
Multi-Amalgamation
in M-Adhesive Categories

Long Version

Ulrike Golas

Technische Universität Berlin, Germany
ugolas@cs.tu-berlin.de

Abstract. Amalgamation is a well-known concept for graph transfor-
mations in order to model synchronized parallelism of rules with shared
subrules and corresponding transformations. This concept is especially
important for an adequate formalization of the operational semantics of
statecharts and other visual modeling languages, where typed attributed
graphs are used for multiple rules with general application conditions.
However, the theory of amalgamation for the double pushout approach
has been developed up to now only on a set-theoretical basis for pairs of
standard graph rules without any application conditions.
For this reason, we present the theory of amalgamation in this paper in
the framework of M-adhesive categories, short for weak adhesive HLR
categories, for a bundle of rules with (nested) application conditions.
The main result is the Multi-Amalgamation Theorem, which generalizes
the well-known Parallelism and Amalgamation Theorems to the case of
multiple synchronized parallelism.
The constructions are illustrated by a small running example. A more
complex case study for the operational semantics of statecharts based on
multi-amalgamation is presented in a separate paper.

1 Introduction

1.1 Historical Background of Amalgamation

The concepts of adhesive [1] and (weak) adhesive high-level replacement (HLR)
[2] categories have been a break-through for the double pushout approach of
algebraic graph transformations [3]. Almost all main results could be formulated
and proven in these categorical frameworks and instantiated to a large variety
of HLR systems, including different kinds of graph and Petri net transformation
systems [2]. These main results include the Local Church–Rosser, Parallelism,
and Concurrency Theorems, the Embedding and Extension Theorem, complete-
ness of critical pairs, and the Local Confluence Theorem.

However, at least one main result is missing up to now. The Amalgamation
Theorem in [4] has been developed only on a set-theoretical basis for a pair of
standard graph rules without application conditions. In [4], the Parallelism The-
orem of [5] is generalized to the Amalgamation Theorem, where the assumption

2

of parallel independence is dropped and pure parallelism is generalized to syn-
chronized parallelism. The synchronization of two rules p1 and p2 is expressed
by a common subrule p0, which we call kernel rule in this paper. The subrule
concept is formalized by a rule morphism si : p0 → pi, called kernel morphism in
this paper, based on pullbacks and a pushout complement property. p1 and p2

can be glued along p0 leading to an amalgamated rule p̃ = p1 +p0 p2. The Amal-
gamation Theorem states that each amalgamable pair of direct transformations
G =

pi,mi===⇒ Gi(i = 1, 2) via p1 and p2 leads to an amalgamated transformation
G =

p̃,m̃
==⇒ H via p̃, and vice versa yielding a bijective correspondence.
Moreover, the Complement Rule Theorem in [4] allows to construct a com-

plement rule p of a kernel morphism s : p0 → p leading to a concurrent rule
p0 ∗E p which is equal to p. Now the Concurrency Theorem allows to decompose
each amalgamated transformation G =

p̃,m̃
==⇒ H into sequences G =

pi=⇒ Gi =
qi=⇒ H

for i = 1, 2 and vice versa, where qi is the complement rule of ti : pi → p̃.
The concepts of amalgamation are applied to communication based systems

and visual languages in [4, 6, 7, 8, 9] and transferred to the single-pushout
approach of graph transformation in [10].

1.2 The Aim of this Paper

The concept of amalgamation plays a key role in the application of parallel
graph transformation to communication-based systems [8] and in the modeling
of the operational semantics for visual languages [9]. However, in most of these
applications we need amalgamation for n rules, called multi-amalgamation, based
not only on standard graph rules, but on different kinds of typed and attributed
graph rules including (nested) application conditions.

The main idea of this paper is to fill this gap between theory and applica-
tions. For this purpose, we have developed the theory of multi-amalgamation for
adhesive and adhesive HLR systems based on rules with application conditions.
This allows to instantiate the theory to a large variety of graphs and correspond-
ing graph transformation systems and, using weak adhesive HLR categories, also
to typed attributed graph transformation systems [2]. A complex case study for
the operational semantics of statecharts based on typed attributed graphs and
multi-amalgamation is presented in [11].

1.3 General Assumptions

In this paper we assume to have anM-adhesive category with binary coproducts,
epi-M-factorization, and initial pushouts [2]. We consider rules with (nested)
application conditions [13] as explained below and assume that the reader is
familiar with concurrent rules and the Concurrency Theorem. In the following,
a bundle represents a family of morphisms or transformation steps with the same
domain, which means that a bundle of things always starts at the same object.

3

1.4 Organization of this Paper

This paper is organized as follows. In Section 2, we review basic notions of
M-adhesive categories, transformations, and application conditions. In Section
3, we introduce kernel rules, multi rules, and kernel morphisms leading to the
Complement Rule Theorem as first main result. In Section 4, we construct multi-
amalgamated rules and transformations and show as second main result the
Multi-Amalgamation Theorem. In Section 5, we present a summary of our results
and discuss future work.

2 Review of Basic Notions

The basic idea of adhesive categories [1] is to have a category with pushouts along
monomorphisms and pullbacks satisfying the van Kampen property. Intuitively,
this means that pushouts along monomorphisms and pullbacks are compatible
with each other. This holds for sets and various kinds of graphs (see [1, 2]),
including the standard category of graphs which is used as a running example
in this paper.M-adhesive categories, called weak adhesive HLR category in [2],
include a special morphism classM of monomorphisms and extend adhesive cat-
egories with suitable properties. As a main difference, they only require pushouts
along M-morphisms to be weak van Kampen squares.

A′

B′
C ′

D′
A

B
C

D

m
f

gn

a

b
c

d

m′
f ′

g′

n′

Definition 1 (Van Kampen square).
A pushout as at the bottom of the cube
on the right with m ∈ M is a weak
van Kampen square if it satisfies the
weak van Kampen property, i.e., for
any commutative cube, where the back
faces are pullbacks and (f ∈ M or
b, c, d ∈ M), the following statement
holds: The top face is a pushout if and only if the front faces are pullbacks.

In contrast, the (non-weak) van Kampen property does not assume (f ∈M
or b, c, d ∈M).

Definition 2 (M-adhesive category). AnM-adhesive category (C,M) con-
sists of a category C and a class M of monomorphisms in C, which is closed
under isomorphisms, composition, and decomposition (g ◦ f ∈ M and g ∈ M
implies f ∈ M), such that C has pushouts and pullbacks along M-morphisms,
M-morphisms are closed under pushouts and pullbacks, and pushouts along M-
morphisms are weak van Kampen squares.

Well-known examples ofM-adhesive categories are the categories (Sets,M)
of sets, (Graphs,M) of graphs, (GraphsTG,M) of typed graphs, (ElemNets,
M) of elementary Petri nets, (PTNets,M) of place/transition nets, where for
all these categories M is the class of all monomorphisms, and (AGraphsATG,
M) of typed attributed graphs, where M is the class of all injective typed
attributed graph morphisms with isomorphic data type component (see [2]).

4

In the double pushout approach to transformations, rules describe in a general
way how to transform objects. The application of a rule to an object is called
a transformation and based on two gluing constructions, which are pushouts in
the corresponding category.

L K R

G D H

p : l r

f g

m k n(1) (2)

Definition 3 (Rule and transforma-
tion). A rule is given by a span p =
(L l← K

r→ R) with objects L, K, and R,
called left-hand side, interface, and right-
hand side, respectively, and M-morphisms
l and r. An application of such a rule to an object G via a match m : L → G
is constructed as two pushouts (1) and (2) leading to a direct transformation
G =

p,m
==⇒ H.

An important extension is the use of rules with suitable application condi-
tions. These include positive application conditions of the form ∃a for a mor-
phism a : L→ C, demanding a certain structure in addition to L, and also nega-
tive application conditions ¬∃a, forbidding such a structure. A match m : L→ G
satisfies ∃a (¬∃a) if there is a (no)M-morphism q : C → G satisfying q ◦a = m.
In more detail, we use nested application conditions [13], short application con-
ditions.

L C

G

ac′ac a

m q

Definition 4 (Application condition and
satisfaction). An application condition ac
over an object L is of the form ac = true or
ac = ∃(a, ac′), where a : L → C is a mor-
phism and ac′ is a condition over C.

Given a condition ac over L, then a morphism m : L→ G satisfies ac, written
m |= ac, if ac = true or ac = ∃(a, ac′) and there exists a morphism q ∈ M with
q ◦ a = m and q |= ac′.

Moreover, application conditions are closed under boolean formulas and sat-
isfaction is extended as usual. For simplification, false abbreviates ¬true, ∃a
abbreviates ∃(a, true), and ∀(a, ac) abbreviates ¬∃(a,¬ac). With acC

∼= ac′C we
denote the semantical equivalence of acC and ac′C on C.

In this paper we consider rules of the form p = (L l← K
r→ R, ac), where

(L l← K
r→ R) is a (plain) rule and ac is an application condition on L. In order

to handle rules with application conditions there are two important concepts,
called the shift of application conditions over morphisms and rules ([13, 14]).

For the shift construction over morphisms, all epimorphic overlappings of the
codomain of the shift morphism and the codomain of the condition morphism
have to be collected.

P C

P ′ C ′

ac

Shift(b, ac)

ac′

Shift(b′, ac′)

a

b b′

a′

Definition 5 (Shift over
morphism). Given an
application condition ac =
∃(a, ac′) over P and a mor-
phism b : P → P ′, then

5

Shift(b, ac) is an application condition over P ′ defined by Shift(b, ac) =
∨(a′,b′)∈F∃(a′, Shift(b′, ac′)) with F = {(a′, b′) | (a′, b′)jointly epimorphic, b′ ∈
M, b′ ◦ a = a′ ◦ b}. Moreover, Shift(b, true) = true and the construction is ex-
tended for boolean formulas in the usual way.

P P ′

G

Shift(b, ac)ac b

p◦b p

Fact 1. Given an application con-
dition ac over P and morphisms b :
P → P ′ and p : P ′ → G, then p |=
Shift(b, ac) if and only if p ◦ b |= ac.

Proof. See [13, 14]. ut

In analogy to the application condition over L, which is a pre application
condition, it is also possible to define post application conditions over the right
hand side R of a rule. Since these application conditions over R can be translated
to equivalent application conditions over L (and vice versa) [13], we can restrict
our rules to application conditions over L.

L K R

Y Z X

acR

ac′L(p∗, ac′R)

L(p, acR) l r

l∗ r∗

b c a(2) (1)

Definition 6 (Shift
over rule). Given a
rule p = (L l← K

r→
R, ac) and an applica-
tion condition acR =
∃(a, ac′R) over R, then L(p, acR) is an application condition over L defined
by L(p, acR) = ∃(b, L(p∗, ac′R)) if a ◦ r has a pushout complement (1) and

p∗ = (Y l∗← Z
r∗→ X) is the derived rule by constructing pushout (2), otherwise

false. Moreover, L(p, true) = true and the construction is extended to boolean
formulas in the usual way.

Dually, for an application condition acL over L we define R(p, acL) = L(p−1,
acL), where the inverse rule p−1 without application conditions is defined by
p−1 = (R r← K

l→ L).

L K R

G D H

L(p, acR) acR
l r

f g

m k n(1) (2)

Fact 2. Given a trans-
formation G =

p,m
==⇒ H

via a rule p = (L l←
K

r→ R, ac) and an ap-
plication condition acR

over R, then m |= L(p, acR) if and only if n |= acR.
Dually, for an application condition acL over L we have that m |= acL if and

only if n |= R(p, acL).

Proof. See [13]. ut

Shifts over morphisms are compositional and shifts over morphisms and rules
are compatible via double pushouts.

6

L K R P Q

L′ K ′ R′

ac
p :

p′ :

a bl r

l′ r′

m k n(2) (1)

Fact 3. Given an applica-
tion condition ac on R, the
double pushouts (1) and (2)
and morphisms a, b, then we
have that

– Shift(b, Shift(a, ac)) ∼=
Shift(b ◦ a, ac),

– Shift(m, L(p, ac)) ∼= L(p′, Shift(n, ac)).

Proof. See [13, 14]. ut

3 Decomposition of Direct Transformations

In this section, we show how to decompose a direct transformation inM-adhesive
categories into transformations via a kernel and a complement rule leading to
the Complement Rule Theorem.

A kernel morphism describes how a smaller rule, the kernel rule, is embedded
into a larger rule, the multi rule, which has its name because it can be applied
multiple times for a given kernel rule match as described in Section 4. We need
some more technical preconditions to make sure that the embeddings of the L-,
K-, and R-components as well as the application conditions are consistent and
allow to construct a complement rule.

Definition 7 (Kernel morphism). Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0)
and p1 = (L1

l1←− K1
r1−→ R1, ac1), a kernel morphism s1 : p0 → p1, s1 =

(s1,L, s1,K , s1,R) consists ofM-morphisms s1,L : L0 → L1, s1,K : K0 → K1, and
s1,R : R0 → R1 such that in the following diagram (11) and (21) are pullbacks,
(11) has a pushout complement (1′1) for s1,L◦l0, and ac0 and ac1 are complement-
compatible w.r.t. s1, i.e. given pushout (31) then ac1

∼= Shift(s1,L, ac0) ∧ L(p∗1,
Shift(v1, ac′1)) for some ac′1 on L10 and p∗1 = (L1

u1←− L10
v1−→ E1). In this case,

p0 is called kernel rule and p1 multi rule.

L0 K0 R0

L1 K1 R1

ac0

ac1

L0 K0

L1 L10

R0

E1

ac′1

p0 :

p1 :

l0 r0

l1 r1

s1,L s1,K
s1,Rs1

l0

w1s1,L

u1

r0

e11

v1

(11) (21) (1′1) (31)

Remark 1. The complement-compatibility of the application conditions makes
sure that there is a decomposition of ac1 into parts on L0 and L10, where the
latter ones are used later for the application conditions of the complement rule.

7

p0 : ac0

ac0 = ¬∃a0

1

L0

1

K0

1

R0

1

L0

1

p0 : ac0 L0 K0 R0

p1 : ac1

ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

1

2

L1

1

2

K1

1

2

R1

L0 K0

1

2

L1

1

2

L10

1

2

L1

1

2

p0 : ac0 L0 K0 R0 L0 K0

p2 : ac2

ac2 = Shift(s2,L, ac0) ∧ ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

L20

1

3

L2

1

3

l0 r0

l1 r1

s1,L s1,K s1,R

l0

s1,L

u1

w1

a1

l0 r0

l2 r2

s2,L s2,K s2,R

l0

s2,L

u2

w2

a2

l0 r0 a0

(11) (21) (1′1)

(12) (22) (1′2)

Fig. 1. The kernel rule p0 and the multi rules p1 and p2

Example 1. To explain the concept of amalgamation, in our example we model
a small transformation system for switching the direction of edges in labeled
graphs, where we only have different labels for edges – black and dotted edges.
The kernel rule p0 is depicted in the top of Fig. 1. It selects a node with a black
loop, deletes this loop, and adds a dotted loop, all of this if no dotted loop is
already present. The matches are defined by the numbers at the nodes and can
be induced for the edges by their position.

In the middle and bottom of Figure 1, two multi rules p1 and p2 are shown,
which extend the rule p0 and in addition reverse an edge if no backward edge
is present. They also inherit the application condition of p0 forbidding a dot-
ted loop at the selected node. There is a kernel morphism s1 : p0 → p1 as
shown in the top of Fig. 1 with pullbacks (11) and (21), and pushout com-
plement (1′1). For the application conditions, ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

∼=
Shift(s1,L, ac0)∧L(p∗1, Shift(v1,¬∃a′1)) with a′1 as shown in the left of Fig. 2. We
have that Shift(v1,¬∃a′1) = ¬∃a11, because square (∗) is the only possible com-
muting square leading to a11, b11 jointly surjective and b11 injective. Moreover,
L(p∗1,¬∃a11) = ¬∃a1 as shown by the two pushout squares (PO1) and (PO2) in
Fig. 2. Thus ac′1 = ¬∃a′1, and ac0 and ac1 are complement compatible.

Similarly, there is a kernel morphism s2 : p0 → p2 as shown in the bottom of
Fig. 1 with pullbacks (12) and (22), pushout complement (1′2), and ac0 and ac2

are complement compatible.

8

1

2

L10

1

2

E1

1

2

L1

1

2

L10

1

2

E1

1

2

L10

1

2

L1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

v1 u1 v1 u11

b11

a′1 a1 a′1a11 a11 a1(∗) (PO1) (PO2)

Fig. 2. Constructions for the application conditions

For a given kernel morphism, the complement rule is the remainder of the
multi rule after the application of the kernel rule, i.e. it describes what the multi
rule does in addition to the kernel rule.

Theorem 1 (Existence of complement rule). Given rules p0 = (L0
l0←−

K0
r0−→ R0, ac0) and p1 = (L1

l1←− K1
r1−→ R1, ac1), and a kernel morphism

s1 : p0 → p1 then there exists a rule p1 = (L1
l1←− K1

r1−→ R1, ac1) and a jointly
epimorphic cospan R0

e11−→ E1
e12←− L1 such that the E1-concurrent rule p0 ∗E1 p1

exists and p1 = p0 ∗E1 p1. (For the definition of E-concurrent rules for rules with
application conditions see [14].)

L0 K0 R0 L1 K1 R1

L1 L10 E1 R10 R1

K1

ac0

ac1

ac1

ac′1

l0 r0 l1 r1

u1 v1 u1 v1

s1,L w1 e11 e12 w1 t1

l1 r1

l10 r10

(1′1) (31)

(81) + (91)

(91) (131)

Proof. First, we consider the construction without application conditions. Since
s1 is a kernel morphism the following diagrams (11) and (21) are pullbacks, and
(11) has a pushout complement (1′1) for s1,L ◦ l0. Construct the pushout (31).

L0 K0 R0

L1 K1 R1

L0 K0 R0

L1 L10 E1

l0 r0

l1 r1

s1,L s1,K s1,R

l0 r0

u1 v1

s1,L w1 e11(11) (21) (1′1) (31)

Now construct the initial pushout (41) over s1,R with b1, c1 ∈ M, P1 as the
pullback object of r0 and b1, and the pushout (51) where we obtain an induced

9

morphism s13 : S1 → R0 with s13 ◦ s12 = b1, s13 ◦ s11 = r0, and s13 ∈ M by
effective pushouts. Since (11) is a pullback Lemma A.1 implies that there is a
unique morphism l10 : K1 → L10 with l10 ◦s1,K = w1, u1 ◦ l10 = l1, and l10 ∈M,
and we can construct pushouts (61) – (91) as a decomposition of pushout (31)
which leads to L1 and K1 of the complement rule, and with (71) + (91) being a
pushout e11 and e12 are jointly epimorphic.

B1

C1

R0

R1

P1 S1

K0 L0 K0

L1 L10

K1

K0 S1 R0

K1 K1 R10

L10 L1 E1

l0

u1

s1,L w1

l1
l10

s1,K
b1

c1

s1,R

s12

s11
s13

r0

s11

s1,K

s13

s14 u12

v11 w1

l10

u11

l1

e12

u1

e11

(1′1)

(41)

(51)

(81) (91)

(61) (71)

The pushout (41) can be decomposed into pushouts (101) and (111) obtain-
ing the right hand side R1 of the complement rule, while pullback (21) can be
decomposed into pushout (61) and square (121) which is a pullback by Lemma
A.2. Now Lemma A.1 implies that there is a unique morphism r1 : K1 → R1

with r1 ◦ s14 = u13, t1 ◦ r1 = v12, and r1 ∈M.

B1

C1

S1

R1

R0

R1

K0

K1

S1

K1

R0

R1

S1 R0

R1 R1

K1

s12 s13

u13 s1,R

t1

s11 s13

s1,K s14 s1,R

v11 v12

s13

u13 s1,R

t1s14

v12
r1

(101) (111) (61) (121) (111)

S1

R0

K1

R10

R1

R1

S1 R0

K1 R10

R1

s14 r1

s13 v12 t1

u12 v1

s13

s14 u12

w1 s1,R

v1v12

(71) (71) (131)

Now the pushout (71) im-
plies that there is a unique
morphism v1 : R10 → R1,
and by pushout decomposition
of (111) = (71) + (131) square
(131) is a pushout.

Moreover, (81) + (91) as a pushout over M-morphisms is also a pullback

which completes the construction, leading to the required rule p1 = (L1
l1←−

K1
r1−→ R1) and p1 = p0 ∗E1 p1 for rules without application conditions.

C1 B1

L0 K0 S1 R0 L1 K1 R1 S1

S1

L1 K1 K1 R10

L10 L1 E1 R10 R1 R0

K1

l0 s11 s13

s13 l1◦s14

l1 r1 u13

s12

l1 v11 w1

u1

u11 e12 u1 v1 s1,R

l1

l10 r10

r1

s1,L s1,K s14 u12

l10 l1 u1

e12 w1 t1 s13

b1(11) (61) (71)

(81) (91)

(81) + (91)

(71) + (91)

(91)

(101)

(131) (111)

10

For the application conditions, suppose ac1
∼= Shift(s1,L, ac0) ∧ L(p∗1,

Shift(v1, ac′1)) for p∗1 = (L1
u1←− L10

v1−→ E1) with v1 = e12 ◦ u11 and ac′1 on
L10. Now define ac1 = Shift(u11, ac′1), which is an application condition on L1.

We have to show that (p1, acp0∗E1p1) ∼= (p1, ac1). By construction of the E1-
concurrent rule we have that acp0∗E1p1

∼= Shift(s1,L, ac0)∧L(p∗1, Shift(e12, ac1)) ∼=
Shift(s1,L, ac0) ∧ L(p∗1, Shift(e12, Shift(u11, ac′1))) ∼= Shift(s1,L, ac0) ∧ L(p∗1,
Shift(e12 ◦ u11, ac′1)) ∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(v1, ac′1)) ∼= ac1. ut

Remark 2. Note, that by construction the interface K0 of the kernel rule has to
be preserved in the complement rule. The construction of p1 is not unique w.r.t.
the property p1 = p0 ∗E1 p1, since other choices for S1 with M-morphisms s11

and s13 also lead to a well-defined construction. In particular, one could choose
S1 = R0 leading to p1 = E1

u1←− R10
v1−→ R1. Our choice represents a smallest

possible complement, which should be preferred in most application areas.

Definition 8 (Complement rule). Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0)
and p1 = (L1

l1←− K1
r1−→ R1, ac1), and a kernel morphism s1 : p0 → p1 then the

rule p1 = (L1
l1←− K1

r1−→ R1, ac1) constructed in Thm. 1 is called complement
rule (of s1).

Example 2. Consider the kernel morphism s1 depicted in Fig. 1. Using the con-
struction in Thm. 1 we obtain the diagrams in Fig. 3 leading to the complement
rule in the top row in Fig. 4 with the application condition ac1 = ¬∃a1 con-
structed in the right of Fig. 2. Similarly, we obtain a complement rule for the
kernel morphism s2 : p0 → p2 in Fig. 1, which is depicted in the bottom row of
Fig. 4.

Each direct transformation via a multi rule can be decomposed into a direct
transformation via the kernel rule followed by a direct transformation via the
complement rule.

Fact 4 Given rules p0 = (L0
l0←− K0

r0−→ R0, ac0) and p1 = (L1
l1←− K1

r1−→
R1, ac1), a kernel morphism s1 : p0 → p1, and a direct transformation t1 :
G =

p1,m1===⇒ G1 then t1 can be decomposed into the transformation G =
p0,m0===⇒

G0 =
p1,m1===⇒ G1 with m0 = m1 ◦ s1,L where p1 is the complement rule of s1.

G

G0

G1

p0,m0 p1,m1

p1,m1
Proof. We have that p1

∼= p0 ∗E1 p1. The
analysis part of the Concurrency Theorem [14]
now implies the decomposition into G =

p0,m0===⇒
G0 =

p1,m1===⇒ G1 with m0 = m1 ◦ s1,L. ut

4 Multi-Amalgamation

In [4], an Amalgamation Theorem for a pair of graph rules without application
conditions has been developed. It can be seen as a generalization of the Paral-
lelism Theorem [5], where the assumption of parallel independence is dropped

11

1

L0

1

K0

1

S1

1

R0

1

2

L1

1

2

K1

1

2

K1

1

2

R10

1

2

L10

1

2

L1

1

2

E1

1

2

R10

1

2

R1

1

R0

1

2

L1

1

2

K1

1

2

R1

1

S1

1

2

C1

1

B1

1

S1

1

2

K1

l0 s11 s13

l1 v11 w1

u11 e12

l1 r1 u13

u1 v1 s1,R

u1

s13 l1◦s14

s1,L s1,K s14 u12

l10 l1 u1

s13e12 w1 t1

s12

l1

l10 r10

r1

(11) (61) (71)

(71) + (91)

(91) (131) (111)

(101)

(81) (91)

(81) + (91)

Fig. 3. The construction of the complement rule for the kernel morphism s1

p1 : ac1

ac1 = ¬∃a1

1

2

L1

1

2

K1

1

2

R1

1

2

L1

1

2

p2 : ac2

ac2 = ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

l1 r1 a1

l2 r2 a2

Fig. 4. The complement rules for the kernel morphisms

12

and pure parallelism is generalized to synchronized parallelism. In this section,
we present an Amalgamation Theorem for a bundle of rules with application
conditions, called Multi-Amalgamation Theorem, over objects in anM-adhesive
category.

We consider not only single kernel morphisms, but bundles of them over a
fixed kernel rule. Then we can combine the multi rules of such a bundle to an
amalgamated rule by gluing them along the common kernel rule.

Definition 9 (Multi-amalgamated rule). Given rules pi = (Li
li←− Ki

ri−→
Ri, aci) for i = 0, . . . , n and a bundle of kernel morphisms s = (si : p0 →
pi)i=1,...,n, then the (multi-)amalgamated rule p̃s = (L̃s

l̃s←− K̃s
r̃s−→ R̃s, ãcs) is

constructed as the componentwise colimit of the kernel morphisms:

ac0

aci

ãcs

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

p0 :

pi :

p̃s :

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

si

ti

(1i) (2i)

(14i) (15i)

- L̃s = Col((si,L)i=1,...,n),
- K̃s = Col((si,K)i=1,...,n),
- R̃s = Col((si,R)i=1,...,n),
- l̃s and r̃s are induced by (ti,L ◦
li)i=0,...,n and (ti,R ◦ ri)0=1,...,n,
respectively,
- ãcs =

∧
i=1,...,n Shift(ti,L, aci).

Fact 5 The amalgamated rule is well-defined and we have kernel morphisms
ti = (ti,L, ti,K , ti,R) : pi → p̃s for i = 0, . . . , n.

Proof.

K0 Ki

K̃s

L̃s

K0 Ki

K̃s

R̃s

si,K

t0,K ti,K

t0,L◦l0 ti,L◦li

l̃s

si,K

t0,K ti,K

t0,R◦r0 ti,R◦ri

r̃s

First we show the well-definedness
of the morphism l̃s. Consider
the colimits (L̃s, (ti,L)i=0,...,n) of
(si,L)i=1,...,n, (K̃s, (ti,K)i=0,...,n) of
(si,K)i=1,...,n, and (R̃s, (ti,R)i=0,...,n)
of (si,R)i=1,...,n, with t0,∗ = ti,∗◦si,∗
for ∗ ∈ {L, K,R}. Since ti,L ◦ li ◦
si,K = ti,L ◦ si,L ◦ l0 = t0,L ◦ l0, we get an induced morphism l̃s : K̃s → L̃s

with l̃s ◦ ti,K = ti,L ◦ li for i = 0, . . . , n. Similarly, we obtain r̃s : K̃s → R̃s with
r̃s ◦ ti,K = ti,R ◦ ri for i = 0, . . . , n.

The colimit of a bundle of n morphisms can be constructed by iterated
pushout constructions, which means that we only have to require pushouts
over M-morphisms. Since pushouts are closed under M-morphisms, the iter-
ated pushout construction leads to t ∈M.

It remains to show that (14i) resp. (14i)+(1i) and (15i) resp. (15i)+(2i) are
pullbacks, and (14i) resp. (14i) + (1i) has a pushout complement for ti,L ◦ li. We
prove this by induction over j for (14i) resp. (14i) + (1i), the pullback property
of (15i) follows analogously.

We prove: Let L̃j and K̃j be the colimits of (si,L)i=1,...,j and (si,K)i=1,...,j ,
respectively. Then (16ij) is a pullback with pushout complement property for all
i = 0, . . . , j.

13

Ki K̃j

Li L̃j

li (16ij)

K0

L0

K1 K̃1

L1 L̃1

l0

s1,K

s1,L

l1 (1611)(11)

Basis j = 1: The colimits of s1,L

and s1,K are L1 and K1, respectively,
which means that (1601) = (1) +
(1611) and (1611) are both pushouts
and pullbacks.

K0

Kj+1

L0

Lj+1

K̃j

K̃j+1

L̃j

L̃j+1

sj+1,K

l0

lj+1

sj+1,L

Induction step j → j+1: Construct L̃j+1 =
L̃j +L0 Lj+1 and K̃j+1 = K̃j +K0 Kj+1 as
pushouts, and we have the following cube with
the top and bottom faces as pushouts, the
back faces as pullbacks, and by the van Kam-
pen property also the front faces are pullbacks.
Moreover, by Lemma A.3 the front faces have
the pushout complement property, and by Lemma A.4 this holds also for (160j)
and (16ij) as compositions.

Thus, for a given n, (16in) is the required pullback (14i) resp. (14i) + (1i)
with pushout complement property, using K̃n = K̃s and L̃n = L̃s.

ac0

aci

ãcs

L0 K0 R0

Li Li0 Ei

L̃s L̃0 Ẽ

p0 :

p∗i :

p̃∗s :

l0 r0

ui vi

ũ ṽ

si,L wi ei1

ti,L l̃i k̃i

(1′i) (3i)

(17i) (18i)

Moreover, we have pushout comple-
ments (17i) resp. (17i) + (1′i) for ti,L ◦
li. Since ac0 and aci are complement-
compatible for all i we have that aci

∼=
Shift(si,L, ac0) ∧ L(p∗i , Shift(vi, ac′i)). For
any ac′i, it holds that Shift(ti,L, L(p∗i ,
Shift(vi, ac′i)))) ∼= L(p̃∗s, Shift(k̃i ◦ vi, ac′i))∼= L(p̃∗s, Shift(ṽ, Shift(l̃i, ac′i))), since all squares are pushouts by pushout-
pullback decomposition and the uniqueness of pushout complements.
Define ac∗i := Shift(l̃i, ac′i) as an application condition on L̃0. It
follows that ãcs =

∧
i=1,...,n Shift(ti,L, aci) ∼=

∧
i=1,...,n(Shift(ti,L ◦

si,L, ac0) ∧ Shift(ti,L, L(p∗i , Shift(vi, ac′i)))) ∼= Shift(t0,L, ac0) ∧
∧

i=1,...,n L(p̃∗s,
Shift(ṽ, ac∗i)).

For i = 0 define ac′s0 =
∧

j=1,...,n ac∗j , and hence ˜acs = Shift(t0,L, ac0) ∧
L(p̃∗s, Shift(ṽ, ac′s0)) implies the complement-compatibility of ac0 and ãcs. For
i > 0, we have that Shift(t0,L, ac0)∧L(p̃∗s, Shift(ṽ, ac∗i)) ∼= Shift(ti,L, aci). Define
ac′si =

∧
j=1,...,n\i ac∗j , and hence ˜acs = Shift(ti,L, aci) ∧ L(p̃∗s, Shift(ṽ, ac′si)) im-

plies the complement-compatibility of aci and ãcs. ut

The application of an amalgamated rule yields an amalgamated transforma-
tion.

Definition 10 (Amalgamated transformation). The application of an amal-
gamated rule to a graph G is called an amalgamated transformation.

Example 3. Consider the bundle s = (s1, s2, s3 = s1) of the kernel morphisms
depicted in Fig. 1. The corresponding amalgamated rule p̃s is shown in the top
row of Fig. 5. This amalgamated rule can be applied to the graph G leading
to the amalgamated transformation depicted in Fig. 5, where the application
condition ãcs is obviously fulfilled by the match m̃.

14

p̃s :

ãcs

ãcs = ¬∃b1 ∧ ¬∃b2 ∧ ¬∃b3 ∧ ¬∃b4

1

2 3 4

L̃s

1

2 3 4

K̃s

1

2 3 4

R̃s

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

D

1

2 3 4

5 6 7

H

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

L̃s

l̃s r̃s

f g

m̃ k̃ ñ

b1

b2

b3

b4

Fig. 5. An amalgamated transformation

If we have a bundle of direct transformations of a graph G, where for each
transformation one of the multi rules is applied, we want to analyze if the amal-
gamated rule is applicable to G combining all the single transformation steps.
These transformations are compatible, i.e. multi-amalgamable, if the matches
agree on the kernel rules, and are independent outside.

Definition 11 (Multi-amalgamable). Given a bundle of kernel morphisms
s = (si : p0 → pi)i=1,...,n, a bundle of direct transformations steps (G =

pi,mi===⇒
Gi)i=1,...n is s-multi-amalgamable, or short s-amalgamable, if

– it has consistent matches, i.e. mi◦si,L = mj◦sj,L =: m0 for all i, j = 1, . . . , n
and

– it has weakly independent matches, i.e. for all i 6= j consider the pushout
complements (1′i) and (1′j), and then there exist morphisms pij : Li0 → Dj

and pji : Lj0 → Di such that fj◦pij = mi◦ui, fi◦pji = mj◦uj, gj◦pij |= ac′i,
and gi ◦ pji |= ac′j.

L0K0 K0

LiLi0 Lj0

Ki Kj

Lj

GDi Dj

Ri Rj

Gi Gj

ac′i ac′j

ac0

si,L sj,L

mi mj

m0

l0

wi

ui

l0

wj

uj

si,K

li

ki

fi

sj,K

lj

kj

fj

pijpji

rj

gj

nj

ri

gi

ni

(1′i) (1′j)

15

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

G1

1

2 3 4

5 6 7

G2

1

2 3 4

5 6 7

G3

p1, m1

p2, m2

p1, m3

Fig. 6. An s-amalgamable bundle of direct transformations

Similar to the characterization of parallel independence in [2] we can give a
set-theoretical characterization of weak independence.

Fact 6 For graphs and other set-based structures, weakly independent matches
means that mi(Li) ∩mj(Lj) ⊆ m0(L0) ∪ (mi(li(Ki)) ∩mj(lj(Kj))) for all i 6=
j = 1, . . . , n, i.e. the elements in the intersection of the matches mi and mj are
either preserved by both transformations, or are also matched by m0.

L0

LiKi Lj Kj

G

si,L sj,L

mi mj

m0
li lj

Proof. We have to proof
the equivalence of mi(Li)
∩ mj(Lj) ⊆ m0(L0) ∪
(mi(li(Ki)) ∩ mj(lj(Kj)))
for all i 6= j = 1, . . . , n
with the definition of weakly independent matches.

“⇐” Let x = mi(yi) = mj(yj), and suppose x /∈ m0(L0). Since (1′i) is a
pushout we have that yi = ui(zi) ∈ ui(Li0\wi(K0)), and x = mi(ui(zi)) =
fj(pi(zi)) = mj(yj), and by pushout properties yj ∈ lj(Kj) and x ∈ mj(lj(Kj)).
Similarly, x ∈ mi(li(Ki)).

“⇒” For x ∈ Li0, x = wi(k) define pij(x) = kj(sj,K(k)), then fj(pij(x)) =
fj(kj(sj,K(k))) = mj(lj(sj,K(k))) = mj(sj,L(l(k))) = mi(si,L(l0(k))) =
mi(ni(wi(k))) = mi(ui(x)). Otherwise, x /∈ wi(K0), i.e. ui(x) /∈ si,L(L0), and de-
fine pij(x) = y with fj(y) = mi(ui(x)). This y exists, because either mi(ui(x)) /∈
mj(Lj) or mi(ui(x)) ∈ mj(Lj) and then mi(ui(x)) ∈ mj(lj(Kj)), and in both
cases mi(ui(x)) ∈ fj(Dj). Similarly, we can define pji with the required prop-
erty. ut

Example 4. Consider the bundle s = (s1, s2, s3 = s1) of kernel morphisms from
Ex. 3. For the graph G given in Fig. 5 we find matches m0 : L0 → G, m1 : L1 →
G, m2 : L2 → G, and m3 : L1 → G mapping all nodes from the left hand side to
their corresponding nodes in G, except for m3 mapping node 2 in L1 to node 4 in
G. For all these matches, the corresponding application conditions are fulfilled
and we can apply the rules p1, p2, p1, respectively, leading to the bundle of direct
transformations depicted in Fig. 6. This bundle is s-amalgamable, because the

16

matches m1, m2, and m3 agree on the match m0, and are weakly independent,
because they only overlap in m0.

For an s-amalgamable bundle of direct transformations, each single transfor-
mation step can be decomposed into an application of the kernel rule followed
by an application of the complement rule. Moreover, all kernel rule applications
lead to the same object, and the following applications of the complement rules
are parallel independent.

G G0

Gi

Gj

p0,m0
pi,mi

pj ,mj

pi,mi

pj ,mj

Fact 7. Given a bundle of kernel mor-
phisms s = (si : p0 → pi)i=1,...,n and an s-
amalgamable bundle of direct transformations
(G =

pi,mi===⇒ Gi)i=1,...,n then each direct transfor-
mation G =

pi,mi===⇒ Gi can be decomposed into
a transformation G =

p0,m0===⇒ G0 =
pi,mi===⇒ Gi.

Moreover, the transformations G0 =
pi,mi===⇒ Gi are pairwise parallel independent.

Proof. From Fact 4 it follows that each single direct transformation G =
pi,mi===⇒ Gi

can be decomposed into a transformation G =
p0,mi

0===⇒ Gi
0 =

pi,mi===⇒ Gi with mi
0 =

mi ◦ si,L, and since the bundle is s-amalgamable, m0 = mi ◦ si,L = mi
0 and

G0 := Gi
0 for all i = 1, . . . , n.

We have to show the pairwise parallel independence. From the constructions
of the complement rule and the Concurrency Theorem we obtain the following
diagram for all i = 1, . . . , n.

L0 K0 Si R0 Li Ki Ri

Li Ki Ki Ri0

Li0 Li Ei Ri0 Ri

Ki

G D0 G0 Di Gi

Di

l0 si1 si3 li ri

li vi1 wi

ui

ui1 ei2 ui vi

li

li0 ri0

ri

si,L si,K si4 ui2

li0 li ui

ei2 wi ti

mi

xi0 ki0 xi ni

ki

fi

di0 di
gi

f0 g0 fi gi

(1i) (6i) (7i)

(8i) (9i)

(9i) (13i)

For i 6= j, from weakly independent matches it follows that we have a mor-
phism pij : Li0 → Dj with fj ◦ pij = mi ◦ ui. It follows that fj ◦ pij ◦ wi =
mi ◦ ui ◦ wi = mi ◦ si,L ◦ l0 = m0 ◦ l0 = mj ◦ sj,L ◦ l0 = mj ◦ uj ◦ wj =
mj ◦ uj ◦ lj0 ◦ sj,K = mj ◦ lj ◦ sj,K = fj ◦ kj ◦ sj,K , and with fj ∈ M we have
that pij ◦ wi = kj ◦ sjk (∗).

Now consider the pushout (19i) = (6i) + (8i) in comparison with object Dj

and morphisms dj ◦ pij and xj ◦ uj2 ◦ si3. We have that dj ◦ pij ◦ li0 ◦ si,K =

dj◦pij◦wi
(∗)
= dj◦kj◦sj,K = xj◦rj0◦sj,K = xj◦wj◦vj1◦sj,K = xj◦uj2◦sj3◦sj1 =

17

xj ◦ uj2 ◦ r0 = xj ◦ uj2 ◦ si3 ◦ si1. Now pushout (18i) induces a unique morphism
qij with qij ◦ ui1 = dj ◦ pij and qij ◦ li ◦ si4 = xj ◦ uj2 ◦ si3.

K0 Si

Li0 Li

Dj

si1

li0◦si,K li◦si4

ui1 xj◦uj2◦si3

qij
dj◦pij

(19i)

For the parallel independence of G0 =
pi,mi===⇒

Gi, G0 =
pj ,mj===⇒ Gj , we have to show that qij :

Li → Dj satisfies fj ◦ qij = ki0 ◦ ei2 =: mi.
With f0 ∈ M and f0 ◦ dj0 ◦ pij = fj ◦ pij =

mi ◦ ui = f0 ◦ ci0 it follows that dj0 ◦ pij = xi0

(∗∗). This means that fj ◦qij ◦ui1 = fj ◦dj ◦pij =

g0 ◦d0 ◦pij
(∗∗)
= g0 ◦xi0 = ki0 ◦ei2 ◦ui1. In addition, we have that fj ◦qij ◦ li ◦si4 =

fj ◦ xj ◦ uj2 ◦ si3 = kj0 ◦ uj ◦ uj2 ◦ si3 = ki0 ◦ ui ◦ ui2 ◦ si3 = ki0 ◦ ei2 ◦ li ◦ si4.
Since (19i) is a pushout, ui1 and li ◦ si4 are jointly epimorphic, and it follows
that fj ◦ qij ◦ ei2 = ki0 ◦ ei2.

If ac0 and aci are not complement-compatible, then aci = true and trivially
gj ◦ qij |= aci for all j 6= i. Otherwise, we have that gj ◦ pij |= ac′i, and with
gj ◦ pij = gj ◦ dj ◦ pij = gj ◦ qij ◦ ui1 it follows that gj ◦ qij ◦ ui1 |= ac′i, which is
equivalent to gj ◦ qij |= Shift(ui1, ac′1) = aci. ut

If a bundle of direct transformations of a graph G is s-amalgamable, then we
can apply the amalgamated rule directly to G leading to a parallel execution of
all the changes done by the single transformation steps.

Theorem 2 (Multi-Amalgamation). Consider a bundle of kernel morphisms
s = (si : p0 → pi)i=1,...,n.

1. Synthesis. Given an s-amalgamable bundle of direct transformations
(G =

pi,mi===⇒ Gi)i=1,...,n then there is an amalgamated transformation G =
p̃s,m̃
===⇒

H and transformations Gi =
qi=⇒ H over the complement rules qi of the kernel

morphisms ti : pi → p̃s such that G =
pi,mi===⇒ Gi =

qi=⇒ H is a decomposition of
G =

p̃s,m̃
===⇒ H.

H

Gi

G p̃s,m̃

pi,mi qi

2. Analysis. Given an amalgamated transformation G =
p̃s,m̃
===⇒ H then there are

si-related transformations G =
pi,mi===⇒ Gi =

qi=⇒ H for i = 1, . . . , n such that
G =

pi,mi===⇒ Gi is s-amalgamable.
3. Bijective Correspondence. The synthesis and analysis constructions are in-

verse to each other up to isomorphism.

Proof. 1. Synthesis. We have to show that p̃s is applicable to G leading to an
amalgamated transformation G =

p̃s,m̃
===⇒ H with mi = m̃ ◦ ti,L, where ti : pi → p̃i

is the kernel morphism constructed in Fact 5. Then we can apply Fact 4 which
implies the decomposition of G =

p̃s,m̃
===⇒ H into G =

pi,mi===⇒ Gi =
qi=⇒ H, where qi is

the (weak) complement rule of the kernel morphism ti.
Given the kernel morphisms, the amalgamated rule, and the bundle of direct

transformations, we have pullbacks (1i), (2i), (14i), (15i), and pushouts (20i),
(21i).

18

ac0

aci

ãcs

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

Li Ki Ri

G Di Gi

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

li ri

fi
gi

mi ki ni

(1i) (2i)

(14i) (15i) (20i) (21i)

Using Fact 7, we know that we can apply p0 via m0 leading to a direct
transformation G =

p0,m0===⇒ G0 given by pushouts (200) and (210). Moreover, we
find decompositions of pushouts (200) and (20i) into pushouts (1′i) and (22i)
resp. (22i) and (23i) by M-pushout pullback decomposition and uniqueness of
pushout complements.

L0 K0

Li Li0 Ki

G D0 Di

L0 K0 R0

G D0 G0

l0

si,K

ui li0

si,L wi

f0 di0

mi qi ki

l0 r0

f0 g0

m0 k0 n0

(1′i)

(22i) (23i)(200) (210)

Since we have consistent matches, mi ◦ si,L = m0 for all i = 1, . . . , n. Then
the colimit L̃s implies that there is a unique morphism m̃ : L̃s → G with
m̃◦ti,L = mi and m̃◦t0,L = m0 (a). Moreover, mi |= aci ⇒ m̃◦ti,L |= aci ⇒ m̃ |=
Shift(ti,L, aci) for all i = 1, . . . , n, and thus m̃ |= ãcs =

∧
i=1,...,n Shift(ti,L, aci)

Weakly independent matches means that there exist morphisms pij with
fj ◦ pij = mi ◦ ui for i 6= j. Construct D as the limit of (di0)i=1,...,n with
morphisms di. Now f0 being a monomorphism with f0 ◦ di0 ◦ pji = fi ◦ pji =
mj ◦uj = f0 ◦ qj implies that di0 ◦pji = qj . It follows that di0 ◦pji ◦ lj0 = qj ◦ lj0,
and together with di0 ◦ ki = qi ◦ li0 limit D implies that there exists a unique
morphism rj with di ◦ rj = pji ◦ lji, di ◦ ri = ki, and d0 ◦ rj = qj ◦ lj0 (b).

Similarly, fj being a monomorphism with fj ◦ pij ◦ li0 ◦ si,K = mi ◦ ui ◦wi =
mi ◦ si,L ◦ l0 = m0 ◦ l0 = mj ◦ sj,L ◦ l0 = mj ◦ lj ◦ sj,K = fj ◦ kj ◦ sj,K implies
that pij ◦ li0 ◦ si,K = kj ◦ sj,K . Now colimit K̃s implies that there is a unique
morphisms r̃j with r̃j ◦ ti,K = pij ◦ li0, r̃j ◦ tj,K = kj , and r̃j ◦ t0,K = kj ◦ sj,K

(c). Since di0 ◦ r̃i ◦ ti,K = di0 ◦ ki = qi ◦ li0 = dj0 ◦ pij ◦ li0 = dj0 ◦ r̃j ◦ ti,K and
di0 ◦ r̃i ◦ t0,K = di0 ◦ki ◦ si,K = k0 = dj0 ◦ r̃j ◦ t0,K colimit K̃s implies that for all
i, j we have that di0 ◦ r̃i = dj0 ◦ r̃j =: r̃. From limit D it now follows that there
exists a unique morphism k̃ with di ◦ k̃ = r̃i and d0 ◦ k̃ = r̃ (d).

L0 Li

L̃s

G

Kj

D

Di D0

K0 Ki

K̃s

Dj

K̃s

D

Di D0

si,L

t0,L ti,L

mim0
m̃

si,K

t0,K ti,K

i 6=j:pij◦li0
i=j:ki

kj◦sj,K
r̃j

di0

d0di

i6=j:pji◦lj0
i=j:ki

qj◦lj0
rj

di0

d0di

r̃i r̃
k̃

(a)

(b)

(c)

(d)

19

We have to show that (20s) with f = f0 ◦d0 is a pushout. With f ◦ k̃ ◦ ti,K =
f0 ◦d0 ◦ k̃◦ ti,K = f0 ◦ r̃◦ ti,K = f0 ◦di0 ◦ r̃i ◦ ti,K = f0 ◦di0 ◦ki = fi ◦ki = mi ◦ li =
m̃ ◦ ti,L ◦ li = m̃ ◦ l̃s ◦ ti,K and f ◦ k̃ ◦ t0,K = f0 ◦ d0 ◦ k̃ ◦ t0,K = f0r̃ ◦ t0,K =
f0◦di0◦ r̃i◦t0,K = f0◦di0◦ki◦si,K = f0◦k0 = m0◦l0 = m̃◦t0,L◦l0 = m̃◦ l̃s◦t0,K

and K̃s being colimit it follows that f ◦ k̃ = m̃ ◦ l̃s, thus the square commutes.
Pushout (23i) can be decomposed into pushouts (24i) and (25i). Using Lemma

A.5 it follows that D0 is the colimit of (xi)i=1,...,n, because (23i) is a pushout,
D is the limit of (di0)i=1,...,n, and we have morphisms pij with dj0 ◦ pij = qi.
Then Lemma A.6 implies that also (25) is a pushout.

Ls Ks

G D

Ki D

Li0 Pi

Di

D0

+Ki +Li0

D D0

l̃s

f

m̃ k̃

ri

xi0

li0 xi

di

yi0

di0

+li0

d0

r d(20s) (24i) (25i) (25)

K0

K0

+Ki

+Li0

K̃s

L̃0

K0

K0

D

D0

D

D0

K̃s L̃0

D D0

+li0
r

d

k̃

d0

idD

idD0

d0 d0

k̃ (26)

. . .
iKi
◦si,K

. . .
iLi0◦wi. . .

k̃◦t0,K

. . .
k0

Now consider the co-
equalizers K̃s of (iKi

◦
si,K : K0 → +Ki)i=1,...,n

(which is actually K̃s by
construction of colimits),
L̃0 of (iLi0 ◦ wi : K0 →
+Li0)i=1,...,n (as already
constructed in Fact 5),
D of (k̃ ◦ t0,K : K0 →
D)i=1,...,n, and D0 of
(k0 : K0 → D0)i=1,...,n. Consider the following cube, where the top square
with identical morphisms is a pushout, the top cube commutes, and the middle
square is pushout (25). Using Lemma A.7 it follows that also the bottom (26)
constructed of the four coequalizers is a pushout.

Now consider the following cube, where the top and middle squares are
pushouts and the two top cubes commute. Using again Lemma A.7 it follows
that (20s) in the bottom is actually a pushout, where (27) = (1′i) + (17i) is a
pushout by composition. Now we can construct pushout (21s) which completes
the direct transformation G =

p̃s,m̃
===⇒ H.

K0

K0

K0

K̃s

L0

L̃0

K̃s

L̃s

K0

K0

K0

D

L0

D0

D

G

K0 L̃0

L0 L̃s

L̃s

G

K̃s R̃s

D Hl̃s
k̃

f
m̃

t0,K

l0

l̃s r̃s

f g

m̃ k̃ ñ

(27)

(20s) (21s)

20

2. Analysis. Using the kernel morphisms ti we obtain transformations G =
pi,mi===⇒

Gi =
qi=⇒ H from Fact 4 with mi = m̃ ◦ ti,L. We have to show that this bundle of

transformation is s-amalgamable. Applying again Fact 4 we obtain transforma-

tions G =
p0,mi

0===⇒ Gi
0 =

pi=⇒ Gi with mi
0 = mi ◦ si,L. It follows that mi

0 = mi ◦ si,L =
m̃ ◦ ti,L ◦ si,L = m̃ ◦ t0,L = m̃ ◦ tj,L ◦ sj,L = mj ◦ sj,L and thus we have consistent
matches with m0 := mi

0 well-defined and G0 = Gi
0.

K̃s L̃0 L̃s

K0 L0

D D0 G

l0

ũ

d0 f0

k

t0,L

m̃(26) (28)

(27)

It remains to show the weakly independent
matches. Given the above transformations we have
pushouts (200), (20i), (20s) as above. Then we
can find decompositions of (200) and (20s) into
pushouts (27) + (28) and (26) + (28), respectively.
Using pushout (26) and Lemma A.8 it follows
that (25) is a pushout, since K̃s is the colimit of
(si,L)i=1,...,n and L̃0 is the colimit of (wi)i=1,...,n, and idK0 is obviously an epi-
morphism.

Now Lemma A.6 implies that there is a decomposition into pushouts (24i)
with colimit D0 of (xi)i=1,...,n and pushout (25i) byM-pushout pullback decom-
position. Since D0 is the colimit of (xi)i=1,...,n and (25j) is a pushout it follows
that Dj is the colimit of (xi)i=1,...,j−1,j+1,...,n with morphisms qij : Pi → Dj

and dj0 ◦ qij = yi0. Thus we obtain for all i 6= j a morphism pij = qij ◦ xi0 and
fj ◦ pij = f0 ◦ dj0 ◦ qij ◦ xi0 = f0 ◦ yi0 ◦ xi0 = mi ◦ ui.

K0 Li0 Pi D0

Ki D Di

L0 Li G

Pj

D0

D

Dj

Pi

Li0

wi

ri di

xi0 yi0

si,L mi

l0

li0

ui

xi di0

f0

xj dj

yj0
dj0

xi

qij

xi0

yi0(1′i)

(24i) (25i)

(25j)

3. Bijective Correspondence. Because of the uniqueness of the used construc-
tions, the above constructions are inverse to each other up to isomorphism. ut

Remark 3. Note, that qi can be constructed as the amalgamated rule of the

kernel morphisms (pK0 → pj)j 6=i, where pK0 = (K0

idK0←− K0

idK0−→ K0, true)) and
pj is the complement rule of pj .

For n = 2 and rules without application conditions, the Multi-Amalgamation
Theorem specializes to the Amalgamation Theorem in [4]. Moreover, if p0 is the
empty rule, this is the Parallelism Theorem in [14], since the transformations
are parallel independent for an empty kernel match.

Example 5. As already stated in Example 4, the transformations G =
p1,m1===⇒ G1,

G =
p2,m2===⇒ G2, and G =

p1,m3===⇒ G3 shown in Fig. 6 are s-amalgamable for the
bundle s = (s1, s2, s3 = s1) of kernel morphisms. Applying Fact 7, we can de-
compose these transformations into a transformation G =

p0,m0===⇒ G0 followed by
transformations G0 =

p1,m1===⇒ G1, G0 =
p2,m2===⇒ G2, and G0 =

p1,m3===⇒ G3 via the com-
plement rules, which are pairwise parallel independent. These transformations

21

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

G0

1

2 3 4

5 6 7

G1

1

2 3 4

5 6 7

G2

1

2 3 4

5 6 7

G3

p0, m0 p1, m1

p2, m2

p1, m3

Fig. 7. The decomposition of the s-amalgamable bundle

are depicted in Fig. 7. Moreover, Thm. 2 implies that we obtain for this bundle
of direct transformations an amalgamated transformation G =

p̃s,m̃
===⇒ H, which is

the transformation already shown in Fig. 5. Vice versa, the analysis of this amal-
gamated transformation leads to the s-amalgamable bundle of transformations
G =

p1,m1===⇒ G1, G =
p2,m2===⇒ G2, and G =

p1,m3===⇒ G3 from Fig. 6.

Extension to Multi-Amalgamation with Maximal Matchings

An important extension of the presented theory is the introduction of interac-
tion schemes and maximal matchings. An interaction scheme defines a bundle of
kernel morphisms. In contrast to a concrete bundle, for the application of such
an interaction scheme all possible matches for the multi rules are computed that
agree on a given kernel match and lead to an amalgamable bundle of transfor-
mations. In our example, the interaction scheme is = {s1, s2} contains the two
kernel morphisms from Fig. 1. For the kernel match m0, the matches m1, m2, m3

are maximal: they are s-amalgamable, and any other match for p1 or p2 that
agrees an m0 would hold only already matched elements. This technique is very
useful for the definition of the semantics of visual languages. For our example
concerning statcharts [11], an unknown number of state transitions triggered by
the same event, which is highly dependent on the actual system state, can be
handled in parallel.

5 Conclusion

In this paper, we have generalized the theory of amalgamation in [4] to multi-
amalgamation in M-adhesive categories. More precisely, the Complement Rule
and Amalgamation Theorems in [4] are presented on a set-theoretical basis for
pairs of plain graph rules without any application conditions. The Complement
Rule and Multi-Amalgamation Theorems in this paper are valid in adhesive
and M-adhesive categories for n rules with application conditions [13]. These
generalizations are non-trivial and important for applications of parallel graph

22

transformations to communication-based systems [8], to model transformations
from BPMN to BPEL [15], and for the modeling of the operational semantics
of visual languages [9], where interaction schemes are used to generate multi-
amalgamated rules and transformations based on suitable maximal matchings.

The theory of multi-amalgamation is a solid mathematical basis to analyze
interesting properties of the operational semantics, like termination, local con-
fluence, and functional behavior. However, it is left open for future work to
generalize the corresponding results in [2], like the Local Church–Rosser, Paral-
lelism, and Local Confluence Theorems, to the case of multi-amalgamated rules,
especially to the operational semantics of statecharts based on amalgamated
graph transformation with maximal matchings in [11].

References

[1] Lack, S., Sobociński, P.: Adhesive Categories. In Walukiewicz, I., ed.: Proc. of
FOSSACS 2004. Volume 2987 of LNCS., Springer (2004) 273–288

[2] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer (2006)

[3] Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Vol 1: Foundations. World Scientific (1997)

[4] Böhm, P., Fonio, H.R., Habel, A.: Amalgamation of Graph Transformations: A
Synchronization Mechanism. JCSS 34(2-3) (1987) 377–408

[5] Ehrig, H., Kreowski, H.J.: Parallelism of Manipulations in Multidimensional In-
formation Structures. In Mazurkiewicz, A., ed.: Proc. of MFCS’76. Volume 45 of
LNCS., Springer (1976) 285–293

[6] Taentzer, G., Beyer, M.: Amalgamated Graph Transformations and Their Use for
Specifying AGG - an Algebraic Graph Grammar System. In Schneider, H.J.,
Ehrig, H., eds.: Graph Transformations in Computer Science. Volume 776 of
LNCS., Springer (1994) 380–394

[7] Heckel, R., Müller, J., Taentzer, G., Wagner, A.: Attributed Graph Transforma-
tions with Controlled Application of Rules. Technical Report B-19, Universitat
de les Illes Balears (1995)

[8] Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication Based Systems. PhD thesis, TU Berlin (1996)

[9] Ermel, C.: Simulation and Animation of Visual Languages based on Typed Al-
gebraic Graph Transformation. PhD thesis, TU Berlin (2006)

[10] Löwe, M.: Algebraic Approach to Single-Pushout Graph Transformation. TCS
109 (1993) 181–224

[11] Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A Visual Interpreter Semantics for
Statecharts Based on Amalgamated Graph Transformation. (2010) submitted.

[12] Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. MSCS 19(2) (2009) 245–296

[13] Ehrig, H., Habel, A., Lambers, L.: Parallelism and Concurrency Theorems for
Rules with Nested Application Conditions. In Drewes, F., Habel, A., Hoffmann,
B., Plump, D., eds.: Essays Dedicated to H.-J. Kreowski on the Occasion of His
60th Birthday. ECEASST (2010) 109–133 to appear.

[14] Ehrig, H., Golas, U., Taentzer, G., Ermel, C., Biermann, E.: Parallel Independence
of Amalgamated Graph Transformations Applied to Model Transformation. In

23

Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B., eds.: Essays
Dedicated to M. Nagl. LNCS, Springer (2010) to appear.

A Additional Lemmas

The following lemmas are valid in all adhesive and M-adhesive categories and
used in the proofs of the main theorems.

A B

C D

A B

C ′ D

C

m

n

f g

m

n′

f ′ g

n

f

c

(1) (2)

Lemma A.1. If (1) is a pushout, (2) is
a pullback, and n′ ∈ M then there exists
a unique morphism c : C ′ → C such that
c ◦ f ′ = f , n ◦ c = n′, and c ∈M.

Proof. Since (2) is a pullback, n′ ∈ M implies that m ∈ M, and then also
n ∈M because (1) is a pushout.

Construct the pullback (3) with v, v′ ∈ M, and since n′ ◦ f = g ◦m = n ◦ f
there is a unique morphism f∗ : A→ C ′′ with v ◦ f∗ = f ′ and v′ ◦ f∗ = f . Now
consider the following cube (4), where the bottom face is pushout (1), the back
left face is a pullback because m ∈M, the front left face is pullback (2), and the
front right face is pullback (3). Now by pullback composition and decomposition
also the back right face is a pullback, and then the VK property implies that
the top face is a pushout. Since (5) is a pushout and pushout objects are unique
up to isomorphism this implies that v is an isomorphism and C ′′ ∼= C ′. Now
define c := v′ ◦ v−1 and we have that c ◦ f ′ = v′ ◦ v−1 ◦ f ′ = v′ ◦ f∗ = f ,
n ◦ c = n ◦ v′ ◦ v−1 = n′, and c ∈M by decomposition of M-morphisms.

A

C ′′ C ′

C D

A C ′′

A C ′′

A

C ′′

A

C

A

C ′

B

D

f ′f∗

f v

n

v′ n′

f∗

f ′

idA v

f∗

idA

idA

v

v′fm

f ′

m

n′

g
n

(3)

(4)

(5)

ut

A B

C D

E

F

f

f ′

m n o

g

g′

(1) (2)

Lemma A.2. If (1) + (2) is a pullback, (1) is a
pushout, (2) commutes, and o ∈ M then also (2) is
a pullback.

Proof. With o ∈M, (1)+(2) being a pullback, and (1) being a pushout we have
that m, n ∈ M. Construct the pullback (3) of o and g′, it follows that n ∈ M
and we get an induced morphism b : B → B with g ◦ b = g, n ◦ b = n, and by
decomposition of M-morphisms b ∈M.

By pullback decomposition, also (4) is a pullback and we can apply Lemma 1
with pushout (1) and n ∈M to obtain a unique morphism b ∈M with n◦b = n

24

and b ◦ b ◦ f = f . Now n ∈M and n ◦ b ◦ b = n ◦ b = n implies that b ◦ b = idB ,
and similarly n ∈ M and n ◦ b ◦ b = n ◦ b = n implies that b ◦ b = idB , which
means that B and B are isomorphic such that also (2) is a pullback.

B E

D F

A C

B D

B

A B B

C D

E

F

g

g′

n o

m

n

b◦f f ′

n

f

b

f b

f ′

m n o

g

g′

(3) (4) (3) (3)

ut

A′

B′

A

B

C ′

D′

C

D

m′

a

f ′

g′

b
m

f

n′

c

n
g

d

Lemma A.3. Given the following commutative
cube with the bottom face as a pushout, then
the front right face has a pushout complement
over g ◦ b if the back left face has a pushout
complement over f ◦ a.

A′

B′

A

B

C ′

D′

C

D
Bf

Cf

Bf B

Cf D

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

af

bf

cf

b∗
m◦bf

n◦cf

af g(2)

(1)

Proof. Construct the initial
pushout (1) over f . Since the
back left face has a pushout
complement there is a mor-
phism b∗ : Bf → A′ such that
a ◦ b∗ = bf . Since the bot-
tom face is a pushout, (2) as
the composition is the initial
pushout over g. Now b ◦ m′ ◦
b∗ = m ◦ a ◦ b∗ = m ◦ bf , and thus the pushout complement of g ◦ b exists. ut

A B

C D

E F

m

n

f f ′

o

g g′

(1)

(2)

Lemma A.4. Given pullbacks (1) and (2) with pushout com-
plements over f ′ ◦m and g′ ◦n, respectively, then also (1)+(2)
has a pushout complement over (g′ ◦ f ′) ◦m.

A B

C

C ′
D

E
E′

F

A B

C ′C D

E′ G F

m

n

f
n∗

f∗
f ′

o

g
o∗

g∗ g′

c

e

m

n∗

f∗ f ′

g′

e

c

g∗

(1′)

(2′)

(1)

(3) (4)

Proof. Let C ′ and E′ be the
pushout complements of (1) and
(2), respectively. By Lemma 1 there
are morphisms c and e such that
c ◦ f = f∗, n∗ ◦ c = n, e ◦ g = g∗,
and o∗ ◦ e = o. Now (2′) can be
decomposed into pushouts (3) and
(4), and (1′) + (4) is also a pushout and the pushout complement of (g′ ◦f ′)◦m.

ut

25

Ai Ci

Bi D

Ai E

Bi Fi

D

E

Ci D

Ai

E

Cj D

Bi Cj

D

E Fi

D

ai

bi ci

di

gi

bi hi

ki

di

li

e

ei e

ci

ei e

ci

i 6=j:fij◦bi

i=j:ai

e

ci◦ai

fij

di
cj

hi

lie(3i)

(1i) (2)

(3)

(4)

Lemma A.5. Given the
pushouts (1i) and (3i)
with bi ∈ M for i =
1, . . . , n, morphisms fij :
Bi → Cj with cj◦fij = di

for all i 6= j, and the limit
(2) such that gi is the in-
duced morphism into E
using cj◦fij◦bi = di◦bi =
ci ◦ai, then (4) is the col-
imit of (hi)i=1,...,n, where
li is the induced morphism from pushout (3i) compared with e ◦ gi = ci ◦ ei ◦ gi =
ci ◦ ai = di ◦ bi.

Proof. We prove this by induction over n.
I.B. n = 1

A1 C1

B1 D

C1

C1 D

C1 D

D

ai

bi ci

di

ei e

ci

hi

lie(11) (2)
(41)

For n = 1, we have that C1 is
the limit of c1, i.e. E = C1, it
follows that F1 = C1 for the
pushout (31) = (11), and obvi-
ously (41) is a colimit.

I.S. n→ n + 1
Consider the pushouts (1i) with bi ∈ M for i = 1, . . . , n + 1, morphisms fij :
Bi → Cj with cj ◦ fij = di for all i 6= j, the limits (2n) and (2n+1) of (ci)i=1,...,n

and (ci)i=1,...,n+1, respectively, leading to pullback (5n+1) by construction of
limits. Moreover, gin and gin+1 are the induced morphisms into En and En+1,
respectively, leading to pushouts (3in) and (3in+1). By induction hypothesis, (4n)
is the colimit of (hin)i=1,...,n, and we have to show that (4n+1) is the colimit of
(hin+1)i=1,...,n+1.

Ai Ci

Bi D

En

Ci D

Ai En

Bi Fin

En Fin

D

En+1 Cn+1

En D

En+1

Ci D

Ai En+1

Bi Fin+1

En+1 Fin+1

D

ai

bi ci

di

ein en

ci

gin

bi hin

kin

hin

linen

en+1n+1

pn+1 cn+1

en

ein+1 en+1

ci

gin+1

bi hin+1

kin+1

hin+1

lin+1en+1

(1i) (2n) (3in) (4n)

(5n+1) (2n+1) (3in+1) (4n+1)

Since (2n) is a limit and ci ◦ fn+1i = dn+1 for all i = 1, . . . , n, we obtain a
unique morphism mn+1 with ein ◦mn+1 = fn+1i and en ◦mn+1 = dn+1. Since
(1n+1) is a pushout and (5n+1) is a pullback, byM-pushout-pullback decompo-
sition also (5n+1) and (6n+1) are pushouts, and it follows that Fn+1n+1 = En.
From pushout (3in+1 and hin ◦ pn+1 ◦ gin+1 = hin ◦ gin = kin ◦ bi we get an
induced morphism qin+1 with qin+1 ◦hin+1 = hin ◦pn+1 and qin+1 ◦kin+1 = kin,
and from pushout decomposition alsy (7in+1) is a pushout.

26

Bn+1

En

Ci D

An+1 En+1

Bn+1 En

Cn+1

D

Ai En+1

Bi Fin+1

En

Fin

fn+1i dn+1

mn+1

ein en

ci

gn+1n+1

bn+1 pn+1

mn+1

en+1n+1

cn+1

en

dn+1

an+1

gin+1

bi hin+1

kin+1

pn+1

hin

qin+1

kin

gin

(2n)

(6n+1) (5n+1) (3in+1) (7in+1)

To show that (4n+1) is a colimit, consider an object X and morphisms (xi)
and y with xi ◦ hin+1 = y for i = 1, . . . , n and xn+1 ◦ pn+1 = y. From pushout
(7in+1) we obtain a unique morphism zi with zi ◦ qin+1 = xi and zi ◦ hin =
xn+1. Now colimit (4n) induces a unique morphism z with z ◦ en = xn+1 and
z ◦ lin = zi. It follows directly that z ◦ lin+1 = z ◦ lin ◦ qin+1 = zi ◦ qin+1 = xi and
z ◦ en+1 = z ◦ en ◦ pn+1 = xn+1 ◦ pn+1 = y. The uniqueness of z follows directly
from the construction, thus (4n+1) is the required colimit.

En+1En Fin+1

D

X

En+1 En

Fin+1 Fin

X

En Fin

D

X

pn+1 hin+1

lin+1en

en+1

xixn+1

z

y

pn+1

hin+1 hin

qin+1
xn+1

xi

zi

hin

linen

z

zixn+1

(7in+1) (4n)

ut

Lemma A.6. Given the following diagrams (1i) for i = 1, . . . , n, (2), and (3),
with b = +bi, and a and e induced by the coproducts +Ai and +Bi, respectively,
then we have:

1. If (1i) is a pushout and (2) a colimit then also (3) is a pushout.
2. If (3) is a pushout then we find a decomposition into pushout (1i) and colimit

(2) with ei ◦ di = e ◦ iBi

Ai C

Bi Di

C Di

E

+Ai +Bi

C E

Ai

+AiC

Bi

+Bi E

ai

bi ci

di

ci

c ei

b

a e

c

bi

b

iAi
iBi

ea

ai ei◦di(1i)
(2) (3) = = =

Proof. 1. Given an object X and morphisms y, z with y ◦ a = z ◦ b. From
pushout (1i) we obtain with z ◦ iBi ◦ bi = z ◦ b ◦ iAi = y ◦ a ◦ iAi = y ◦ ai a
unique morphism xi with xi ◦ ci = y and xi ◦ di = z ◦ iBi . Now colimit (2)
implies a unique morphism x with x ◦ c = y and x ◦ ei = xi. It follows that
x ◦ e ◦ iBi

= x ◦ ei ◦ di = xi ◦ di = z ◦ iBi
, and since z is unique w.r.t. z ◦ iBi

it follows from the coproduct that z = x ◦ e. Uniqueness of x follows from the
uniqueness of x and xi, and hence (3) is a pushout.

27

+Ai +Bi

C E

X

Ai C

Bi

X

Di

C Di

E

X

Bi +Bi

Z

b

a e

c

y

z

x

ai

bi ci

di

y

z◦iBi

xi

ci

c ei

y

x

xi

iBi

z
z◦iBi

(3) (1i)
(2)

2. Define ai := a ◦ iAi
. Now construct pushout (1i). With e ◦ iBi

◦ bi =
e◦b◦ iAi

= c◦ai pushout (1i) induces a unique morphism ei with ei ◦di = e◦ iBi

and ei ◦ ci = c. Given an object X and morphisms y, yi with yi ◦ ci = y we
obtain a morphism z with z ◦ iBi = yi ◦ di from coproduct +Bi. Then we have
that y ◦ a ◦ iAi = yi ◦ ci ◦ ai = yi ◦ di ◦ bi = z ◦ iBi ◦ bi = z ◦ b ◦ iAi , and
from coproduct +Ai it follows that y ◦ a = z ◦ b. Now pushout (3) implies a
unique morphism x with x ◦ c = y and x ◦ e = z. From pushout (1i) using
x ◦ ei ◦ di = x ◦ e ◦ iBi

= z ◦ iBi
= yi ◦ di and x ◦ ei ◦ ci = x ◦ c = y = yi ◦ ci it

follows that x ◦ ei = yi, thus (2) is a colimit.

Ai C

Bi

E

Di

C Di

E

X

Bi +Bi

X

+Ai +Bi

C E

X

ai

bi ci

di

c

e◦iBi

ei

ci

c ei

y

x

yi

iBi

z
yi◦di

b

a e

c

y

z

x

(1i)
(2) (3)

ut

Lemma A.7. Consider colimits (1) – (4) such that (5i) is a pushout for all
i = 1, . . . , n and (7k) – (9k) commute for all k = 1, . . . ,m. Then also (10) is a
pushout.

Ai Aj

A

Bi Bj

B

Ci Cj

C

Di Dj

D

Ai Bi

Ci Di

Ai Bi

Aj Bj

Ai Ci

Aj Cj

Bi Di

Bj Dj

Ci Di

Cj Dj

A B

C D

ak

ai aj

bk

bi bj

ck

ci cj

dk

di dj

fi

ak bk

fj

gi

ak ck

gj

hi

bk dk

hj

ki

ck dk

kj

fi

gi hi

ki

f

g h

k

(1) (2) (3) (4) (5i)

(6k) (7k) (8k) (9k) (10)

Proof. The morphisms f , g, h, and k are uniquely induced by the colimits. We
show this examplarily for the morphism f : From colimit (1), with bj ◦ fj ◦ ak =
bj ◦bk ◦fi = bi ◦fi we obtain a unique morphism f with f ◦ai = bi ◦fi. It follows
directly that k ◦ h = h ◦ f .

Now consider an object X and morphisms y, z with y ◦ g = z ◦ f . From
pushout (5i) with y ◦ ci ◦gi = y ◦g ◦ai = z ◦f ◦ai = z ◦ bi ◦fi we obtain a unique
morphism xi with xi ◦ ki = y ◦ ci and xi ◦ hi = z ◦ bi.

28

Ai Aj

A

B

A B

C D

X

Ai Bi

Ci Di

X

Di Dj

D

X

Bi Bj

B

X

ak

ai aj

bi◦fi bj◦fj

f

f

g h

k z

y
x

fi

gi hi

ki
z◦bi

y◦ci

xi

bk

bi bj

z◦bi z◦bj

z

dk

di dj

xi xj

x

(1)
(10) (5i)

(4) (2)

For all k = 1, . . . ,m, xj ◦ dk ◦ ki = xj ◦ kj ◦ ck = y ◦ cj ◦ ck = y ◦ ci and
xj ◦ dk ◦ hi = xj ◦ hj ◦ bk = z ◦ bj ◦ bk = z ◦ bi, and pushout (5i) implies that
xi = xj ◦ dk. This means that colimit (4) implies a unique x with x ◦ di = xi.
Now consider colimit (2), and x◦h◦ bi = x◦di ◦hi = xi ◦hi = z ◦ bi implies that
x ◦ h = z. Similarly, x ◦ k = y, and the uniqueness follows from the uniqueness
of x with respect to (4). Thus, (10) is indeed a pushout. ut

Lemma A.8. Consider colimits (1) and (2) such that (3i) commutes for all
i = 1, . . . , n, f is an epimorphism, and (4) is a pushout with f induced by colimit
(1). Then also (5) is a pushout, where c and d are induced from the coproducts.

A Ai

A

B Bi

B

A B

Ai Bi

A B

C D

+Ai +Bi

C D

ai

a ai

bi

b bi

f

ai bi

fi

f

c d

e

+fi

c d

e

(1) (2) (3i) (4) (5)

Proof. Since (1) is a colimit and bi ◦fi ◦ai = bi ◦ bi ◦f = b◦f , we actually get an
induced f with f ◦ ai = bi ◦ fi and f ◦ a = b ◦ f . From the coproducts, we obtain
induced morphisms c with c ◦ iAi

= c ◦ ai and d with d ◦ iBi
= d ◦ bi. Moreover,

for all i = 1, . . . , n we have that d ◦ (+fi) ◦ iAi
= d ◦ iBi

◦ fi = d ◦ bi ◦ fi =
d◦f ◦ai = e◦c◦ai = e◦c◦ iAi . Uniqueness of the induced coproduct morphisms
leads to d ◦ (+fi) = e ◦ c, i.e. (5) commutes.

A Ai

A

B

Ai +Ai

C

Bi +Bi

D

Ai +Ai

Bi +Bi

ai

a ai

b◦f bi◦fi

f

iBi

d◦bi

d

iAi

c◦ai
c

iAi

fi +fi

iBi

(1)

We have to show that (5) is a pushout. Given morphisms x, y with x ◦ c =
y ◦ (+fi), we have that y ◦ iBi

◦ bi ◦ f = y ◦ iBi
◦ fi ◦ ai = y ◦ (+fi) ◦ iAi

◦ ai =
x◦c◦iAi

◦ai = x◦c◦ai◦ai = x◦c◦a for all i = 1, . . . , n. f being an epimorphisms
implies that y ◦ iBi ◦ bi = y ◦ iBj ◦ bj for all i, j. Now define y′ := y ◦ iBi ◦ bi,
and from colimit (2) we obtain a unique morphism y with y ◦ bi = y ◦ iBi

and
y ◦ b = y′.

Now x◦ c◦ai = x◦ c◦ iAi
= y ◦ (+fi)◦ iAi

= y ◦ iBi
◦fi = y ◦ bi ◦fi = y ◦f ◦ai

and x ◦ c ◦ a = x ◦ c ◦ ai ◦ ai = y ◦ f ◦ i ◦ ai = y ◦ f ◦ a, and the uniqueness of

29

the induced colimit morphism implies that y ◦ f = x ◦ c. This means that X can
be compared to pushout (4), and we obtain a unique morphism z with z ◦ d = y
and z ◦ e = x. Now z ◦ d ◦ iBi = z ◦ d ◦ bi = y ◦ bi = y ◦ iBi , and it follows that
z ◦d = y. Similarly, the uniqueness of z w.r.t. the pushout propert of (5) follows,
thus (5) is a pushout.

+Ai +Bi

C D

X

B Bi

B

X

A Ai

A

X

A B

C D

X

+fi

c d

e
y

z
x

bi

b bi

y′ y◦iBi

y

ai

a ai

y◦f◦a y◦f◦ai

y◦f

f

c d

e
y

z
x

(5)
(2) (1)

(4)

ut

