process techniques. High-level nets based on low-level Petri nets [Pet62, Roz87, Rei85] and
data types in ML have been studied as coloured Petri nets by Jensen [Jen91] and – using algebraic
data types – as algebraic high-level (AHL) nets in [Rei90, PER95, ER97].

Inspired by the theory of graph transformations [Ehr79, Roz97] transformations of AHL-nets
were first studied in [PER95] which – in addition to the token game – also allow to modify the
net structure by rule based transformations. In this paper we consider parallel independence of
AHL transformations leading to a Local Church-Rosser Theorem for Petri net transformations. The
concept of processes in Petri nets is essential to model not only sequential, but especially concurrent
firing behaviour. A process of a low-level Petri net N is given by an occurrence net K together with
a net morphism p : K → N . Processes of high-level nets AN are often defined as processes p : K →
∗This work has been supported by the Integrated Graduate Program on Human-Centric Communication at TU

Berlin

1

2 Case Studies

Flat(AN) of the corresponding low-level net Flat(AN), called flattening of AN . However, this is not
really adequate, because the flattening is in general an infinite net and the data type structure is lost.
For this reason high-level processes for algebraic high-level nets have been introduced in [EHP+02,
Ehr05], which are high-level net morphisms p : K → AN based on a suitable concept of high-
level occurrence nets K. Inspired by the concept of amalgamation of processes for open low-level nets
[BCEH01] we are able to define also amalgamation of high-level processes and a corresponding theorem
in this paper, which shows under which conditions processes can be composed and decomposed leading
to a compositional process semantics.

The main aim of this paper is to give a comprehensive introduction to the integrated framework of
transformations of AHL-nets and amalgamation of high-level processes and to show how this can be
applied to modern communication platforms. The modeling of Skype with transformations of high-
level nets has been demonstranted in [MEE+10] already. In this paper we show how our integrated
framework can be used to model basic aspects of Google Wave [Goo10b] and wiki-based systems. As
detailed case studies we introduce in Section 2 Google Wave, which also used as running example for
the following sections.

In Section 3 we introduce AHL-nets together with high-level processes in the sense of [Ehr05].
Rule based transformations in analogy to graph transformation systems [Roz97] are introduced in
Section 4 for AHL-nets and in Section 5 for AHL-processes and applied to the evolution of Google Wave
communication platforms and waves. The Local Church-Rosser Theorem for AHL-net transformations
in Section 6 can be applied to show under which conditions different evolutions are independent such
that they can be integrated consistently. Amalgamation – including composition and decomposition
– of high-level processes is studied in Section 7 and applied to the amalgamation of waves, which are
considered as processes of Google Wave platforms. The conclusion in Section 8 includes a summary
and future work.

2 Case Studies

In this section we introduce our main case study Google Wave and discuss shortly wiki-based systems
as additional example of communication platforms which can be modeled using our integrated frame-
work. The interesting fact on these case studies is that the result of the communication in contrast to
email, text chat or forums does not grow in a linear way but it is possible to make changes on previous
contributions. This makes it important to model not only the systems and the communicaton but
also the possibly parallel history of the communication.

Google Wave is a communication platform developed by the company Google [Goo10a]. Although
Google itself has stopped the development of Google Wave, the communication platform is now an
open source product under the name “Wave in a box” which allows everyone to run and evolve
own Google Wave servers and clients. We have chosen Google Wave as running example for this
paper because it allows demanding modern features that can be expected to be found in many other
communication systems, such as near-real-time communication. This means that different users can
simultaneously edit the same document, and changes of one user can be seen almost immediately by
the other users.

Note that we do not focus on the communication between servers and clients in this contribution
but on the communication between users. For details on the modeling of the more technical aspects
of the server-to-server and client-to-server communication we refer to [Yon10].

2.1 Google Wave

In Google Wave users can communicate and collaborate via so-called waves. A wave is like a document
which can contain diverse types of data that can be edited by different invited users. The changes
that are made to a wave can be simultaneously recognized by the other participating users. In order

2

2.1 Google Wave

to keep track of the changes that have been made, every wave contains also a history of all the actions
in that wave.

Moreover, Google Wave supports different types of extensions which are divided into gagdets and
robots. The extensions are programs that can be used inside of a wave. The difference between
gadgets and robots is that gadgets are not able to interact with their environment while robots can
be seen as automated users that can independently create, read or change waves, invite users or
other robots, and so on. This allows robots for example to do real-time translation or highlighting
of texts that are written by different users of a wave. Clearly, it is intended to use different robots
for different tasks and it is desired that multiple robots interact without conflicts. This makes the
modeling and analysis of Google Wave very important in order to predict possible conflicts or other
undesired behavior of robots.

w :

waveletu : user

new wavelet

n = new(user,free)

next = next(free)

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

id : nat

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

invite

invited(o, user1) = true

n = addUser(o,user2)

user

user

user

user

user

user

user1 7 user2

user1 7 user2

n

n

o

o

n

o

n

free

next

GWP

Figure 1: AHL-net GWP for a Google Wave platform

We claim that an adequate modeling technique for Google Wave are algebraic high-level (AHL)
nets, which is an integration of the modeling technique of low-level Petri nets [Pet62, Roz87, Rei85]
and algebraic data types. Figure 1 shows the structure of an AHL-net GWP which has 3 places and
4 transitions with firing conditions, where the pre and post arcs are labelled with variables of an
algebraic signature. The AHL-net GWP models a Google Wave platform with some basic features
like the creation of new waves, changes to existing waves, and the invitation of users to a wave which
are modeled by the transitions new wavelet , insert , remove and invite.

A wavelet is a part of a wave that contains a user ID, a list of XML documents and a set of users
which are invited to modify the wavelet. For simplicity we model in our example only the simple case
that every wavelet contains only one single document and the documents contain only plain text. In
order to obtain a more realistic model one has to extend the used algebraic data part of the model
given by the signature Σ-Wave shown in Table 2 and the Σ-Wave-algebra A in Table 3 of Section 3.

The transitions of the net contain firing conditions in the form of equations over the signature Σ-
Wave. In order to fire a transition there has to be an assignment v of the variables in the environment
of the transition such that the firing conditions are satisfied in the algebra A. The pair (t, v) is then
called a consistent transition assignment. Moreover, there have to be suitable data elements in the
pre domain of the transition. For example, in order to fire the transition insert we need a wavelet on

3

2 Case Studies

the place w which can be assigned by the variable o and a user on the place u that can be assigned by
the variable user such that the user is invited to the selected wavelet. Moreover, we need a text txt,
a natural number pos and a new wavelet n such that n is the wavelet which is obtained by inserting
the text txt on position pos into the original wavelet o.

The assignment v then determines a follower marking which is computed by removing the assigned
data tokens in the pre domain of the transition and adding the assigned data tokens in the post domain.
In the case of the transition insert this means that we remove the old wavelet from the place w and
replace it by a new wavelet which contains the newly inserted text at the right position. For more
details on the operational semantics of AHL-nets we refer to [Ehr05].

Due to the parallel semantics of the real-time communication in Google Wave a suitable modelling
technique to capture the waves with their history, i. e. all states outgoing from their creation, are
AHL-processes with instantiations which are introduced in [EHGP09]. Fig. 2 shows an example of an
AHL-process Wave which abstractly models a wave that contains two wavelets created by possibly
different users. A concrete instantiation Inst of the wave is shown in Fig. 3.

insert2

...

invite1

...

new wavelet1

...

insert1

...

u1 : user

id1 : nat

user

free

next

u2 : user

w1 : wavelet

n

user user

o

u3 : user

w2 : wavelet

user

n

u4 : user

user2user1

o

u6 : useru5 : user

w3 : wavelet

user2user1

n

user

o

w4 : wavelet

n

user

new wavelet2

...

free

id3 : nat

next

u8 : user

user

user

insert3

...

user

u9 : userw5 : wavelet

n o

user

w6 : wavelet

n

id2 : nat

u7 : user

Wave

Figure 2: Abstract model Wave of a wave

The instantiation is a special low-level occurrence net with the same structure as the high-level
occurrence net Wave that captures a part of the semantics of the high-level net, i. e. the places of
the net Inst are markings of the places in the net Wave and the transitions of Inst correspond to
firing steps of net Wave in the sense that they are pairs (t, v) of transitions t of the Wave together
with an assignments v (see Table 1) such that (t, v) is a consistent transition assignment and the
pre resp. post domain of (t, v) in Inst is the assigned pre resp. post domain of t under v in the net
Wave. In fact, there can be different instantiations of one AHL-occurrence net, each one capturing
one concurrent firing sequence in the platform GWP .

2.2 Wiki-Based Systems

A wiki is a website that manages information and data which can be easily created and edited by
different users. Today wikis are used in many systems for communication, documentation, planning
or other types of activities that involve the sharing of information. The most famous example of a
wiki is the online encyclopedia Wikipedia. The collaboration via wikis is very similar to the one via
Google Wave except for the near-real-time aspect. Due to the possibility to change contributions of
other participants also the history of a wiki page is of importance and it is also usual to use automated
scripts (“bots”) for minor changes like the correction of common spelling mistakes. So also in the

4

(insert2,v4)(invite1,v3)(new wavelet1,v1) (insert1,v2)

(A, u1)

(0, id1)

(A, u2)

((0,fAg,), w1)

(A, u3)

((0,fAg,Hello), w2)

(B, u4) (B, u6)(A, u5)

((0,fA,Bg,Hello), w3) ((0,fA,Bg,Hello!), w3)

(new wavelet2,v5)

(2, id3)
(B, u8)

(insert3,v6)

(B, u9)

((1,fBg,), w5)

((1,fBg,Hello World!), w5)

(1, id2)

(B, u7)

Inst

Figure 3: Concrete Instantiation Inst of the Wave Model

Table 1: Assignments of the Instantiation Inst

v1 : {free, user ,next ,n} → A

free 7→ 0, user 7→ A,next 7→ 1,n 7→ (0, {A}, ε)

v2 : {o, user , pos, txt , n} → A

o 7→ (0, {A}, ε), user 7→ A, pos 7→ 0, txt 7→ Hello, n 7→ (0, {A}, Hello)

v3 : {user1, user2, o, n} → A

user1 7→ A, user2 7→ B, o 7→ (0, {A}, Hello), n 7→ (0, {A, B}, Hello)

v4 : {o, user , pos, txt , n} → A

o 7→ (0, {A, B}, Hello), user 7→ B, pos 7→ 5, txt 7→ !, n 7→ (0, {A, B}, Hello!)

v5 : {free, user ,next , n} → A

free 7→ 1, user 7→ B,next 7→ 2, n 7→ (1, {B}, ε)

v6 : {o, user , pos, txt , n} → A

o 7→ (1, {B}, ε), user 7→ B, pos 7→ 0, txt 7→ Hello World!, n 7→ (1, {B}, Hello World!)

case of wiki-based systems it is relevant to have a process model of the system in order to analyse
possible conflicts.

The example of a Google Wave platform given above can be modified to model a wiki-based
system. This can be done by changing the transition new wavelet into a transition new wiki page
with corresponding changes to the signature, algebra and the firing conditions of the transitions in
order to model wiki pages (e. g. with an URL instead of an ID) instead of wavelets.

3 Algebraic High-Level Nets and their Processes

In the following we review the definition of AHL-nets and their processes from [Ehr05, EHP+02] based
on low-level nets in the sense of [MM90], where X⊕ is the free commutative monoid over the set X.
Note that s ∈ X⊕ is a formal sum s =

∑n
i=1 λixi with λi ∈ N and xi ∈ X meaning that we have λi

copies of xi in s and for s′ =
∑n

i=1 λ
′
ixi we have s⊕ s′ =

∑n
i=1 (λi + λ′i)xi.

5

3 Algebraic High-Level Nets and their Processes

Definition 3.1 (Algebraic High-Level Net). An algebraic high-level (AHL-) net

AN = (Σ, P, T, pre, post, cond, type,A)

consists of

• a signature Σ = (S,OP ;X) with additional variables X;

• a set of places P and a set of transitions T ;

• pre- and post domain functions pre, post : T → (TΣ(X)⊗ P)⊕;

• firing conditions cond : T → Pfin(Eqns(Σ;X));

• a type of places type : P → S and

• a Σ-algebra A

where the signature Σ = (S,OP) consists of sorts S and operation symbols OP , TΣ(X) is the set of
terms with variables over X,

(TΣ(X)⊗ P) = {(term, p)|term ∈ TΣ(X)type(p), p ∈ P}

and Eqns(Σ;X) are all equations over the signature Σ with variables X.
An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT) with functions

fP : P1 → P2 and fT : T1 → T2 satisfying

(1) (id⊗ fP)⊕ ◦ pre1 = pre2 ◦ fT and (id⊗ fP)⊕ ◦ post1 = post2 ◦ fT ,
(2) cond2 ◦ fT = cond1 and
(3) type2 ◦ fP = type1.

T1

pre1 //
post1

//

fT

��

cond1

uujjjjjjjjjjjjjjj

(1)

(TΣ(X)⊗ P1)⊕

(idTΣ(X)⊗fP)⊕

��

P1

fP

��

type1

$$JJJJJJJJJJ

Pfin(Eqns(S,OP ;X)) (2) (3) S

T2

pre2 //
post2

//
cond2

iiTTTTTTTTTTTTTTT
(TΣ(X)⊗ P2)⊕ P2

type2

::tttttttttt

The category defined by AHL-nets (with signature Σ and algebra A) and AHL-net morphisms is
denoted by AHLNets where the composition of AHL-net morphisms is defined componentwise for
places and transitions.

Note that it is also possible to define a category of AHL-nets with different signatures and algebras
which requires that the morphisms not only contain functions for places and transitions but also a
signature morphism together with a general algebra morphism.

Definition 3.2 (Firing Behaviour of AHL-Nets). A marking of an AHL-net AN is given by
M ∈ CP⊕ where

CP = (A⊗ P) = {(a, p) | a ∈ Atype(p), p ∈ P}

and M =
∑n

i=1 λi(ai, pi) means that place pi ∈ P contains λi ∈ N data tokens ai ∈ Atype(pi).
The set of variables V ar(t) ⊆ X of a transition t ∈ T are the variables of the net inscriptions

in pre(t), post(t) and cond(t). Let v : V ar(t) → A be a variable assignment with term evaluation

6

v : TΣ(V ar(t)) → A, then (t, v) is a consistent transition assignment iff condAN (t) is validated in A
under v. The set CT of consistent transition assignments is defined by

CT = {(t, v)|(t, v) consistent transition assignment}.

A transition t ∈ T is enabled in M under v iff

(t, v) ∈ CT and preA(t, v) ≤M

where preA : CT → CP⊕ is defined by

preA(t, v) = v̂(pre(t)) ∈ (A⊗ P)⊕

and

v̂ : (TΣ(V ar(t))⊗ P)⊕ → (A⊗ P)⊕

is the obvious extension of v to sums of terms and places (similar postA : CT → CP⊕). Then the
follower marking is computed by

M ′ = M 	 preA(t, v)⊕ postA(t, v).

Remark 3.1 (AHL-Morphisms Preserve Firing Behaviour). Given an AHL-net morphism
f : AN1 → AN2 the firing behaviour is preserved, i. e. for

M ′1 = M1 	 pre1,A(t, asg)⊕ post1,A(t, asg)

in AN1 we have

M ′2 = M2 	 pre2,A(fT (t), asg)⊕ post2,A(fT (t), asg)

in AN2 with M2 =
∑n

i=1 (ai, fP (pi)) for M1 =
∑n

i=1(ai, pi) and similar M ′2 constructed from M ′1.

Remark 3.2 (AHL-Nets with Individual Tokens). In contrast to the firing behaviour defined in Def. 3.2
it is also possible to define a marking over a set I of individuals and a marking function m : I → A⊗P
assigning each individual to a pair of a data element and a place. This makes it possible to distinguish
the single tokens of a marking.

In order to fire a transition under a given marking it is then necessary to specify a token selection
(M,m,N, n) where M ⊆ I is the set of individuals which are consumed by the transition, N is a set of
newly created individuals with (I \M)∩N = ∅ and m : M → A⊗P , n : N → A⊗P are corresponding
marking functions. If a selection together with a consistent transition assignment (t, asg) meets the
token selection condition:∑

i∈M
m(i) = preA(t, asg) and

∑
i∈N

n(i) = postA(t, asg)

then t is asg-enabled and the follower marking (I ′,m′) can be computed by

I ′ = (I \M) ∪N, m′ : I ′ → A⊗ P with m′(x) =

{
m(x), if x ∈ I \M ;
n(x), if x ∈ N.

Although this individual token approach is more complicated than the collective token approach in
Def. 3.2 it has some benefits like the possibity to formulate transformation rules which can not only
change the net structure but also the marking of an AHL-net. For more details we refer to [MGE+10].
In this paper we still use the collective approach but we will also research processes of AHL-nets with
individual tokens in the future.

7

3 Algebraic High-Level Nets and their Processes

Example 3.1 (Google Wave Platform). The model of a Google Wave platform in Fig. 1 is an AHL-net

GWP = (Σ-Wave, P, T, pre, post, cond, type,A)

where the signature Σ-Wave is shown in Table 2 and the Σ-Wave-algebra A is shown in Table 3.
This signature and algebra is also used for all the following examples.

Let us consider the marking

M = (Alice, u)⊕ (Bob, u)⊕ (1, id)⊕ ((0, {Alice,Bob}, ε), w)

which means that we have two users Alice and Bob on the place u, a free ID 1 and an empty wavelet
with ID 0 on place w where Alice and Bob are invited. An assignment asg : {user, txt, pos, o, n} → A
with asg(user) = Alice, asg(txt) = Hello Bob, asg(pos) = 0, asg(o) = (0, {Alice,Bob}, ε) and
asg(n) = (0, {Alice,Bob},Hello Bob) satisfies the firing conditions of the transition insert and by
firing the transition insert with assignment asg we obtain the follower marking

M ′ = (Alice, u)⊕ (Bob, u)⊕, (1, id)⊕ ((0, {Alice,Bob},Hello Bob), w)

where the assigned text Hello Bob has been inserted at position 0 into the assigned wavelet.

Table 2: Signature Σ-Wave

sorts: bool, nat , range, user, text, wavelet

opns: true, false : → bool next : nat → nat

start, end : range → nat new : user nat → wavelet

addUser : user wavelet → wavelet invited : wavelet user → bool

len : text → nat sub : text range → text

insText : wavelet text nat → wavelet remText : wavelet range → wavelet

Now, we introduce AHL-occurrence nets based on low-level occurrence nets (see [GR83]) and AHL-
processes according to [Ehr05, EHP+02]. The net structure of a high-level occurrence net has similar
properties like a low-level occurrence net, but it captures a set of different concurrent computations
due to different initial markings. In fact, high-level occurrence nets can be considered to have a set
of initial markings for the input places, whereas there is only one implicit initial marking of the input
places for low-level occurrence nets.

Definition 3.3 (AHL-Occurrence Net). An AHL-occurrence net K is an AHL-net

K = (Σ, P, T, pre, post, cond, type,A)

such that for all t ∈ T with pre(t) =
∑n

i=1(termi, pi) and notation •t = {p1, . . . , pn} and similarly t•
we have

1. (Unarity): •t, t• are sets rather than multisets for all t ∈ T , i. e. for •t the places p1 . . . pn are
pairwise distinct. Hence | • t| = n and the arc from pi to t has a unary arc-inscription termi.

2. (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′

3. (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′

4. (Partial Order): the causal relation <K ⊆ (P × T) ∪ (T × P) defined by the transitive closure
of {(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•} is a finitary strict partial order, i. e. the
partial order is irreflexive and for each element in the partial order the set of its predecessors is
finite.

8

Table 3: Σ-Wave-algebra A
Abool = {T, F} Anat = N

Auser = {a, . . . , z, A, . . . , Z}∗ Atext = {a, . . . , z, A, . . . , Z, . . . }∗

Awavelet = Anat × P(Auser)×Atext Arange = Anat ×Anat

trueA = T ∈ Abool

falseA = F ∈ Abool

startA : Arange → Anat with (s, e) 7→ s

endA : Arange → Anat with (s, e) 7→ e

nextA : Anat → Anat with n 7→ n+ 1

newA : Auser ×Anat → Awavelet with (u, id) 7→ (id, {u}, ε)

addUserA : Auser ×Awavelet → Awavelet with (u, (id, uset, t) 7→ (id, uset ∪ {u}, t)

invitedA : Awavelet ×Auser → Abool with (u, (id, uset, t)) 7→

{
T , if u ∈ uset;
F , else.

lenA : Atext → Anat with t 7→

{
0 , if t = ε;

1 + lenA(t1 . . . tn) , if t = t0 . . . tn.

subA : Atext ×Arange → Atext with

(t, (s, e)) 7→

{
ε , if e < s or lenA(t) ≤ s;
ts . . . tn , if t = t0 . . . tm, s ≤ e, s < m and n = min(m, e).

insTextA : Awavelet ×Atext ×Anat → Awavelet with

((id, uset, t), nt, pos) 7→ (id, uset, subA(t, (0, pos− 1)).nt.subA(t, (pos, lenA(t))))

remTextA : Awavelet ×Arange → Awavelet with

((id, uset, t), (s, e)) 7→ (id, uset, subA(t, (0, s)).subA(t, (e, lenA(t))))

AHL-occurrence nets (with signature Σ and algebra A) together with AHL-net morphisms between
AHL-occurrence nets form the full subcategory AHLONets ⊆ AHLNets.

Definition 3.4 (Input and Output Places). Given an AHL-occurrence net K. We define the set
IN(K) of input places of K as

IN(K) = {p ∈ PK | @ t ∈ TK : p ∈ t•}

and similar the set OUT (K) of output places of K as

OUT (K) = {p ∈ PK | @ t ∈ TK : p ∈ •t}

Note that due to the finitariness of AHL-occurrence nets there is always a nonempty set of input
places IN(K) whereas the set of output places OUT (K), in general, may be empty.

Definition 3.5 (AHL-Process). An AHL-process of an AHL-net AN is an AHL-net morphism mp :
K → AN where K is an AHL-occurrence net.
The category Proc(AN) of AHL-processes of an AHL-net AN is defined as the full subcategory of
the slice category AHLNets \ AN such that the objects are AHL-processes. This means that the
objects of Proc(AN) are AHL-process morphisms mp : K → AN and the morphisms of the category
are AHL-net morphisms f : K1 → K2 such that diagram (1) commutes.

K1
f //

mp1 ""FFFFF K2

mp2||xxxxx

AN

(1)

9

3 Algebraic High-Level Nets and their Processes

Example 3.2 (Wave). The abstract model Wave of a wave in Fig. 2 is an AHL-occurrence net. We
can define a morphism mp : Wave → GWP which maps all places and transitions of the net Wave
to the places and transitions, respectively, with the same name but without index. Then mp is an
AHL-process w.r.t. the Google Wave platform GWP in Fig. 1.

Lemma 3.1 (AHL-Morphisms Reflect AHL-Occurrence Nets). Given an AHL-morphism
f : K1 → K2. If K2 is an AHL-occurrence net then also K1.

Proof Idea. The unarity of K2 together with the fact that AHL-morphisms preserve pre and post
conditions imply that f maps only non-injectively on isolated places or transitions. Thus, K1 basically
has the same structural properties as K1 which means that it does also satisfy the structural conditions
to be an AHL-occurrence net. For a detailed proof see Appendix A.1.

In order to define the restriction of AHL-processes via AHL-morphisms we need the following
construction, which defines a pullback in the category AHLNets.

Definition 3.6 (Restriction of Algebraic High-Level Nets). The restriction of an AHL-morphism
g1 : AN1 → AN3 to AN2 with an inclusion morphism g2 : AN2 → AN3 is given by f2 : AN0 → AN2

with inclusion f1 : AN0 → AN1, where AN0 is constructed as subnet of AN1 with P0 = g−1
1,P (P2) ⊆ P1

and T0 = g−1
1,T (T2) ⊆ T1 and f2 is the restriction of g1.

AN0
f1 //

f2 ��

AN1

g1��
AN2 g2

// AN3

(PB)

Remark 3.3 (Pullbacks). The diagram (PB) is a pullback diagram in the category AHLNets, i. e. (PB)
is commutative and has the following universal property: For all AHL-nets AN ′0 and AHL-morphisms
h1 : AN ′0 → AN1, h2 : AN ′0 → AN2 with g1 ◦ h1 = g2 ◦ h2 there is a unique h : AN ′0 → AN0 with
f1 ◦ h = h1 and f2 ◦ h = h2. Moreover we can replace the inclusion g2 : AN2 → AN3 by an injection
morphism g2 : AN2 → AN3 leading to an injective morphism f1 : AN0 → AN1.

Fact 3.2 (Extension and Restriction of AHL-Processes).

1. Extension: Given a process mp1 : K1 → AN1 and an AHL-morphism f : AN1 → AN2 then
mp2 = f ◦mp1 : K1 → AN2 is a process of AN2 called extension of mp1 along f .

2. Restriction: Given a process mp2 : K2 → AN2 and an inclusion f : AN1 → AN2 then the
restriction mp1 : K1 → AN1 of mp2 to AN1 is a process of AN1 with inclusion φ : K1 → K2

and pullback (PB).

K1
φ //

mp1 ��

K2

mp2��
AN1 f

// AN2

(PB)

Proof.

1. Since K1 is an AHL-occurrence net and f ◦mp1 : K1 → AN2 is an AHL-morphism it is also a
process of AN2.

2. Given process mp2 : K2 → AN2 and inclusion f the restriction mp1 : K1 → AN1 with inclusion
φ : K1 → K2 is defined by Definition 3.6. Moreover, K2 is an AHL-occurrence net which by
Lemma 3.1 and AHL-morphism φ : K1 → K2 implies that K1 is an AHL-occurrence net. Hence,
mp1 : K1 → AN1 is a process of AN1.

10

4 Transformation of Algebraic High-Level Nets

Due to the possibility to evolve the Google Wave platforms by adding, removing or changing features
we need also techniques that make it possible to evolve the corresponding model of a platform. For
this reason we introduce rule-based AHL-net transformations in the sense of graph transformations
[EEPT06].

A production (or transformation rule) for AHL-nets specifies a local modification of an AHL-net.
It consists of a left-hand side, an interface which is the part of the left-hand side which is not deleted
and a right-hand side which additionally contains newly created net parts.

Definition 4.1 (Productions for AHL-Nets). A production for AHL-nets is a span p : L l← I
r→ R

of injective AHL-morphisms. We call L the left-hand side, I the interface, and R the right-hand side
of the production p. In most examples l and r are inclusions.

L I
loo r // R

Example 4.1 (Production for Platforms). Fig. 4 shows an example of a production

p1 : L1
l1← I1

r1→ R1 where the morphisms l1 and r1 are inclusions. The production can be used
to replace two transitions insert and remove by a single transition replace.

w : wavelet

u : user

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

user

user
user

user

n

o

o

n

w : wavelet

u : user

w : wavelet

u : user

replace

invited(o,user) = true

txt: text

rng: range

r = remText(o,rng)

n = insText(r,txt,start(rng))

user

user

o
n

L1 I1 R1

Figure 4: Production for AHL-nets

The gluing construction via pushouts in the category AHLNets of AHL-nets with fixed signature
Σ and algebra A can be defined via the componentwise gluing of the sets as a pushout of the sets of
places and transitions in the category Sets.

Definition 4.2 (Gluing of Sets). Given sets A,B and C, and functions f1 : A→ B, f2 : A→ C. The
gluing D of B and C along A (or more precisely along f1 and f2), written D = B+A C, is defined as
the quotient D = (B] C)/≡ where ≡ is the smallest equivalence relation containing the relation

∼ = {(f1(a), f2(a)) | a ∈ A}.

This means that we transitively identify all those elements in B] C which are commonly mapped
by the same interface element. Moreover, we obtain functions g1 : B → D and g2 : C → D with
g1(b) = [b]≡ for all b ∈ B, and g2(c) = [c]≡ for all c ∈ C.

A
f1 //

f2

��

B

g1

��
C g2

// D

(PO)

11

4 Transformation of Algebraic High-Level Nets

Fact 4.1 (Pushout of Sets). The diagram (PO) in Def. 4.2 is a pushout diagram in the category
Sets, i. e. (PO) commutes and has the following universal property: For all sets X and functions
h1 : B → X, h2 : C → X with h1 ◦ f1 = h2 ◦ f2 there exists a unique h : D → X with h ◦ g1 = h1 and
h ◦ g2 = h2.

Proof. See Fact 2.17 in [EEPT06].

Definition 4.3 (Gluing of AHL-Nets). Given two AHL-net morphisms f1 : AN0 → AN1 and f2 :
AN0 → AN2 the gluing AN3 of AN1 and AN2 along f1 and f2, written AN3 = AN1 +(AN0,f1,f2)AN2,
with ANx = (Σ, Px, Tx, prex, postx, condx, typex, A) for x = 0, 1, 2, 3 is constructed as follows:

• T3 = T1 +T0 T2 with f ′1,T and f ′2,T as pushout (2) of f1,T and f2,T in Sets.

• P3 = P1 +P0 P2 with f ′1,P and f ′2,P as pushout (3) of f1,P and f2,P in Sets

• pre3(t) =

{
f ′⊕1,P ◦ pre1(t1) , if f ′1,T (t1) = t;
f ′⊕2,P ◦ pre2(t2) , if f ′2,T (t2) = t.

• post3(t) =

{
f ′⊕1,P ◦ post1(t1) , if f ′1,T (t1) = t;
f ′⊕2,P ◦ post2(t2) , if f ′2,T (t2) = t.

• cond3(t) =

{
cond1(t1) , if f ′1,T (t1) = t;
cond2(t2) , if f ′2,T (t2) = t.

• type3(p) =

{
type1(p1) , if f ′1,P (p1) = p;
type2(p2) , if f ′2,P (p2) = p.

• f ′1 = (f ′1,P , f
′
1,T) and f ′2 = (f ′2,P , f

′
2,T).

AN0

f2

��

f1 //

(1)

AN1

f ′1
��

T0

f2,T

��

f1,T //

(2)

T1

f ′1,T

��

P0

f2,P

��

f1,P //

(3)

P1

f ′1,P

��
AN2

f ′2

// AN3 T2
f ′2,T

// T3 P2
f ′2,P

// P3

Well-definedness. See Appendix A.2.

Fact 4.2 (Pushout of AHL-Nets). The diagram (1) in Def. 4.3 is a pushout diagram in the category
AHLNets, i. e. (1) commutes and it has the following universal property: For all AHL-nets AN ′3
and AHL-morphisms h1 : AN 1 → AN ′3, h2 : AN 2 → AN ′3 with h1 ◦ f1 = h2 ◦ f2 there exists a unique
AHL-morphism h : AN 3 → AN ′3 such that h ◦ f ′1 = h1 and h ◦ f ′2 = h2.

Proof-Idea. The pushouts (2) and (3) provide unique functions hP : P3 → P ′3, hT : T3 → T ′3 which
together form an AHL-morphism h = (hP , hT) : AN3 → AN ′3 satisfying the universal property. For
a detailed proof see Appendix A.3.

Example 4.2 (Gluing and Transformation of Google Wave Platforms). The gluing of two platforms
GWP ′ and R2 over an interface I2 is shown in Fig. 5. The AHL-net GWP ′ is a modification of the
Google Wave platform introduced in Section 2 in Fig. 1 where the ability to create a new wavelet is
removed. The AHL-net R2 is a smaller platform which does not provide any actions for the creation
or editing of wavelets but only for the invitation and exclusion of users by other users. The net I2 is a
common subnet of both nets, containing the transition invite together with its pre and post domain.

12

The gluing of the nets GWP ′ and R2 over a span of inclusions GWP ′ ←↩ I ↪→ R2 leads to a net
GWP2 which is a combination of these two nets, providing actions for the creation and editing of
wavelets as well as the invitation and exclusion of users.

w :

wavelet

u :

user

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

invite

invited(o, user1) = true

n = addUser(o,user2)

user

user

user
user

user1 7 user2

user1 7 user2

n

o

o

n

o

n

GWP'

exclude

invited(o,user1) = true

o = addUser(n, user2)

invited(n,user2) = false

u : user

user1 7 user2

user1 7 user2

w : wavelet
o

n
u : user

w : wavelet

w :

waveletu : user

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

invite

invited(o, user1) = true

n = addUser(o,user2)

user

user

user

user

user1 7 user2

user1 7 user2

n

o

o

n

o
n

GWP2

exclude

invited(o,user1) = true

o = addUser(n, user2)

invited(n,user2) = false

user1 7 user2

user1 7 user2

o n

I2 R2

invite

invited(o, user1) = true

n = addUser(o,user2)

invite

invited(o, user1) = true

n = addUser(o,user2)

user1 7 user2

user1 7 user2 n

o

user1 7 user2

user1 7 user2

n
o

Figure 5: Gluing of AHL-nets

Note that there is only one transition invite in the net GWP2 due to the fact that the corresponding
transitions in the nets GWP ′ and R2 are matched by the same transition in I2. Otherwise, the gluing
would result into two different copies of the invite transition.

w :

wavelet

u :

user

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

invite

invited(o, user1) = true

n = addUser(o,user2)

user

user

user
user

user1 7 user2

user1 7 user2

n

o

o

n

o

n

GWP'

u : user
w : wavelet

I2

invite

invited(o, user1) = true

n = addUser(o,user2)

user1 7 user2

user1 7 user2 n

o

new wavelet

n = new(user,free)

next = next(free)
id : nat

free

next

u :

user w :

wavelet

L2

invite

invited(o, user1) = true

n = addUser(o,user2)

user1 7 user2

user1 7 user2

n

o

user

user

w :

wavelet
u :

user

new wavelet

n = new(user,free)

next = next(free)

insert

invited(o,user) = true

txt: text

pos: nat

n = insText(o,txt,pos)

id : nat

remove

invited(o, user) = true

rng: range

n = remText(o, rng)

invite

invited(o, user1) = true

n = addUser(o,user2)

user

user

user

user

user

user

user1 7 user2

user1 7 user2

n

n

o

o

n

o

n

free

next

GWP

Figure 6: Restriction of AHL-nets

Consider a production for AHL-nets p2 : L2
l2← I2

r2→ R2 where the net L2 is shown in Fig. 6 and

13

4 Transformation of Algebraic High-Level Nets

L2

m

��
(1)

I
l2oo r2 //

c

��
(2)

R2

n

��
GWP GWP ′

doo e // GWP2

Figure 7: Direct Transformation GWP
p2⇒ GWP2

the nets I2 and R2 are shown in Fig. 5. The production p2 can be applied to the net GWP leading to
the context AHL-net GWP ′ as shown in Fig. 6 and the result AHL-net GWP2 as shown in Fig. 5, i. e.
we have a direct tranformation GWP

p2⇒ GWP2 (see Definition 4.4) with double pushout-diagram in
Fig. 7, where (1) and (2) are pushouts.

Definition 4.4 (Direct Transformation of AHL-Nets). Given a production p : L l← I
r→ R and a

(match) morphism m : L→ AN in AHLNets.

Then a direct transformation AN
(p,m)⇒ AN ′ in AHLNets is given by pushouts (1) and (2) in

AHLNets. A transformation of AHL-nets is a sequence AN0
(p1,m1)⇒ AN1 · · ·

(pn,mn)⇒ ANn of di-
rect transformations, written AN0 ⇒∗ ANn.

L

m

��
(1)

I
loo r //

c

��
(2)

R

n

��
AN C

doo e // AN ′

Remark 4.1 (Modelling of Token-Game with Transformation). For AHL-nets with individual tokens
(see Remark 3.2) there is a similar definition for the rule-based direct transformation of AHL-nets
with individual tokens (see [MGE+10]). It allows an alternative way to model the firing behaviour
of AHL-nets by rule-based transformation. For every consistent transition assignment (t, asg) (see
Def. 3.2) of an AHL-net with individual tokens ANI enabled under a token selection S = (M,m,N, n)
(see Remark 3.2) there is a corresponding transition rule %(t, S, asg) such that there is an equivalence
between the firing of (t, asg) via S and the canonical direct transformation of ANI using the rule
%(t, S, asg). For more details we refer to [MGE+10].

The following gluing condition is a necessary and sufficient condition for the existence of a direct
transformation of AHL-nets. In order to satisfy the gluing condition by a production p under a match
m some of the places and transitions in the AHL-net AN in the codomain of m must not be deleted by
application of the production. The preimages of these elements in the left-hand side of the production
are called identification points and dangling points.

The identification points are the preimages of places and transitions which are mapped non-
injectively by the match m. The dangling points are the preimages of places which occur in the pre
or post conditions of a transition which is matched, and therefore cannot be deleted by application
of the production.

Definition 4.5 (Gluing Condition for AHL-Nets). Given a production p : L l← I
r→ R for AHL-nets

and an AHL-morphism m : L→ AN . We define the set of identification points1

IP = {x ∈ PL | ∃ x′ 6= x : mP (x) = mP (x′)}∪
{x ∈ TL | ∃ x′ 6= x : mT (x) = mT (x′)}

1i. e. all elements in L that are mapped non-injectively by m

14

the set of dangling points2

DP = {p ∈ PL | ∃ t ∈ TAN \mT (TL), term ∈ TΣ(X)type(p) :
(term,mP (p)) ≤ preAN (t)⊕ postAN (t)}

and the set of gluing points3

GP = lP (PI) ∪ lT (TI)

We say that p and m satisfy the gluing condition if IP ∪DP ⊆ GP .

L
m
��

I
loo r // R

AN

Fact 4.3 (Transformation of AHL-Nets). Given a production for AHL-nets p = (L l← I
r→ R) and

a match m : L → AN . The production p is applicable on match m, i. e. there exists a context AHL-
net AN 0 in the diagram below, such that (1) is pushout, iff p and m satisfy the gluing condition in
AHLNets. Then AN 0 is called pushout complement of l and m. Moreover, we obtain a unique AN ′

as pushout object of the pushout (2) in AHLNets.

L
m
��

(1)

I
loo

c���
�

r // R
n
���
�

AN AN 0d
oo_ _ _ _ //____ AN ′

If the AHL-net AN 0 exists it is unique up to isomorphism and can be constructed as follows:

• PAN 0 = (PAN \mP (PL)) ∪mP (lP (PI)),

• TAN 0 = (TAN \mT (TL)) ∪mT (lT (TI)),

• preAN 0 = preAN |TAN0
, postAN 0 = postAN |TAN0

, condAN 0 = condAN |TAN0

and typeAN 0 = typeAN |PAN0
,

• AN 0 has the same data part (Σ, A) as AN ;

• cP (p) = mP (lP (p)) for p ∈ PI and cT (t) = mT (lT (t)) for t ∈ TI , and

• d is an inclusion.

Proof-Idea. AHL-nets can be seen as special cases of an AHL-nets with individual tokens where the
set I of individual tokens is empty. Analogously every AHLNets-morphism can be seen as a special
case of an AHLINets-morphism where the component for the individuals is the empty function.
Therefore the proof of this fact works completely analogously to the proof of Fact 3.12 in [MGE+10].

For a detailed proof see Appendix A.4.

2i. e. all places in L that would leave a dangling arc, if deleted
3i. e. all elements in L that have a preimage in I

15

5 Transformation of AHL-Occurrence Nets and AHL-Processes

5 Transformation of AHL-Occurrence Nets and AHL-Processes

In this section we extend our framework to the gluing and transformation of AHL-occurrence nets
and processes. For this purpose we define productions for AHL-processes where the left hand and
right hand side and the interface of the production are AHL-occurrence nets.

Definition 5.1 (Production for AHL-Processes). A production for AHL-processes p : L l← I
r→ R is

a span of injective AHLONets-morphisms l : I → L and r : I → R.

L I
loo r // R

The following lemma states the fact that the gluing and the direct transformation of AHL-
occurrence nets via pushout constructions can be computed in the category of AHL-nets because
every pushout in AHLONets is also a pushout in AHLNets.

Lemma 5.1 (Pushout of AHL-Occurrence Nets). Given AHL-occurrence nets I, K1 and K2 and two
AHL-net morphisms f : I → K1 and g : I → K2. If (1) is a pushout in AHLONets then (1) is also
pushout in AHLNets.

K1

f ′
AA

 AAA

I

f
??�������

g ��??????? (1) K

K2

g′}}

>>}}}

Proof Idea. Constructing the pushout of the given span in the category AHLNets we obtain a
pushout object K ′ together with a unique induced morphism k : K ′ → K. Then by Lemma 3.1 the
morphism k implies that K ′ is an AHL-occurrence net leading to a unique morphism k′ : K → K ′ by
universal property of pushout (1). The morphisms k and k′ can be shown to be inverse isomorphisms
which by the uniqueness of pushouts implies that (1) is pushout in AHLNets. For a detailed proof
see Appendix A.5.

The gluing of AHL-nets may produce forward or backward conflicts as well as cycles or infinitely
long chains in the causal relation. So for the gluing of two AHL-processes via pushout construction
the processes have to be composable in order to obtain again an AHL-process as a result of the gluing.
Composability of AHL-processes with respect to an interface means that the result of the gluing does
not violate the process properties.

A span of injective AHLONets-morphisms i1 : I → K1 and i2 : I → K2 induces a causal relation
between the elements of the interface I. This relation consists of the causal relation between elements
in K1 and K2 and additionally between those elements in both of the AHL-occurrence nets which is
obtained by gluing over the interface.

Definition 5.2 (Induced Causal Relation). Given three AHL-occurrence nets I, K1 and K2, and two
injective AHL-net morphisms i1 : I → K1 and i2 : I → K2. The induced causal relation <(i1,i2) is
defined as the transitive closure of the relation ≺(i1,i2) defined by

≺(i1,i2)= {(x, y) ∈ (PI] TI)× (PI] TI) | i1(x) <K1 i1(y) or i2(x) <K2 i2(y)}.

Definition 5.3 (Composability of AHL-Processes). Given three AHL-occurrence nets I, K1 and K2,
and two injective AHL-net morphisms i1 : I → K1 and i2 : I → K2. Then (K1,K2) are composable
w.r.t. (I, i1, i2) if

• ∀ x ∈ IN(I) : i1(x) /∈ IN(K1)⇒ i2(x) ∈ IN(K2),

16

• ∀ x ∈ OUT (I) : i1(x) /∈ OUT (K1)⇒ i2(x) ∈ OUT (K2), and

• the induced causal relation <(i1,i2) is a finitary strict partial order.

The composability of AHL-processes is a sufficient and necessary condition for the existence of
the gluing of AHL-occurrence nets as pushout in the category AHLONets.

Fact 5.2 (Gluing of AHL-Processes). Given AHL-occurrence nets I, K1, K2 and two injective AHL-
net morphisms i1 : I → K1 and i2 : I → K2. Then there exists a pushout (PO) in the category
AHLONets (see Def. 3.3) iff (K1,K2) are composable w.r.t. (I, i1, i2). The AHL-occurrence net K
is then called gluing of K1 and K2 along i1 and i2, written K = K1 +(I,i1,i2) K2.

In order to extend this gluing construction for AHL-processes in the category Proc(AN) (see
Def. 3.5) one additionally requires AHL-morphisms mp1 : K1 → AN and mp2 : K2 → AN with mp1 ◦
i1 = mp2 ◦ i2. The pushout (PO) in AHLONets then provides a unique morphism
mp : K → AN such that (PO) is also a pushout in Proc(AN).

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDDD

AN

Proof Idea. In order to show that pushout (PO) in AHLNets is also a pushout in the full subcategory
AHLONets ⊆ AHLNets it suffices to show that the pushout object K is an AHL-occurrence net.
The conflict-freeness of K is ensured by the first two conditions of the required composability of K1

and K2 w.r.t. (I, i1, i2). The fact that the causal relation <K is a finitary strict partial order can be
derived from the fact that the induced causal relation <(i1,i2) is a finitary strict partial order.

The other way around the pushout (PO) in AHLONets means that the pushout object K is
an AHL-occurrence net and by Lemma 5.1 (PO) is also a pushout in AHLNets. Then by the fact
that AHL-morphisms preserve pre and post conditions we can conclude from the conflict-freeness of
K that the first two conditions of the composability of K1 and K2 are fulfilled. Moreover, the fact
that <K is a finitary strict partial order implies that the same holds for the induced causal relation
<(i1,i2).

For a detailed proof see Appendix A.6.

Example 5.1 (Gluing of Waves). The AHL-occurrence net Wave (Fig. 2 in Section 2) can be obtained
by the gluing of the nets Wave1 and Wave2 over an interface I as shown in Fig. 8. Moreover, given
AHL-morphisms mp1 : Wave1 → GWP and mp2 : Wave2 → GWP which maps every place and
transition, respectively, to a place or transition with the same name without index we obtain a
process morphism mp : Wave → GWP .
Vice versa, we can consider the processes mp1 and mp2 as a decomposition of the process mp into
two processes concerning the different wavelets in the wave.

Analogously to the induced causal relation we define a gluing relation for transformations which
is induced by a production p and a match m. The gluing relation is a relation between the interface
elements of p which consists of the causal relation between elements in the codomain of m which are
preserved by application of p and the causal relation of the right hand side of the production, and
additionally it consists of the causal relations which are obtained by gluing over the interface.

17

5 Transformation of AHL-Occurrence Nets and AHL-Processes

insert2

...

invite1

...

new wavelet1

...

insert1

...

u1 : user

id1 : nat

id2 : nat

user

free

next

u2 : user

w1 : wavelet

n

user user

o

u3 : user

w2 : wavelet

user

n

u4 : user

user2user1

o

u6 : useru5 : user

w3 : wavelet

user2user1

n

user

o

u7 : user

w4 : wavelet

n

user

new wavelet2

...

free

id3 : nat

next

u8 : user

user

user

insert3

...

user

u9 : userw5 : wavelet

n o

user

w6 : wavelet

n

id2 : nat

u4 : user

u7 : user

id2 : nat u4 : user u7 : user

Wave1

Wave2

I

Figure 8: Gluing of Waves

Definition 5.4 (Gluing Relation for Transformations). Given a production for AHL-processes
p : L l← I

r→ R and a match m : L→ K we define the relations

≺(K,m)= {(x, y) ∈ (PK × (TK \mT (TL)))] ((TK \mT (TL))× PK) | x ∈ •y}

and <(K,m) as the transitive closure of ≺(K,m). Furthermore we define

≺(p,m)= {(x, y) ∈ (PI × TI)] (TI × PI) | m ◦ l(x) <(K,m) m ◦ l(y) ∨ r(x) <R r(y)}

The transitive closure <(p,m) of ≺(p,m) is called gluing relation of production p under match m.

For the transformation of AHL-processes we define a transformation condition which is a necessary
and sufficient condition that the direct transformation of an AHL-process exists. The satisfaction of
the transformation condition by a production p and a match m requires that the gluing condition
for AHL-nets (see Def. 4.5) is satsfied. Moreover, it requires that the gluing condition is finitary and
irreflexive and that the application of the production does not produce any conflicts.

Definition 5.5 (Transformation Condition for AHL-Processes). Given a production for AHL-processes
p : L l← I

r→ R and an AHL-occurrence net K. Then p satisfies the transformation condition under
an injective (match) morphism m : L→ K iff

• the gluing condition is satisfied,

• the gluing relation of p under m is a finitary strict partial order,

• for the sets of in and out places of the match

InP = {x ∈ IN(I) | l(x) ∈ IN(L) and m ◦ l(x) /∈ IN(K)}, and

OutP = {x ∈ OUT (I) | l(x) ∈ OUT (L) and m ◦ l(x) /∈ OUT (K)}

18

there is

r(InP) ⊆ IN(R) and r(OutP) ⊆ OUT (R).

Theorem 5.3 (Direct Transformation of AHL-Processes). Given a production for AHL-processes
p : L l← I

r→ R and an AHL-occurrence net K together with an injective morphism m : L→ K. Then
the direct transformation of AHL-occurrence nets with pushouts (1) and (2) in AHLONets exists iff
p satisfies the transformation condition for AHL-processes under m.

In order to extend this construction for AHL-processes in the category Proc(AN) one additionally
requires AHL-morphisms mp : K → AN and rp : R→ AN with mp◦m◦ l = rp◦r. Then the pushout
(1) in AHLONets is a pushout of mp ◦m and cp = mp ◦ d in Proc(AN), and the pushout (2) in
AHLONets provides a unique morphism mp′ : K ′ → AN such that mp′ is pushout of cp and rp in
Proc(AN) according to Fact 5.2.

L
m
��

(1)

I
loo r //

c
��

(2)

R
n �� rp

��

K

mp --

C
doo e //

cp
QQQQQ

((QQQQ
K ′

mp′
FF

""FF

AN

Proof Idea. If the the transformation condition is satisfied we can construct pushout (1) in AHLNets
leading to an AHL-occurrence net C by Lemma 3.1 and AHL-morphism d : C → K. This means
that (1) is also pushout in AHLONets. Moreover, the satisfaction of the transformation condition
implies that (C,R) are composable w.r.t. (I, c, r) which by Fact 5.2 means that we can construct
pushout (2) in AHLONets.

Vice versa, given pushouts (1) and (2) in AHLONets we have by Lemma 5.1 that (1) and (2)
are also pushouts in AHLNets which means that production p with match m satisfies the gluing
condition. The rest of the transformation condition can be obtained from the fact that (C,R) are
composable w.r.t. (I, c, r) and the construction of pushout complement C.

For a detailed proof see Appendix A.7.

Example 5.2 (Transformation of Waves). Figure 9 shows a transformation of a Wave using a pro-
duction for AHL-processes p : L l← I

r→ R and a match m : L → TwoWavelets where l, r and
m are inclusions. The left-hand side of the production contains a new wavelet2 transition with its
environment together with a wavelet place w2 and a user place u3. The new wavelet2 transition is
then deleted by the production and instead the user u5 which created the wavelet is then invited by
user u3 to the wavelet w2 and the history of the deleted wavelet is appended to the wavelet w2.

Note, that in order to apply the production the transition new wavelet2 in the left-hand side of
the production can only be matched to the transition new wavelet2 . A match m′ : L→ TwoWavelets
which maps new wavelet2 to new wavelet1 does not satisfy the gluing condition for AHL-nets, because
id3 is a dangling point under match m′ (see Def. 4.5).

Moreover, in order to obtain an AHL-occurrence net as result of the transformation, also the
matching of the places is restricted. If we match the place w2 to the place w1 then the transformation
would create a forward conflict at this place. If we match w2 to w4 then the transformation would
create a cycle in the causal relation. Analogously a mapping of u3 other than given by inclusion m
would lead to the creation of a conflict or a cycle.

Now, consider process morphisms mp1 : TwoWavelets → AN and mp2 : R → AN which map
the places and transitions to the corresponding elements in AN without index. Then from the
transformation TwoWavelets

p,m⇒ OneWavelet in AHLONets we obtain a process morphism mp3 :
OneWavelet → AN which maps the elements in the same way as mp1 and mp2.

19

6 Compatibility of AHL-Net Transformations

new wavelet1

...

insert1

...

u1 : user

id1 : nat

user

free

next

u2 : user

w1 : wavelet

n

user user

o

u3 : user

w2 : wavelet

user

n

u4 : user

new wavelet2

...

free

id3 : nat

next

u5 : user

user

user
insert2

...

user

u6 : user

w3 : wavelet

n
o

user

w4 : wavelet

n

id2 : nat

TwoWavelets

new wavelet1

...

insert1

...

u1 : user

id1 : nat

user

free

next

u2 : user

w1 : wavelet

n

user user

o

u3 : user

w2 : wavelet

user

n

u4 : user

u5 : user

insert2

...

user

u6 : user

w3 : wavelet

o

user

w4 : wavelet

n

id2 : nat

OneWavelet

invite1

...

o n

user1

user2

u7 : user

user1

new wavelet1

...

insert1

...

u1 : user

id1 : nat

user

free

next

u2 : user

w1 : wavelet

n

user user

o

u3 : user

w2 : wavelet

user

n

u4 : user

u5 : user

insert2

...

user u6 : user

w3 : wavelet

o

user

w4 : wavelet

n

id2 : nat

Context

user2

u3 : user

w2 : wavelet

u4 : user

u5 : user

w3 : wavelet

invite1

...

o n

user1

user2

u7 : user

user1

user2

u3 : userw2 : wavelet

u4 : user

u5 : user

w3 : wavelet

u3 : userw2 : wavelet

u4 : user

new wavelet2

...

free

id3 : nat

next

u5 : user

user

user

w3 : wavelet

n

id2 : nat

id2 : nat

id2 : nat

L

I

R

l

r

m

Figure 9: Transformation of a Wave

6 Compatibility of AHL-Net Transformations

Due to the fact that Google Wave is open source it is possible that different developers perform
their own evolutions outgoing from one platform. It is an interesting aspect to analyse whether such
different evolutions are compatible with each other in the sense that each one of the evolutions can

20

be also applied to the result of the respective other one leading to the same result.

Example 6.1 (Compatible Platform Evolutions). Consider again the production for AHL-nets p1 in
Example 4.1 and the production p2 in Example 4.2. Both of the productions are applicable to the
Google Wave platform GWP leading to AHL-nets GWP1 and GWP2 as shown in Fig 10.
The two transformations GWP

p1⇒ GWP1 and GWP
p2⇒ GWP2 are compatible in the sense that

each of the productions is applicable to the result of the transformation with the respective other
production, leading to the same result GWP3 as shown in Fig. 10.
Note that this would not be possible if one of the productions would delete something that is needed
for the applicability of the other production, e. g. if p1 would delete the transition invite or the place
w.

w :

wavelet

u : user

insert

...

remove

...

invite

...

user

user

user

user

user1 7 user2

user1 7 user2

n

o

o

n

o

n

GWP2

exclude

...

user1 7 user2

user1 7 user2

o

n

w :

waveletu : user

new

wavelet

...

insert

...

id : nat

remove

...

invite

...

user

user

user

user

user

user

user1 7 user2

user1 7 user2

n

n

o

o

n

o
n

free

next

GWP

w :

wavelet
u :

user

new

wavelet

...

id : nat

invite

...

user

user

user

user

user1 7 user2

user1 7 user2

n

n
o

o
n

free

next

GWP1

w :

wavelet

u :

user
invite

...

user

user

user1

7 user2

user1

7 user2

n

o

o
n

GWP3 replace

...

exclude

...

user1

7 user2

user1

7 user2

o

n

p1 p2

p1p2

replace

...

Figure 10: Compatible Platform Evolutions

In the following we show that direct transformations can be applied in any order (see Theorem 6.1),
provided that they are parallel independent in the following sense.

21

6 Compatibility of AHL-Net Transformations

Definition 6.1 (Parallel Independence of AHL-Net Transformations). Two direct transformations

of AHL-nets AN0
(p1,m1)
=⇒ AN1 and AN0

(p2,m2)
=⇒ AN2 are called parallel independent if there exist

morphisms i : L1 → C2 and j : L2 → C1 such that f2 ◦ j = m1 and f1 ◦ j = m2.

R1

n1

��

I1r1oo

k1

��

l1 // L1

m1

::::::

��::: i

%%

L2

m2
������

�����j

yy

I2l2oo

k2

��

r2 // R2

n2

��
AN1 C1g1oo f1

// AN0 C2f2
oo g2 // AN2

Remark 6.1. 1. (Characterization of Parallel Independence) Parallel independence is equiv-
alent to the fact that the matches only overlap in gluing points, i. e. m1(L1) ∩ m2(L2) ⊆
l1(m1(I1)) ∩ l2(m2(I2)).

2. (Sequential Independence) Analogously to the parallel independence of AHL-nets it is pos-
sible to define a sequential independence by defining that AN0

p1⇒ AN1
p2⇒ AN2 are sequentially

independent iff AN0
p−1

1⇐ AN1
p2⇒ AN2 are parallel independent.

Theorem 6.1 (Local Church-Rosser Theorem for AHL-Net Transformations). Given two parallel

independent direct transformations AN0
(p1,m1)
=⇒ AN1 and AN0

(p2,m2)
=⇒ AN2 then there is an AHL-

net AN3 together with direct transformations AN1
(p2,m′2)
=⇒ AN3 and AN2

(p1,m′1)
=⇒ AN3. Moreover, the

following transformation sequences are sequential independent, such that we can apply first production
p1 and then p2 and vice versa.

AN 0
(p2,m2)

 (IIIII
IIIII(p1,m1)

v~ uuuuu
uuuuu

AN 1

(p2,m′2) (
IIIII

IIIII
AN 2

(p1,m′1)v~ uuuuu
uuuuu

AN 3

Proof. The Local Church-Rosser Theorem has originally been shown for graph transformation sys-
tems in [ER76] and it is shown in [EEPT06] in the categorical framework of “high-level replacement
systems” based on weak adhesive HLR categories. The category (AHLNets,M) with classM of all
injective AHL-net morphisms is shown to be a weak adhesive HLR category in [EEPT06] Fact 4.25,
such that the Local Church-Rosser Theorem is also valid for AHL-net transformations.

Remark 6.2 (Weak Adhesive HLR-Category and Van Kampen-Property). Roughly spoken a weak
adhesive HLR-category (C,M) is a category C with suitable class M of monomorphisms, such that

1. C has pushouts and pullbacks along M-morphisms,

2. M is closed under pushouts and pullbacks, and

3. pushouts alongM are weak Van Kampen (VK) squares, i. e. they are compatible with pullbacks
along M and vice versa (see [EEPT06] for more details).

In our weak adhesive HLR-category (AHLNets,M) pushouts and pullbacks are defined in Defini-
tion 3.6 and Definition 4.3, where for simplicity inclusions are used instead of injective AHL-morphisms
m ∈M. The VK-property will be used in the proof of Theorem 7.1 (Amalgamation of Processes).

Note that Example 6.1 is an example for Theorem 6.1, where the AHL-nets model different Google
Wave platforms. A similar evolution result is also interesting in the cases of waves, but this case is
technically more difficult. As pointed out in Fact 5.2 we need additional conditions for the construction
of pushouts of AHL-processes. This implies that the category Proc(AN) of AHL-processes over AN
does not define a suitable weak adhesive HLR category, such that the general Local Church-Rosser
Theorem cannot be applied in the case of processes.

22

7 Amalgamation of AHL-Processes and Compositional Process Se-
mantics

Google Wave is open source and thus there is not only one possible Wave platform but many dif-
ferent ones. Due to the Wave federation protocol it is possible that users on different servers can
communicate within one wave. For the history of a wave this means that different parts of the history
correspond to different platforms. Considering the process model of a wave this means that in this
case the process is composed of different processes with respect to different AHL-nets, whereas the
complete wave model is a process with respect to the gluing of these AHL-nets.

Example 7.1 (Amalgamation of Waves). Consider the Google Wave platforms GWPB and GWPC

with waves WaveB and WaveC , respectively, in Fig. 11. The platform GWPA is a subnet of GWPB

and GWPC containing the features that these two platforms have in common. We can obtain a wave
WaveA of the platform GWPA by the restriction of WaveB via f1 as well as by restriction of WaveC

via f2. The wave consists of the activities that appear in both of the waves WaveB and WaveC .
By the gluing of the platforms GWPB and GWPC over GWPA we obtain a platform GWPD consisting
of the whole set of features from GWPB and GWPC . Due to the fact that the two waves WaveB

and WaveC are composable w.r.t. WaveA they can be glued together leading to WaveD , called
amalgamation of WaveB and WaveC along WaveA. WaveD is a wave of the platform GWPD capturing
all activities. Restricting the wave WaveD via the morphism g1 respectively g2 we obtain again the
wave WaveB respectively WaveC .
Note that this is only possible under certain condition, e. g. consider the case that the AHL-occurrence
net WaveC is modified to a net Wave ′C which contains no place u1. Then by the restriction of Wave ′C
via f2 we obtain a net Wave ′A containing no corresponding place u1 which means that Wave ′A is not
the restriction of WaveB via f1. Anyway, since Wave ′A is a subnet of WaveA there is also a morphism
φ′1 : Wave ′A →WaveB and WaveB , WaveC can be glued together over the alternative interface leading
again to the same AHL-occurrence net WaveD , but Wave ′C is not the restriction of WaveD via g2.
Moreover, there are also other cases where we do not even have a suitable interface for the gluing of
the AHL-occurrence nets WaveB and WaveC . In the following we discuss the general conditions for
an amalgamation of AHL-processes.

Based on the restriction of AHL-processes (see Fact 3.2) we can define a suitable condition under
which we can continue the composition of AHL-nets via a span of injective AHL-morphisms f1 :
AN0 → AN1 and f2 : AN0 → AN2 to a composition of their processes. Two processes mp1 and mp2

of AN1 and AN2, respectively, “agree” on the net AN0 if we can construct a common restriction of
the processes leading to a process mp0 of AN0 which can be used as a composition interface for mp1

and mp2.

Definition 7.1 (Agreement of AHL-Processes). Given two AHL-processes mp1 : K1 → AN1 and
mp2 : K2 → AN2 and two injective AHL-morphisms f1 : AN0 → AN1, f2 : AN0 → AN2. The
processes mp1 and mp2 agree on mp0 if there exist restrictions (mp0, φi) of mpi along fi for i ∈ {1, 2}
such that for mp0 : K0 → AN0 the AHL-occurrence nets K1 and K2 are composable via φ1, φ2, i. e.
the gluing of K1 and K2 along K0 exists and leads to an occurrence net K3.

(mp0, φ1) and (mp0, φ2) are called agreement restrictions for mp1 and mp2.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(PB) (PB)

K1 mp1

// AN1 AN2 K2mp2

oo

23

7 Amalgamation of AHL-Processes and Compositional Process Semantics

GWPA

w :

wavelet
u :

user

insert

...

remove

...

user

user

user

user

n
o

o

n

GWPC

w :

wavelet
u :

user

insert

...

user

user n

o

n

GWPB

w :

wavelet

u : user

insert

...

user

user

n

o

f1 f2

insert1

...

insert1

...

new

wavelet

...

id : nat

user

user

free

next

new

wavelet1

...

u2 :

user

w1 :

wavelet

nuser

u1 :

user

user

id1 : nat

free

id2 : nat

next

u1 :

user

u2 :

user

w1 :

wavelet

user
o

user o

u3 :

user

w2 :

wavelet

u3 :

user

w2 :

wavelet

user n

user n

remove1

...

user o

u4 :

user

w3 :

wavelet

user n

u4 :

user

w3 :

wavelet

insert2

...

insert2

...

user ouser o

u5 :

user

w4 :

wavelet
u5 :

user

w4 :

wavelet

user n nuser

insert1

...

u2 :

user

w1 :

wavelet

user
o

u3 :

user

w2 :

wavelet

user n

u4 :

user

w3 :

wavelet

insert2

...

user o

u5 :

user

w4 :

wavelet

user n

u1 :

user

f1 f2

mpB mpC

mpA

w :

wavelet
u :

user

insert

...

remove

...

user

user

user

user

n
o

o

n

GWPD

new

wavelet

...

id :

nat
free

nextuser
user

insert1

...

new

wavelet1

...

insert2

...

remove1

...

u2 :

user

u1 :

user

u3 :

user

u4 :

user

u5 :

user

w1 :

wavelet

w2 :

wavelet

w3 :

wavelet
w4 :

wavelet

user user
user user

user user user user

n n n
no o o

g1 g2

mpD

y1
y2

id1 : nat

free

id1:

nat

next

WaveB

WaveA

WaveC

WaveD

Figure 11: Amalgamation of Waves

If two processes mp1 : K1 → AN1 and mp2 : K2 → AN2 agree then they can be amalgamated.
This means that they are composed to a process mp3 : K3 → AN3 of AN3, which is the composition
of AN1 and AN2, such that mp1 and mp2 are restrictions of mp3.

24

Definition 7.2 (Amalgamation of AHL-Processes). Let AN3 be the gluing (pushout) of AHL- nets
AN1 and AN2 over injective morphisms f1 and f2 as shown in (PO) of Figure 12, and mpi : Ki → ANi

be AHL-processes for i ∈ {0, 1, 2, 3} s.t. mp1 and mp2 agree on mp0, i. e. (1) and (2) are pullbacks
s.t. K1 and K2 are composable via φ1, φ2. This means especially that the outer square in Fig. 12
is a pushout of AHL-nets. Then mp3 is called amalgamation of mp1 and mp2 along mp0, written
mp3 = mp1 +mp0 mp2, if there exist restrictions (mp1, ψ1) and (mp2, ψ2) of mp3 along g1 and g2 in
(3) and (4).

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

Figure 12: Amalgamation of AHL-Processes

The results of amalgamation composition and decomposition constructions are unique up to iso-
morphism. In order to capture the bijective correspondence of these constructions we define isomor-
phism classes of AHL-processes and spans of AHL-processes analogously to isomorphism classes of
open net processes and spans of these processes in [BCEH01].

An isomorphism between processes mp : K → AN and mp′ : K ′ → AN of an AHL-net AN is
an isomorphism iso : K → K ′ in the category AHLNets which is also a morphism in Proc(AN),
i. e. diagram (1) in Figure 13 commutes. We denote the isomorphism class of a process mp as the set
[mp] = {mp′ | mp′ ∼= mp} of all processes which are isomorphic to mp.

K
iso //

mp
!!DDDDDDDD K ′

mp′||zzzzzzzz

AN

(1)

Figure 13: Isomorphism of Processes

An isomorphism of spans of processes (mp1
φ1← mp0

φ2→ mp2) ∼= (mp′1
φ′1← mp′0

φ′2→ mp′2) means that
there are process isomorphisms isoi : mpi → mp′i such that the diagram in Figure 14 commutes.

K1
iso1

uulllllllllllll

mp1

�������������
K0

iso0

uulllllllllllll

mp0

�������������φ1

oo
φ2

// K2
iso2

uulllllllllllll

mp2

�������������

K ′1

mp′1 ""EEEEE
K ′0

mp′0 ""EEEEEφ′1

oo
φ′2

// K ′2

mp′2 ""EEEEE

AN1 AN0f1

oo
f2

// AN2

Figure 14: Isomorphism of spans of processes

25

7 Amalgamation of AHL-Processes and Compositional Process Semantics

Definition 7.3 (Sets of Isomorphism Classes). The set of all isomorphism classes of processes of a
given AHL-net AN is defined as

Proc(AN) = {[mp] | mp : K → AN is a process }

The set of all isomorphism classes of spans of agreeing AHL-processes with respect to a given span
of AHL-morphisms is defined as

Proc(AN1
f1← AN0

f2→ AN2) =

{
[
mp1

φ1← mp0
φ2→ mp2

]
| φ1, φ2 are agreement projections of mp1,mp2 along f1, f2}

Theorem 7.1 (Amalgamation Theorem for AHL-Processes). Given the gluing (pushout) AN3 =
AN1 +AN0 AN2 of AHL-nets in (PO) of Fig. 12 with injective f1, f2 then we have:

1. Composition Construction. Let mpi : Ki → ANi be AHL-processes for i ∈ {0, 1, 2} such
that mp1 and mp2 agree on mp0, then the amalgamation mp3 = mp1 +mp0 mp2 exists and is an
AHL-process mp3 : K3 → AN3.

2. Decomposition Construction. Let mp3 : K3 → AN3 be an AHL-process and let mp1, mp2

be restrictions of mp3 along g1 resp. g2, and mp0 restriction of mp1 along f1. Then mp3 can
be represented as amalgamation mp3 = mp1 +mp0 mp2.

3. Bijective Correspondence. There are composition and decomposition functions

Comp : Proc(AN1
f1← AN0

f2→ AN2)→ Proc(AN)

and

Decomp : Proc(AN)→ Proc(AN1
f1← AN0

f2→ AN2)

establishing a bijective correspondence between Proc(AN) and Proc(AN1
f1← AN0

f2→ AN2).

Proof Idea. 1. Agreement of mp1 and mp2 on mp0 impies that mp0 exists in Fig. 12 s.t. (1) and
(2) are pullbacks and the outer diagram can be constructed as pushout of AHL-nets leading
to an occurrence net K3. The universal pushout property implies a unique mp3 : K3 → AN3

s.t. (3) and (4) commute. Finally, the VK-property for the weak adhesive HLR category
(AHLNets,M) implies that (3) and (4) are pullbacks s.t. mp1 and mp2 become restrictions
of mp3 along g1 resp. g2 leading to the amalgamation mp3 = mp1 +mp0 mp2.

2. In this case we have given in Fig. 12 the inner pushout (PO) and mp3 : K3 → AN3. Now mp1,
mp2, mp0 are constructed as pullbacks in (3), (4) resp. (1), and (2) can be shown to become
pullback s.t. K1 and K2 are composable via φ1, φ2. Finally, the VK-property in Fig. 12 implies
that the outer diagram is pushout, s.t. mp3 = mp1 +mp0 mp2 becomes the amalgamation of
mp1 and mp2 along mp0.

3. Follows from uniqueness (up to isomorphism) of pushout and pullback constructions.
For a detailed proof see Appendix A.8.

Theorem 7.1 implies that we have a compositional process semantics of AHL-nets in the following
sense.

Corollary 7.2 (Compositional Process Semantics of AHL-Nets). Given AHL-nets ANi (i = 0, 1, 2, 3)
with AN3 = AN1+AN0AN2 gluing (pushout) object in (PO) of Fig. 12. Then each process mp3 : K3 →
AN3 of AN3 is uniquely (up to isomorphism) represented by a pair of processes (mp1 : K1 → AN1,
mp2 : K2 → AN2) of AN1 resp. AN2, which agree on mp0 obtained as common restriction of mp1

and mp2. This means that the process semantics of AN3, defined by all processes mp3 : K3 → AN3

over AN3, is completely determined by the process semantics of the components AN1 and AN2 with
shared AN0.

26

8 Conclusion

In this paper we have presented a comprehensive introduction to algebraic high-level (AHL) nets,
AHL-processes and rule-based transformations of AHL-nets and their processes as integrated frame-
work for modeling communication based systems and communication platforms. In this paper we
have chosen as case study and running example Google Wave, while high-level net transformations
have been applied already successfully to Skype [MEE+10]. A process algebraic modeling of the main
communication algorithm from a technical point of view is presented in [Yon10]. In future work we will
study how to combine these different views and to model other important features of communication
platforms like Google Wave. This includes also an extension of the modeling framework to the gluing
and transformation of AHL-processes with instantiations. Moreover we want to consider interesting
consistency and security requirements and study how they can be satisfied in our model based on the
current integrated framework, or how to extend the model and/or the framework respectively.

A Detailed Proofs

A.1 Proof of Lemma 3.1 (AHL-Morphisms Reflect AHL-Occurrence Nets)

Given an AHL-morphism f : K1 → K2. If K2 is an AHL-occurrence net then also K1.

Proof. Given AHL-morphism f : K1 → K2 with AHL-occurrence net K2. In order to show that K1 is
an AHL-occurrence net we have to show that it is unary, there are no forward or backward conflicts
and the causal relation <K1 is a finitary strict partial order.

Unarity. Let us assume that K1 is not unary, i. e. there are p ∈ PK1 , t ∈ TK1 with

(term1, p)⊕ (term2, p) ≤ preK1(t) or (term1, p)⊕ (term2, p) ≤ postK1(t)

Let (term1, p)⊕ (term2, p) ≤ preK1(t).
Since AHL-morphisms preserve pre conditions there is

(idTOP (X) ⊗ fP)⊕ ◦ preK1(t) = preK2(fT (t))

and hence

(term1, fP (p))⊕ (term2, fP (p)) = (idTOP (X) ⊗ fP)⊕((term1, p)⊕ (term2, p))
≤ preK2(fT (t))

This implies that K2 is not unary, contradicting the fact that K2 is an AHL-occurrence net.
The case that (term1, p)⊕ (term2, p) ≤ postK1(t) works analogously. Hence K1 is unary.

No forward conflict. Let us assume that K1 has a forward conflict, i. e. there is p ∈ PK1 ,
t1 6= t2 ∈ TK1 with p ∈ •t1 ∩ •t2. This means that there are term1, term2 ∈ TOP (X)type(p) such
that

(term1, p) ≤ preK1(t1) and (term2, p) ≤ preK1(t2)

and since AHL-morphisms preserve pre and post conditions we obtain

(term1, fP (p)) = (idTOP (X) ⊗ fP)⊕(term1, p)
≤ preK2(fT (t1))

and

(term2, fP (p)) = (idTOP (X) ⊗ fP)⊕(term2, p)
≤ preK2(fT (t2))

27

A Detailed Proofs

In the case that fT (t1) 6= fT (t2) the fact that fP (p) ∈ •fT (t1) ∩ •fT (t2) means that K2 has a
forward conflict, contradicting the fact that K2 is an AHL-occurrence net. So let us consider
the fact that fT (t1) = t = fT (t2). Then we have

(term1, fP (p))⊕ (term2, fP (p)) ≤ t

which contradicts the fact that K2 is unary. Hence K1 has no forward conflict.

No backward conflict. The proof for this case works analogously to the one for forward con-
flicts because AHL-morphisms preserve post as well as pre conditions and K2 has no backward
conflicts.

Finitary strict partial order. We have to show that <K1 is finitary and irreflexive.

Finitariness. Let us assume that <K1 is not finitary. Then there is an element x ∈ PK1]TK1 with
an infinite number of predecessors. Let

S = {y ∈ PK1] TK1 | y <K1 x}

be the infinite set of predecessors of x. Since AHL-morphisms preserve pre and post conditions,
a <K1 b implies f(a) <K2 f(b). This means that there is an infinite set

S′ = {f(y) | y ∈ S}

where for every f(y) ∈ S′ there is

f(y) <K2 f(x)

This means that f(x) has an infinite number of predecessors implying that <K2 is not finitary.
This contradicts the fact that K2 is an AHL-occurrence net and hence <K1 is finitary.

Irreflexivity. Let us assume that <K1 is not irreflexive, i. e. there exists a cycle x <K1 x. This
implies f(x) <K2 f(x) contradicting the fact that <K2 is irreflexive and hence <K1 is irreflexive.

A.2 Well-definedness of Definition 4.3 (Gluing of AHL-Nets)

Given two AHL-net morphisms f1 : AN0 → AN1 and f2 : AN0 → AN2 the gluing AN3 of AN1 and
AN2 along f1 and f2, written AN3 = AN1 +(AN0,f1,f2) AN2, with

ANx = (Σ, Px, Tx, prex, postx, condx, typex, A)

for x = 0, 1, 2, 3 is constructed as follows:

• T3 = T1 +T0 T2 with f ′1,T and f ′2,T as pushout (2) of f1,T and f2,T in Sets.

• P3 = P1 +P0 P2 with f ′1,P and f ′2,P as pushout (3) of f1,P and f2,P in Sets

• pre3(t) =

{
f ′⊕1,P ◦ pre1(t1) , if f ′1,T (t1) = t;
f ′⊕2,P ◦ pre2(t2) , if f ′2,T (t2) = t.

• post3(t) =

{
f ′⊕1,P ◦ post1(t1) , if f ′1,T (t1) = t;
f ′⊕2,P ◦ post2(t2) , if f ′2,T (t2) = t.

28

A.2 Well-definedness of Definition 4.3 (Gluing of AHL-Nets)

• cond3(t) =

{
cond1(t1) , if f ′1,T (t1) = t;
cond2(t2) , if f ′2,T (t2) = t.

• type3(p) =

{
type1(p1) , if f ′1,P (p1) = p;
type2(p2) , if f ′2,P (p2) = p.

• f ′1 = (f ′1,P , f
′
1,T) and f ′2 = (f ′2,P , f

′
2,T).

AN0

f2

��

f1 //

(1)

AN1

f ′1
��

T0

f2,T

��

f1,T //

(2)

T1

f ′1,T

��

P0

f2,P

��

f1,P //

(3)

P1

f ′1,P

��
AN2

f ′2

// AN3 T2
f ′2,T

// T3 P2
f ′2,P

// P3

Well-definedness.

Well-definedness of AHL-net AN 3. We have to show that the definition of the pre, post and
firing conditions together with the type function form an AHL-net. In the definition of each of
the functions for every t ∈ T3 or p ∈ P3, respectively, at least one of the cases occur due to the
definition of the gluing T3.
Let us consider a transition t ∈ T3 such that there are t1 ∈ T1, t2 ∈ T2 such that f ′1,T (t1) = t and
f ′2,T (t2) = t. Then by the transitive closure of ≡ (see Definition 4.2) there exist a0, . . . , an ∈ T0

with f1,T (a0) = t1, f2,T (a0) = f2,T (a1), f1,T (a1) = f1,T (a2),. . . , f2,T (an−1) = f2,T (an) = t2.
By the fact that f1 and f2 are AHL-morphisms which preserve pre conditions we have

f⊕1,P (pre0(a0)) = pre1(t1),

f⊕2,P (pre0(a0)) = pre2(f2,T (a0)) = pre2(f2,T (a1)) = f⊕2,P (pre0(a1)), . . . ,

f⊕2,P (pre0(an−1)) = pre2(f2,T (an−1)) = pre2(f2,T (an)) = pre2(t2).

Thus, using commutativity of (2) and the fact that ⊕ is a functor we obtain

f ′⊕1,P (pre1(t1)) = f ′⊕1,P (f⊕1,P (pre0(a0)))
= (f ′1,P ◦ f1,P)⊕(pre0(a0))
= (f ′2,P ◦ f2,P)⊕(pre0(a0))
= f ′⊕2,P (f⊕2,P (pre0(a0))
= . . .
= f ′⊕2,P (f⊕2,P (pre0(an))
= f ′⊕2,P (pre2(t2))

which means that the two cases lead to the same result. Hence, the definition over functions
f ′⊕1,P ◦ pre1 : T1 → P⊕3 and f ′⊕2,P ◦ pre2 : T2 → P⊕3 lead to a well-defined function pre3 : T3 → P⊕3 .
The argumentation for the functions post3, cond3 and type3 works analogously.

Well-definedness of AHL-morphisms f ′1 and f ′2. The required compatibilities of the morphisms
with the pre, post and firing conditions and type functions of the AHL-nets follow directly from
the definition of the respective functions in the AHL-net AN 3, e. g. given t ∈ T1 we have

pre3(f ′1,T (t)) = f ′⊕1,T (pre1(t))

by the definition of pre3.

29

A Detailed Proofs

A.3 Proof of Fact 4.2 (Pushout of AHL-Nets)

The diagram (1) in Def. 4.3 is a pushout diagram in the category AHLNets, i. e. (1) commutes and it
has the following universal property: For all AHL-nets AN ′3 and AHL-morphisms h1 : AN 1 → AN ′3,
h2 : AN 2 → AN ′3 with h1 ◦ f1 = h2 ◦ f2 there exists a unique AHL-morphism h : AN 3 → AN ′3 such
that h ◦ f ′1 = h1 and h ◦ f ′2 = h2.

Proof. Given an AHL-net AN ′3 = (Σ, P ′3, T
′
3, pre

′
3, post

′
3, cond

′
3, type

′
3, A) together with morphisms

h1 : AN 1 → AN ′3, h2 : AN 2 → AN ′3 with h1 ◦ f1 = h2 ◦ f2. By Def. 4.3 the diagrams (2) and
(3) are pushouts in Sets leading to a unique morphism hP : P3 → P ′3 with hP ◦ f ′1,P = h1,P and
hP ◦ f ′2,P = h2,P , and a unique morphism hT : T3 → T ′3 with hT ◦ f ′1,T = h1,T and hT ◦ f ′2,T = h2,T .

AN 1

f ′1

HHH

##HHH

AN 0

f1
;;wwwwwww

f2 ##HHHHHHH (1) AN 3

AN 2

f ′2www

;;www

T1

f ′1,T

AA

 AA

h1,T

##
T0

f1,T
>>}}}}}}}

f2,T AAAAAAA (2) T3 hT
// T ′3

T2

f ′2,T}}

>>}}

h2,T

;;

P1

f ′1,P

BB

 BB

h1,P

##
P0

f1,P
>>||||||

f2,P BBBBBB (3) P3 hP
// P ′3

P2

f ′2,P||

>>||

h2,P

;;

We define h := (hP , hT).

Well-definedness of h. Let t ∈ T3. We distinguish the following two cases:

• Case 1. There is t1 ∈ T1 with f ′1,T (t1) = t.

h⊕P ◦ pre3(t) = h⊕P ◦ f
′⊕
1,P ◦ pre1(t1)

= (hP ◦ f ′1,P)⊕ ◦ pre1(t1)
= h⊕1,P ◦ pre1(t1)
= pre′3 ◦ h1,T (t1)
= pre′3 ◦ hT ◦ f ′1,T (t1)
= pre′3 ◦ hT (t)

h⊕P ◦ post3(t) = h⊕P ◦ f
′⊕
1,P ◦ post1(t1)

= (hP ◦ f ′1,P)⊕ ◦ post1(t1)
= h⊕1,P ◦ post1(t1)
= post′3 ◦ h1,T (t1)
= post′3 ◦ hT ◦ f ′1,T (t1)
= post′3 ◦ hT (t)

cond′3 ◦ hT (t) = cond′3 ◦ hT ◦ f ′1,T (t)
= cond′3 ◦ h1,T (t1)
= cond1(t1)
= cond3(t)

• Case 2. There is t2 ∈ T2 with f ′2,T (t2) = t.
This case works analogously to Case 1.

Now, let p ∈ P3. Again there are two similar cases and we consider w. l. o. g. the case that there
is p1 ∈ P1 with f ′1,P (p1) = p. Then we have

type′3 ◦ hP (p) = type′3 ◦ hP ◦ f ′1,P (p1)
= type′3 ◦ h1,P (p1)
= type1(p1)
= type3(p)

30

A.4 Proof of Fact 4.3 (Transformation of AHL-Nets)

Hence, h : AN 3 → AN ′3 is a well-defined AHL-morphism and it satisfies h ◦ f ′1 = h1 and
h ◦ f ′2 = h2.

Uniqueness of h. Let h′ = (h′P , h
′
T) : AN 3 → AN ′3 be an AHL-morphism with h′ ◦ f ′1 = h1 and

h′ ◦f ′2 = h2. Then we have also h′T ◦f ′1,T = h1,T and h′T ◦f ′2,T = h2,T which by the uniqueness of
hT w.r.t. pushout (2) implies that h′T = hT . Analogously the uniqueness of hP w.r.t. pushout
(3) implies that h′P = hP and hence h′ = h.

A.4 Proof of Fact 4.3 (Transformation of AHL-Nets)

Given a production for AHL-nets p = (L l← I
r→ R) and a match m : L → AN . The production p

is applicable on match m, i. e. there exists a context AHL-net AN 0 in the diagram below, such that
(1) is pushout, iff p and m satisfy the gluing condition in AHLNets. Then AN 0 is called pushout
complement of l and m. Moreover, we obtain a unique AN ′ as pushout object of the pushout (2) in
AHLNets.

L
m
��

(1)

I
loo

c���
�

r // R
n
���
�

AN AN 0d
oo_ _ _ _ //____ AN ′

If the AHL-net AN 0 exists it is unique up to isomorphism and can be constructed as follows:

• PAN 0 = (PAN \mP (PL)) ∪mP (lP (PI)),

• TAN 0 = (TAN \mT (TL)) ∪mT (lT (TI)),

• preAN 0 = preAN |TAN0
, postAN 0 = postAN |TAN0

, condAN 0 = condAN |TAN0

and typeAN 0 = typeAN |PAN0
,

• AN 0 has the same data part (Σ, A) as AN ;

• cP (p) = mP (lP (p)) for p ∈ PI and cT (t) = mT (lT (t)) for t ∈ TI , and

• d is an inclusion.

Proof. We show the two directions of the proof seperately.

If. Given the production p and match m such that the gluing condition is satisfied we construct the
net AN 0 as described in Fact 4.3.

Well-definedness of AHL-net AN 0. For the well-definedness of AN 0 we have to show that the
functions preAN 0 , postAN 0 , condAN 0 and typeAN 0 are well-defined.

Well-definedness of typeAN 0. Given Σ = (S,OP ;X) for every p ∈ PAN 0 we have to show that
typeAN 0(p) ∈ S which holds because for all p ∈ PAN 0 there is

typeAN 0(p) = typeAN |PAN0
(p) = typeAN (p) ∈ S.

Well-definedness of preAN 0. For every t ∈ TAN 0 and (term, p) ≤ preAN 0(t) we have to show that
p ∈ PAN 0 and term ∈ TOP (X)typeAN0

(p).
So let (term, p) ≤ preAN 0(t). The case that p /∈ mP (PL) directly implies that p ∈ PAN 0 . So let
us consider the case that there is a place p′ ∈ PL with mP (p′) = p. Then we have

(term, p) ≤ preAN 0(t) ⇔ (term, p) ≤ preAN |TAN0
(t)

⇒ (term, p) ≤ preAN (t)

Now for t ∈ TAN 0 there are two possible cases:

31

A Detailed Proofs

• Case 1. There is t ∈ TAN \mT (TL).
Then p′ is a dangling point. By satisfaction of the gluing condition p′ is also a gluing point,
i. e. p′ ∈ lP (PI) and therefore p ∈ PAN 0 .

• Case 2. There is t ∈ mT (lT (TI)).
This means that there is t0 ∈ TI with (m ◦ l)T (t0) = mT (lT (t0)) = t. Since (m ◦ l) is
an AHL-morphism which preserves pre conditions there is p0 ∈ PI with p0 ∈ •t0 and
mP (lP (p0)) = (m ◦ l)P (p0) = p. Thus, there is p ∈ PAN 0 .

The fact that term ∈ TOP (X)typeAN0
(p) follows from the fact that (term, p) ≤ preAN (t) and

TOP (X)typeAN0
(p) = TOP (X)typeAN (p) for p ∈ PAN 0 .

Well-definedness of postAN 0. The proof for postAN 0 works analogously to the one for preAN 0 .

Well-definedness of condAN 0. The well-definedness of condAN 0 follows from the fact that AN 0

has the same signature part Σ as the AHL-net AN and condAN is well-defined.

Well-definedness of morphism c : I → AN 0. The well-definedness of the function cP follows
from the fact that cP (PI) = mP (lP (PI)) ⊆ PAN 0 and analogously the well-definedness of the
function cT follows from mT (lT (TI)) ⊆ TAN 0 . The fact that c = (cP , cT) is an AHL-morphism
can be concluded from the fact that l and m are AHL-morphisms.

Well-definedness of morphism d : AN 0 → AN . The inclusions dP and dT are well-defined
functions because PAN 0 ⊆ PAN and TAN 0 ⊆ TAN .
It remains to show that d is an AHL-morphism which holds because the pre, post, cond and
type functions are restrictions of the corresponding functions in AN to the set of transitions
respectively places in AN 0.

Diagram (1) is pushout in the category AHLNets.

I
l //

c
��

(1)

L

m

��
AN 0 d

// AN

Diagram (1) commutes. For all p ∈ PI we have

mP ◦ lP (p) = cP (p) = dP ◦ cP (p)

and for all t ∈ TI we have

mT ◦ lT (t) = cT (t) = dT ◦ cT (t)

Definition of universal morphism x : AN → X. Let X be an AHL-net and x1 : L → X,
x2 : AN 0 → X two AHL-morphisms with x1 ◦ l = x2 ◦ c.
We define a morphism x = (xP , xT) : AN → X in the following way:

xP (p) =

{
x1,P (p′) , if there exists p′ ∈ PL : mP (p′) = p;
x2,P (p′) , if there exists p′ ∈ PAN 0 : dP (p′) = p.

xT (t) =

{
x1,T (t′) , if there exists t′ ∈ TL : mT (t′) = t;
x2,T (t′) , if there exists t′ ∈ TAN 0 : dT (t′) = t.

32

A.4 Proof of Fact 4.3 (Transformation of AHL-Nets)

Well-definedness of functions xP and xT . First, we show that each of the cases in the
above definition lead to a unique result. The cases defined via dP or dT obviously have a
unique result because d is an inclusion. Let us consider the case that for p ∈ PAN there
exist p1 6= p2 ∈ PL with mP (p1) = p = mP (p2).
Then p1 and p2 are identification points which by the satifaction of the gluing condition
implies that there exist p′1, p

′
2 ∈ PI such that lP (p′1) = p1 and lP (p′2) = p2. By definition

of morphism c we obtain

cP (p′1) = mP (lP (p′1)) = p = mP (lP (p′2)) = cP (p′2)

and thus by commutativity x1 ◦ l = x2 ◦ c we have

x1,P (p1) = x1,P (lP (p′1)) = x2,P (cP (p′1)) = x2,P (cP (p′2)) = x1,P (lP (p′2)) = x1,P (p2)

which means that xP (p) is uniquely defined.
The case that there exist t1 6= t2 ∈ TL with mT (t1) = t = mT (t2) works analogously.
It remains to show that for every p ∈ PAN , and every t ∈ TAN respectively, there is one of
the cases true.
Let p ∈ PAN and let us assume that none of the cases is true, i. e. there is no p1 ∈ PL with
mP (p1) = p and there is no p2 ∈ PAN 0 with dP (p2) = p.
Then there is p ∈ PAN \ mP (PL) implying that p ∈ PAN 0 with dP (p) = p. This is a
contradiction to the assumption that none of the cases is true.
Let p ∈ PAN and let us assume that both of the cases are true, i. e. there is p1 ∈ PL with
mP (p1) = p and there is p2 ∈ PAN 0 with dP (p2) = p. Since d is an inclusion we have
p2 = p.
So the fact that p ∈ PAN 0 by the definition of PAN 0 implies that there is p0 ∈ PI with
lP (p0) = p1. Furthermore there is cP (p0) = p2 because (1) commutes. Then from the
commutativity x1 ◦ l = x2 ◦ c we obtain

x1,P (p1) = x1,P (lP (p0))
= x2,P (cP (p0))
= x2,P (p2)

which means that both cases lead to the same result and hence xP is a well-defined func-
tion.
For t ∈ TAN we obtain analogously that t /∈ mT (TL) implies that t ∈ dT (TAN 0) which
means that at least one of the cases is true. Analogously to above also the both cases of
xT lead to the same result and hence also xT is a well-defined function.

Well-definedness of morphism x. We have to show that x is an AHL-morphism.
Let t ∈ TAN .
• Case 1. There exists t′ ∈ TL with mT (t′) = t.

From the fact that m is an AHL-morphism which preserves pre conditions we obtain

preAN (t) = preAN (mT (t))
= (idTOP (X) ⊗mP)⊕(preL(t′))

which means that for all places p in the pre domain of t there is p′ ∈ PL with
mP (p′) = p. Therefore we have

(idTOP (X) ⊗ xP)⊕ ◦ preAN (t) = (idTOP (X) ⊗ xP)⊕ ◦ preAN ◦mT (t′)
= (idTOP (X) ⊗ xP)⊕ ◦ (idTOP (X) ⊗mP)⊕ ◦ preL(t′)
= (idTOP (X) ⊗ (xP ◦mP))⊕ ◦ preL(t′)
= (idTOP (X) ⊗ x1,P)⊕ ◦ preL(t′)
= preX(x1,T (t′))
= preX(xT (t′))

33

A Detailed Proofs

The proof for the post conditions works analogously.
For the firing conditions we obtain

condX ◦ xT (t) = condX ◦ x1,T (t′)
= condL(t′)
= condAN ◦mT (t′)
= condAN (t)

• Case 2. There exists t′ ∈ TAN 0 with dT (t′) = t.
This case is completely analogous to case 1 due to the symmetric definition of x and
the fact that x2 and d are AHL-morphisms as well as x1 and m.

Let p ∈ PAN and let p′ ∈ PL with p = mP (p′). Then we have

typeX ◦ xP (p) = typeX ◦ x1,P (p′)
= typeL(p′)
= typeAN ◦mP (p′)
= typeAN (p)

The case that there is p′ ∈ PAN 0 with p = dP (p′) works analogously.
Hence x is a well-defined AHL-morphism.

Universal property. We have to show the commutativity of (2) and (3) which follows directly
from the definition of x.

L
m

##GGGGGGGGG x1

''(2)

I

l

==zzzzzzzzz

c !!CCCCCCCC (1) AN
x // X

AN 0

d

;;wwwwwwww x2

77
(3)

Uniqueness of x. Let x′ : AN → X be an AHL-morphism with x′ ◦m = x1 and x′ ◦ d = x2.
As mentioned above in the proof of the well-definedness of xP and xT for every element in
AN there is a preimage in L or AN 0.
Let p ∈ PAN .

• Case 1. There is p′ in PL with p = mP (p′).

x′P (p) = x′(mP (p′)) = x1,P (p′) = xP (mP (p′)) = xP (p)

• Case 2. There is p′ in PAN 0 with p = dP (p′).

x′P (p) = x′(dP (p′)) = x2,P (p′) = xP (dP (p′)) = xP (p)

So we have that x′P = xP . The proof for x′T = xT works completely analogously due to
the similar definition of xT .

Uniqueness of AN 0. The fact that the pushout complement AN 0 is unique up to isomorphism
follows from the uniqueness of pushout complements in M-adhesive categories and the fact
that (AHLNets,M) with the classM of all injective AHL-morphisms is anM-adhesive cate-
gory (see Fact 4.25 and Theorem 4.26(4) in [EEPT06] where the category AHLNets is called
AHLNets(SP,A) and M-adhesive categories are called weak adhesive HLR categories).

Only If. Given pushout (1) in AHLNets let us assume that the gluing condition is not satisfied.

34

A.5 Proof of Lemma 5.1 (Pushout of AHL-Occurrence Nets)

• Case 1. There is a dangling point which is no gluing point.
Then there is a transition t ∈ TAN \mT (TL) and a place p ∈ PL \ lP (PI) together with a term
term ∈ TOP (X)type(p) such that

(term,mP (p)) ≤ preAN (t)⊕ postAN (t).

Due to the uniqueness of pushout complements we can w. l. o. g. assume that AN 0 is constructed
as described in Fact 4.3. So the fact that t /∈ mT (TL) implies t ∈ TAN 0 . Moreover the fact that
p /∈ lP (PI) implies that mP (p) /∈ mP (lP (PI)) and thus mP (p) /∈ PAN 0 by construction of AN 0.
So we have

(term,mP (p)) ≤ preAN (t)⊕ postAN (t)
⇒ (term,mP (p)) ≤ preAN |TAN0

(t)⊕ postAN |TAN0
(t)

⇔ (term,mP (p)) ≤ preAN 0(t)⊕ postAN 0(t)

which means that AN 0 has a “dangling arc” because mP (p) /∈ PAN 0 and hence AN 0 is not a
well-defined AHL-net.

• Case 2. There is an identification point which is no gluing point.
We consider the case that there is p 6= p′ ∈ PL with p /∈ lP (PI) and mP (p) = mP (p′). Due to the
uniqueness of pushouts by Fact 4.2 we can w. l. o. g. assume that the pushout (1) is constructed
as defined in Def. 4.3 implying pushouts (2) and (3) in Sets.

PI
lP //

cP
��

(2)

PL

mP

��
PAN 0 dP

// PAN

TI
lT //

cT
��

(3)

TL

mT

��
TAN 0 dT

// TAN

The place p violates the gluing condition for lP and mP in Sets (see Def. A.4 in [MGE+10])
which by Fact A.7 in [MGE+10] means that also the categorical gluing condition for lP and mP

is not satisfied. Finally, by Theorem 6.4 in [EEPT06] this contradicts the fact that PAN0 is a
pushout complement in (2).
The proof works analogously for the case that there is t 6= t′ ∈ TL with t /∈ lT (TI) and
mT (t) = mT (t′) due to pushout (3) in Sets.

A.5 Proof of Lemma 5.1 (Pushout of AHL-Occurrence Nets)

Given AHL-occurrence nets I, K1 and K2 and two AHL-net morphisms f : I → K1 and g : I → K2.
If (1) is a pushout in AHLONets then (1) is also pushout in AHLNets.

K1

f ′
AA

 AAA

I

f
??�������

g ��??????? (1) K

K2

g′}}

>>}}}

Proof. Since the category AHLNets has pushouts we obtain pushout (2) in AHLNets. Then by
the fact that AHLONets is a subcategory of AHLNets by the commutativity of (1) we obtain a
unique morphism k : K ′ → K with k ◦ f ′′ = f ′ and k ◦ g′′ = g′.

35

A Detailed Proofs

K1

f ′′
BB

!!BB

f ′

##
I

f
??�������

g ��??????? (2) K ′ k // K

K2

g′′||

==||

g′

;;

K1

f ′
AA

 AAA

f ′′

##
I

f
??�������

g ��??????? (1) K k′ // K ′

K2

g′}}

>>}}}

g′′

;;

By Lemma 3.1 we have that K ′ is an AHL-occurrence net and by the fact that AHLONets is
full subcategory of AHLNets the morphisms f ′′ and g′′ become AHLONets-morphisms. So the
commutativity of (2) by the universal property of pushout (1) in AHLONets implies a unique
morphism k′ : K → K ′ with k′ ◦ f ′ = f ′′ and k′ ◦ g′ = g′′. Now we have

k ◦ k′ ◦ f ′ = k ◦ f ′′ = f ′ and k ◦ k′ ◦ g′ = k ◦ g′′ = g′

which by the universal property of pushout (1) implies that k ◦ k′ = idK . Analogously we obtain
by the universal property of pushout (2) that k′ ◦ k = idK′ and, thus, k and k′ become inverse
isomorphisms. Hence, by the uniqueness of pushouts up to isomorphism it follows that (1) is also
pushout in AHLNets.

A.6 Proof of Fact 5.2 (Gluing of AHL-Processes)

Given AHL-occurrence nets I, K1, K2 and two injective AHL-net morphisms i1 : I → K1 and
i2 : I → K2. Then there exists a pushout (PO) in the category AHLONets (see Def. 3.3) iff
(K1,K2) are composable w.r.t. (I, i1, i2). The AHL-occurrence net K is then called gluing of K1 and
K2 along i1 and i2, written K = K1 +(I,i1,i2) K2.

In order to extend this gluing construction for AHL-processes in the category Proc(AN) (see
Def. 3.5) one additionally requires AHL-morphisms mp1 : K1 → AN and mp2 : K2 → AN with mp1 ◦
i1 = mp2 ◦ i2. The pushout (PO) in AHLONets then provides a unique morphism
mp : K → AN such that (PO) is also a pushout in Proc(AN).

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDDD

AN

Proof. We show the two directions of the proof seperately.

If. Given the AHL-occurrence nets K1,K2 and I and morphisms i1, i2 as above we construct the
pushout (PO) in the category AHLNets.

K1

i′1

EEE

""EEE

I

i1
==zzzzzzz

i2 !!DDDDDDD (PO) K

K2

i′2yyy

<<yyy

In order to show that (PO) is also a pushout in the full subcategory AHLONets it suffices to
show that the AHL-net K is an AHL-occurrence net, i. e. K is unary, it has no forward or backward
conflicts, and the causal relation <K is a finitary strict partial order.

36

A.6 Proof of Fact 5.2 (Gluing of AHL-Processes)

Unarity. Let us assume that K is not unary, i. e. there are p ∈ PK , t ∈ TK with

(term1, p)⊕ (term2, p) ≤ preK(t) or (term1, p)⊕ (term2, p) ≤ postK(t)

Let us consider the case that (term1, p)⊕ (term2, p) ≤ preK(t). Due to the universal property
of pushout (PO) there is a ∈ {1, 2} and t′ ∈ TKa with i′a,T (t′) = t and since AHL-morphisms
preserve pre and post conditions there is

preK(t) = (idTOP (X) ⊗ i′a,P)⊕ ◦ preKa(t′).

So the fact that (term1, p)⊕ (term2, p) ≤ preK(t) implies

(term1, p1)⊕ (term2, p2) ≤ preKa(t′)

with i′1(p1) = p = i′2(p2). Since i1 and i2 are injective also i′1 and i′2 are injective, because (PO)
is pushout and thus p1 = p2 which means that Ka is not unary. This is a contradiction to the
assumption that Ka is an AHL-occurrence net.
The case (term1, p)⊕ (term2, p) ≤ postK(t) works analogously. Hence K is unary.

No forward conflicts. Let us assume that K has a forward conflict, i. e. there are

p ∈ PK , t1 6= t2 ∈ TK with p ∈ •t1 ∩ •t2.

• Case 1: There is a ∈ {1, 2} such that t1, t2 ∈ ia,T (TKa).
Then we have t′1, t

′
2 ∈ TKa with

i′a,T (t′1) = t1 and i′a,T (t′2) = t2

and there is p′ ∈ PKa with

i′a,P (p′) = p and p′ ∈ •t′1 ∩ •t′2

because AHL-morphisms preserve pre conditions. This means that Ka has a forward
conflict which contradicts the fact that Ka is assumed to be an AHL-occurrence net.

• Case 2: There is t1 ∈ i1,T (TK1) and t2 ∈ i2,T (TK2).
Then we have t′1 ∈ TK1 , t

′
2 ∈ TK2 with

i′1,T (t′1) = t1 and i′2,T (t′2) = t2

and since AHL-morphisms preserve pre conditions there are p1 ∈ PK1 , p2 ∈ PK2 with

i′1,P (p1) = p, p1 ∈ •t′1 and i′2,P (p2) = p, p2 ∈ •t′2.

By the fact that K is a pushout object of (PO) this implies a place p0 ∈ PI with

i1,P (p0) = p1 and i2,P (p0) = p2.

• Case 2.1: There is p0 ∈ OUT (I).
Then the fact that p1 ∈ •t′1 means that i1,P (p0) /∈ OUT (K1) which by the composability
of (K1,K2) w.r.t. (I, i1, i2) implies that i2,P (p0) ∈ OUT (K2) contradicting the fact that
i2,P (p0) = p2 ∈ •t′2.

37

A Detailed Proofs

• Case 2.2: There is p0 /∈ OUT (I).
This means that there is t0 ∈ TI with p0 ∈ •t0. By the fact that i1 is an AHL-morphism
which preserves pre conditions we have p1 ∈ •i1,T (t0) which together with the fact that
p1 ∈ •t′1 means that i1,T (t0) = t′1 because K1 has no forward conflicts. Analogously due
to the fact that also K2 has no forward conflict we obtain that i2,T (t0) = t′2. Thus, by
commutativity of (PO) we have

t1 = i′1,T (t′1) = i′1,T (i1,T (t0)) = i′2,T (i2,T (t0)) = i′2,T (t′2) = t2

which contradicts the assumption that t1 6= t2.

Hence K has no forward conflict.

No backward conflicts. Let us now assume that K has a backward conflict, i. e. there is

p ∈ PK , t1 6= t2 ∈ TK with p ∈ t1 • ∩t2•

• Case 1: There is a ∈ {1, 2} such that t1, t2 ∈ ia,T (TKa).
Then we have t′1, t

′
2 ∈ TKa with

i′a,T (t′1) = t1 and i′a,T (t′2) = t2

and there is p′ ∈ PKa with

i′a,P (p′) = p and p′ ∈ t′1 • ∩t′2•

because AHL-morphisms preserve post conditions.
This means that Ka has a backward conflict contradicting the fact that Ka is assumed to
be an AHL-occurrence net.

• Case 2: There is t1 ∈ i1,T (TK1) and t2 ∈ i2,T (TK2).
Then we have t′1 ∈ TK1 , t

′
2 ∈ TK2 with

i′1,T (t′1) = t1 and i′2,T (t′2) = t2

and since AHL-morphisms preserve post conditions there are p1 ∈ PK1 , p2 ∈ PK2 with

i′1,P (p1) = p, p1 ∈ t′1 • and i′2,P (p2) = p, p2 ∈ t′2 • .

Due to the fact that K is pushout object of (PO) this implies p0 ∈ PI with

i1,P (p0) = p1 and i2,P (p0) = p2.

• Case 2.1: There is p0 ∈ IN(I).
Then the fact that p1 ∈ t′1• means that i1,P (p0) /∈ IN(K1) which by the composability
of (K1,K2) w.r.t. (I, i1, i2) implies that i2,P (p0) ∈ IN(K2) contradicting the fact that
i2,P (p0) = p2 ∈ t′2•.
• Case 2.2: There is p0 /∈ IN(I).

Then there is t0 ∈ TI with p0 ∈ t0• and by the fact that i1 is an AHL-morphism which
preserves post conditions we have p1 = i1,P (p0) ∈ i1,T (t0)•. Since K1 has no backward
conflicts and there is p1 ∈ t′1• it follows that i1,T (t0) = t′1. Analogously we obtain that
i2,T (t0) = t′2 because also K2 has no backward conflict. Now, by the commutativity of
(PO) we have

t1 = i′1,T (t′1) = i′1,T (i1,T (t0)) = i′2,T (i2,T (t0)) = i′2,T (t′2) = t2

which contradicts the assumption that t1 6= t2.

38

A.6 Proof of Fact 5.2 (Gluing of AHL-Processes)

Hence K has no backward conflict.

Finitary strict partial order. We have to show that <K is finitary and irreflexive. Due to the
fact that AHL-morphisms preserve pre and post conditions we obtain the causal relation of <K
as the transitive closure of⋃

a∈{1,2}

{(i′a(x), i′a(y)) | x, y ∈ PKa] TKa , x <Ka y}

This means that elements which are causal related in K1 or K2 are also causal related in K.
Additionally it is possible that elements in the net K are related due to the gluing of one or
more elements.
Moreover, if for two interface elements x0, y0 ∈ PI] TI the images of these elements are causal
related in K, i. e. i′1(i1(x0)) <K i′1(i1(y0)), then there is x0 <(i1,i2) y0. We prove that fact
because we need it in the following.
Let x0, y0 ∈ PI] TI with i′1(i1(x0)) <K i′1(i1(y0)). Then there is a ∈ {1, 2} such that either
there is ia(x0) <Ka ia(y0) or there is z0 ∈ PI] TI with ia(x0) <Ka ia(z0) and i′1(i1(x0)) <K
i′1(i1(z0)) <K i′1(i1(y0)). This recursively leads to the fact that x0 <(i1,i2) y0 because the induced
causal relation is transitive and finitary.

Irreflexivity. Let us assume that <K is not irreflexive, i. e. there exists x ∈ PK] TK s.t. x <K x.
This means that there is a cycle in K and hence because of the bipartite structure of AHL-nets
there exists x′ ∈ PK] TK with x <K x′ and x′ <K x.

Let us assume that there is no z ∈ PI] TI with x <K i′1(i1(z)) <K x′, i. e. the causal relation
of x and x′ is not the result of a gluing but is directly obtained from a causal relation in K1 or
K2. Then there is a ∈ {1, 2} and y, y′ ∈ PKa] TKa s.t. i′a(y) = x and i′a(y

′) = x′ and we have
y <Ka y

′ and y′ <Ka y. Then the transitivity of <Ka implies y <Ka y which contradicts the
fact that <Ka is irreflexive because Ka is an AHL-occurrence net.

So there is z ∈ PI] TI with x <K i′1(i1(z)) <K x′. Due to the transitivity of <K there is
i′1(i1(z)) <K i′1(i1(z)) because

i′1(i1(z)) <K x′ <K x <K i′1(i1(z)).

As shown above this implies z <(i1,i2) z, contradicting the fact that by the composability of K1

and K2 w.r.t. (I, i1, i2) the induced causal relation <(i1,i2) is irreflexive. Hence <K is irreflexive.

Finitariness. We define P (x) as the set of all predecessors of x in K, i. e.

P (x) = {x′ ∈ PK] TK | x′ <K x}

and PI(x) as the set of all interface elements which have an image that is predecessor of x, i. e.

PI(x) = {z ∈ PI] TI | i′1(i1(z)) <K x}.

In order to show the finitariness of <K we have to show that for every x ∈ PK] TK there is a
finite number n ∈ N such that |P (x)| = n.

Let us first assume that there is x ∈ PK] TK which has an infinite set of predecessors which
are the images of interface elements, i. e. PI(x) is an infinite set. Then we also have that P (x)
is an infinite set because i′1(i1(PI(x))) ⊆ P (x) and ii, i′1 are injective. Due to the finitariness of
<K1 and <K2 there are finite many elements which have a causal relation to x directly obtained
from the net K1 resp. K2.
So there is y ∈ PI(x) such that for x̃ = i′1(i1(y)) there is PI(x̃) an infinite set.
For every z ∈ PI(x̃) there is z <(i1,i2) y implying that the induced causal relation <(i1,i2) is not

39

A Detailed Proofs

finitary. This contradicts the fact that K1 and K2 are composable w.r.t. (I, i1, i2).
Thus, for every x ∈ PK] TK there is m ∈ N such that |PI(x)| ≤ m which allows us to do a
mathematical induction to show that for all upper bounds m ∈ N the following property holds:

For every x ∈ PK] TK with PI(x) ≤ m there exists n ∈ N such that |P (x)| = n.

Induction Basis. m = 0
Let x ∈ PK] TK with |PI(x)| ≤ m = 0.
Due to the fact that (PO) is a pushout in AHLNets i′1 and i′2 are jointly surjective and
hence there is a ∈ {1, 2} and x′ ∈ PKa]TKa with i′a(x

′) = x. Then the fact that there is no
element y ∈ PI]TI with i′1(i1(y)) <K x implies that the causal relation of all predecessors
of x is directly derived from the net Ka, i. e. for every z ∈ PK] TK with z <K x there is
z′ ∈ PKa] TKa with

i′a(z
′) = z and z′ <Ka x

′

because AHL-morphisms preserve pre and post conditions.
Due to the finitariness of <Ka there is a finite number of predecessors z′ <Ka x

′ and hence
there is a finite number n ∈ N of elements z ∈ PK] TK with z = i′a(z

′) <K i′a(x
′) = x, i. e.

|P (x)| = n.

Induction Hypothesis.
For m ∈ N it holds that for every x ∈ PK] TK with |PI(x)| ≤ m there exists n ∈ N such
that |P (x)| = n.

Induction Step.
Let x ∈ PK] TK with |PI(x)| ≤ m + 1. Let us assume that x has an infinite number of
predecessors, i. e. there is no n ∈ N such that |P (x)| = n.
As mentioned in the induction basis there is a finite number of elements y with y <K x
for which there is no z ∈ PI(x) such that y <K i′1(i1(z)). Hence there is z ∈ PI(x) such
that x̃ = i′1(i1(z)) has an infinite number of predecessors.
Due to the irreflexivity of <K there is PI(x̃) ⊆ PI(x)\{z} and thus |PI(x̃)| ≤ m which by
the induction hypothesis implies that there exists ñ ∈ N such that |P (x̃)| = ñ contradicting
the fact that x̃ has an infinite number of predecessors.

So we have for x ∈ PK] TK with m ∈ N such that |PI(x)| ≤ m that there is a finite number
n ∈ N of predecessors of x in K.
Let m ∈ N such that

m = max
x∈PK]TK

|PI(x)|

Then we have that for every x ∈ PK] TK there is |PI(x)| ≤ m which implies that there is
nx ∈ N such that |P (x)| = nx. Hence <K is also finitary.

Only If. Given the pushout diagram (PO) in the category AHLONets. By Lemma 5.1 (PO) is
also a pushout in the category AHLNets. We have to show that (K1,K2) are composable w.r.t.
(I, i1, i2).

First condition. We have to show that ∀ x ∈ IN(I) : i1(x) /∈ IN(K1) ⇒ i2(x) ∈ IN(K2). Let
x ∈ IN(I) with i1(x) /∈ IN(K1) and let us assume that there is i2(x) /∈ IN(K2).

Then i1(x) and i2(x) both are in the post domain of transitions, i. e. there are t1 ∈ TK1 and
t2 ∈ TK2 such that i1(x) ∈ t1• and i2(x) ∈ t2•. Since AHL-morphisms preserve post conditions
there is

i′1(i1(x)) ∈ i′1(t1) • and i′2(i2(x)) ∈ i′1(t2)•

40

A.6 Proof of Fact 5.2 (Gluing of AHL-Processes)

and due to the fact that (PO) commutes there is i′1(i1(x)) = i′2(i2(x)) which implies

i′1(i1(x)) ∈ i′1(t1) • ∩i′2(t2) • .

Since K is an AHL-occurrence net it has no backward conflict implying that i′1(t1) = i′2(t2). So
due to the pushout property there is t0 ∈ TI with

i1(t0) = t1 and i2(t0) = t2

Then by the fact that i1(x) ∈ i1(t0)• together with the fact that i1 is an AHL-morphism which
preserves post domains it follows that x ∈ t0•. This contradicts the fact that x ∈ IN(I). Hence,
there is i2(x) ∈ IN(K2).

Second condition. We have to show that ∀ x ∈ OUT (I) : i1(x) /∈ OUT (K1)⇒ i2(x) ∈ OUT (K2).
Let x ∈ OUT (I) with i1(x) /∈ OUT (K1) and let us assume that there is i2(x) /∈ OUT (K2).

Then i1(x) and i2(x) both are in the pre domain of transitions, i. e. there are t1 ∈ TK1 and
t2 ∈ TK2 such that i1(x) ∈ •t1 and i2(x) ∈ •t2. Since AHL-morphisms preserve pre conditions
there is

i′1(i1(x)) ∈ •i′1(t1) and i′2(i2(x)) ∈ •i′1(t2)

and by commutativity of (PO) we have i′1(i1(x)) = i′2(i2(x)) which implies

i′1(i1(x)) ∈ •i′1(t1) ∩ •i′2(t2)

Since K is an AHL-occurrence net it has no forward conflict implying that i′1(t1) = i′2(t2). So
due to the pushout property there is t0 ∈ TI with

i1(t0) = t1 and i2(t0) = t2

Then by the fact that i1(x) ∈ •i1(t0) together with the fact that i1 is an AHL-morphism which
preserves pre domains it follows that x ∈ •t0. This contradicts the fact that x ∈ OUT (I).
Hence, there is i2(x) ∈ OUT (K2).

Induced causal relation is a finitary strict partial order. Let x, y ∈ PI] TI with x ≺(i1,i2) y.
Then by the definition of ≺(i1,i2) there is

i1(x) <K1 i1(y) or i2(x) <K2 i2(y)

and by the fact that i′1 ◦ i1 = i′2 ◦ i2 we have

i′1 ◦ i1(x) <K i′1 ◦ i1(y)

because AHL-morphisms preserve pre and post conditions.
Since <K is transitive we have also for the transitive closure <(i1,i2) of ≺(i1,i2) that x <(i1,i2) y
implies i′1 ◦ i1(x) <K i′1 ◦ i1(y).

Let us assume that <(i1,i2) is not finitary, i. e. there is y ∈ PI] TI with an infinite set of
predecessors

S = {x ∈ PI] TI | x <(i1,i2) y}

leading to an infinite set

S′ = {x ∈ PI] TI | i′1 ◦ i1(x) <K i′1 ◦ i1(y)}

41

A Detailed Proofs

which contradicts the fact that <K is finitary.

Let us assume that <K is not irreflexive, i. e. there is x ∈ PI] TI with x <(i1,i2) x. Then there
is

i′1 ◦ i1(x) <K i′1 ◦ i1(x)

contradicting the fact that <K is irreflexive.

So we have that the induced causal relation <(i1,i2) is finitary and irreflexive and hence it is a
finitary strict partial order.

Extension to Processes.

Given the pushout (PO) and additional AHL-morphisms mp1 : K1 → AN and mp2 : K2 → AN
with mp1 ◦ i1 = mp2 ◦ i2.

I
i1 //

i2
��

(PO)

K1

i′1
�� mp1

��

K2
i′2

//

mp2 ++

K

mp
DDDD

""DDDD

AN

Then we also have a morphism mp0 : I → AN defined by mp0 := mp1 ◦ i1 = mp2 ◦ i2. Moreover
the pushout property of (PO) implies a unique morphism mp : K → AN such that (PO) is also a
pushout in the slice category AHLNets \ AN . As shown above the composability of K1 and K2

w.r.t. (I, i1, i2) implies that K is an AHL-occurrence net. Hence, mp : K → AN is an AHL-process
which implies that (PO) is also pushout in the full subcategory Proc(AN) ⊆ AHLNets \ AN of
AHL-processes.

A.7 Proof of Theorem 5.3 (Direct Transformation of AHL-Processes)

Given a production for AHL-processes p : L l← I
r→ R and an AHL-occurrence net K together

with an injective morphism m : L → K. Then the direct transformation of AHL-occurrence nets
with pushouts (1) and (2) in AHLONets exists iff p satisfies the transformation condition for AHL-
processes under m.

In order to extend this construction for AHL-processes in the category Proc(AN) one additionally
requires AHL-morphisms mp : K → AN and rp : R→ AN with mp◦m◦ l = rp◦r. Then the pushout
(1) in AHLONets is a pushout of mp ◦m and cp = mp ◦ d in Proc(AN), and the pushout (2) in
AHLONets provides a unique morphism mp′ : K ′ → AN such that mp′ is pushout of cp and rp in
Proc(AN) according to Fact 5.2.

L
m
��

(1)

I
loo r //

c
��

(2)

R
n �� rp

��

K

mp --

C
doo e //

cp
QQQQQ

((QQQQ
K ′

mp′
FF

""FF

AN

Proof. First, we prove the following lemma which states the equivalence of the gluing relation for a
given production and match and the induced causal relation of the right-hand side of the production
and the context net in AHLNets.

42

A.7 Proof of Theorem 5.3 (Direct Transformation of AHL-Processes)

Lemma A.1 (Gluing Relation Lemma). Given a production for AHL-occurrence nets p : L l← I
r→ R,

a match m : L→ K where K is an AHL-occurrence net, and pushout (1) in AHLNets.
Then the gluing relation <(p,m) is exactly the induced causal relation of C and R w.r.t. (I, c, r),

i. e. <(p,m) = <(c,r).

L

m

��
(1)

I
loo

c

��

r // R

K C
d
oo

Proof. We define a relation ≺C⊆ (PC × TC)] (TC × PC) as follows:

≺C= {(p, t) ∈ PC × TC | p ∈ •t} ∪ {(t, p) ∈ TC × PC | p ∈ t•}

The relation ≺C describes the direct causal relationship of the elements in C, i. e. the causal relation
<C is the transitive closure of ≺C . We show that ≺(K,m) = ≺C by showing that there is a subset
relation in both directions.

Direction 1 (≺(K,m) ⊆ ≺C). Let x, y ∈ PK] (TK \mT (TL)) with x ≺(K,m) y. Due to the structure
of petri nets there are two possible cases:

• Case 1. There is x ∈ PK and y ∈ TK \mT (TL).
Due to the construction of C there is y ∈ TC . Furthermore there is term ∈ TOP (X)typeK(x)

such that

(term, x) ≤ preK(y) ⇔ (term, x) ≤ preK |TC
(y)

⇔ (term, x) ≤ preC(y)

and hence x ≺C y.

• Case 2. There is x ∈ TK \mT (TL) and y ∈ PK .
In this case we have x ∈ TC and there is term ∈ TOP (X)typeK(x) such that

(term, y) ≤ postK(x) ⇔ (term, y) ≤ postK |TC
(x)

⇔ (term, y) ≤ postC(x)

and hence x ≺C y.

Direction 2 (≺C ⊆ ≺(K,m)). Let x, y ∈ PC] TC with x ≺C y. Again we distinguish the two
possible cases:

Case 1. There is x ∈ PC and y ∈ TC .
Then there is term ∈ TOP (X)typeC(x) such that (term, x) ≤ preC(y). Since AHL-morphisms
preserve pre conditions and d is an inclusion we have

(term, x) ≤ preC(y) ⇔ (term, x) ≤ d⊕ ◦ preC(y)
⇔ (term, x) ≤ preK(d(y))
⇔ (term, x) ≤ preK(y)

So the fact that TC = TK \mT (TL) implies x ≺(K,m) y.

Case 2. There is x ∈ TC and y ∈ PC .
Then there is term ∈ TOP (X)typeC(x) such that (term, x) ≤ postC(y). Since AHL-
morphisms preserve not only pre but also post conditions we obtain analogously to Case
1 that x ≺(K,m) y.

43

A Detailed Proofs

So we have that ≺(K,m) = ≺C and since <(K,m) is the transitive closure of ≺(K,m) and <C is
the transitive closure of ≺C it follows that <(K,m) = <C .
Furthermore we can use the inclusion d to obtain from the commutativity of (1) that

m ◦ l(x) = d ◦ c(x) = c(x).

So let ≺(c,r)⊆ (PI × TI)] (TI × PI) be the relation defined by

≺(c,r) = {(x, y) | c(x) <C c(y) ∨ r(x) <R r(y)}

then we have

≺(p,m) = {(x, y) ∈ (PI × TI)] (TI × PI) | m ◦ l(x) <(K,m) m ◦ l(y) ∨ r(x) <R r(y)}
= {(x, y) ∈ (PI × TI)] (TI × PI) | c(x) <C c(y) ∨ r(x) <R r(y)}
= ≺(c,r)

and since <(p,m) is the transitive closure of ≺(p,m) and <(c,r) is the transitive closure of ≺(c,r)

we have <(p,m) = <(c,r).

Now we show that the pushouts (1) and (2) below exist in AHLONets if and only if the production
p under m satisfies the transformation condition for AHL-occurrence nets.

L

m

��
(1)

I
loo r //

c

��
(2)

R

n

��
K C

doo e // K ′

If. Given production p : L l← I
r→ R satisfying the transformation condition for AHL-processes under

match m. Since this implies that p satisfies the the gluing condition for AHL-nets by Theorem 4.3
there exist pushouts (1) and (2) in AHLNets. We have to show that (1) and (2) are also pushouts
in the category AHLONets of AHL-occurrence nets.

Pushout (1). From AHL-occurrence net K and AHL-morphism d : C → K it follows by Lemma 3.1
that also C is an AHL-occurrence net. So we have that all objects and morphisms in pushout (1)
are in the full subcategory AHLONets ⊆ AHLNets which means that (1) is also a pushout
in AHLONets.

Pushout (2). We have to show that (C,R) are composable w.r.t. (I, c, r), i. e.

1. c is injective,

2. ∀ x ∈ IN(I) : c(x) /∈ IN(C)⇒ r(x) ∈ IN(R) and
∀ x ∈ OUT (I) : c(x) /∈ OUT (C)⇒ r(x) ∈ OUT (R), and

3. the induced causal relation <(c,r) is a finitary strict partial order

Part 1. Due to the fact that (AHLNets,M) with the classM of all injective AHL-morphisms
is an M-adhesive category (see [EEPT06]) pushout (1) along M-morphism l is also a
pullback which preserves monomorphisms. Thus, monomorphism m implies that c is a
monomorphism and since the monomorphisms in AHLNets are exactly the injective mor-
phisms it follows that c is injective.

44

A.7 Proof of Theorem 5.3 (Direct Transformation of AHL-Processes)

Part 2. From pushout (1) in AHLONets of injective morphisms l and c it follows by Fact 5.2
that (L,R) are composable w.r.t. (I, l, c).
Let x ∈ IN(I) and c(x) /∈ IN(C) then by the composability of (L,C) w.r.t. (I, l, c)
follows that l(x) ∈ IN(L). The fact that c(x) /∈ IN(C) implies t ∈ TC with c(x) ∈ t•
and g2 ◦ c(x) ∈ g2(t)• because AHL-morphisms preserve post conditions. Due to the
commutativity of (1) there is m ◦ l(x) = g2 ◦ c(x) which means that m ◦ l(x) /∈ IN(K)
because m ◦ l(x) ∈ g2(t)•.
So there is x ∈ InP and the fact that production p satisfies the transformation condition
for AHL-processes implies that r(x) ∈ IN(R).
Now, let x ∈ OUT (I) and c(x) /∈ OUT (C) then by the composability of (L,C) w.r.t.
(I, l, c) follows that l(x) ∈ OUT (L). The fact that c(x) /∈ OUT (C) implies t ∈ TC with
c(x) ∈ •t and g2 ◦ c(x) ∈ •g2(t) because AHL-morphisms preserve pre conditions. Due to
the commutativity of (1) there is m◦ l(x) = g2 ◦c(x) which means that m◦ l(x) /∈ OUT (K)
because m ◦ l(x) ∈ •g2(t).
So there is x ∈ OutP and the fact that production p satisfies the transformation condition
for AHL-processes implies that r(x) ∈ OUT (R).

Part 3. The fact that the gluing relation <(p,m) of p und m is a finitary strict partial order
implies that the induced causal relation <(c,r) is a finitary strict partial order because by
Lemma A.1 there is x <(p,m) y ⇔ x <(c,r) y.

Thus (C,R) are composable w.r.t. (I, c, r) leading to the existence of pushout (2) in AHLONets.

Only If. Given pushouts (1) and (2) in AHLONets. We have to show that the transformation
condition for AHL-occurrence nets (see Def. 5.5) is satisfied by production p under match m.

Gluing condition. By Lemma 5.1 pushouts (1) and (2) in AHLONets are also pushouts in
AHLNets which by Fact 4.3 implies that the gluing condition is satisfied.

Gluing relation is finitary strict partial order. By Fact 5.2 pushout (2) in AHLONets implies
that (C,R) are composable w.r.t. (I, c, r) which means that <(c,r) is a finitary strict partial
order. Due to Lemma A.1 we know that <(c,r) = <(p,m) which means that also <(p,m) is a
finitary strict partial order.

In and out places. Due to the uniqueness of pushout complements in M-adhesive categories we
can w. l. o. g. assume that the context net C is constructed as given in Fact 4.3.

Let x ∈ InP which means that x ∈ IN(I) with lP (x) ∈ IN(L) and mP ◦ lP (x) /∈ IN(K). The
fact that mP ◦ lP (x) /∈ IN(K) implies that there is t ∈ TK with mP ◦ lP (x) ∈ t•.
Let us assume that there is t′ ∈ TL with mT (t′) = t. Then from the fact that m is an AHL-
morphism follows that lP (x) ∈ t′• because AHL-morphisms preserve post conditions. This
contradicts the fact that lP (x) ∈ IN(K) and thus t /∈ mT (TL) which means that t ∈ TK \
mT (TL). Then by the construction of TC it follows that t ∈ TC .

Moreover, we have cP (x) = mP ◦ lP (x) ∈ t• which means that cP (x) /∈ IN(C) This implies
that r(x) ∈ IN(R) due to the composability of (C,R) w.r.t. (I, c, r) given by pushout (2) in
AHLONets by Fact 5.2.

Now, let x ∈ OutP which means that x ∈ OUT (I) with lP (x) ∈ OUT (L) and mP ◦ lP (x) /∈
OUT (K). Then mP ◦ lP (x) /∈ OUT (K) implies that there is t ∈ TK with mP ◦ lP (x) ∈ •t.
Again, the assumption that t′ ∈ TL with mT (t′) = t leads to a contradiction which means
that t ∈ TK \ mT (TL). Then by the construction of TC follows that t ∈ TC and we have
cP (x) = mP ◦ lP (x) ∈ •t which means that cP (x) /∈ OUT (C) and hence r(x) ∈ OUT (R) by
composability of (C,R) w.r.t. (I, c, r).

45

A Detailed Proofs

Extension to Processes.
Given pushouts (1) and (2) in AHLONets and additional morphisms mp : K → AN and

rp : R→ AN with mp ◦m ◦ l = rp ◦ r.

L
m
��

(1)

I
loo r //

c
��

(2)

R
n �� rp

��

K

mp --

C
doo e // K ′

AN

Since L, C and I are AHL-occurrence nets we obtain AHL-processes by composition of AHL-
morphisms lp := mp◦m : L→ AN , cp := mp◦d : C → AN and ip := mp◦m◦ l = mp◦d◦c : I → AN
such that (1) is a commuting diagram in Proc(AN).

By Lemma 5.1 pushout (1) in AHLONets is also a pushout in AHLNets and thus by con-
struction of pushouts in slice categories it is also a pushout in AHLNets \ AN . Hence, due to the
fact that lp, cp, ip and mp are AHL-processes we have that (1) is a pushout in the full subcategory
Proc(AN) ⊆ AHLNets \AN .

Finally, we have

cp ◦ c = mp ◦ d ◦ c = mp ◦m ◦ l = rp ◦ r

which by Fact 5.2 implies a unique morphism mp′ : K ′ → AN such that (2) is also a pushout in
Proc(AN).

A.8 Proof of Theorem 7.1 (Amalgamation Theorem for AHL-Processes)

Given the gluing (pushout) AN3 = AN1 +AN0 AN2 of AHL-nets in (PO) of Fig. 12 with injective f1,
f2 then we have:

1. Composition Construction. Let mpi : Ki → ANi be AHL-processes for i ∈ {0, 1, 2} such
that mp1 and mp2 agree on mp0, then the amalgamation mp3 = mp1 +mp0 mp2 exists and is an
AHL-process mp3 : K3 → AN3.

2. Decomposition Construction. Let mp3 : K3 → AN3 be an AHL-process and let mp1, mp2

be restrictions of mp3 along g1 resp. g2, and mp0 restriction of mp1 along f1. Then mp3 can be
represented as amalgamation mp3 = mp1 +mp0 mp2.

3. Bijective Correspondence. There are composition and decomposition functions

Comp : Proc(AN1
f1← AN0

f2→ AN2)→ Proc(AN)

and

Decomp : Proc(AN)→ Proc(AN1
f1← AN0

f2→ AN2)

establishing a bijective correspondence between Proc(AN) and Proc(AN1
f1← AN0

f2→ AN2).

Proof.

1. Composition Construction. The fact that (mp0, φ1) and (mp0, φ2) are agreement restrictions
for mp1 and mp2 implies that (K1,K2) are composable w.r.t. (K0, φ1, φ2) which by Lemma 5.2
implies that the composition K3 = K1 +(K0,φ1,φ2)K2 exists and is an AHL-occurrence net. Since
by Lemma 5.1 pushouts in AHLONets are also pushouts in AHLNets and there is

g1 ◦mp1 ◦ φ1 = g2 ◦mp2 ◦ φ2

the pushout property implies a unique AHL-morphism mp3 : K3 → AN3 such that (3) and (4)
below commute.

46

A.8 Proof of Theorem 7.1 (Amalgamation Theorem for AHL-Processes)

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

From the fact that f1, f2, g1 and g2 are injective it follows that the above diagram is a weak Van
Kampen cube with pushouts as top and bottom faces and pullbacks as back faces. The Van
Kampen property implies that (3) and (4) are pullbacks and hence mp3 is the amalgamation
mp1 +m0 mp2.

2. Decomposition Construction. Given restrictions (mp1, ψ1) and (mp2, ψ2) we have pullbacks
(3) and (4) below in AHLNets.

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

Then we obtain the restriction (mp0, φ1) of mp1 along f1 as pullback (1) below in AHLNets.
Furthermore there is

g2 ◦ f2 ◦mp0 = g1 ◦ f1 ◦mp0 = g1 ◦mp1 ◦ φ1 = mp3 ◦ ψ1 ◦ φ1

which by the pullback property of (2) implies that there is a unique AHL-morphism φ2 : K0 →
K2 such that diagram (2) and the outer square below commute.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

47

A Detailed Proofs

By composition of pullbacks we have that (1)+(3) is a pullback. Since (PO) and the outer
square commute there is (1)+(3) = (2)+(4) which implies that (2)+(4) is a pullback and hence
by pullback decomposition (2) is a pullback.
So we have that the above cube is a weak Van Kampen cube where all side faces are pullbacks
and the bottom is a pushout. Hence the Van Kampen property implies that the top face (i. e.
the outer square) is a pushout in AHLNets.
Now, by Lemma 3.1 the nets K0,K1 and K2 are AHL-occurrence nets. This implies that
the outer square which is a pushout in AHLNets is also a pushout in the full subcategory
AHLONets ⊆ AHLNets which by Fact 5.2 implies that (K1,K2) are composable w.r.t.
(K0, φ1, φ2). Hence, (mp0, φ1) and (mp0, φ2) are agreement restrictions for mp1 and mp2 which
means that mp3 is an amalgamation of mp1 and mp2.

3. Bijective Correspondence. We define

Comp(
[
mp1

φ1← mp0
φ2→ mp2

]
) = [mp3]

where the AHL-occurrence net K3 is obtained as composition of AHL-occurrence nets K3 =
K1 +(K0,φ1,φ2) K2 and the morphism mp3 : K3 → AN3 is the unique morphism induced by the
pushout property of the corresponding pushout in AHLNets. Hence, mp3 = mp1 ◦φ1,φ2 mp2 is
unique up to isomorphism which means that the function Comp is well-defined.
Moreover, we define

Decomp([mp3]) =
[
mp1

φ1← mp0
φ2→ mp2

]
where mp1

φ1← mp0
φ2→ mp2 is the amalgamation decomposition of mp3 constructed as given in

Item 2. The amalgamation decomposition constructed via pullbacks (1)-(4) in AHLNets is
unique up to isomorphism due to the uniqueness of pullbacks. Thus, the function Decomp is
well-defined.

K0

mp0

��φ1

||xxxxxxxxxxxxxxxxxxxxx

φ2

""FFFFFFFFFFFFFFFFFFFFF

AN0

f1

{{wwwwwwww
f2

##GGGGGGGG
(1) (2)

K1 mp1

//

ψ1

""FFFFFFFFFFFFFFFFFFFFF AN1

g1 ##GGGGGGGG AN2

g2{{wwwwwwww
K2mp2

oo

ψ2

||xxxxxxxxxxxxxxxxxxxxx

AN3(3) (4)

(PO)

K3

mp3

OO

Given an agreeing span mp1
φ1← mp0

φ2→ mp2 with respect to pushout (PO). Then by definition of
agreement restrictions diagrams (1) and (2) above are pullbacks in AHLNets. The composition
mp3 : K3 → AN3 is constructed via the pushout which is the outer square in the diagram above.
Then the pushout (PO) is a weak Van Kampen square implying that (3) and (4) are pullbacks
in AHLNets.
Since the decomposition of mp3 is constructed via pullback (1)-(4) and pullbacks are unique up

to isomorphism the result is isomorphic to mp1
φ1← mp0

φ2→ mp2, i. e.

Decomp(Comp(
[
mp1

φ1← mp0
φ2→ mp2

]
)) =

[
mp1

φ1← mp0
φ2→ mp2

]
48

References

Vice versa, given an AHL-process mp3 : K3 → AN3 the amalgamation decomposition mp1
φ1←

mp0
φ2→ mp2 of mp3 is constructed via pullbacks (1)-(4) leading to the fact that (PO) is a weak

Van Kampen square. This implies that the outer square is a pushout which defines exactly the
composition of mp1

φ1← mp0
φ2→ mp2. Since pushouts are unique up to isomorphism there is

Comp(Decomp([mp3])) = [mp3]

Hence, Comp and Decomp are inverse to each other which means that they are bijections.

References

[BCEH01] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of reac-
tive systems using open nets. In CONCUR ’01: Proceedings of the 12th International
Conference on Concurrency Theory, pages 502–518, London, UK, 2001. Springer.

[Bro85] M. Broy. Specification and top down design of distributed systems. In Proc. TAP-
SOFT’85, volume 1 of LNCS 185, 1985.

[CIP81] CIP Language Group. Report on a wide spectrum language for program specification
and development. Technical Report TUM-I8104, TU München, 1981. also available as
Springer LNCS 183.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer, 2006.

[EHGP09] H. Ehrig, K. Hoffmann, K. Gabriel, and J. Padberg. Composition and independence of
high-level net processes. Electronic Notes in Theoretical Computer Science, 242(2):59 –
71, 2009. Proceedings of the First Workshop on Formal Methods for Wireless Systems
(FMWS 2008).

[EHP+02] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, and R. Heckel. High-level net processes.
In Formal and Natural Computing, volume 2300 of LNCS, pages 191–219. Springer, 2002.

[Ehr79] H. Ehrig. Introduction to the algebraic theory of graph grammars (a survey). In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph Grammars and Their Application to Com-
puter Science and Biology, Lecture Notes in Computer Science, No. 73, pages 1–69.
Springer, 1979.

[Ehr05] H. Ehrig. Behaviour and Instantiation of High-Level Petri Net Processes. Fundamenta
Informaticae, 65(3):211–247, 2005.

[EKT+80] H. Ehrig, H.-J. Kreowski, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Parametrized
data types in algebraic specification languages. In 7th Int. Coll. Automata, Languages,
and Programming, Springer LNCS 85, pages 157–168, 1980.

[ER76] H. Ehrig and B.K. Rosen. Commutativity of independent transformations on complex
objects. Technical Report RC 6251, IBM Research, 1976.

[ER97] Hartmut Ehrig and Wolfgang Reisig. An Algebraic View on Petri Nets. Bulletin of the
EATCS, 61:52–58, February 1997.

[Goo10a] Google. http://google.com, September 2010.

49

References

[Goo10b] Google Wave. https://wave.google.com/wave, September 2010.

[GR83] U. Goltz and W. Reisig. The Non-sequential Behavior of Petri Nets. Information and
Control, 57(2/3):125–147, 1983.

[GTWW75] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Abstract data types as ini-
tial algebras and the correctness of data representations. In Proc. of Conf. on Computer
Graphics, 1975.

[Gut75] J.V. Guttag. The specification and application to programming of abstract data types.
PhD thesis, University of Toronto, 1975.

[HKR80] U.L Hupbach, H. Kaphengst, and H. Reichel. Initial algebraic specification of data types,
parameterized data types and algorithms. Technical Report 15, VEB Robotron ZFT,
Dresden, 1980.

[Jen91] K. Jensen. Coloured petri nets: A high-level language for system design and analysis. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of LNCS, pages 342–416.
Springer, 1991.

[MEE+10] Tony Modica, Claudia Ermel, Hartmut Ehrig, Kathrin Hoffmann, and Enrico Biermann.
Modeling communication spaces with higher-order petri nets. In George E. Lasker and
Jochen Pfalzgraf, editors, Advances in Multiagent Systems, Robotics and Cybernetics:
Theory and Practice, volume III, Tecumseh, Canada, 2010. The International Institute
for Advanced Studies in Systems Research and Cybernetics.

[MGE+10] Tony Modica, Karsten Gabriel, Hartmut Ehrig, Kathrin Hoffmann, Sarkaft Shareef,
Claudia Ermel, Ulrike Golas, Frank Hermann, and Enrico Biermann. Low- and
High-Level Petri Nets with Individual Tokens. Technical Report 2009/13, Technis-
che Universität Berlin, 2010. http://www.eecs.tu-berlin.de/menue/forschung/
forschungsberichte/2009.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer, 1980.

[MM90] J. Meseguer and U. Montanari. Petri Nets Are Monoids. Information and Computation,
88(2):105–155, 1990.

[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation systems.
Mathematical Structures in Computer Science, 80:217–259, 1995.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Universität Bonn, 1962.

[Rei85] W. Reisig. Petrinetze, Eine Einführung. Springer Verlag, Berlin, 1985.

[Rei90] W. Reisig. Petri nets and algebraic specifications. Technische Universität München,
SFB-Bericht 342/1/90 B, March, 1990.

[Roz87] G. Rozenberg. Behaviour of Elementary Net Systems. In Petri Nets: Central Models and
Their Properties, Advances in Petri Nets, volume 254 of LNCS, pages 60–94. Springer,
1987.

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol 1: Foundations. World Scientific, Singapore, 1997.

50

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2009

References

[Yon10] Tsvetelina Yonova. Formal description and analysis of distributed online collaboration
platforms. Bachelor thesis, Technische Universität Berlin, 2010.

[Zil74] S.N. Zilles. Algebraic specification of data types. Project MAC Progress Report 11, MIT,
pages 28–52, 1974.

51

	Introduction
	Case Studies
	Google Wave
	Wiki-Based Systems

	Algebraic High-Level Nets and their Processes
	Transformation of Algebraic High-Level Nets
	Transformation of AHL-Occurrence Nets and AHL-Processes
	Compatibility of AHL-Net Transformations
	Amalgamation of AHL-Processes and Compositional Process Semantics
	Conclusion
	Detailed Proofs
	Proof of Lemma 3.1 (AHL-Morphisms Reflect AHL-Occurrence Nets)
	Well-definedness of Definition 4.3 (Gluing of AHL-Nets)
	Proof of Fact 4.2 (Pushout of AHL-Nets)
	Proof of Fact 4.3 (Transformation of AHL-Nets)
	Proof of Lemma 5.1 (Pushout of AHL-Occurrence Nets)
	Proof of Fact 5.2 (Gluing of AHL-Processes)
	Proof of Theorem 5.3 (Direct Transformation of AHL-Processes)
	Proof of Theorem 7.1 (Amalgamation Theorem for AHL-Processes)

